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In Lorentz violating quantum electrodynamics (QED) it is known that a radiatively induced

Chern-Simons term appears in the effective action for the gauge field, which is finite but undetermined.

This ambiguity is shown to be absent in a condensed matter realization of such a theory in Weyl

semi-metals due to the existence of a full microscopic model from which this effective theory emerges.

Physically observable consequences such as birefringence are also discussed in this scenario.
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I. INTRODUCTION

Historically, bridges between high-energy theories and
condensed matter phenomena have proven very useful for
both communities [1], the renormalization group being
possibly the hallmark of such a symbiosis [2]. More re-
cently, with the advent of low-dimensional electronic sys-
tems such as graphene, described by a 2þ 1 dimensional
massless Dirac equation [3,4], there exists the real possi-
bility to explore low-dimensional field theories and
compare them to actual experiments. For instance, it was
predicted that the low-energy field theory describing elec-
trons in graphene, being a renormalizable theory, would
generate a flow of the Fermi velocity, the only bare parame-
ter of the theory, towards a free theory in the infrared [5],
a fact confirmed by experiment very recently [6]. Other
appealing directions regarding graphene include field theo-
ries in curved spaces [7] and Schwinger pair production [8].

Even more recently, topological field theories have
encountered novel physical realizations in materials
generically dubbed as topological insulators [9–11], which
are bulk insulators that have 2þ 1 Dirac fermions on the
surface. These materials have enabled the theoretical
possibility of realizing axion electrodynamics [12] in con-
densed matter systems and other axion related phenomena
[13,14]. More importantly, superconducting versions of
these materials have been suggested as the root for obtain-
ing an effective realization of the elusiveMajorana fermion
[15], which can open new routes towards quantum compu-
tation [16].

In this work I will put forward an example of Lorentz
violating quantum electrodynamics (QED) that can be
realized with a novel class of materials known as Weyl
semi-metals [17–20]. With the appropriate choice of
parameters, these systems of materials can host low-energy
quasiparticles which are described by the Weyl equations.
In the general case, however, the low-energy quasiparticles
are well described by the 3þ 1 massive Dirac equation.
Concretely, as will be shown below, the effective low-
energy theory resembles a relativistic field theory which
can be then modified with appropriate perturbations, so as

to take the form of a Lorentz violating version of QED,
described by the following action:

S ¼
Z

dx4 �c ði6@�m� 6b�5 � e 6AÞc ; (1)

with b� being a constant four vector. In condensed matter,

this is not the first example of such a theory, H3e being a
particularly fruitful example [1,21,22].
In high-energy physics, particularly in the context of

potential extensions to the standard model, the possibility
of a violation of Lorentz symmetries in QED of the form
(1) has been subject of intense theoretical research for over
more than a decade now [23–25]. Although it seems that
our universe is to a very high accuracy Lorentz invariant
[23,26], finding a coherent formulation of Lorentz violat-
ing QED seems to be challenging and has generated a very
active theoretical debate [21,25,27–35]. In particular from
the beginning it was realized [25] that an action of the form
(1) generated a Chern-Simons term in the effective action
for the electromagnetic gauge field of the form 1

2 k�
~F��A�

where ~F�� ¼ �����F��. Intriguingly, the coefficient of

this term turns out to be finite but undetermined [36].
Ever since, there has been considerable theoretical work
in order to clarify this issue under several perspectives. On
the one hand Fujikawa type analysis [28], as well as other
nonperturbative (in b) considerations [29] provided evi-
dence in favor of the ambiguity, whenever the theory was
massive [29,37]. On the other hand, several works have
suggested under different symmetry and causality consid-
erations that there is no room for such a correction and that
it should vanish [27,35,38,39]. A representative list of
possible realizations of k� can be found in [30].

In this work, making use of the condensed matter
realization of such a theory in the context of Weyl semi-
metals, it is shown that a finite and determined value of the
radiatively induced Chern-Simons term can be fixed
unambiguously. In this case, this is possible owing to the
fact that a high-energy theory exists for this particular
system [21], originated in the microscopic model of the
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Weyl semi-metal that enables us to determine an unambig-
uous value of k�.

The paper is structured as follows. In Sec. II the exact
connection between a low-energy description of Weyl
semi-metals and Lorentz violating QED will be estab-
lished. Then, in Sec. III the radiatively induced Chern-
Simons term will be derived making emphasis on the
peculiarities of this particular condensed matter system.
In Sec. IV, the microscopic theory will be reviewed to
fix the uncertainty in the low-energy theory. Since the
Chern-Simons term modifies Maxwell’s equations inside
this material in Sec. V some physical implications of
this term such as birefringence will be discussed. Finally
the main conclusions are presented in Sec. VI.

