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In this paper, we derive corrections to the geodesic equation due to the �-deformation of curved

spacetime, up to the first order in the deformation parameter a. This is done by generalizing the method

from our previous paper [Phys. Rev. D 84, 085020 (2011)] to include curvature effects. We show that the

effect of �-noncommutativity can be interpreted as an extra drag that acts on the particle while moving in

this �-deformed curved spacetime. We have derived the Newtonian limit of the geodesic equation and

using this, we discuss possible bounds on the deformation parameter. We also derive the generalized

uncertainty relations valid in the nonrelativistic limit of the �-spacetime.
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I. INTRODUCTION

Noncommutative space entered physics in 1947 when
Snyder proposed a model of noncommutative spacetime,
admitting a fundamental length [1] as a solution for high
energy cutoff, as envisaged by Heisenberg. Since then,
motivations for investigating noncommutativity have
changed and now noncommutative geometry provides a
possible paradigm to capture spacetime uncertainty. Since
such uncertainties are encountered in approaches to the
microscopic theory of gravity [2], noncommutative geome-
try naturally comes in the discussions of quantum gravity.
It is known that in the low energy limit, the symmetry
algebra of certain quantum gravity models is the
�-Poincare algebra. The corresponding spacetime, known
as �-Minkowski spacetime is an example for a Lie alge-
braic type noncommutative spacetime [3,4]. �-Minkowski
spacetime has been studied in the context of deformed
special relativity also [5–7]. Various aspects of this space-
time have been brought out in [8–10].

In recent times, different field theory models on
�-spacetime have been constructed, using various ap-
proaches, and many interesting aspects of these models
have been analyzed [11–13]. Particularly, the scalar field
theory on �-Minkowski spacetime is analyzed in [14]. By
investigating the effect of the �-deformation parameter on
different physical models and comparing their predictions
with well-known experimental and observational results,
bounds on the noncommutative parameter have been ob-
tained by various authors [15–18].

One of the motivations of studying noncommutative
geometry is that it naturally encodes the quantum structure
of the spacetime. Thus it is of intrinsic interest to see how

gravity theories can be constructed on noncommutative
spacetimes and to analyze how these models differ from
the gravity theories in the commutative spacetime. Several
authors have studied these issues using different
approaches [19–23]. Some of these authors have constructed
gravity theories on Moyal spacetime using �-product
approach. Tetrad formulation of general relativity was gen-
eralized to the noncommutative case, leading to complex
gravity models. In [21], notions of Hopf algebra was used to
construct a noncommutative diffeomorphism invariant the-
ory and different aspects of these models were analyzed. In
[22], by demanding the noncommutative parameter ��� to
be covariantly constant, a generalized � product on the
curved noncommutative spacetime was obtained. Using
this, a possible model of noncommutative gravity theory
was studied and the corresponding modification to the geo-
desic equation was obtained. In [23], the behavior of a scalar
field near a black hole in �-spacetime was investigated.
In this paper, we derive the geodesic equation on the

�-spacetime, valid up to first order in the deformation
parameter. We use a generalization of Feynman’s approach
[24–26] in deriving the geodesic equation on �-spacetime.
It was shown that the homogeneous Maxwell’s equations
can be derived by starting with the Newton’s force equation
and the commutators between the coordinates and veloc-
ities [24], which has been generalized to the relativistic
case in [25]. In [25], it was shown that the consistent
interactions possible for a relativistic particle are with
scalar, vector and gravitational fields. Various aspects of
Feynman’s approach have been studied in [27,28]. This
method has been generalized to Moyal spacetime in [29]
and to �-spacetime in [30,31].
In [31], we have generalized the approach of [26] to

�-spacetime, and derived the �-deformed Maxwell’s equa-
tions and Lorentz equation, valid up to first order in the
deformation parameter a and its classical limits were ob-
tained. We found that the modified Newton’s equation
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depends on velocities and this can be interpreted as an effect
of a background electromagnetic field. It was also shown
that the deformed Lorentz equation gets �-dependent cor-
rections that are quadratic in velocities, and it can be inter-
preted that these modifications are due to the curvature,
induced by the �-deformation of the spacetime. A similar
feature was shown in the case of Moyal spacetime in [32].
In [31], we have found that the electrodynamics depend on
the mass of the particle as well as on its charge. We have
also investigated the trajectory of the charged particle in a
constant electric field in �-spacetime, showing the effect
of the induced electromagnetic field. Thus it is natural to ask
what happens if we consider the motion of a particle in
�-spacetime with curvature. We take up this issue of con-
structing the geodesic equation in this paper.

