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We derive a stationary and axisymmetric black hole solution to quadratic order in the spin angular

momentum. The previously found, linear-in-spin terms modify the odd-parity sector of the metric, while

the new corrections appear in the even-parity sector. These corrections modify the quadrupole moment, as

well as the (coordinate-dependent) location of the event horizon and the ergoregion. Although the linear-

in-spin metric is of Petrov type D, the quadratic-order terms render it of type I. Themetric does not possess

a second-order Killing tensor or a Carter-like constant. The new metric does not possess closed timelike

curves or spacetime regions that violate causality outside of the event horizon. The new, even-parity

modifications to theKerrmetric decay less rapidly at spatial infinity than the leading order in spin, odd-parity

ones, and thus, the former aremore importantwhen considering black holes that are rotatingmoderately fast.

We calculate the modifications to the Hamiltonian, binding energy and Kepler’s third law. These mod-

ifications are crucial for the construction of gravitational wave templates for black hole binaries, which will

enter at second post-Newtonian order, just like dissipative modifications found previously.
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I. INTRODUCTION

Although general relativity (GR) has passed all Solar
System and binary pulsar tests [1], it remains yet to be
verified in the nonlinear, dynamical strong-field/strong-
curvature regime. One of the best astrophysical environ-
ments to perform such tests is near black holes (BHs).
Mathematical theorems in GR guarantee that the exterior
gravitational field of a vacuum, stationary and axisymmet-
ric BH is given by the Kerr metric [2–7]. The multipole
moments of an uncharged BH in GR are therefore com-
pletely characterized by its mass (mass monopole moment)
and spin angular momentum (current dipole moment). If
GR is modified, however, BHs need not be represented by
the Kerr solution. For example, a stationary BH solution
that differs from the Kerr metric has recently been found in
quadratic gravity to linear order in a slow-rotation approxi-
mation [8–11]. Future observations of electromagnetic
radiation from accretion disks [12–14] and gravitational
radiation from extreme mass-ratio inspirals [15–21] will
allow us to probe the spacetime structure and test the Kerr
hypothesis: that the massive compact objects at the center
of most galaxies are Kerr BHs.

Awell-motivated theory that has recently received much
attention is Chern-Simons (CS) modified gravity [22,23].
The CS action modifies the Einstein-Hilbert one by adding
a kinetic scalar-field term and a potential composed of the
product of this field with the Pontryagin density (the con-
traction of the Riemann tensor with its dual). Such a
potential is necessary to cancel anomalies in heterotic,
superstring theory [24] and it also arises naturally in loop

quantum gravity [25–27] and in effective field theories of
inflation [28]. This theory is also related to 3D topologi-
cally massive gauge theories [29]. Two formulations of CS
gravity exist: a nondynamical one and a dynamical one. In
the former, the scalar-field kinetic term is absent from the
action, and thus, this field must be prescribed a priori,
leading to an extra constraint on the space of solution,
i.e. the vanishing of the Pontryagin density [30]. In the
latter, the scalar-field kinetic term is kept in the action and
the scalar is controlled by a wave equation sourced by the
Pontryagin density. Therefore, the dynamical theory pre-
serves diffeomorphism invariance and the strong equiva-
lence principle, although it violates GR’s Birkhoff theorem
[30,31] and the effacement principle [32].
Dynamical CS gravity is more appealing from a theo-

retical standpoint but it remains relatively unexplored
due to its mathematical complexity. The first study of BH
solutions in dynamical CS gravity was carried out by
Yunes and Pretorius [8], and later by Konno et al. [11].
In these studies, a slow-rotation approximation was used to
find the leading order in spin corrections to the Kerr metric,
which enter in the gravitomagnetic sector and modify
frame dragging. A rather weak but robust constraint on
dynamical CS gravity was placed [33] with Gravity Probe
B [34] (similar constraints can be obtained from LAGEOS
and LAGEOS 2 [35] through measurements of the
Lense-Thirring effect [36]). Dynamical CS gravity can
also be constrained by table-top experiments that confirm
Newton’s law to length scales above Oð10 �m) [37].
Interestingly, table-top experiments place similar con-
straint to those obtained from Solar System observations.
A much stronger constraint can be placed with
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coalescences. This necessitates a calculation of both dis-
sipative corrections to the waveform, i.e. modifications to
the rate of change of the energy, angular momentum and
Carter constant, and conservative corrections, i.e. modifi-
cations to the binding energy and Kepler’s third law. In [32],
we calculated the former and found that they introduce
modifications to the waveform at 2nd post-Newtonian (PN)
order in terms of its frequency (or velocity) dependence,
although its amplitude is of course suppressed relative to
GR by the CS coupling constant. In order to obtain the full
2PN waveform, we must first compute the 2PN conservative
corrections, which require a calculation of (i) a stationary,
axisymmetric BH solution at quadratic order in spin, and
(ii) the dipole-dipole scalar force acting on the binary com-
ponents. In this paper, we concentrate on the former.

We will search for a slowly-rotating BH solution in
dynamical CS gravity at quadratic order in spin with two
approximations: slow rotation and small coupling [8]. The
former assumes that the BH spin angular momentum is
much smaller than its mass squared. The latter postulates
that the deformation away from GR is small, which corre-
sponds to a dynamical CS dimensionless coupling constant
[defined later in Eq. (1)] much smaller than unity. This
is a reasonable approximation, given that GR has already
passed stringent tests, albeit in the weak field. Moreover, the
dynamical CS action is an effective theory that derives from a
leading-order truncation in the dynamical CS coupling
parameter of a more fundamental one. Therefore, the action
and its associated modified field equations are only valid to
leading order in the dynamical CS coupling parameter. If one
did not use the small-coupling approximation to iteratively
solve the modified field equations, third time derivatives
could arise in the field equations, probably signaling the
presence of ghost modes. Presumably, these ghost modes
might be eliminated by an appropriate UV completion.

The method we employ to find a slowly-rotating solution
at second order in the spin is rather novel in this context.
We follow closely BH perturbation theory techniques
[38,39]: we treat the second order in spin correction to
the dynamical CS metric as a perturbation away from the
leading order in spin solution found by Yunes and Pretorius
[8]. We then derive master equations governing this per-
turbation and decompose the solution in tensor spherical
harmonics, which decouples the system into a linear ordi-
nary differential one. The solution to this system is then
mathematically straightforward, although we do verify that
the full metric satisfies the dynamical CS field equations
explicitly with symbolic manipulation software. As ex-
pected, the quadratic order in spin corrections modify
only the even-parity sector of the metric.

The properties of this solution are also quite interesting.
Since we obtain corrections to quadratic order in the spin,
we are able to compute the gauge-dependent shift in the
location of the event horizon and the ergosphere, as well as
the deformation in the Kerr quadrupolemoment.We also find

that the new metric retains its Lorentz signature and closed
timelike curves do not exist outside of the event horizon.
Therefore, such a spacetime is perfectly suitable to the study
of photon trajectories when considering the shadow of BH
accretion disks. We also consider test-particles motion in this
new background. We obtain the corrections to the relation
among the binding energy, the (z component of) angular
momentum, and the orbital frequency, and the frequency at
the innermost stable circular orbit.
Perhaps one of the most interesting, albeit not surprising

properties of the new solution is that, although the linear
order in spin metric [8] remains of Petrov type D [40], the
quadratic-order terms calculated here render the metric of
type I. Obviously, this is drastically different from the Kerr
metric, which remains of Petrov type D to all orders in a
small spin expansion. This is because if a metric is not of
Petrov type D at some order in spin, this violation cannot
be compensated for by higher-order spin contributions, as
long as the small spin approximation holds. The new BH
solution does not possess a nontrivial second-rank Killing
tensor, and thus, there are no naive extensions of the
Carter-like constant and a separable structure is not admis-
sible [41,42]. The latter statement means that there does
not exist any spacetime coordinate transformation that
leads to separable Hamilton-Jacobi equations. One cannot,
however, rule out a canonical transformation that does
render the equations separable. This is related to the fact
that there might exist a higher-rank Killing tensor that
kneads to a fourth constant of the motion. Given this, it
is not clear whether geodesics in this new background will
be chaotic or not. Nonetheless, upon orbit averaging, a
modified Carter-like constant reappears, which might in-
dicate that orbits are regular, except for resonant ones.
The remainder of this paper presents further details and

it is organized as follows. Section II presents the basic
equations of dynamical CS gravity. Section III begins by
describing the approximation used to find BH solutions in
this theory and then continues to describe the solution
found in [8,11] and the new solution found in this paper.
Section IV investigates the basic properties of this new BH
solution, such as the (gauge-dependent) location of the
event horizon and ergosphere. Section V discusses geo-
desics in this new background and the Petrov type of the
new solution. Section VI summarizes and describe several
possible avenues for future research.
All throughout, we use the following conventions, fol-

lowing mostly Misner, Thorne and Wheeler [43]. We use
the Greek letters ð�;�; � � �Þ to denote spacetime indices.
The metric is denoted g�� and it has the signature

ð�;þ;þ;þÞ. We use geometric units, with G ¼ c ¼ 1.

II. DYNAMICAL CHERN-SIMONS GRAVITY

In this section, we introduce the basic equations of
dynamical CS gravity and establish notation. The action
is defined by [23]
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S �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�gRþ �

4
#R����

�R����

� �

2
½r�#r�# þ 2Vð#Þ� þLmat

�
: (1)

Here, �g � ð16�Þ�1, g denotes the determinant of the

metric g�� and R��	� is the Riemann tensor. �R���� is

the dual of the Riemann tensor, defined by [23]

�R���� � 1

2

����R��

��; (2)

where 
���� is the Levi-Civita tensor. # is a scalar field,
while � and � are coupling constants. Vð#Þ is an addi-
tional potential and Lmat denotes the matter Lagrangian
density. Following [8], we take # and � to be dimension-
less and � to have dimensions of ðlengthÞ2. For conve-
nience, we define a dimensionless parameter

� � �2

�g�M
4
; (3)

where M is the typical mass of the system (or strictly
speaking, the curvature length scale).