II. EMERGENCE OF LORENTZ VIOLATING
QED IN WEYL SEMI-METALS

In order to understand how the ambiguity affecting
radiative correction is resolved in this context, it is neces-
sary to understand precisely how the action (1) is realized
from a microscopic model. This section is thus devoted to
provide a pedagogical and self-contained introduction to
a particular model of Weyl semi-metals [19] which will
realize the mentioned action with the minimum number of
fermionic species.

Due to the Nielsen Ninomiya theorem [40,41], only an
even number of fermions can emerge from a lattice model.
To achieve the Weyl semi-metal phase with the minimum
number of fermionic species (two), consider, as originally
proposed by Burkov and Balents [19], a periodic array of
alternating topological insulators and ordinary insulators
as shown schematically in Fig. 1. Topological insulators
are 3þ 1 bulk insulators that posses 2þ 1 dimensional
Dirac fermions at each surface [10,11] described by the
effective low-energy Hamiltonian

H ¼ X
k?;i

½vF�z � ðẑ� �Þ � k?�cyk?ck? ; (2)

where � ¼ ð�x; �yÞ represents the spin subspace, vF is the

Fermi velocity and k? ¼ ðkx; kyÞ, and ẑ is a unitary vector

along the growth direction chosen arbitrarily to be in the
z direction. The � subspace selects at which surface the

two species of Dirac fermions live. The operators cyk? (ck?)

create (annihilate) quasiparticles at momenta k?. Note that
the two species of 2þ 1 Dirac fermions are realized, one
at each surface, in concordance to the Nielsen Ninomiya
theorem. They can be thought of as the two species or
‘‘valleys’’ realized in graphene, with the pseudospin being
here the real spin.
When the TIs are sufficiently thin, the two surfaces can

couple through a hopping amplitude �s which enters the
Hamiltonian as

H�s
¼ X

k?;i
½�s�x � 1��cyk?ck? ; (3)

where 1� is the identity matrix in spin subspace. In order
to couple different surfaces it is necessary to introduce a
label i that indicates to which layer the electron is hopping
to. If the hopping amplitude is governed by a parameter
�D then the coupling between different layers takes the
form

H�D
¼ X

k?;i
½�D�

þ�i;jþ1 þ�D�
��i;j�1� � 1�c

y
k?;ick?;j;

(4)

where �� � 1
2 ð�x � i�yÞ. The full Hamiltonian then reads

H¼X
k?;i

½vF�z�ðẑ��Þ �k?�i;jþ�s�x�1��i;j

þ�Dð�þ�i;jþ1þ�D�
��i;j�1Þ�1��cyk?;ick?;j: (5)

Fourier transforming cyk?;i ¼
P

cyk?;kze
ikzRi , where Rm¼dm

with m an integer and d being the spacing between the
layers, the Hamiltonian is diagonalized in momentum
space:

H ¼ X
k?;kz

½vF�z � ðẑ� �Þ � k? þ �̂ðkzÞ�cyk?;kzck?;kz ; (6)

where �̂ðkzÞ � �s�x � 1� þ�Dð�þeikzd þ ��e�ikzdÞ �
1�. To make the connection with Weyl fermions consider
a low-energy theory of such a system. The Hamiltonian (6)
has two doubly degenerate eigenvalues given by

�2k ¼ v2
Fðk2x þ k2yÞ þ �2

s þ �2
D þ 2�s�D cosðkzdÞ: (7)

Expanding near kz ¼ 	=d one obtains

�2k ¼ v2
Fðk2x þ k2yÞ þ ð�s � �DÞ2 þ d2�s�Dk

2
z ; (8)

where the third momentum is redefined to be kz�	=d!kz.
This Hamiltonian corresponds to a massive 3þ 1 Dirac
fermion at point k ¼ ð0; 0; 	=dÞ of the Brillouin zone,

FIG. 1 (color online). Illustrative picture of a system that
realizes the Weyl semi-metal phase at low energies: a periodic
array of alternating normal (N) and topological insulators (TIs)
[19]. The various parameters of the model are shown schemati-
cally: �s is the hopping of an electron to a different surface
within the same layer, �D controls the hopping of an electron to
a different layer, d is the spacing between topological insulator
layers and the symbol i labels the layers.
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H ¼ X
k?;kz