This paper is organized as follows. In the next section,
we generalize the method of [25], along the lines taken
in [31], to derive the geodesic equation in the com-
mutative spacetime. This approach is suitable for general-
ization to �-spacetime with a nontrivial metric. In Sec. III,
we generalize this approach to �-deformed spacetime with
curvature. Here first, we adapt the method of Sec. II to
the case of �-Minkowski spacetime. This is discussed in
Sec. III A. Then in Sec. III B, the geodesic equation is
derived in the �-spacetime with curvature. We show that
the �-dependent correction to the geodesic equation is
cubic in velocities. Then in Sec. III C, we obtain the
correction to the Newtonian limit of the geodesic equation.
We see that only the radial force equation gets a
�-dependent modification. Using this modification, we
discuss possible bounds on the deformations parameter a.
In Sec. III D, we derive the nonrelativistic correction to the
commutation relations. Using this, we get the generalized
uncertainty principle. Our concluding remarks are given in
Sec. IV.

We work with ��� ¼ ðþ;�;�;�Þ.

II. GRAVITYAND FEYNMAN APPROACH

The Feynman approach of deriving the Maxwell’s
equations and the Lorentz equation is known to be
equivalent to the minimal coupling prescription in the
commutative spacetime [26,31]. This equivalence was
generalized to �-Minkowski spacetime in [31]. In [25],
the Feynman approach was generalized to the re-
lativistic case and the geodesic equation for a particle
was obtained. In this section, we provide a brief summary
of the minimal coupling approach, leading to the derivation
of the geodesic equation. In the later sections, we will
generalize this approach to �-deformed spacetime and
obtain the corresponding corrections to the geodesic
equations, valid up to the first order in the deformation
parameter a.

A relativistic particle of mass m and electric charge e is
described by x�ð�Þ obeying

½x�ð�Þ;x�ð�Þ�¼ 0;

½x�ð�Þ;p�ð�Þ�¼�i���;

F� ¼ @��þeF�� _x
�;

F��¼ @�A�ðxÞ�@�A�ðxÞ;

(1)

where � is a parameter and p� ¼ m _x� þ eA� is the

canonical momentum operator, F� ¼ m €x� is the force,

F�� is the electromagnetic strength tensor, A� is a gauge

field and �ðxÞ is an arbitrary function of x. Since, in this
paper, we are concerned only with effect of �-deformation
on gravity, we set A�ðxÞ ¼ 0, i.e., we are dealing with

electrically neutral particles. Thus we have

½x�; x�� ¼ 0; ½p�; p�� ¼ 0; ½x�; p�� ¼ �i���

F� ¼ 0; p� ¼ m _x�; (2)

where we have taken �ðxÞ ¼ 0, because this choice will
lead to the correct geodesic equation. In [25] it is argued
that the generalization from flat to curved space can be
done by replacing the Minkowskian metric ��� with an

arbitrary metric g��ðXÞ in Eq. (1). With this modification,

the geodesic equation was derived using the Feynman
approach. Using this approach, we start with the postulate

½X�; X�� ¼ 0; ½X�; P�� ¼ �ig��ðXÞ: (3)

But for now we assume that the above ‘‘metric’’ g��ðXÞ is
a function of operator X alone and that it is a symmetric
tensor [which is implied by the first equation in (3)]. All of
the shifting of indices is done with ��� (this is different

from what is done in [25]). X�ð�Þ is a new position opera-

tor and P�ð�Þ is the corresponding conjugate momenta,

m _X� ¼ P�, and we want to solve (3) in terms of the

operators given in (2). It is easy to see that we can construct
operators X and P as follows:

X� � x�; P� � g��p
�; (4)

where x� and p� satisfy (2). Now, we take the derivative

with respect to � of Eqs. (3) and get

1

m
½P�;P�� þ ½X�; €X�� ¼ �i

dg��

d�
; (5)

where we have used _P� ¼ m €X�. Using Eqs. (4) and (2) we

have1

½P�; P�� ¼ i

�
g��

@g�	
@x�

� g��
@g�	

@x�

�
p	; (6)

where we have used ½p�; fðx; pÞ� ¼ i @f
@x� . Also we have

1Notice that in the Feynman’s approach or its generalization in
[25], the notion of conjugate momentum is not used. Whereas, in
[26] and in [31], conjugate momentum is used and it has been
shown that the Feynman’s approach and this method of using
conjugate momentum are equivalent.
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_g�� ¼ @g��

@X	

_X	 ¼ 1

m

@g��

@X	

P	 ¼ 1

m

@g��

@x	
g	�p

�: (7)

Equations (5)–(7), give

½X�;m €X�� ¼ � i

m

�
g��

@g�	
@x�

� g��
@g�	

@x�
þ g�	

@g��

@x�

�
p	:

(8)

Since €X is a function of x and p, the left-hand side (lhs) of
Eq. (8) becomes

½X�; €X�� ¼ ½x�; €X�� ¼ �i
@ €X�

@p� : (9)

Using this, we integrate Eq. (8) over p� to get

m €X�¼G�þ 1

2m

�
g��

@g�	
@x�

�g��
@g�	

@x�
þg�	

@g��

@x�

�
p	p�:

(10)

Defining

~���	 ¼ � 1

2

�
g��

@g�	
@x�

� g��
@g�	

@x�
þ g�	

@g��

@x�

�
; (11)

we get

m €X� þ 1

m
~���	p

	p� ¼ 0; (12)

where we have chosen G�ðxÞ ¼ 0. In the above, Eq. (11) is
similar to the Christoffel symbol and Eq. (12) is similar to
the famous geodesic equation. To make the proper corre-
spondence to gravity we have to go to the classical limit,
i.e., we have to take the limit ½; � ! 1

i f; gPB and all operators

reduces to corresponding commuting c-number functions.
We assume that metric is invertible and define an inverse of
the symmetric tensor g�� by the following relation:

g��g
�� ¼ 
�

�: (13)

From Eqs. (4), (11), and (13), we get

g	�P� ¼ p	;

g	�
@g�	
@x�

¼ �g�	
@g	�

@x�
;

~���	g
	�g�� ¼ 1

2
g��

�
@g��

@x�
þ @g��

@x�
� @g��

@x�

�

� ���
� ;

(14)

where �
��
� is the Christoffel symbol. Using Eqs. (14), we

re-express the geodesic equation in Eq. (12) as

€X � þ �
�	
� _X	

_X� ¼ 0: (15)

Note that all raising and lowering of indices were done using
���, and tensor g�� is treated only as a symmetric tensor

with an inverse defined in Eq. (13). This shows the deriva-
tion of the geodesic equation using the Feynman approach.

III. �-DEFORMATION OF GRAVITY

In this section, we obtain the geodesic equation for a
particle moving in the �-deformed spacetime with the
arbitrary metric, which are the main results of this paper.
After discussing modifications required to adapt the
Feynman’s approach to the �-Minkowski spacetime, we
generalize this to the �-deformed spacetime with the arbi-
trary metric and derive the �-deformed geodesic equation.
Then we discuss the Newtonian limit of this geodesic
equation and obtain the corrections. The effect of these
corrections on observational and experimental results are
analyzed and the bounds on the deformation parameter
suggested by this correction to the Newtonian results is
discussed. We also obtain the �-modified commutation
relations and derive generalized uncertainty relations.