The field equations in this theory are given by [23]

G�� þ �

�g

C�� ¼ 1

2�g

ðTmat
�� þ T#

��Þ; (4)

where G�� is the Einstein tensor and Tmat
�� is the matter

stress-energy tensor. The C tensor and the stress-energy
tensor for the scalar field are defined by

C���ðr�#Þ
�	�ð�r�R
�Þ	þðr�r	#Þ�R	ð��Þ�; (5)

T#
�� � �ðr�#Þðr�#Þ � �

2
g��½r	#r	# � 2Vð#Þ�:

(6)

Equivalently, Eq. (4) can be rewritten as

R�� ¼ � �

�g

C�� þ 1

2�g

ð �Tmat
�� þ �T#

��Þ; (7)

where we introduced the trace-reversed stress-energy
tensors

�T mat
�� � Tmat

�� � 1

2
g��T

mat; (8)

�T #
�� � �ðr�#Þðr�#Þ; (9)

and used the fact that the C tensor is traceless. The evolu-
tion equation of the scalar field is given by

h# ¼ � �

4�
R����

�R���� þ dV

d#
: (10)

In 4D, low-energy effective string theories, the (axion)
scalar field has a shift symmetry, i.e. the equations of
motion are invariant under the symmetry transformation

# ! # þ c, with c a constant, which disallows any mass
terms in the action. If one forgets about shift symmetry and
insists on a mass term, then the dynamics of the scalar field
would freeze and their would not be much scalar-field
propagation. In dynamical CS gravity, however, such
mass terms are not allowed. For simplicity, in this paper
we set Vð#Þ ¼ 0 throughout.
Dynamical CS gravity should be thought of as an effec-

tive theory, and as such, it possess a cutoff scale outside
which its action should be modified through the inclusion
of higher-order curvature terms. This cutoff scale can be
determined by estimating the order of magnitude of loop
corrections to the second term in Eq. (1) due to n-point
interactions. Denote the additional number of vertices
and scalar and graviton propagators relative to tree level
diagrams as V, Ps and Pg, one has

Ps ¼ V

2
; Pg ¼ ðn� 1ÞV

2
: (11)

One immediately sees that loop corrections are suppressed

by a factor of �VMð2�nÞV
pl �nV , where Mpl is the Planck

mass and � is the energy scale introduced such that the
suppression factor becomes dimensionless. This factor
becomes of order unity when � takes the critical value

�c � M1�2=n
pl �1=n; (12)

which corresponds to the cutoff energy scale above which
one cannot treat dynamical CS gravity as an effective
theory.
Given this cutoff scale, one can estimate the value of �

above which the theory is not an effective one anymore.
First, notice that for a fixed value of �, �c becomes larger
as n increases. Hence, n ¼ 3will lead to the most stringent
constraint on �. From Eq. (12), the critical wavelength
scale below which the strong coupling effect cannot be
neglected is given by

�c � L1=3
pl �1=3; (13)

where Lpl is the Planck length scale. When one takes �c to

be of Oð10 �m), thus saturating the table-top experiment
bound [37], one finds thatffiffiffiffi

�
p

<Oð108 kmÞ: (14)

For values of � that satisfy the above inequality, dynamical
CS gravity can be treated as an effective theory and higher-
order curvature terms in the action can be neglected.
Notice that this inequality is of the same order as the
constraint obtained from Solar System experiments [33].
Of course, one can have a value of � that satisfies this
inequality, without necessarily having � � 1. In this
paper, however, we are interested in BHs of masses in
the range ð3; 107ÞM�, for which the small-coupling ap-
proximation requires

ffiffiffiffi
�

p � 107 km, thus automatically
satisfying the inequality in Eq. (14).
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III. ROTATING BLACK HOLE SOLUTIONS

In this section, we describe the two approximation
schemes that we use to obtain the slowly-rotating BH
solution in dynamical CS gravity at quadratic order in
spin. We then describe the slowly-rotating BH solution at
linear order in spin, found by [8,11], and apply these
approximations to find the second order in spin solution.

A. Approximation schemes

Following [8], we consider stationary and axisymmetric
BH solutions in dynamical CS gravity with small coupling
(� � 1) and slow rotation (
 � 1). The small-coupling
approximation implies that we consider small CS
deformations away from GR. The metric can then be
expanded as

g�� ¼ gð0Þ�� þ �02gð2Þ�� þOð�04Þ; (15)

where �0 is a bookkeeping parameter that labels the order

of the small-coupling approximation, with gðnÞ�� / �n.
Notice that only terms with even powers in �0 appear in
the metric. Then, we expand each gð0Þ�� and gð2Þ�� in a slow-
rotation expansion via

gð0Þ�� ¼ gð0;0Þ�� þ 
0gð1;0Þ�� þ 
02gð2;0Þ�� þOð
03Þ; (16)

�02gð2Þ��¼�02gð0;2Þ�� þ�02
0gð1;2Þ�� þ�02
02gð2;2Þ�� þOð�02
03Þ;
(17)

where 
0 is another bookkeeping parameter that labels the
order of the slow-rotation approximation. Notice that

gðm;nÞ
�� / 
m�n, where 
 � a=M is the dimensionless spin

parameter.

The quantities gð0;0Þ�� , gð1;0Þ�� and gð2;0Þ�� can be obtained by
expanding the Kerr solution in 
 � 1, whose line element
in Boyer-Lindquist (BL) coordinates ðt; r; �;�Þ is

ds2K ¼ �
�
1� 2Mr

�

�
dt2 � 4Marsin2�

�
dtd�þ�

�
dr2

þ�d�2 þ
�
r2 þ a2 þ 2Ma2rsin2�

�

�
sin2�d�2;

(18)

where � and � are defined by

� � r2 � 2Mrþ a2; (19)

� � r2 þ a2cos2�: (20)

Here, M is the mass of the BH and a � S=M with S
denoting the magnitude of spin angular momentum of
the BH.

Let us now expand the scalar field #. From Eq. (10), we
see that the leading-order contribution to # is proportional
to �. Therefore, we can expand # as

# ¼ �0½
0#ð1;1Þ þ 
02#ð2;1Þ� þOð�0
03Þ: (21)

There is no #ð0;1Þ term here because the Pontryagin density
vanishes when evaluated on spherically symmetric space-
times. There is no Oð�02Þ term and we have also here
neglected terms of Oð�03Þ since they do not affect the
metric perturbation at Oð�02Þ.

B. BH solutions to Oð�02�0Þ
Let us first concentrate on solutions at Oð�02
00Þ.

As already mentioned, the Pontryagin density vanishes
for any spherically symmetric spacetime [30]. Thus, static,
spherically symmetric BHs are still described by the

Schwarzschild solution. This implies that gð0;nÞ�� ¼ 0 for

all n, and in particular, gð0;2Þ�� ¼ 0.
ToOð�02
0Þ in metric, Yunes and Pretorius found that in

BL-type coordinates (the coordinates where the GR part of
the BHmetric is identical to Kerr in BL coordinates) [8,11]

#ð1;1Þ ¼ 5

8

�

�


cos�

r2

�
1þ 2

7

M

r
þ 18

5

M2

r2

�
(22)

and the only nonvanishing term in gð1;2Þ�� is

gð1;2Þt� ¼ 5

8
�M


M4

r4

�
1þ 12

7

M

r
þ 27

10

M2

r2

�
sin2�; (23)

with all other components set to zero. Therefore, the line
element to Oð�02
0Þ is given by

ds2 ¼ ds2K þ 5

4
�M


M4

r4

�
1þ 12

7

M

r
þ 27

10

M2

r2

�
sin2�dtd�:

(24)

Notice that although the correction term does not diverge at
the unperturbed Schwarzschild horizon, r ¼ 2M, it does
not vanish there, either. One can, however, resum the
metric such that the correction indeed vanishes at the
Schwarzschild horizon, as we will discuss in Sec. III C 3.

C. BH solutions at Oð�02�02Þ
1. Scalar field

Since the right-hand side of Eq. (10) is already propor-
tional to �=�, we expand the Pontryagin density
R����

�R���� only up to Oð�00Þ. This means that we can

substitute the Kerr solution in R����
�R���� and expand it

in powers of 
0 to find

R����
�R���� ¼ 288

M3
 cos�

r7

�
1� 28

3

M2

r2

2cos2�

�
þOð
05Þ: (25)

The Pontryagin density is a parity odd quantity, and hence
it can only depend on odd powers of 
0. Since we are only
interested in a BH solution to Oð�02
02Þ, we need not
concern ourselves with the second term in Eq. (25).
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Therefore, one finds that

#ð2;1Þ ¼ 0; (26)

and we only have to consider #ð1;1Þ [see Eq. (22)] to

construct gð2;2Þ�� . In fact, this shows that #ðn;1Þ ¼ 0 for all
even n.

2. Metric tensor: equations

Consider an expansion of the metric of the form g�� ¼
gð0;0Þ�� þ h�� where h�� denotes a metric perturbation away

from Schwarzschild solution. For us, this metric deforma-
tion contains both known terms, such as pure Kerr defor-
mations of Schwarzschild and CS corrections at Oð�02
0Þ,
as well as unknown terms, such as CS corrections at
Oð�02
02Þ, namely

h�� ¼ 
0gð1;0Þ�� þ 
02gð2;0Þ�� þ 
0�02gð1;2Þ�� þ 
02�02gð2;2Þ�� :

(27)

The Einstein tensor can then be expanded as

G�� ¼ G½0�
�� þG½1�

��½h��� þG½2�
��½h��; h��� þOðh3Þ:

(28)

Here, the superscript in square brackets counts the number
of times h�� appears. Obviously, the first term in Eq. (28)

vanishes because the Schwarzschild metric satisfies the
vacuum Einstein equations.

With this notation, we can split theOð�02
02Þ part of the
Einstein tensor Gð2;2Þ

�� into two contributions

Gð2;2Þ
�� ¼ G½1�

��½gð2;2Þ�� � þG½2�
��½gð1;0Þ�� ; gð1;2Þ�� �; (29)

where the first term is constructed from the unknown

functions gð2;2Þ�� and its derivatives, while the second term

is a known function built from gð1;0Þ�� and gð1;2Þ�� only. We can
then rewrite the field equations at Oð�02
02Þ as

G½1�
��½gð2;2Þ�� � ¼ Sð2;2Þ�� ; (30)

where we have defined the source term

Sð2;2Þ�� ��G½2�
��½gð1;0Þ�� ;gð1;2Þ�� ��C0

��
ð2;2Þ þT0#ð2;2Þ

�� : (31)

For convenience, we introduced the reduced C tensor C0
��

and the reduced stress energy-momentum tensor of the
scalar field T#

��
0:

C0
�� � ð�=�gÞC��; T0#

�� � ð1=2�gÞT#
��: (32)

The components of Sð2;2Þ�� can be calculated from Eqs. (22)
and (24) and the Kerr metric.