½vF�zðẑ� �Þ � k? þ ð�s ��DÞ�x � 1�

þ d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�s�D

p
kz�y � 1��cyk?;kzck?;kz ; (9)

with dispersion relation,

��ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
Fðk2x þ k2yÞ þ ~v2

Fk
2
z þm2

q
; (10)

where ~v2
F ¼ d2�s�D and m2 ¼ ð�s ��DÞ2. The

Hamiltonian (9) can be recast in a more familiar form:

H ¼ X
k

c y
kð
iki þ �mÞc k; (11)

where i ¼ 1, 2, 3, c k ¼ ck?;kz and the matrices 
 (follow-

ing the traditional notation for a Dirac Hamiltonian) are
defined as 
1 ¼ vF�z � �y, 
2 ¼ �vF�z � �x and


3 ¼ ~vF�y � 1� where the Fermi velocities vF are provi-

sionally included inside the definition. A small deviation
from �s=�D ¼ �1 defines the fourth matrix to be
� ¼ �x � 1�. Note in particular that at the critical line
�s=�D ¼ �1 the quasiparticles are governed by the Weyl
equations, where the four-component spinor decouples into
a pair of two-component Weyl spinors, from which Weyl
semi-metals are named after. Away from this critical
line, the system is a gapped insulator defined by the
Hamiltonian (11).

With this Hamiltonian in mind, it is possible to write the
effective action for the system, which resembles a QED
like action, but this time for effective quasiparticles inside
the material:

S ¼
Z d4k

ð2	Þ4
�c kð��M

�
�k

� �mÞc k; (12)

where it is convenient to introduce the diagonal matrix
M�

� ¼ diagð1; vF; vF; ~vFÞ to adequately manage the an-
isotropic Fermi velocities. The exact relation between �, 

and � can be obtained with the usual procedure, and it is
detailed in the Appendix .

In view of the action (12), and postponing for the end of
this section the discussion concerning Lorentz invariance,
a natural question arises: Is it possible to introduce a term
of the form �c 6b�5c to reproduce an action that resembles
(1)? The answer is indeed affirmative. Doping these mate-
rials with magnetic impurities breaks time reversal sym-
metry [19] and introduces a term of the form

Hm1c
¼ X

k

m1cc
y
k1� � �zc k; (13)

which in the � matrix representation is nothing but
�c�3b3�5c (see the Appendix for details). The presence
of this term opens a gap of size m1c at the surface of each
TI layer. Physically, this term can be understood as arising
from a magnetization determined by the density of mag-
netic impurities. For sufficiently weak magnetizations,
the magnetic field only couples to the surface states as a

Zeeman field, which for the massless 2þ 1 Dirac fermions
at the surface is exactly a mass term that opens a gap
at the surface, being the size of the m1c proportional to
the magnetization. Experimentally, it was confirmed in
Ref. [42] that for the topological insulator Bi2Se3, the
magnitude of the gap increases with the impurity density
and can be as large as 60 meV for a concentration of
0.12 Fe impurities per Bi atom.
Similarly, in [43] it was shown that if an inversion

breaking spin orbit coupling term is allowed, it has the
form

H� ¼ X
k

�c y
k�y � �zc k: (14)

In this case, this corresponds exactly to a term of the form
�c�0b0�5c . Unfortunately, the precise value of b0 ¼ � in
this system is still unknown. However, it can still be
expected to be large since all TIs have intrinsically large
spin orbit coupling which is precisely one of the necessary
ingredients for their topological nature. Note as well that �
in this model is assumed to be an independent parameter
and, therefore, can be either larger or smaller than m.
With these two terms we finally arrive to the action

S ¼
Z dk4

ð2	Þ4
�c ð��M

�
�k

� �m� 6b�5Þc : (15)

When coupled to an electromagnetic gauge field, this
action is the condensed matter analogue of a Lorentz
violating QED with a CPT violating term given by (1)
[24,25], and constitutes both the starting point and the first
result of this work.
It is evident that this action, arising from a condensed

matter system, breaks Lorentz invariance even without the
term proportional to b, due to the appearance of the matrix
M�

� in the action, which is in a way a trivial violation of
the symmetry. As it will be shown below, the consequences
of the CPT violating term �c 6b�5c are much more pro-
found, and so they will be the focus of the following
sections.