A. �-Minkowski spacetime

�-Minkowski spacetime is defined by the coordinates
obeying

½x̂�; x̂�� ¼ iða�x̂� � a�x̂�Þ: (16)

Operators x̂� can be realized in terms of operators x and p

[31,33] as

x̂ � ¼ x�’
�
�ðpÞ; (17)

where ’�
�ðpÞ must satisfy

@’�
�

@p	
’	

� � @’�
�

@p	
’	

� ¼ a�’
�
� � a�’

�
�: (18)

Solving Eq. (18) up to the first order in deformation
parameter a, we get

’�
�¼
�

�½1þ�ða �pÞ�þ	a�p�þp�a�; �;	;2R;

(19)

where parameters of the realization �, 	 and  have to
satisfy

� � ¼ 1; 	 2 R: (20)

It will be convenient for later to define an operator ŷ
which commutes with x̂ (for more on the properties of ŷ
see [33]), i.e.,

½ŷ�; x̂�� ¼ 0 , ½ŷ�; ŷ�� ¼ �iða�ŷ� � a�ŷ�Þ; (21)

and hence, it is easy to see that any function of ŷ also
commutes with x̂, i.e.,

½fðŷÞ; x̂�� ¼ 0: (22)

We can express ŷ and fðŷÞ up to the first order in a, as
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ŷ� ¼ x� þx�ða �pÞ þ ð� 1Þðx �pÞa� þ	ðx � aÞp�;

fðŷÞ ¼ fðxÞ þ

�
x � @f

@x

�
ða �pÞ þ ð� 1Þ

�
a � @f

@x

�
ðx �pÞ

þ	ða � xÞ
�
@f

@x
�p

�
: (23)

The canonical momentum operator (in the e ¼ 0 case)

p̂� ¼ m
dx̂�
d� is then obtained [31] as

p̂� ¼ p�’
�
� ! p̂�

¼ p� þ ð�þ 	Þða � pÞp� þ a�p
2

(24)

and obeys

½p̂�; p̂�� ¼ 0; (25)

½p̂�; x̂�� ¼ i���ð1þ sða � pÞÞ þ iðsþ 2Þa�p�

þ iðsþ 1Þa�p�;

s ¼ 2�þ 	: (26)

We have shown [31] that this construction via Feynman’s
approach satisfies all Jacobi identities. By taking the de-
rivative of Eq. (16), with respect to �, we get a condition,

½p̂�; x̂�� þ ½x̂�; p̂�� ¼ iða�p̂� � a�p̂�Þ: (27)

These results are needed for deriving the geodesic equation
in the �-Minkowski spacetime in the next subsection.

B. �-dependent corrections to the geodesic equation

In the flat commutative spacetime, our derivation of
geodesic equation used the conjugate pairs ðx; pÞ, and for
flat noncommutative spacetime, we used ðx̂; p̂Þ (see pre-
vious section). We showed that all the operators in the flat
noncommutative spacetime could be written in terms of x,
p and deformation parameter a. For the noncommutative

spacetime with curvature, we will use ðX̂; P̂Þ and our
approach is to construct them as functions of x, p and
deformation parameter a. In the case of neutral particles,

conjugate momenta is given by P̂� ¼ m
dX̂�

d� . After obtain-

ing the realization for X̂ and P̂ in terms of x and p,
consistent with the � generalization of the relations in
Eqs. (3) and (4), we derive the corrections to the geodesic
equation due to the �-deformation of spacetime.

We start with the postulate

½X̂�; X̂�� ¼ iða�X̂� � a�X̂�Þ; (28)

where

X̂ � ¼ X�’
�
�; (29)

and ’�
� satisfies Eq. (18). The conjugate momentum P̂�

should satisfy all the Jacobi identities and also obey

½P̂�; X̂�� þ ½X̂�; P̂�� ¼ iða�P̂� � a�P̂�Þ: (30)

In the commutative limit, a ! 0, X̂� and P̂� should satisfy

X̂� ! X� ¼ x�; P̂� ! P� ¼ g��p
�;

½X̂�; P̂�� ! g��ðxÞ;
(31)

and in the limit g��ðxÞ ! ���, they should reduce to the

corresponding flat spacetime results, i.e.,

X̂� ! x̂� ¼ x�’
�
�; P̂� ! p̂� ¼ p�’

�
�;

½X̂�; P̂�� ! ½x̂�; p̂��:
(32)

We explicitly construct P̂�, satisfying the above require-

ments. This leads to the realization of P̂� as

P̂ � � g�	ðŷÞp	’�
�: (33)

Using Eq. (18), it is straightforward to see that this con-
struction satisfies all Jacobi identities as well as Eq. (30) to
all orders in a. For more details on the construction of

P̂� see Appendix A.