The recasted field equations carry a strong resemblance
with the equations of BH perturbation theory [38,39]. The
quantity on the left-hand side of Eq. (30) can be interpreted
as the Einstein tensor constructed from the unknown per-

turbation gð2;2Þ�� in a Schwarzschild background gð0;0Þ�� . Since

the source Sð2;2Þ�� is an analytic function that can be com-

puted exactly, gð2;2Þ�� can be solved for using Schwarzschild
BH perturbation theory tools.
Following Refs. [38,39], we first decompose the metric

perturbation gð2;2Þ�� and the source Sð2;2Þ�� in tensor spherical
harmonics. Since terms of Oð�02
02Þ are parity even, we
only consider the metric perturbation in the even-parity
sector, which has 7 independent metric components.
Imposing stationarity and axisymmetry reduces the num-
ber of independent components to 5. The latter condition
allows us to consider them ¼ 0mode only in the spherical
harmonic decomposition. Two gauge degrees of freedom
remain, which we fix by adopting the Zerilli gauge. One is
then left with 3 independent degrees of freedom, which
allows us to parameterize the metric perturbation via

gð2;2Þ ¼ X
l

�
fðrÞH0‘0ðrÞað0Þ

‘0 þ 1

fðrÞH2‘0ðrÞa‘0

þ ffiffiffi
2

p
K‘0ðrÞg‘0

�
; (33)

and the source term via

Sð2;2Þ ¼ X
l

½Að0Þ
‘0a

ð0Þ
‘0 þ A‘0a‘0 þ B‘0b‘0

þGðsÞ
‘0g‘0 þ F‘0f‘0�; (34)

with fðrÞ � 1� 2M=r and the five tensor spherical har-

monics að0Þ
‘0 , a‘0, b‘0, g‘0 and f‘0 defined in Appendix A.

Notice that boldfaced quantities here refer to rank-2 cova-

riant tensors. The source term coefficients Að0Þ
‘0 , A‘0, B‘0,

GðsÞ
‘0 andF‘0 are nonvanishing only for ‘ ¼ 0 and ‘ ¼ 2, and

we provide explicit expressions for them in Appendix A.
Using this decomposition, the field equations in Eq. (30)

are no longer coupled, partial differential equations, but
they rather become coupled ordinary differential equations
for ðH0‘0; H2‘0; K‘0Þ, namely [38,39]

fðrÞ2 d
2K‘0

dr2
þ 1

r
fðrÞ

�
3� 5M

r

�
dK‘0

dr
� 1

r
fðrÞ2 dH2‘0

dr

� 1

r2
fðrÞðH2‘0 � K‘0Þ � lðlþ 1Þ

2r2
fðrÞðH2‘0 þ K‘0Þ

¼ �Að0Þ
‘0 ; (35)

� r�M

r2fðrÞ
dK‘0

dr
þ 1

r

dH0‘0

dr
þ 1

r2fðrÞ ðH2‘0 � K‘0Þ

þ lðlþ 1Þ
2r2fðrÞ ðK‘0 �H0‘0Þ ¼ �A‘0; (36)

fðrÞ d
dr

ðH0‘0�K‘0Þþ 2M

r2
H0‘0þ 1

r

�
1�M

r

�
ðH2‘0�H0‘0Þ

¼ rfðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ=2p B‘0; (37)
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fðrÞd
2K‘0

dr2
þ 2

r

�
1�M

r

�
dK‘0

dr
� fðrÞ d

2H0‘0

dr2

� 1

r

�
1�M

r

�
dH2‘0

dr
� rþM

r2
dH0‘0

dr

þ lðlþ 1Þ
2r2

ðH0‘0 �H2‘0Þ ¼
ffiffiffi
2

p
GðsÞ

‘0 ; (38)

H0‘0 �H2‘0

2
¼ r2F‘0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þðl� 1Þðlþ 2Þ=2p : (39)

In Eqs. (35), (36), and (38), ‘ ¼ 0 or 2, while in Eqs. (37)
and (39) ‘ ¼ 2. We have checked that these equations are
identical to those derived from the field equations directly
through the use of symbolic manipulation software.

3. Metric tensor: solution

Before solving these equations, let us exhaust the
remaining gauge freedom in the ‘ ¼ 0 mode. We already
explained that for modes with ‘ � 2, one is left with
5 independent variables after imposing stationarity and
axisymmetry. Mathematically, these variables are con-
tained in the coefficients of the five spherical tensor har-

monicsað0Þ
‘0 ,a‘0, b‘0, g‘0 and f‘0.We eliminate two of them

by imposing the Zerilli gauge, i.e. setting the coefficients of
b‘0 and f‘0 to zero. The ‘ ¼ 0 mode, however, is different
because from the start it possesses only 3 independent
variables, after imposing stationary and axisymmetry. One
of them corresponds to a redefinition of the spherical areal
radius, which we eliminate by setting K00 ¼ 0.

Let us now discuss how to solve the differential system
in Eqs. (35)–(39). When we substitute K00 ¼ 0 in
Eq. (35) with ‘ ¼ 0, we are left with a first-order ordinary
differential equation for H200. We can solve for H200

and then use Eqs. (36) and (38) to find H000. With this,
we can then obtain the ‘ ¼ 2 perturbative modes to find the
ðH0‘0; H2‘0; K‘0Þ functions that we present in Appendix A
for completeness. Each of these solutions is composed of
the sum of a homogeneous and an inhomogeneous solu-
tion. The former introduces integration constants chosen
by requiring (i) that the metric be asymptotically flat at
spatial infinity, e.g. H0‘0 ! 0 as r ! 1, and (ii) that the
mass and spin angular momentum associated with the new
solution is given byM andMa, as measured by an observer
at spatial infinity.

The line element to Oð�02
02Þ is then ds2 ¼ ds2Kþ
	ðds2ÞCS, where

	ðds2ÞCS ¼ 2gCSt�dtd�þ gCStt dt
2 þ gCSrr dr

2

þ gCS��d�
2 þ gCS��d�

2 (40)

with

gCStt ¼ �
2 M
3

r3

�
201

1792

�
1þM

r
þ 4474

4221

M2

r2
� 2060

469

M3

r3

þ 1500

469

M4

r4
� 2140

201

M5

r5
þ 9256

201

M6

r6
� 5376

67

M7

r7

�

	 ð3cos2�� 1Þ � 5

384

M2

r2

�
1þ 100

M

r
þ 194

M2

r2

þ 2220

7

M3

r3
� 1512

5

M4

r4

��
þOð�02
04Þ; (41)

gCSrr ¼ �
2 M3

r3fðrÞ2
�
201

1792
fðrÞ

�
1þ 1459

603

M

r
þ 20000

4221

M2

r2

þ 51580

1407

M3

r3
� 7580

201

M4

r4
� 22492

201

M5

r5

� 40320

67

M6

r6

�
ð3cos2�� 1Þ � 25

384

M

r

	
�
1þ 3

M

r
þ 322

5

M2

r2
þ 198

5

M3

r3
þ 6276

175

M4

r4

� 17496

25

M5

r5

��
þOð�02
04Þ; (42)

gCS�� ¼ 201

1792
�
2M2 M

r

�
1þ 1420

603

M

r
þ 18908

4221

M2

r2

þ 1480

603

M3

r3
þ 22460

1407

M4

r4
þ 3848

201

M5

r5
þ 5376

67

M6

r6

�
	 ð3cos2�� 1Þ þOð�02
04Þ; (43)

gCS�� ¼ sin2�gCS�� þOð�02
04Þ (44)

and gCSt� given in Eq. (23). We have checked explicitly that

the solution above satisfies the field equations [Eq. (30)] to
Oð�02
02Þ with symbolic manipulation software.
The choice of homogeneous integration constants

depend on how we choose to define the mass M and the
reduced spin angular momentum a. The most natural
choice is to define these quantities as measured by an
observer at infinity, which then leads to the metric dis-
played above. With these definitions, the angular velocity
and area of the event horizon are modified to

�H � � gtt
gt�

��������r¼rH

¼ �H;K

�
1� 709

7168
�

�
; (45)

AH � 2�
Z �

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��g��

p ��������r¼rH

d� ¼ AH;K

�
1� 915

28672
�
2

�
;

(46)

where rH is the location of the horizon, which will be
discussed in the next section [Eq. (55)], and where�H;K ¼
a=ðr2H;K þ a2Þ and AH;K ¼ 16�M2ð1� 
2=4Þ þOð
4Þ,
with rH;K the horizon radius for the Kerr metric: rH;K ¼
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
. One can physically interpret this result by
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thinking of the BH metric found here as representing a BH
surrounded by a scalar field ‘‘cloud’’ with a dipole density
structure. As such, the modified BH horizon area and its
angular velocity will be modified from what one would
expect for a Kerr BH in vacuum GR due to the presence of
the scalar field.

One could of course insist on defining the mass and
reduced angular momentum such that the horizon structure
of the modified BH remains identical to that of the Kerr
metric. This would require a renormalization of M and
a via

~M � M

�
1� 2333

57344
�
2

�
; (47)

~a � a

�
1� 709

7168
�

�
; (48)

which then leads to �H ¼ ~�H;K and AH ¼ ~AH;K where a

quantity with a tilde means that M and a appearing in that
quantity are replaced by ~M and ~a. One can think of ~M and
~a as a ‘‘bare’’ BH mass and reduced angular momentum.
The asymptotically defined M and a are larger than the
bare ones due to the cloud of scalar field outside the BH.

Another quasilocal measure of massMKomar and reduced
spin angular momentum aKomar can be defined by the
Komar integrals [44]. For the modified BH metric in
Eq. (40) one finds

MKomar � 1

2

Z �

0
ðt�;�n½�r�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��g��
p Þjr¼rHd�

¼ M

�
1� 1727

14336
�
2

�
; (49)

aKomar � � 1

4M

Z �

0
ð��;�n½�r��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��g��

p Þjr¼rHd�

¼ a

�
1� 29

128
�

�
; (50)

where t�@� ¼ �@=@t and��@� ¼ @=@� are timelike and
spacelike Killing vectors, while n� and r� are the unit
covariant vectors normal to the t ¼ const and r ¼ const
hypersurfaces, respectively. Notice that the above quanti-
ties are calculated at r ¼ rH, which are different from the
so-called Komar mass and angular momentum which is
defined over a 2-sphere at spatial infinity [44]. As before,
the above quasilocal quantities are smaller than those
defined at spatial infinity due to the presence of the
scalar-field cloud close to the modified BH. One could
reexpress the metric in terms of ðMKomar; aKomarÞ or
ð ~M; ~aÞ, but we choose not to do so as these quantities are
not the masses and angular momenta that an observer at
infinity would measure.