III. RADIATIVELY INDUCED
CHERN-SIMONS TERM

As in ordinary QED, the coupling to the external gauge
field is determined through a term of the form j�A�, where

j� is the current operator, defined by the free fermionic

action. In this case the current operator is defined in terms
of M�

� containing the Fermi velocities

j� ¼ M�


�c k�


c k: (16)

Consider now the quantum expectation value for such a
current operator. To one loop, it is defined by the polariza-
tion of the photon ��� and it is given by
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hj�i ¼ hM�

M

�
�
�c k�


c k
�c k�

�c kiA�

¼ M�

M

�
��


�A�: (17)

In terms of Feynman diagrams,�
� is the analogous to the
QED photon bubble with the only difference that the
fermionic propagator is Gðk; bÞ given by

Gðk; bÞ ¼ i

6k�m� 6b�5

: (18)

The integral determining ��� is given by an appropriate
generalization of the one loop vacuum polarization
diagram:

��� ¼ e2

v2
F ~vF

Z dk4

ð2	Þ4 Trf��Gðk; bÞ��Gðkþ p0; bÞg:
(19)

As before, the prefactor 1
v2
F ~vF

stems from a rescaling of the

momenta with the corresponding Fermi velocities and
p0� ¼ M�

�p
� is the rescaled external four-momentum

vector. Once established this connection between Lorentz
violating QED and Weyl semi-metals it is straightforward
to calculate the odd part of (19) nonperturbatively in b
following for instance Ref. [29]:

�
��
odd ¼

e2

v2
F ~vF

�����p0
�b�

8<
:
C if �b2 �m2

C� 1
2	2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

b2

q
if �b2 	m2;

(20)

where C is a finite but undetermined constant [25,28,29].
Introducing (20) into (17) one obtains the response of the
Weyl semi-metal to an external electromagnetic field in the
presence of both spin orbit coupling, given by b0 and
magnetic impurities governed by b3:

j�odd ¼ M�

M

�
�

e2

v2
F ~vF

A��

���p0

�b�

�
8<
:
C if � b2 � m2

C� 1
2	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

b2

q
if � b2 	 m2:

(21)

This is itself a novel result in the context of Weyl semi-
metals being a nonperturbative calculation in both the
spin orbit coupling and the magnetic impurity strength.
However, it is necessary to fix the constant C in order to
argue that this is the physical response of the system. This
issue is addressed in detail in the next section.

IV. FIXING THE AMBIGUITY

As introduced in the first section and argued by many
preceding works [21,25,27–31,34,35] under very different
approaches, the constant C is finite and undetermined. It
depends strongly on the regularization method used. It is
only in the massless case, that this constant is fixed un-
ambiguously [29,37]. This ambiguity in the context of

Weyl semi-metals seems at least paradoxical, since this
constant defines physically measurable observables such as
the conductivity, which I proceed to discuss.
Consider for example a constant electric field in the

y direction. The Hall conductivity is defined as the off-
diagonal part of the proportionality tensor between the
current and the electric field,

jx ¼ �xyEy; (22)

and can be measured in transport experiments. If
b ¼ ð0; 0; 0; b3 setting � ¼ x in (21) gives

jxodd ¼
e2

~vF

Eyb3

8><
>:
C if b23 � m2

C� 1
2	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

b2
3

r
if b23 	 m2

� �xyEy: (23)

Does this result imply that the Hall conductivity is
ambiguous in these materials? The answer turns out to be
negative owing to the fact that there is a microscopic
model, or in other words, a high-energy theory from which
this conductivity can also be calculated. As it will now be
shown, a consistent matching of these two theories will
imply that C ¼ 0.
As a starting point consider the limit of decoupled layers

where �s 
 �D. In this case, the Hall conductivity is
determined by the Hall conductivity of the two massive
2þ 1 Dirac fermions at each surface of the topological
insulator and it is proportional to the sum of the signs of the
masses of each fermionic species [3]:

�xy
2D ¼ e2

h

X
i

signðmiÞ; (24)

where the sum i runs over all fermionic species, in this case
two. In this limit, Hamiltonian (6) together with the b3
perturbation is independent of kz and it is that of two
2þ1 massive Dirac fermions with masses m2D¼b3��s.
Whenever b3 < �s is satisfied �xy

2D vanishes and so does
�xy. Comparing this result with the corresponding case

b23 <m2 in (23) one is forced to set

CjWSM ¼ 0: (25)