Thus to summarize, the coordinates and conjugate mo-
menta for the �-deformed spacetime with an arbitrary
metric is given as

X̂ ¼ x�’
�
�; P̂� ¼ g�	ðŷÞp	’�

�; (34)

satisfying

½X̂�; X̂�� ¼ iða�X̂� � a�X�Þ; (35)

and

½X̂�; P̂�� ¼ �ig�	ðŷÞ
�
p	 @’

�
�

@p� ’�
� þ ’�

�’
	
�

�
: (36)

Equations (34)–(36) are valid to all orders in a.
Next we take the derivative of Eq. (36) with respect

to �, and by using
dP̂�

d� ¼ m €̂X� and
dp�

d� ¼ 0, we get

½X̂�;m €̂X��¼� 1

m
½P̂�;P̂��

� i
dg�	ðŷÞ

d�

�
p	@’

�
�

@p� ’�
�þ’�

�’
	
�

�
: (37)

Up to this, all of our results are valid to all orders in a.
We now calculate the right-hand side (rhs) of Eq. (37)
explicitly, up to the first order in the deformation parameter
a, using Eqs. (19), (23), and (34). Since our goal is to get

the corrections to €̂X�, we assume

€̂X � ¼ €X� þ 
 €X�ðaÞ þOða2Þ; (38)

where 
 €XðaÞ is linear in a and generally a function of x and
p, while €X� satisfies Eq. (12). For the lhs of Eq. (37) we

have

½X̂�; €̂X�� ¼ ½X̂�; €X�� þ ½X�; 
 €X�ðaÞ� þOða2Þ: (39)

Combining Eq. (37) and (39) we have
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m½X�;
 €X�ðaÞ�¼�½X̂�;m €X��� 1

m
½P̂�; P̂��

� i
dg�	ðŷÞ

d�

�
p	@’

�
�

@p� ’�
�þ’�

�’
	
�

�
;

(40)

where the lhs can be written as

½X�; 
 €X�ðaÞ� ¼ ½x�; 
 €X�ðaÞ� ¼ �i
@½
 €X�ðaÞ�

@p� : (41)

Next we calculate the rhs of Eq. (40) explicitly up to the
first order in a, using Eqs. (12), (19), (23), and (34). Then
by using Eq. (41), we perform the integration of Eq. (40)
and obtain 
 €X�ðaÞ, which with Eq. (38) finally gives

€̂X � þ 1

m2
~���	p

	p� ¼ 1

m2
~���
�p

�p
p�; (42)

where ~���	 is given in (11) and ~���
� in Appendix B. We

note here that the important feature of the a-dependent
corrections is that it is cubic in p, and that it depend on the
realization that is on the parameters �, 	 and .

If we now go to the classical limit [as described in text
after Eq. (15)] by using Eqs. (13) and (34) we get

p	p� ¼ g	�g��P̂�P̂�

þ P�1
P�2

P�3
f. . . a . . .g	��1�2�3 þOða2Þ;

p�p
p� ¼ g��1g
�2g��3P�1
P�2

P�3
þOðaÞ; (43)

and with Eq. (42) we have

~���	p
	p� ¼ ���

� P̂�P̂� þ ~���	f. . . a . . .g	��1�2�3

� P�1
P�2

P�3
þOða2Þ;

~���
�p
�p
p� ¼ ~���
�g

��1g
�2g��3P�1
P�2

P�3
þOða2Þ:

(44)

Using P̂� ¼ m _̂X� and Eq. (44) in (42) we get

€̂X� þ ���
�

_̂X�
_̂X� ¼ m��1�2�3

� _̂X�1
_̂X�2

_̂X�3
þOða2Þ; (45)

where

�
�1�2�3
� ��~���	f. . .a . . .g	��1�2�3 þ ~���
�g

��1g
�2g��3 :

(46)

The explicit form of ~���
� is given in Appendix C. Above

Eq. (45) shows the corrections to the geodesic equation due
to the �-deformation of the Minkowski spacetime.