One might be worried that the solution presented in
Eq. (40) diverges at the unperturbed Schwarzschild hori-
zon. This is simply a spurious divergence that arises due to

the slow-rotation expansion, even for the Kerr metric. For
example, if one takes the ðr; rÞ component of the Kerr
metric in BL coordinates and expands it in 
 � 1, one
finds terms to leading order that scale as ðr� 2MÞ�1,
which diverges at the Schwarzschild horizon. The unex-
panded Kerr metric, however, can have a horizon located
inside 2M for prograde spins. One can then be faced with
the unpleasant situation of the slow-rotation expansion of
grr diverging outside the true event horizon due to the
slow-rotation approximation.
For practical reasons, one might wish to eliminate this

feature through resummation. By the latter, we mean a
modification of certain terms in the metric that naively
diverge at the Schwarzschild or unperturbed Kerr horizon,
such that
(1) when the resummed metric is expanded in 
 � 1, it

becomes identical to the old metric to a given order

in 
, i.e. Ê½gresum�� � ¼ Ê½g���;
(2) all components of the resummed metric gresum��

remain finite everywhere outside the dynamical CS
modified horizon;

where gresum�� is the resummed metric, g�� is the metric of

Eq. (40) and the Ê½�� operator stands for expansion in
 � 1.
In principle, there is an infinite number of ways in which

one can resum the metric. One way is to replace � ! �0 in
grr;K [i.e. in the ðr; rÞ component of the Kerr metric in

Eq. (18)] and fðrÞ ! f0ðrÞ in 	ðds2CSÞ of Eq. (40), where
we have defined

�0 � �þ 915

14336
�M2
2; (51)

f0ðrÞ � 1� rH
r
: (52)

To retain the asymptotic behavior in the 
 � 1 limit, one
then needs to add the following counterterm in the ðr; rÞ
component of the metric (induced by the�0 modification to
the Kerr metric):

	grr ¼ 915

14336

�M2
2

f0ðrÞ2 : (53)

With these changes, the resummed metric is

gresum�� ¼ g��;K½�0� þ gCS��½f0� þ 	grr	
r
�	

r
�; (54)

will satisfy the conditions enumerated above.

IV. PROPERTIES OF THE SOLUTION

In this section, we discuss various properties of the new
solution. We begin by finding the corrected locations of the
horizon and ergosphere. We continue with a calculation of
the corrected quadrupole moment of the spacetime. We
then determine the Petrov type of the new solution.
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A. Singularity, horizon, and ergosphere

The spacetime in Eq. (40) contains a true singularity at
r ¼ 0. This can be verified by computing the Kretchmann
invariant R����R

����, which diverges at r ¼ 0. Indeed,

this quantity is identical to that found in [8] to Oð�02
0Þ.
We do not present the Oð�02
02Þ term here, as this cannot
cure the r ¼ 0 divergence.

The location of the event horizon can be found by
solving the equation gttg�� � g2t� ¼ 0 for r [44]. We find

rH ¼ rH;K � 915

28672
�M
2 þOð�02
03Þ: (55)

The horizon radius decreases relative to the Kerr horizon
radius, but of course, the shift of the horizon location
depends on how one renormalizes the mass and spin and
also on the choice of radial coordinate.

The location of the ergosphere can be found by solving
the equation gtt ¼ 0 for r. We find

rergo ¼ rergo;K � 915

28672
�M
2

�
1þ 2836

915
sin2�

�
þOð�02
03Þ (56)

with the ergosphere of the Kerr solution given by rergo;K ¼
Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � a2cos2�
p 
 rH;K½1þ ð
=4Þsin2��.

B. Lorentz signature

We show that the Lorentzian signature of the metric is
preserved outside the horizon, provided the coupling con-
stant is small. Otherwise, our perturbative construction of
solution will not be justified well. By denoting the deter-
minant of the metric component as g and the one for the
Kerr as gK � �r2sin2�ðr2 þ a2cos2�Þ þOð
03Þ, g=gK is
given by

g

gK
¼ 1þ 4211

6272
�
M3

r3

2

�
1þ 415

201

M

r
þ 14008

4221

M2

r2

þ 3200

201

M3

r3
� 14780

1407

M4

r4
� 8108

201

M5

r5

� 16128

67

M6

r6

�
cos2�� 201

896
�
M3

r3

2

�
1þ 1420

603

M

r

þ 19888

4221

M2

r2
þ 6350

201

M3

r3
þ 40100

1407

M4

r4

þ 8524

201

M5

r5
� 16128

67

M6

r6

�
þOð�02
03Þ: (57)

Notice that g=gK does not diverge at r ¼ 2M, just like the
resummed metric. This is because the determinant of the
metric is given by g ¼ grrg��ðgttg�� � g2t�Þ, and while

grr / fðrÞ�2, the quantity ðgttg�� � g2t�Þ / �2 � fðrÞ2
and thus g is finite at r ¼ 2M. Since the correction terms
fall off rapidly as r ! 1, it is important to look at the
signature of g=gK at the horizon, which is given by

g

gK
¼ 1� 74849

401408
�
2

�
1þ 27901

74849
cos2�

�
þOð�02
03Þ:

(58)

The correction terms above are negative for any �. The
magnitude of the correction to g=gK becomes the largest
at the poles and at the equatorial plane, respectively. One
can see that within the small-coupling and slow-rotation
regime, the signature flip does not take place.

C. Closed timelike curves

The new BH solution contains no closed timelike curves
outside the horizon. If they existed, these curves could be
found by solving for the region where g�� > 0. The

explicit forms of g�� at the horizon are given by

g�� ¼ 4sin2�M2

�
1� 1

4

2cos2�� 12283

100352
�
2

	
�
1� 54483

24566
cos2�

��
þOð�02
03Þ; (59)

where we note that g�� vanishes at the poles. The correc-

tion terms are positive in the polar region and negative in
the equatorial region. Equation (59) clearly shows that
small perturbation due to CS coupling does not change
the causal structure of spacetime.

D. Multipolar structure

Since M and a are asymptotic quantities, the first non-
vanishing correction to the spacetime’s multipolar struc-
ture on g�� appears in the mass quadrupole moment.

Following Thorne [45], we can read off the multipole
moments by transforming the metric from BL-type coor-
dinates to so-called asymptotically Cartesian and mass
centered (ACMC) coordinates (the coordinates where the
multipole moments are defined in a spacetime region
asymptotically far from the source). In order to determine
the quadrupole moment, we need to transform to ACMC
coordinates such that gtt and gij at Oðr�2Þ do not contain

any angle dependence. In these coordinates, the metric
component gtt for a stationary and axisymmetric spacetime
can be expressed as

gtt ¼�1þ 2M

r
þ

ffiffiffi
3

p
2

1

r3
½I20Y20 þ ðl ¼ 0 poleÞ� þO

�
1

r4

�
:

(60)

Here, Y20 is the ð‘;mÞ ¼ ð2; 0Þ spherical harmonic, and I20
corresponds to the (m ¼ 0) quadrupole moment.
Let us first extract the quadrupole moment of a Kerr BH.

By choosing the flat-spacetime normalized basis

e 0 ¼ @t; er ¼ @r; e� ¼ r�1@�;

e� ¼ ðr sin�Þ�1@�;
(61)

associated with BL coordinates, the Kerr metric can be
reexpressed as
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�g tt;K ¼ �1þ 2M

r
� 2Ma2cos2�

r3
þO

�
1

r5

�
; (62)

�g t�;K¼�2Masin�

r2
þ2Ma3 sin�cos2�

r4
þO

�
1

r6

�
; (63)

�grr;K ¼ 1þ 2M

r
þ 4M2 � a2sin2�

r2

þ 8M3 � 2Ma2ð2� cos2�Þ
r3

þO
�
1

r4

�
; (64)

�g ��;K ¼ 1þ a2cos2�

r2
; (65)

�g��;K ¼ 1þ a2

r2
þ 2Ma2sin2�

r3
þO

�
1

r5

�
: (66)

In order to read off the quadrupole moment, we need to
transform to appropriate ACMC coordinates ðt0; r0; �0; �0Þ
such that �a2sin2�=r2 in �grr;K and �g��;K disappears. This

can be realized by the transformation

t ¼ t0; (67)

r ¼ r0 þ a2cos2�0

2r0
; (68)

� ¼ �0 � a2 cos�0 sin�0

2r02
; (69)

� ¼ �0: (70)

In this ACMC coordinates, g0tt;K becomes

g0tt;K ¼ �1þ 2M

r0
� 3Ma2cos2�0

r03
þO

�
1

r05

�
: (71)

Therefore, by comparing this with Eq. (60), one can read
off the quadrupole moment as [45]

I20;K ¼ �8

ffiffiffiffiffiffi
�

15

r
Ma2: (72)

Let us now follow the above procedure to determine the
quadrupole moment of the new BH solution. Since the
correction in the metric is already to Oð�02
02Þ, it is not
affected by the above coordinate transformation. The quad-
rupole moment in the new solution can then be read off as

I20 ¼ I20;K

�
1� 201

1792
�

�
: (73)

Notice that this correction vanishes to linear order in
the spin; the linear order in spin terms correct the multi-
polar structure of the spacetime at much higher multipole
order [40].

Geroch and Hansen [46,47] proposed a slightly different
definition of multipole moments, which, for example, leads

to a I20;K that differs from Eq. (72) by a factor 8
ffiffiffiffiffiffiffiffiffiffiffiffi
�=15

p
.

However, this difference is just a matter of convention. One
should realize, of course, that the quadrupole moment itself

is not a directly observable quantity. Modifications to the
BH multipolar structure, however, do imprint on the mo-
tion of massive and massless bodies. Corrections to the
gravitational radiation induced by this modified motion is
indeed observable.

E. Petrov type

A generic spacetime can be classified into Petrov types
by counting the number of distinct principal null directions
k� of the Weyl tensor C���� [48,49], where k� satisfies

k�k�k½�C����½�k
� ¼ 0: (74)

This is equivalent to finding the number of distinct princi-
pal null directions l� that make one of the Weyl scalars
�0 ¼ 0, which reduces to counting the number of distinct
roots of the following equation for b [49]:

�0 þ 4b�1 þ 6b2�2 þ 4b3�3 þ b4�4 ¼ 0: (75)

Here, �0; . . .�4 are five complex Weyl scalars in an
arbitrary tetrad with the restriction �4 � 0.
If Eq. (75) contains at least one degenerate root, the

spacetime is said to be algebraically special and the
following relation holds:

I3 ¼ 27J2: (76)

Here, the quadratic and cubic Weyl quantities I and J are
defined by [49]

I � 1

2
~C���	

~C���	 ¼ 3�2
2 � 4�1�3 þ�4�0; (77)

J � � 1

6
~C���	

~C�	
��

~C����

¼ ��3
2 þ 2�1�3�2 þ�0�4�2 ��4�

2
1 ��0�

2
3

(78)

with

~C���	 � 1

4

�
C���	 þ i

2

����C

��
�	

�
: (79)

If Eq. (76) is not satisfied, the spacetime is of Petrov type I.
The Kerr BH and the slowly-rotating BH in dynamical CS
gravity toOð�02
0Þ is known to be of Petrov type D, which
means that Eq. (75) has double degenerate roots. In type D
spacetimes, not only Eq. (76) holds but there are additional
conditions that need to be satisfied:

K ¼ 0; N � 9L2 ¼ 0; (80)

where K, L and N are defined as

K � �1�
2
4 � 3�4�3�2 þ 2�3

3; (81)

L � �2�4 ��2
3; (82)

N��2
4I�3L2

¼�3
4�0�4�2

4�1�3þ6�4�2�
2
3�3�4

3: (83)
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Equation (76) determines whether a spacetime is alge-
braically special, but when the spacetime is an approximate
solution, to what order in perturbation theory should this
equation be calculated? Let us first concentrate on the BH
metric in dynamical CS gravity with only the odd-parity
terms of Oð�02
0Þ. One can construct a null tetrad that is a
deformation away from the Kerr principal null tetrad, such
that �2 ¼ Oð1Þ, while �1 and �3 are of Oð�02
0Þ. The
remaining Newman-Penrose scalars, �0 and �4, would
vanish to this order. One then sees that the first term in
Eqs. (77) and (78) is of Oð1Þ, the second is of Oð�04
02Þ
and the others vanish to this order. Therefore, Eq. (76) is
trivially satisfied to Oð�02
0Þ, while the first nontrivial
dynamical CS corrections enters at Oð�04
02Þ. Similarly,
if one were studying the new BHmetric found in this paper,
i.e. including terms of Oð�02
02Þ, then one would have to
consider Eq. (76) toOð�04
04Þ. Obviously, if Eq. (76) is not
satisfied at Oð�04
02Þ, then one does not need to consider
the higher-order terms. Notice also that the I and J quan-
tities are invariant, and one could have chosen another
tetrad, but the arguments presented above would still hold.