This is the central result of this work since this constant is
precisely the one that enters the odd part of the polarization
tensor (20) that determines the response of Weyl semi-
metals to an external electromagnetic field.
A second argument, perhaps physically more transpar-

ent, comes by introducing a finite �D. In this case, there is
a set of 2þ 1 massive Dirac Hamiltonians with masses
which depend parametrically with kz. Thus, only at certain
values of the vector kz the Hall conductivity vanishes. The
two-dimensional (2D) Hall conductivity is now a step
function [19,20]:
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�xy
2D ¼ e2

h
�ðk0 � j	=d� kzjÞ; (26)

where k0 is the separation in k space between the two Dirac
fermions given by

k0 ¼ 1

d
arccos

�
1� b23 �m2

2�s�D

�
: (27)

The integral over the whole Brillouin zone defines the
conductivity through

�xy ¼
Z 	=d

�	=d

dkz
2	

�xy
2DðkzÞ ¼

e2k0
	h

: (28)

The conductivity is proportional to the separation of the
Dirac Fermions in the reciprocal space, a result first proven
in [19]. To compare with (23) it is necessary to expand (27)
near b23 �m2 which is the case of the low-energy theory.

This gives a Hall conductivity of

�xy ¼ e2k0
	h

’ e2

	h

b3

d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�D�s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

b23

s
: (29)

Restoring ℏ and using that ~vF ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�D�s

p
it is straightfor-

ward to see that (23) reproduces this result only if C ¼ 0 in
agreement with (25). The microscopic theory, which con-
sidered the whole Brillouin zone in the kz direction has
fixed the value of the arbitrary but finite constant generated
in the low-energy theory to be zero. As it turns out, having
a lattice model from which the low-energy theory is de-
rived regularizes the theory to fix the ambiguity.

A final comment is in order. With this analysis it has
been proven that a zero Hall conductivity for the lattice
model would always imply a zero Hall conductivity calcu-
lated within the low-energy effective field theory and fixes
C ¼ 0. However, the inverse statement is not always true.
This means that, if one calculates a nonzero Hall conduc-
tivity in the lattice model, it might be proportional
to a lattice vector Gj [44], a result which the effective

low-energy field theory approach will never obtain. One
can check with a similar analysis to the one described
above that this is indeed the case for Hamiltonian (6)
when b3 * �s þ �D [19].

V. PHYSICAL CONSEQUENCES

I now turn to discuss measurable physical consequences
derived from this theory. As it is well-known, the complete
polarizability ��� modifies Maxwell’s equations inside
the material and will govern the electrodynamic response
of this system. Its even part �

��
e will define the dielectric

function and the magnetic permeability of the material
while its odd part will add novel terms which will drasti-
cally modify the response of the material to an external
perturbation. Integrating out fermions the effective action
for the gauge field inside the material is

S ¼
Z d4k

ð2	Þ4 A��
��
e A� � 1

2
s� ~F��A�; (30)

where s� ¼ e2

v2
F ~vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

b2

q
b� is defined by (20) whenever

�b2 	 m2 and zero otherwise and ~F�� ¼ �����k0�A�.

This action is known to generate a modified version of
Maxwell’s equation [23], although in this case it is neces-
sary to keep track of the anisotropic Fermi velocity. For the
case where only b3 is nonzero it is possible to write a clean
set of Maxwell equations given by

r � D ¼ 4	�� v2
Fs �B; (31)

r �B ¼ 0; (32)

r� E ¼ � 1

c

@B

@t
; (33)

r�H ¼ jþ @D

@t
þ v2

Fs� E; (34)

where now s� ¼ ð0; 0; 0; s3Þ and the v2
F coefficient is fixed

by (23). Note the similarity between these equations and
the ones corresponding to axion electrodynamics [12]
which could be realized in topological insulators [9]. As
in topological insulators, the novel terms in the equations
of motions give rise to new physical phenomena. Consider
as an example light propagation in a Weyl semi-metal
system described by (31)–(34). From the source free
(� ¼ 0, j ¼ 0) equations it is easy to derive the following
wave equation inside the Weyl semi-metal:

r2E� 1

c2w

@2E

@t2
þrðr � EÞ ¼ v2

Fs�
@E

@t
; (35)

where �� 1 is assumed being satisfied in a wide range of
frequencies [45] and cw ¼ 1=

ffiffiffi
�

p
is the velocity of light

inside Weyl semi-metals. Following [23], it is possible to
derive the dispersion relation that photons entering the
Weyl semi-metal should satisfy

�
!2

c2w
� k2

�
2 � v2

Fð!2 � k2Þs23 ¼ ðv2
Fk3s3Þ2; (36)

which characterize a birefringent media that in this ap-
proximation is due entirely to the induced Chern-Simons
term. Birefringence of this kind will be generic to all Weyl
semi-metals phases that posses a term of the form �c 6b�5c ,
independent of the particular microscopic model that real-
izes such a phase, an in particular, on the extrinsic details
of the lattice model. An observation of birefringence with
light of sufficiently long wavelength would provide an
experimental measurement of the constant C. For example,
linearly polarized light entering such a medium will leave
it in the form of elliptically polarized light.
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The action (30) can potentially host other interesting
physical phenomena. One very appealing possibility is that
these materials, in analogy with topological insulators [13],
could posses a repulsive Casimir effect which might be
suppressed but still exist in anisotropic materials like the
ones described here [14].