C. Newtonian limit

Now we will investigate the ‘‘Newtonian limit’’ of the
�-deformed geodesic equation obtained in Eq. (45). From
now on we will consider a special case of �-Minkowski

space were we take a� ¼ ða; ~0Þ. We define the Newtonian

limit by following three requirements [34]:
(1) Particles are moving slowly, and hence we have

dX̂i

d�
� dX̂0

d�
: (47)

(2) The gravitational field is weak and can be considered
as perturbation about the flat spacetime metric, i.e.,

g�� ¼ ��� þ h��; jh��j � 1: (48)

(3) The gravitational field is static.

From the definition of the inverse metric, g��g
�� ¼ 
�

�,

we find that to the first order in h, g�� ¼ ��� � h��.
Using the above assumptions and keeping only linear terms
in a and h, from Eq. (45), we get

€̂X 0 ¼ 0; (49)

€̂X i þ 1

2

@h00

@xi
ð _̂X0Þ2 ¼ m�000

i ð _X0Þ3: (50)

Using Eq. (49) we can easily change the derivatives with
respect to � to derivatives with respect to t̂ in Eq. (50). At
first glance it seems that the last term in Eq. (50) is not
reparametrization invariant. But since we are keeping
only linear terms in a and h (hence �000

i is already linear
in a and h) we have _X0 ¼ dt

d� � 1þ 1
2h00 � 1þOðhÞ

reparametrization is intact. Generalizing the definition of

Newton’s gravitational force, given as Fi ¼ �GmM
r3

xi ¼
1
2
@h00

@xi
to the �-deformed spacetime as F̂i ¼ md2X̂i

dt̂2
, we get

F̂ i ¼ Fi

�
1� am

3
C

�
; (51)

where C ¼ 5�þ 5	þ 12. Note that the force equation
does get a-dependent modification, but there is only radial
force as in the commutative case. But this radial force
has an a-dependent correction and this can be compared
to the prediction of the Pioneer anomaly. Also notice that
the a-dependent correction depends on the mass of the
test particle. This shows that the equivalence principle is
violated. The corrections also depend on the choice of
realization, that is, on the parameters �, 	, and .
The form of correction to the force equation obtained

above in Eq. (51) is exactly in the same form as that was
obtained in [18] and hence we will get the same bounds on
a as obtained in [18]. Thus the Pioneer anomaly sets a
bound jaj 	 10�53 m and the violation of equivalence
principle sets jaj 	 10�55 m (for a body of mass 1 kg).
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D. Uncertainty relations

It is well-known that any quantum theory of spacetime
will imply a minimal bound on the localization of particles
[35] and that the noncommutativity of spacetime can in
fact account for the modification of the Heisenberg uncer-
tainty relations [36]. In [37] it has been argued that even at
the Newtonian level there are modifications of the uncer-
tainty relations due to gravity. In order to see modifications
of the Heisenberg uncertainty principle in our approach,
we first see the nonrelativistic limit of Eqs. (35) and (36),

½xi; xj� ¼ 0; ½xi; pj� ¼ iℏð1þ amsÞ
ij;

½x0; p0� ¼ �iℏð1þ 3amðsþ 1ÞÞ; (52)

where s ¼ 2�þ 	. Now, using �A�B 
 1
2 jh½A; B�ij, we

get the deformed uncertainty relations as

�xi�xj 
 0; �xi�pj 
 ℏ
2
ð1þ amsÞ;

�E�t 
 ℏ
2
ð1þ 3amðsþ 1ÞÞ:

(53)