Now that the order to which terms must be expanded is
clear, let us focus again on the BH metric in dynamical CS
gravity with only the odd-parity terms of Oð�02
0Þ.
Sopuerta and Yunes [40] claimed that this metric is of
Petrov type D. We have verified this claim as follows.
First, we showed that Eq. (76) is satisfied to Oð�04
02Þ.
Then, we showed that the relations in Eq. (80) are also
satisfied to Oð�04
02Þ. Although this is sufficient to claim
that the metric to this order is of Petrov type D, we also
verified explicitly that Eq. (75) has double degenerate
roots. This then implies that one can rotate the null tetrad
to a principal one (of the dynamical CS metric), where �2

is nonvanishing and contains Kerr terms [of Oð�00Þ but
with spin corrections], as well as terms of Oð�02
0Þ. All
other Newman-Penrose scalars vanish at this order, i.e.
they are at least of Oð�02
02Þ.

Let us now focus on the new BHmetric in dynamical CS
gravity, which includes terms of Oð�02
02Þ. Picking the
principal null tetrad of the BH metric in dynamical CS
gravity with only the odd-parity terms included, one can
show that Eq. (76) is not satisfied to Oð�04
04Þ. One might
worry that to make this statement precise, one would have
to account for terms of Oð�04
0Þ in the gravitomagnetic
sector of the dynamical CS metric. These terms, however,
would modify Eq. (76) at Oð�06
02Þ, and thus they can be
neglected. Since Eq. (76) is not satisfied to Oð�04
04Þ, the
new metric presented in this paper breaks symmetries that
the odd-parity BH metric used to have. This suggests the
exact BH solution should be of Petrov type I.

V. GEODESIC MOTION AND SEPARABILITY,
BINDING ENERGYAND KEPLER’S LAW

In this section, we discuss the separability of the geode-
sic equations in the modified metric and find the binding

energy, Kepler’s Law and the innermost stable circular
orbit (ISCO).

A. Geodesic motion of test particles and separability

Consider the motion of nonspinning test particles in the
new BH solution. We concentrate here on nonspinning
objects, as otherwise we would have to introduce an addi-
tional scalar dipole-dipole interaction [32], which will be
investigated elsewhere [50].
One of the most interesting properties of the Kerr metric

is that the geodesic equations are Liouville integrable [51].
This leads to the existence of four constants of motion
or invariants (quantities that Poisson commute with the
Hamiltonian): the mass, energy, angular momentum and
the Carter constant. The existence of this last quantity,
found by Carter [52], as well as the use of the proper
coordinate system, is crucial in showing that the
Hamilton-Jacobi equations are separable. In GR, this is
related to the Kerr solution being of Petrov type D [53], i.e.
its associated Weyl tensor possesses double degenerate
principal null directions. As shown in Sec. IVE, the new
solution derived in this paper is of Petrov type I and there is
no guarantee that it possesses a Carter-like constant.
The Carter constant is associated with the existence of a

second-rank Killing tensor ���, which in GR and in BL

coordinates is defined by

��� ¼ �kð�l�Þ þ r2g�� (84)

with two null vectors k� and l�. The odd-parity BH solu-
tion in dynamical CS gravity of [40] does possess a Killing
tensor ���� at Oð�02
0Þ, where the null vectors �k� and �l�

are given by

�k �@� � r2 þ a2

�
@t þ @r þ

�
a

�
� 	gCS�

�
@�; (85)

�l �@� � r2 þ a2

�
@t � @r þ

�
a

�
� 	gCS�

�
@� (86)

and

	gCS� � 5

8
�



M

M6

r6fðrÞ
�
1þ 12

7

M

r
þ 27

10

M2

r2

�
: (87)

Moreover, one can show that the two null vectors k� and l�

are also principal null directions of the spacetime to
Oð�02
0Þ [40].
Let us now study whether a nontrivial second-order

Killing tensor continues to exist to Oð�02
02Þ, i.e. we
look for a correction 	��� to the Killing tensor

��� ¼ ���� þ �02
02	��� þOð�02
03Þ; (88)

that satisfies the Killing equation rð����Þ ¼ 0. If a con-

served quantity contains both even and odd parts under the
simultaneous reflection t ! �t and � ! ��, they should
be separately conserved. The new BH metric is symmetric
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under this simultaneous reflection, and hence any geodesic
remains geodesic under this transformation. This means
that if we consider a quantity ���u

�u� (here, u� is a

four-velocity vector), the only nonvanishing components
allowed are those even in reflection, i.e. ðt; tÞ, ðt; �Þ,
ð�;�Þ, ðr; rÞ, ðr; �Þ and ð�; �Þ. Without loss of generality,
these six components can be parametrized through six free
functions, Aðr; �Þ, Bðr; �Þ, Cðr; �Þ, Dðr; �Þ, Eðr; �Þ and
	�r�ðr; �Þ, through the following ansatz:

	��� � Aðr; �Þt�t� þ Bðr; �Þt��� þ Cðr; �Þ����

þDðr; �Þg�� þ Eðr; �Þ ���� þ 	�r�ðr; �Þr���;
(89)

where ��@� � @=@�.
From the symmetry arguments described above, the

Killing equations contain only 10 independent compo-
nents. The five functions F � ðA; B; C;D; EÞ appear only
in the form @rF or @�F . Thus, we can solve the 10 Killing
equations for the 10 functions @rF and @�F in terms of
	�r�ðr; �Þ. We have found, however, that the consistency
relation @�ð@rBÞ ¼ @rð@�BÞ does not hold for any 	��� to

Oð�02
02Þ. Since our ansatz is sufficiently generic, this
strongly indicates that there does not exist any nontrivial
second-rank Killing tensor in the new BH solution.

By applying Theorem 1 in Benenti and Francaviglia
[41], the nonexistence of a nontrivial second-rank Killing
tensor is enough to claim that the 4 dimensional manifold
does not admit a separability structure. This means that
there does not exist any spacetime coordinate transforma-
tion that leads to the Hamilton-Jacobi equation being sepa-
rable. Since this is an important point, we have verified it in
two additional ways: (i) by performing a Levi-Civita test
[42,54] and (ii) by trying to map the new solution to the
most generic spacetime that admits a separability structure
[41] [see Appendix B for more details]. In all cases, it is
clear that the new metric does not admit such a structure.

Up until now, we showed in various ways that a non-
trivial second-rank Killing tensor that is a perturbation of
the Killing tensor found in [40] does not exist. One might
wonder whether there is a completely new second-rank
Killing tensor that is not a perturbation of that in [40]. If
this exists, one must be able to find it by setting ���� ¼ 0 in

Eq. (88). By imposing the same ansatz of Eq. (89), we can
again solve for @rF and @�F . This time, @�ð@rBÞ ¼
@rð@�BÞ is trivially satisfied. However, one finds that the
only solution of 	�r� that satisfies @�ð@rF Þ ¼ @rð@�F Þ is
	�r� ¼ 0, leading to 	��� ¼ 0. This proves that a com-

pletely new nontrivial 2nd-rank Killing tensor atOð�02
02Þ
does not exist. The nonexistence of this tensor can be
proved in a different manner. If it exists, the leading con-
tribution should start at Oð�02
02Þ. However, the only
possible form of this leading term would be �02
02 ��K

��

where ��K
�� is the 2nd-rank Killing tensor of the Kerr space-

time. This is because the completely new Killing tensor

divided by �02
02 should also be a Killing tensor
whose leading term should satisfy the GR Killing equa-
tions. Since �02
02 ��K

�� does not satisfy the Killing equa-

tions at Oð�02
02Þ, we conclude that the completely new
2nd-rank Killing tensor cannot exist. Of course, we cannot
rule out the possibility of the existence of the completely
new Killing tensor once the small coupling or slowly-
rotating approximation is violated. In this sense, we have
only shown the nonexistence of the perturbative nontrivial,
2nd-rank Killing tensor in the new BH solution. However,
we emphasize that, in this paper, we only focus on the
situation where both of the approximations hold.
Although the geodesic equations are not exactly inte-

grable, the new solution is sufficiently close to the one found
by Yunes and Pretorius [8] that, except for the resonant
orbits, the geodesic equations are still approximately inte-
grable. By the latter, wemean that when one orbit averages,
there still exists a Carter-like constant, i.e. the Oð�02
02Þ
terms that spoil the existence of a Killing tensor are odd in
!t, where ! is any of the fundamental frequencies of the
motion, and thus, vanish upon orbit averaging. This can be
shown explicitly by applying canonical perturbation theory
[55] following e.g. Glampedakis and Babak [56], as we
discuss in Appendix C.
The new metric found here cannot be mapped to the new

bumpy metrics proposed in [57]. This is because the latter
assumed the existence of a nontrivial second-rank Killing
tensor, while the solution found here does not possess it.
We have tried to map the new solution to a generic de-
formed Lewis-Papapetrou spacetime [58] in one of the BL-
type coordinates. We found that a naive mapping does not
seem to work, which implies that a further coordinate
transformation is probably needed.