Finally, the coupling between magnetic and electric
degrees of freedom can enable routes towards exploring
exotic phenomena similar to the effective magnetic mono-
poles possible in axion electrodynamics [46] and chiral
gauge fields [47].

VI. CONCLUSIONS

In this work the emergence of a Lorentz violating QED
in the novel class of materials known as Weyl semi-metals
was explored in detail. It was found that Weyl semi-metals
in the presence of magnetic impurities and spin orbit
coupling realize a Lorentz violating version of QED with
a term of the form �c 6b�5c . The electromagnetic response
of such a system includes a radiatively induced Chern-
Simons term in the effective action for the electromagnetic
gauge field of the form 1

2 k�
~F��A� defined by the odd part

of the photon self-energy ���
odd. This correction to the

photon self-energy is finite but undetermined, also in the
low-energy theory of Weyl semi-metals. However, it has
been shown that in this system it is possible to fix the
ambiguity due to the existence of a microscopic model
from which this result can be derived. The comparison
between these two approaches fixes the value for the
constant that parametrizes the uncertainty (C) to zero for
this system.

Although in this case, the finite value of C turns to be
zero, it is in principle possible that other Weyl semi-metals
might realize other values. In particular, the most favorable
situation would be that where a Weyl semi-metal phase is
realized on the border of an anomalous Hall phase so that
there is a finite Hall conductivity on both sides of such a
transition described by an equation of the form of (20).
This situation is realized in this model although here the
anomalous Hall conductivity is proportional to a lattice
vector [19] and will never appear in a low-energy descrip-
tion such as the one presented in this work. The analysis
presented here can be applied to other more sophisticated
examples of Weyl semi-metal systems [18,48–52] to de-
termine whether C ¼ 0 is a generic feature in condensed
matter systems as suggested by topological arguments [22].

In addition to the finite and unambiguous result deter-
mined by (20) with C ¼ 0, the formulation in terms of a
Lorentz violating QED of the low energy theory of Weyl
semi-metals enables to perform calculations nonperturba-
tively both in the spin orbit coupling and the magnetic
impurity strength.

Finally, it has been shown that when �b2 	 m
the coefficient k� enters the effective Maxwell equations
inside the material, substantially modifying the electro-
dynamics of the system. In particular the new terms pro-
portional to b� will give rise to birefringence when light

enters the material. Being a condensed matter system, an
observation of such a birefringence is a feasible experi-
ment, in contrast to conventional astrophysical observa-
tions which strongly constrain the observability of Lorentz
violating QED phenomena. More exotic scenarios derived
from the modified Maxwell equations, such as the sta-
tionary magnetic order proposed in [23], could be realized
in these types of systems, although they will only occur in
the situation where C � 0 which will produce the right
form of electromagnetic solutions.
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APPENDIX: MATRIX DEFINITIONS

In this appendix, all the definitions for the matrices used
in the main text are reviewed. The Hamiltonian matrices
are defined to be


1 ¼ �z � �y; 
2 ¼ ��z � �x; 
3 ¼ �y � 1�

� ¼ �x � 1�; 
5 ¼ ��z � �z ¼ �
1
2
3:

To construct a low-energy effective field theory action
the following dictionary can be used, following the usual
convention for the � matrices:

H0ðkÞ ¼ c y
k


ikic k ¼ �c k�

ikic k � �c k�

ikic k;

HmðkÞ ¼ mc y
k�c k � m �c kc k;

Hm1c
ðkÞ ¼ m1cc

y
k1� � �zc k

¼ m1cc
y
ki�
3
5c k � b3 �c k�3�5c k;

H�ðkÞ ¼ �c y
k�y � �zc k

¼ ��c y
ki�
5c k � �b0 �c k�0�5c k;

which define �i ¼ �
i, �0 ¼ �, �5 ¼ �i�
5, b3 ¼ mc1

and b0 ¼ �.
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