IV. CONCLUSION AND OUTLOOK

We have analyzed the effect of � deformation on the
motion of a particle in the curved spacetime. Although, one
can find various approaches that handle noncommutative
space and gravity (most of them on Moyal space [19–23]),
our approach is one of the first attempts that deals with
effect of gravity on �-deformed spacetime. In this paper,
we have first generalized the Feynman approach of [31] to
reproduce results in [25]. This then enables us to derive the
geodesic equation for the �-Minkowski spacetime up to the
first order in the deformation parameter a. The main dif-
ference between the commutative and �-deformed case is
that there is an ‘‘extra’’ force that is proportional to _X3 in
the �-deformed case. This term, which is cubic in veloc-
ities, can be interpreted as an extra drag that acts on the
particle when moving in a �-deformed curved spacetime.
This approach allows one to treat these effects as a pertur-
bation to the commutative, curved spacetime. The princi-
pal characteristic of our approach is that all the corrections
depend on the choice of realization (parameters �, 	 and
) and on the mass of the test particle. Since the photon has
m ¼ 0, there is no change in the geodesic equation for

light, and also no change in uncertainty relations, which
makes it more difficult to set experimental bounds on
deformation parameter a. Since for certain quantum grav-
ity models the low energy limit is the �-Poincare algebra
and corresponding spacetime is �-Minkowski, our results
can be thought of as the effect of quantum gravity. We have
derived the a-dependent correction to the Newtonian limit
of the geodesic equation. We see that the Newtonian force/
potential remains radial, but depends on the mass of the test
particle (as well as a). In the ‘‘special relativistic’’ limit
(obtained by taking g�� ! ���), results obtained here

reproduce various deformed special relativity models,
since these models differ from ours only in explicit choice
of the parameters �, 	 and  (that is in the choice of
realization). It is clear that in this limit we have effects that
violate Lorentz symmetry and that there is a change in the
dispersion relation [16]. It is interesting to note that the
bounds on the deformation parameter a obtained here are
same as that obtained in [18], where a different realization
of the coordinates of �-Minkowski spacetime was used.
We have shown that the �-deformed commutation

relations between phase space variables induce modified
uncertainty relations. There have been investigations on
the possible modifications of atomic spectra due to the
generalized uncertainty relations and bounds on deforma-
tion parameters were obtained [38]. Thus it is of interest to
study the changes in the spectrum of the Hydrogen atom
due to the �-deformed uncertainty relations we have in
Eq. (53). This will be taken up separately.
In the commutative limit ½X�; P�� gives rise to the

metric g�� and by analogy, one could interpret ½X̂�; P̂��
(or just the symmetric part of it) as giving rise to non-
commutative metric ĝ��. Then it would be interesting to

construct the noncommutative version of Ricci tensor R̂��

and Ricci scalar R̂ in order to get a Lagrangian that would
reproduce Eq. (45) by action principal. The question of the
invariant line element is still unsolved. These problems are
of immense importance and will be reported elsewhere.
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APPENDIX A

We have a more general construction of the operator P̂�

up to the first order in the deformation parameter. By
differentiating Eq. (28) with respect to �, we get

½P̂�; X̂�� þ ½X̂�; P̂�� ¼ iða�P̂� � a�P̂�Þ: (A1)

This determines the antisymmetric part of ½P̂�; X̂��. We

can write

½P̂�; X̂�� ¼ Ŝ�� þ Â��; (A2)

where Ŝ�� ¼ Ŝ�� and Â�� ¼ �Â��. From Eqs. (A1) and

(A2) we get

Â �� ¼ i

2
ða�P̂� � a�P̂�Þ: (A3)

In the limit a ! 0, we must have

½P̂�; X̂�� !a!0½P�; X�� ¼ ig��: (A4)

Using these, up to the first order in the deformation parame-

ter a we have Ŝ�� ¼ ig�� þ 
SðaÞ�� or more explicitly
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Ŝ �� ¼ ig�� þ ia�G��
�	ðxÞp	 þOða2Þ: (A5)

Here G��
�	 ¼ G��

�	, and then we get

½P̂�; X̂�� ¼ ig�� þ ia�G��
�	ðxÞp	 þ i

2
ða�P̂� � a�P̂�Þ:

(A6)