B. Binding energy, Kepler’s third law, the location
of the ISCO and curves of zero velocity

From the definitions of the energy E and the (z compo-
nent of) orbital angular momentum Lz, we have

_t ¼ Eg�� þ Lzgt�
gt�2 � gttg��

; (90)

_� ¼ �Egt� þ Lzgtt

g2t� � gttg��

; (91)

where the overhead dot stands for a derivative with respect
to the affine parameter. By substituting the above equations
in u�u� ¼ �1, with u� the particle’s four-velocity, we
obtain

grr _r
2 þ g�� _�2 ¼ Veffðr; �;E; LzÞ; (92)

where the effective potential is given by

Veff �
E2g�� þ 2ELzgt� þ L2

zgtt

g2t� � gttg��

� 1: (93)
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For simplicity, we restrict attention to equatorial, circu-
lar orbits. Then, E and Lz can be obtained from Veff ¼ 0
and @Veff=@r ¼ 0 as

E ¼ EK þ 	E; (94)

Lz ¼ Lz;K þ 	Lz: (95)

Here, EK and Lz;K are the energy and the (z component of)

orbital angular momentum for the Kerr background [51]:

EK � r3=2 � 2Mr1=2 þ aM1=2

r3=4ðr3=2 � 3Mr1=2 þ 2aM1=2Þ1=2 ; (96)

Lz;K � M1=2ðr2 � 2aM1=2r1=2 þ a2Þ
r3=4ðr3=2 � 3Mr1=2 þ 2aM1=2Þ1=2 ; (97)

where we have defined � to be positive in the direction of
prograde orbits. This implies that negative a corresponds to
retrograde orbits. The CS corrections are

	E � 5

4
�


M11=2

r3ðr� 3MÞ5=2
�
1� 33

14

M

r
� 183

140

M2

r2
� 603

70

M3

r3
þ 81

4

M4

r4

�
� 201

7168
�
2 M3

r1=2ðr� 3MÞ5=2

	
�
1þ 4

M

r
� 59315

4221

M2

r2
þ 38954

4221

M3

r3
þ 289564

4221

M4

r4
þ 188420

1407

M5

r5
� 566500

1407

M6

r6
� 27360

67

M7

r7

� 61584

67

M8

r8
þ 96768

67

M9

r9

�
þOð�02
03Þ; (98)

	Lz � 15

8
�


M5

r3=2ðr� 3MÞ5=2
�
1� 3

M

r
� 2

5

M2

r2
� 6

M3

r3
þ 108

5

M4

r4

�
� 603

7168
�
2 rM5=2

ðr� 3MÞ5=2
�
1� 4

3

M

r
� 54833

12663

M2

r2

þ 110798

12663

M3

r3
þ 15100

12663

M4

r4
þ 369428

4221

M5

r5
� 74092

603

M6

r6
þ 32768

469

M7

r7
� 40688

67

M8

r8
þ 32256

67

M9

r9

�
þOð�02
03Þ:

(99)

When we expand E and Lz in powers of M=r, the leading-
order correction to the binding energy Eb � E� 1 and
Lz are

Eb ¼ Eb;K

�
1þ 201

3584
�
2 M

2

r2

�
þO

�
�02 M

4

r4

�
; (100)

Lz ¼ Lz;K

�
1� 603

7168
�
2 M

2

r2

�
þO

�
�02 M

5

r5

�
: (101)

Relative to the leading-order Kerr (or Kepler) terms, the
corrections are proportional to ðM=rÞ2 which are of 2PN
orders. As before, the corrections in E and Lz would
change if one used a different renormalization of the
mass and spin, such as ~M and ~a, but these quantities are
not observable at spatial infinity.

We can also derive the correction to Kepler’s third law
by calculating the orbital angular frequency of a test par-
ticle ! � Lz=r

2 to find

!2 ¼ !2
K

�
1� 603

3584
�
2 M

2

r2

�
þO

�
�02 M

6

r6

�
; (102)

where !2
K � Mðr3=2 þ aM1=2Þ�2 [51].

However, the expressions for E, Lz and ! above are not
gauge invariant. The gauge invariant relation between E
and ! can be obtained by expanding Eqs. (100) and (102)
to 2PN order and eliminating M=r. The final result is

!ðEÞ ¼ 2
ffiffiffi
2

p
M

jEbj3=2
�
1þ 9

4
jEbj � 4

ffiffiffi
2

p jEbj3=2

þ 891

32

�
1þ 64

297

2 � 67

2772
�
2

�
jEbj2

�
þO½jEbj4� þOð�02
03Þ; (103)

and its inverse is

Eð!Þ ¼ 1� 1

2
ðM!Þ2=3 þ 3

8
ðM!Þ4=3 � 


3
ðM!Þ5=3

þ 27

16

�
1þ 8

27

2 � 67

2016
�
2

�
ðM!Þ2

þO½ðM!Þ7=3� þOð�02
03Þ: (104)

To Oð�00
00Þ, this agrees with the standard PN E-!
relation shown in [59].
Let us now derive the correction to the location of ISCO.

Substituting Eqs. (94) and (95) in Eq. (93), and then solv-
ing the equation @2Veff=@r

2 ¼ 0 for r, we obtain

rISCO ¼ rISCO;K þ 77
ffiffiffi
6

p
5184

�M
� 9497219

219469824
�M
2

þOð�02
03Þ; (105)

where the Kerr ISCO radius is given by [51]

rISCO;K � Mf3þ Z2 � ½ð3� Z1Þð3þ Z1 þ 2Z2Þ�1=2g
(106)
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with

Z1�1þð1�
2Þ1=3½ð1þ
Þ1=3þð1�
Þ1=3�; (107)

Z2 � ð3
2 þ Z2
1Þ1=2: (108)

The CS correction at linear order in 
 agrees with that
found in [8], while the Oð�02
02Þ term is new. The radial
location of the ISCO, however, is not gauge invariant. A
gauge invariant quantity can be obtained by calculating the
angular orbital frequency !ISCO at ISCO, which is

!ISCO ¼ !ISCO;K � 77

124416
�



M
(109)

� 2333803
ffiffiffi
6

p
31603654656

�

2

M
þOð�02
03Þ; (110)

where !ISCO ¼ M1=2ðr3=2ISCO;K þ 
M3=2Þ�1.

For completeness, let us also compute the correction to
the radiative efficiency �, which is defined by

� � 1� EðrISCOÞ: (111)

This quantity corresponds to the maximum fraction of
energy being radiated when a test particle accretes into a
central BH. For Schwarzschild and extremal Kerr BHs,
�� 0:06 and �� 0:42, respectively. The radiative effi-
ciency for the new solution is then

� ¼ �K þ 3673
ffiffiffi
3

p
31352832

�
� 8087
ffiffiffi
2

p
48771072

�
2 þOð�02
03Þ:
(112)

Notice that there are both linear in 
 and quadratic in 

corrections.
Finally, let us consider curves of zero velocity (CZV)

[60,61] in the r-� plane, i.e. curves with Veff ¼ 0. Since the
left-hand side of Eq. (93) is always positive, bound orbits

FIG. 1 (color online). Curves of zero velocity, Veff ¼ 0 for the Kerr metric. The enclosed regions show the allowed orbit region
Veff � 0 for E ¼ 0:95, Lz ¼ 3M and 
 ¼ 0:3. The left panel corresponds to the inner region while the right panel corresponds to the
outer region. The thick solid lines at r=M ¼ 1:955 correspond to the location of the event horizon when 
 ¼ 0:3.

FIG. 2 (color online). Curves of zero velocity, Veff ¼ 0 for the new BH metric with � ¼ 0:1. As in Fig. 1, the enclosed regions show
the allowed orbit region Veff � 0 for the same parameters. The middle panel corresponds to the inner region while the right panel
corresponds to the outer region. The left panel zooms into the region around � 
 ð3=4Þ�. Similar structure appears at around
� 
 ð1=4Þ�. The shaded areas are the allowed regions where test-particle orbits exist. The thick solid lines at r=M ¼ 1:955 correspond
to the location of the event horizon when 
 ¼ 0:3.
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are allowed if and only if Veff � 0. Figure 1 shows CZVs
for the Kerr solution while Fig. 2 shows the one for the new
solution. The enclosed regions represent the regions where
Veff � 0 and the solid lines at r=M ¼ 1:95 correspond to
the location of the event horizon for the particular case
considered in the figures, i.e. E ¼ 0:95, Lz ¼ 3M, 
 ¼ 0:3
and in the CS case, � ¼ 0:1. When we draw these figures,
we first expand the metric g�� in a and calculate Veff . We

do not further expand this Veff in a, since if we do this, Veff

is proportional to a negative power of a, which would
render the expansion invalid near the horizon.

Two allowed regions are clearly visible in these figures:
an outer region and an inner region, for both the GR and CS
cases. The outer regions are similar in GR and CS theory,
although due to the scale of the figure the differences look
small. As shown in [40] and recently in [17], orbits in the
outer region are still distinguishable with gravitational
wave observations. On the other hand, the structure of
the inner regions change drastically, as expected since
the CS correction modifies the strong-field regime. These
inner enclosed regions are inside the horizon, however, and
thus they cannot be probed with gravitational waves, at
least for slowly-rotating BHs. Also, we cannot trust the
perturbative solution there.

VI. CONCLUSIONS AND DISCUSSIONS

We have found a stationary, axisymmetric BH solution
in the small-coupling and slow-rotation approximations at
linear order in the coupling constant but at next-to-leading
order in the spin. This solution does not satisfy the vacuum
Einstein equations but the modified field equations. We
used a novel technique to find this solution, based on
Schwarzschild BH perturbation theory. That is, we decom-
posed the metric perturbation and the source terms (that
come from modifications to GR) in tensor spherical har-
monics, reducing the field equations to a set of coupled,
ordinary differential equations that are much simpler to
solve. We found that corrections at quadratic order in the
spin appear in the even-parity sector of the metric.

The method presented here could be used to find solu-
tions both to higher order in 
 (or a=M) and to higher order
in � defined in Eq. (3). The dynamical CS action, however,
is a linear-order-in-� truncation of a more fundamental
theory, and thus, it is valid only to linear order in the
coupling constant. If one were to carry out this calculation
to Oð�04
0Þ, one would find a modification only in the
gravitomagnetic sector, which is easy to compute.

A nontrivial property of the new solution is that,
although it is of Petrov type D to Oð�02
0Þ, it is of
Petrov type I to Oð�02
02Þ. This is different from the
Kerr metric, which is of Petrov type D to all orders in 
0.
The new metric does not possess a second-order Killing
tensor or a Carter-like constant. This then implies that there
does not exist a spacetime coordinate transformation that
leads to Hamilton-Jacobi equations being separable, which

also implies that geodesic motion is, in all likelihood,
chaotic when corrections of Oð�02
02Þ are included in the
metric. However, although there is no exact Carter-like
constant, we have also showed that the geodesic equations
are still separable after orbit averaging, except for the
resonant orbits, by applying canonical perturbation theory
[55,56,62]. In some sense, then, it might be possible to
recover geodesic regularity on average, although it is not
clear what this means precisely. Possible future work could
concentrate on studying whether geodesics in this back-
ground are truly chaotic, and if so, whether such chaos
manifests itself outside the event horizon. Moreover, one
could also investigate how large the shifts in the orbital
frequencies of geodesic test particles are and discuss
observational prospects of probing such a spacetime (see
Vigeland and Hughes [62] for similar work on bumpy
spacetimes, as well as Appendix C.).
Some insight might be gained by comparing geodesic

orbits in this new background to those in the Manko-
Novikov (MN) spacetime [63]. Gair et al. [60] investigated
geodesic orbits in the MN background through CZVs in
cylindrical coordinates ðt; �; z; �Þ. They found that when
the quadrupole moment deviates from Kerr, chaotic islands
arise in the inner region of the �-z plane. Strictly speaking,
the Hamilton-Jacobi equations are not separable in the MN
metric, but in the outer region, it seems that there exists a
nearly invariant quantity that corresponds to a Carter-like
constant. Such a result is related to the Kolmogorov,
Arnold and Moser theorem [55] which states that when a
separable Hamiltonian system is weakly perturbed, the
perturbed motion within the phase space remains mostly
in the neighborhood of the invariant tori (see related work
by Apostolatos et al. [64–66]). This suggests that except
for certain resonant orbits, there should exist a fourth
constant of motion in the phase space where motion is
nonchaotic. This constant of motion, however, is not re-
lated to the symmetries of the spacetime anymore, and
since it does not exist for resonant orbits, one cannot expect
to find a global Killing tensor. In Fig. 1, we have shown that
there are no additional CZV islands produced in the new
spacetime compared to Kerr outside the event horizon.
Although the structure of the inner region changes drasti-
cally, this occurs inside the horizon. Whether chaotic orbit
exists in the new spacetime outside the horizon needs to be
verified numerically.
In addition to the global structure of the spacetime, we

investigated other properties in detail. We first found that
the horizon radius and the location of the ergosphere are
modified from the GR expectation, although they are not
modified up to linear-order in the spin. We also computed
the 2PN conservative corrections to the binding energy and
Kepler’s third law, in terms of the asymptotic mass M
and spin a. This, in addition to the dissipative corrections
found in [32], will allow for the consistent calculation
of the gravitational waveform to 2PN order, after the
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dipole-dipole scalar force is calculated. This waveform
can then be mapped to the parametrized-post-Einsteinian
framework [67] and future gravitational wave constraints
on � can be investigated.

One might wonder whether constraints on � can be
placed with observations of the orbital decay of binary
pulsars. The gravitational fields outside of a BH, however,
is very different from that outside a neutron star in
dynamical CS gravity [33,68], due to the different bound-
ary conditions used when solving the modified field equa-
tions. Thus, the new BH solution found here cannot be used
to investigate binary pulsar constraints. Instead, one would
need to obtain NS solutions to quadratic order in spin, so
that the dipole scalar charge that sources 2PN scalar radia-
tion and the dipole-dipole force can be calculated. This
would lead to different 2PN conservative corrections to the
binding energy and Kepler’s third law.

Two low-mass x-ray binary systems containing BHs
have yielded a measurement or constraint on the orbital
decay [69], but the BH spins have not yet been determined.
Since the dipole scalar charge is sourced by BH spins, it is
currently impossible to place a constraint on dynamical
CS gravity with these systems. Moreover, binary parame-
ters in binary pulsars and low-mass x-ray binarys have
been determined by assuming that GR is correct. Since
the conservative part (that determines the binary parame-
ters) appears at the same order as the dissipative part (that
causes the orbital decay rate), one would have to redo the
fits to simultaneously determine binary parameters and
constrain � .

Electromagnetic radiation from accretion disks around a
central BH, such as Sgr A�, can also be a powerful tool to
test GR [12]. One could study how these observables, e.g.
images of BH shadows [70,71], continuum spectrum
[72,73], quasiperiodic oscillations [74], Fe emission lines
[75], geodetic precessions and strong lensing [76], are
modified if the central super-massive black hole is de-
scribed by the new solution found in this paper. We expect
that if the central BH is spinning moderately fast (though
not extremely fast since then our slow-rotation assumption
breaks down), the CS correction at quadratic order in spin
will be dominant over the linear-order, CS corrections.

Another possible avenue for future work is to relax the
slow-rotation approximation. Obtaining an arbitrarily fast
rotating BH solution analytically seems difficult, but a
numerical solution might be feasible. The results in this
paper can then be used as a check of the slow-rotation limit
of such a numerical solution. Oncewe obtain the correction
to the quadrupole moment without applying the slow-
rotation approximation, we can map this to a correction
to the gravitational waveform.

As a final remark, one could also investigate other
modified gravity theories with the techniques developed
in this paper. For example, in Ref. [32], we studied
Einstein-Dilaton-Gauss-Bonnet theory, where a static,

spherically symmetric BH solution [9] is known, as well
as a stationary, axisymmetric BH solution at linear order
in spin [10]. We have checked that this solution can be
mapped to Benenti and Francaviglia metric shown in
Appendix B 2, suggesting that there exists a nontrivial
second-rank Killing tensor and a Carter-like constant,
and hence it admits a separability structure. One could
then, for example, check whether the latter is of Petrov
type D. One could also extend this solution to quadratic
order in spin to see how the properties of the spacetime
change compared to the linear-order corrections.
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APPENDIX A: TENSOR HARMONICS

In this paper, we used the following tensor spherical
harmonics to decompose the metric perturbation and the
source term [38,39]:

að0Þ
‘0 ¼

Y‘0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA; (A1)

a‘0 ¼

0 0 0 0

0 Y‘0 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA; (A2)

b‘0 ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘ð‘þ 1Þp

0 0 0 0

0 0 @
@� Y‘0 0

0 @
@� Y‘0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA; (A3)

g‘0 ¼ r2ffiffiffi
2

p

0 0 0 0

0 0 0 0

0 0 Y‘0 0

0 0 0 sin2�Y‘0

0
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1
CCCCCA; (A4)
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f‘0 ¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lð‘þ 1Þð‘� 1Þð‘þ 2Þp

	

0 0 0 0

0 0 0 0

0 0 W‘0 0

0 0 0 �sin2�W‘0

0
BBBBB@

1
CCCCCA; (A5)

where Y‘0 are the m ¼ 0 spherical harmonics and W‘0 are
given by

W‘0 �
�
d2

d�2
� cot�

d

d�

�
Y‘0: (A6)

On the other hand, the coefficients of the source after a
tensor spherical harmonics decomposition are
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M5

r5

�
; (A8)

A00 ¼ 25
ffiffiffiffi
�

p
192

�
M4

r6
1

fðrÞ2 

2

�
1þ 2

M

r
� 54

M2

r2
� 32

M3

r3

� 1044

175

M4

r4
þ 18312

25

M5

r5
� 24192

25

M6

r6

�
; (A9)

A20 ¼ 25
ffiffiffiffiffiffiffi
5�

p
192

�
M4

r6
1

fðrÞ2 

2

�
1þ 2

M

r
� 492

25

M2

r2
þ 904

25

	 M3

r3
þ 35676

875

M4

r4
þ 43896

125

M5

r5
� 13824

25

M6

r6

�
;

(A10)

B20 ¼ � 5
ffiffiffiffiffiffiffiffiffi
15�

p
48

�
M4

r6
1

fðrÞ2 

2

�
1þM

r
� 28

M2

r2
þ 338

5

	 M3

r3
þ 2496

175

M4

r4
þ 64296

175

M5

r5
� 22896

25

M6

r6

�
;

(A11)

GðsÞ
00 ¼ � 25

ffiffiffiffiffiffiffi
2�

p
96

�
M4

r6
1

fðrÞ2 

2

�
1� 87

M2

r2
þ 18

M3

r3

þ 33892

175

M4

r4
þ 302136

175

M5

r5
� 100176

25

M6

r6

þ 44928

25

M7

r7

�
; (A12)

GðsÞ
20 ¼ � 5

ffiffiffiffiffiffiffiffiffi
10�

p
48

�
M4

r6
1

fðrÞ2 

2

�
1� 219

5

M2

r2

þ 162
M3

r3
� 19868

175

M4

r4
þ 186072

175

M5

r5

� 121416

25

M6

r6
þ 127872

25

M7

r7

�
; (A13)

F20 ¼ 5
ffiffiffiffiffiffiffiffiffi
15�

p
96

�
M4

r6
1

fðrÞ

2

�
1þ 2

M

r
� 272

5

M2

r2

þ 984

5

M3

r3
þ 7788

175

M4

r4
þ 18264

25

M5

r5
� 55296

25

M6

r6

�
:

(A14)

By substituting the above source terms in Eqs. (35)–(39),
we obtain a set of ordinary differential equations for
ðH000; H200; K00; H020; H220; K20Þ, which we solved to find

H000 ¼ � 5
ffiffiffiffi
�

p
192

�
2 M5

r5fðrÞ
�
1þ 100

M

r
þ 194

M2

r2

þ 2220

7

M3

r3
� 1512

5

M4

r4

�
þOð�02
03Þ; (A15)

H200 ¼�25
ffiffiffiffi
�

p
192

�
2 M4

r4fðrÞ
�
1þ 3

M

r
þ 322

5

M2

r2
þ 198

5

M3

r3

þ 6276

175

M4

r4
� 17496

25

M5

r5

�
þOð�02
03Þ; (A16)

K00 ¼ Oð�02
03Þ; (A17)

H020 ¼ 469
ffiffiffiffiffiffiffi
5�

p
5230

�
2 M3

r3fðrÞ
�
1þM

r
þ 4474

4221

M2

r2

� 2060

469

M3

r3
þ 1500

469

M4

r4
� 2140

201

M5

r5

þ 9256

201

M6

r6
� 5376

67

M7

r7

�
þOð�02
03Þ; (A18)

H220 ¼ 201
ffiffiffiffiffiffiffi
5�

p
2240

�
2 M
3

r3

�
1þ 1459

603

M

r
þ 20000

4221

M2

r2

þ 51580

1407

M3

r3
� 7580

201

M4

r4
� 22492

201

M5

r5

� 40320

67

M6

r6

�
þOð�02
03Þ; (A19)

K20 ¼ 201
ffiffiffiffiffiffiffi
5�

p
2240

�
2 M
3

r3

�
1þ 1420

603

M

r
þ 18908

4221

M2

r2

þ 1480

603

M3

r3
þ 22460

1407

M4

r4
þ 3848

201

M5

r5

þ 5376

67

M6

r6

�
þOð�02
03Þ: (A20)
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This solutions can then be used to reconstruct the metric
perturbation, presented in the main text.

APPENDIX B: ALTERNATIVE WAYS TO
PROVE THE NONADMITTANCE OF

A SEPARABILITY STRUCTURE

In Sec. VA, we have shown that a 2nd-rank Killing
tensor does not exist for the new BH solution by directly
attempting to solve the Killing equations with a general
ansatz for the Killing tensor, restricted by the symmetries
of the spacetime. This implies that the new BH solution
does not admit a separability structure. In this appendix, we
verify this point in two additional ways.