We get constraints onG��
�	ðxÞ by requiring that the Jacobi

identities must be satisfied up to the first order in a. From

½½X̂�;X̂��;P̂��þ½½X̂�;P̂��;X̂��þ½½P̂�;X̂��;X̂��¼0 (A7)

we get

a�ðG��
�
	�G�	

�
�Þ

¼�a�
�
x	

@g��

@x�
�x�

@g�	

@x�

�
þ	x�

�
a	

@g��

@x�
�a�

@g�	

@x�

�

þðx �aÞ
�
@g��

@x	
�@g�	

@x�

�
þ3

2
ða�g�	�a	g��Þ: (A8)

Nowwe can constructG��
�	ðxÞ from���, g�� and

@g��

@x� x	,

and symbolically we can write this as

G���	 ¼ X
i

Aiðg � �Þ���	 þX
i

Bi

�
� � g � @g

@x
x

�
���	

;

Ai; Bi 2 R: (A9)

We get constraints on parameters Ai and Bi from Eq. (A8)
and also by requiring that the above equations should go to
correct limit as g�� ! ���. FinallyG���	 is determined by

the parameters � and 	 and four more free parameters. Now

it is possible to reconstruct operator P̂� from Eq. (A6). This

procedure is more general but valid only up to the first order
in the deformation parameter a. The construction where

P̂� ¼ g�	ðŷÞp	’	
� is a special case of this general proce-

dure, but we have chosen this special case because it is
analogous to the undeformed case (valid up to all orders in a).

APPENDIX B

~� ��
� ¼ A��
� þB��
�; (B1)

where

A��
�¼1

3

�
�~�ð�
Þ�½2�
�

½�

�
��a�þ2	
�

½�����a�þ2
�
� 


�
½�a���þ2
�

½�

�
��

��
�

�
a �@g�	

@x

�
ðx��Þ

þ	ða �xÞ
�
@g�	
@x�

�
�
þ

�
x �@g�	

@x

�
ða��Þ

�
@g�

@x	

þ�g�	

��

	
��;

�
a �@g�


@x

��
�
�
@2g�

@x	@x

�a
�
ðx��Þþ@g�


@x	
ða��Þ

�

þ	g�	

�
a	

�
@g�

@x�

�
�
þða �xÞ

�
@2g�

@x�@x	

�
��

þ

�
g�	

@2g�

@x	@x

�
x�� ~�ð
�Þ�

�
ða��Þ�ð��Þ

�
a �@g�


@x

��
x �@g��

@x

��

þ2
�
½�


�
��

�
	g�	a

�

�

	
� �@g�


@x�
þ@g�


@x	
����

�
þa�

�
g���@g�
@x�

� ~�ð�
Þ��
���

(B2)

and

B��
� ¼ 1

3

�

�
�


	
�

�
@g�	
@x�

�
�

�
a � @g�



x

�
x� þ 	ða � xÞ

�
@g�

@x�

�
�
þ 

�
x � @g�


@x

�
a�

�
þ 

�
x�

@2g�	
@x�@x

� g�
a� � ~�ð�	Þ
a�
�

þ �

�
a�x


@2g�	
@x�@x

� g�� þ
�
a � @g�	

@x

�
g�


�
þ 	

�
a�g��

@g�	

@x

þ ða � xÞ @2g�	

@x�@x


g��

��

� ð�þ Þa�~�ð�
Þ� � 	a�ð~�ð��Þ
��� þ ~�ð��Þ
��� þ ~�ð��Þ
���Þ � 2~�ð��Þ
a� � 2�a�~�ð��Þ


� �

�
x�

�
a � @

~��
�

@x

�
� 2~���
a�

�
� 	

�
ða � xÞ @

~��
�

@x�
� 2~��
�a�

�
� a�

��
x � @

~��
�

@x

�
� 2~��
�

��
: (B3)

Here operator � stands for the position where operator p� is to be placed in Eq. (42).

APPENDIX C

�
�1�2�3
� � �~���	f. . . a . . .g	��1�2�3 þ ~���
�g

��1g
�2g��3 ; (C1)

where

f. . . a . . .g	��1�2�3 ¼ �2g��1g��2g�3ð	g�Þ�
�
g��ð�
�

�a� þ 	a���� þ 
�
�a�Þ þ �

�
a � @g��

@x

�

þ 	ða � xÞ @g��
@x�

þ 

�
x � @g��

@x
a�

��
: (C2)
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