1. Levi-Civita test

Whether a Hamiltonian system is separable or not in a
given coordinate system x� can be determined by the
so-called Levi-Civita test [42,54]. This test states that the
Hamilton-Jacobi equations are separable if and only if the
Hamiltonian H � ð1=2Þg��p�p� [52] satisfies the follow-

ing equations for each pair of distinct indices � and �:

@H

@x�
@H

@x�
@2H

@p�p�

þ @H

@p�

@H

@p�

@2H

@x�x�
� @H

@p�

@H

@x�
@2H

@x�p�

� @H

@x�
@H

@p�

@2H

@p�x
�
¼ 0: (B1)

Here, p� is the conjugate momentum of the coordinate x�.
Note that the repeated indices do not indicate summation.
For the stationary and axisymmetric spacetime, since the
metric only depends on r and �, the only relevant combi-
nation of ð�;�Þ in the above equation is ð�;�Þ ¼ ðr; �Þ.
We have checked that the slowly-rotating BH solution
in dynamical CS gravity at linear order in spin satisfies
Eq. (B1). The new solution in BL-like coordinates does not
satisfy the above equations, as we verified explicitly with
symbolic manipulation software. This suggests that there is
no conserved quantity corresponding to the Carter constant
that can be constructed from a 2nd-order Killing tensor,
and thus, the Hamilton-Jacobi equations are not separable
in BL-like coordinates.

Next, we investigated whether there exist any coordi-
nates in which the new BH solution satisfies Eq. (B1). In
particular, we allowed for diffeomorphisms x� ! x0� ¼
x� þ ��, restricted to �� being of order Oð�02
02Þ.
With this coordinate transformation, g�� transforms via

g�� ! g0�� ¼ g�� � 2hð�;�Þ. We verified, however, that

the transformed Hamiltonian does not satisfy Eq. (B1)
with ð�;�Þ ¼ ðr; �Þ. We found that the left-hand side
of this equation contains only five terms, which are pro-
portional to the combinations ðE2prp�Þ, ðELzprp�Þ,
ðL2

zprp�Þ, ðp3
rp�Þ and ðprp

3
�Þ. If Eq. (B1) is satisfied, the

coefficient of each term must vanish separately (i.e. there
are five equations to be satisfied). On the other hand,

we found that �� appears in these coefficients only through
@��

r, @r�
�, @r@��

r and @r@��
�. We tried to solve the five

equations for these four quantities, but could not obtain a
consistent solution, which then proves that there does not
exist any coordinate transformation where Eq. (B1) is
satisfied.

2. Mapping to the general metric that admits
a separability structure

The inverse of the metric components of a spacetime
that admits a separability structure can be expressed as [41]

grr ¼ QðrÞ
r2 þ p2

; g�� ¼ PðpÞ
ðr2 þ p2Þa2sin2� ;

gab ¼ QðrÞ
r2 þ p2

�abr ðrÞ þ PðpÞ
r2 þ p2

�abp ðpÞ; ða; b ¼ t; �Þ;

(B2)

where p � a cos�. There are four functions of r, QðrÞ and
�abr ðrÞ, and four functions of �, PðpÞ and �abp ðpÞ. The Kerr
solution can be expressed as

QKðrÞ ¼ �; PKðpÞ ¼ a2sin2�;

�abr;KðrÞ ¼
1

�2

ðr2 þ a2Þ2 aðr2 þ a2Þ
aðr2 þ a2Þ a2

 !
;

�abp;KðpÞ ¼
a2sin2� a

a 1
sin2�

 !
: (B3)

The deviation from the Kerr solution can be parame-
trized as

grr ¼ QK

r2 þ p2
ð1þ 	QÞ; (B4)

g�� ¼ PK

ðr2 þ p2Þa2sin2� ð1þ 	PÞ; (B5)

gtt ¼ 1

r2 þ p2
½QK�

tt
r;Kð1þ 	Qþ 	�ttr Þ

þ PK�
tt
p;Kð1þ 	Pþ 	�ttp Þ�; (B6)

gt� ¼ 1

r2 þ p2
½QK�

t�
r;Kð1þ 	Qþ 	�t�r Þ

þ PK�
t�
p;Kð1þ 	Pþ 	�t�p Þ�; (B7)

g�� ¼ 1

r2 þ p2
½QK�

��
r;K ð1þ 	Qþ 	���

r Þ

þ PK�
��
p;Kð1þ 	Pþ 	���

p Þ�; (B8)

where
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	A � A� AK

AK

; ðA ¼ Q;P; �abr ; �abp Þ: (B9)

This can be interpreted as the most general bumpy space-
time that admits a separability structure.

Let us now try to map the new BH solution to the above
bumpymetric. First, toOð�02
0Þ, the only relevant parame-

ters are 	Q, 	P, 	�ttr and 	�t�r . We find that

	Q ¼ 	P ¼ 	�ttr ¼ 0;

	�t�r ¼ � 5

8
�
M4

r4

�
1þ 12

7

M

r
þ 27

10

M2

r2

�
: (B10)

To Oð�
2Þ, we find that the new BH solution cannot be
mapped to the above bumpy spacetime with BL-like coor-
dinates. We also considered coordinate transforming the
new BH solution to find a map to the above metric. Once
again, however, we found that there does not exist any
coordinates where the new BH solution can be mapped to
the above bumpy spacetime. This then implies that new BH
solution does not admit a separability structure.

APPENDIX C: CANONICAL PERTURBATION
THEORYAND SECULAR SEPARABILITY

OF THE GEODESIC EQUATIONS

Consider a Hamiltonian system in angle-action varia-
bles, where we use w� to denote the angle variable and
I� ¼ ðpt; Jr; J�; J�Þ to denote the conjugate action varia-

bles, with

Ji �
I

dxipi: (C1)

We can then express the Hamiltonian as

H ¼ 1

2
g��
YPp�p� þ 1

2

h��p�p� þOð
2Þ

¼ H0ðI�Þ þ 
H1ðw�; I�Þ þOð
2Þ; (C2)

where g
��
YP denotes the stationary, axisymmetric CS BH

metric at Oð�02
0Þ found by Yunes and Pretorius [8]
and h�� is the difference between the new solution and
theirs. We have also defined H0 � ð1=2Þg��

YPp�p� and

H1 � ð1=2Þh��p�p�, where 
 ¼ Oð
0Þ is a bookkeeping

parameter that labels the order of the perturbation. Clearly,
the first (second) term is the unperturbed (perturbed)
Hamiltonian. Note that the unperturbed Hamiltonian de-
pends only on the action variables, while the perturbed one
depends both on the angle and action variables.

Now, let us seek a canonical transformation from

ðw�; I�Þ to ðŵ�; Î�Þ such that the new action Î� is constant

and the new angle variables ŵ� are linear in the affine
parameter. With this choice, the new Hamiltonian would
depend only on the new action variables. Such a canonical
transformation exists if one can find an appropriate gen-
erating function, which can be parametrized as [55,56]

Fðw�; Î�Þ ¼ w�Î� þ�ðw�; Î�Þ; (C3)

where � is a function of the old angle variables and the
new action variables, which are assumed to be periodic
in w�.
Whether such a canonical transformation exists then

depends on whether � exists. This function must satisfy
the Hamilton-Jacobi equation

H

�
w�;

@F

@w�

�
¼ ĤðÎ�; 
Þ; (C4)

where Ĥ is the new Hamiltonian. We expand Ĥ as

ĤðÎ�; 
Þ ¼ H0ðÎ�Þ þ 
H1ðÎ�Þ þOð
2Þ; (C5)

and substitute this into Eq. (C4) to yield

H0ðÎ�Þ ¼ Ĥ0ðÎ�Þ; (C6)

��
0

@�

@w� þH1ðw�; Î�Þ ¼ Ĥ1ðÎ�Þ; (C7)

where ��
0 � @H0=@I� represents the unperturbed frequen-

cies. Next, since � is assumed to be periodic in w�, we
Fourier decompose it

�ðw�; Î�Þ ¼
X
j

BjðÎ�Þe2�iðj�wÞ; (C8)

where j is a 3-dimensional vector of the integer indices.
The coefficients Bj can be determined by solving Eq. (C7).

Since the derivative of � with respect to w� does not
contain any constant term, the first term on the right-

hand side of Eq. (C7) does not depend on Î� when one

orbit averages. Therefore, upon orbit averaging, Eq. (C7)
becomes

hH1iðw�; Î�Þ ¼ Ĥ1ðÎ�Þ; (C9)

where the orbital averaging is defined as

hAi �
I

dw�A; (C10)

for any quantity A. The oscillatory part of Eq. (C7) must
satisfy

��
0

@�

@w� ¼ hH1i �H1: (C11)

Similar to Eq. (C8), we decompose the right-hand side of
the above equation as

hH1i �H1 ¼
X
j�0

CjðÎ�Þe2�ij�w: (C12)

By substituting this equation and Eq. (C8) into Eq. (C11),
we can determine the coefficients Bj in Eq. (C8) as

BjðÎ�Þ ¼
CjðÎ�Þ

2�iðj � �0Þ ; j � 0: (C13)
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Thus, when j � �0 � 0, the Bj coefficients exist, which

then implies that � and the canonical transformation in
question indeed exist.

If the generating function exists, the relation between the
old and the new action variables is

I� ¼ @F

@w� ¼ Î� þ @�

@w� : (C14)

Taking the orbital average of this equation, we obtain

hI�i ¼ hÎ�i: (C15)

Thus, there is no secular change in the action variables,
which means that the conserved quantities (energy, angular
momentum and the Carter-like constant) are not modified
in a secular sense [56]. Therefore, when we take an orbital
average, the geodesic equations must remain secularly
integrable.

This, however, does not mean that there are no secular
changes in the angular frequencies !i. The shifts in these
frequencies conjugate to the orbital proper time can be
calculated via [62]

	!i � 1

m

@hH1i
@Ii

; (C16)

wherem is the mass of the test particle. This can be related
to the shifts in the observed angular frequencies �i via

	�i ¼ 	!i

�
�!i	�

�2
(C17)

with

!i � 1

m

@H0

@Ii
; � � 1

m

@H0

@It
; 	� � 1

m

@hH1i
@It

:

(C18)

Resonant orbits must be treated separately. In this case,
j � �0 ¼ 0 and the right-hand side of Eq. (C13) diverges.
This, in turn, means a canonical transformation does not
exist, and thus, a Carter-like constant of motion does not
exist either at resonance, even when one takes the orbit
averaging. Since a constant of the motion must be a global
quantity, this implies that a Carter constant cannot globally
exist.
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