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We investigate the motion of test bodies with internal structure in general relativity. We utilize a

multipolar approximation scheme along the lines of Mathisson-Papapetrou-Dixon including the

quadrupolar order. The motion of pole-dipole and quadrupole test bodies is studied in the context of

the Kerr geometry. For an explicit quadrupole model, which includes spin and tidal interactions, the

motion in the equatorial plane is characterized by an effective potential and by the binding energy. We

compare our findings to recent results for the conservative part of the self-force of bodies in extreme mass

ratio situations. Possible implications for gravitational wave physics are outlined.
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I. INTRODUCTION

Approximate analytic treatments of the binary problem
in general relativity are possible in certain limited regimes.
These include the weak-field (post-Minkowskian), weak-
field and slow motion (post-Newtonian), and extreme mass
ratio approximations. An important astrophysical example
of the latter approximation is a star inspiraling into a very
massive black hole, i.e., an extreme mass ratio inspiral. The
zeroth order approximation in the extreme mass ratio case
describes the motion of the lighter mass by a geodesic in
the fixed background spacetime generated by the heavier
mass. An important first correction derives from a pertur-
bation of the background due to the small mass object,
leading to so-called self-force corrections to the geodesic
motion within the background metric. Recently this self-
force program made progress, for example, evolutions over
thousands of orbits for a Schwarzschild background
succeeded [1], see also [2,3]. Also self-force corrections
to the innermost stable circular orbit were derived [4],
whose frequency is an important observable of gravita-
tional wave astronomy.

Besides self-force corrections to the geodesic motion
within a background metric, corrections due to the small
object’s spin and higher multipoles—encoding its
finite size—arise. Multipolar corrections to the motion of
test bodies were first derived by Mathisson [5,6] and
Papapetrou [7], and since then have been studied in the
context of different approximation schemes by a number of
authors [8–18]. It is important to systematically study these
corrections in astrophysically realistic situations, in par-
ticular, as the self-force calculations are approaching the
second order [19–21]. In the present paper we study a

truncation of the equations of motion at the quadrupole
level, to which an independent derivation was given in our
previous publication [22] with the help of the multipolar
approximation scheme by Tulczyjew [8]. Our analysis in
[22] made clear that there is a considerable freedom to
close the equations of motion at the quadrupole level.
Besides imposing a supplementary condition on the spin,
corresponding to a choice for the center of the object, one
must devise a model for the quadrupole dynamics.
In contrast to previous works [23–26], in the present

paper we focus on astrophysically realistic models for the
quadrupole, which derive from recent work on effective
actions for extended objects. This not only includes
quadratic-in-spin corrections [27,28], but also tidal inter-
actions [29,30], see also [31]. In fact, the interaction of a
black hole’s tidal field with the quadrupole of an inspiral-
ling star may become very strong, as is indicated by the
appearance of tidal disruptions. Quadrupole tidal interac-
tions can be of more importance for gravitational wave
astronomy in small mass ratio situations than spin ef-
fects—for the measurability of spin effects see [32].
The present paper aims at extending the effective poten-

tial for test bodies with spin in a Kerr background [33] to
include corrections from the mentioned quadrupole models
(see also [34,35] for alternative derivations, [36] for a
charged spinning test body in Kerr-Newman spacetime,
and [37,38] for Hamiltonian approaches). To carry out
this program, it is necessary to identify various conserved
quantities of quadrupolar test bodies. This is not straight-
forward and some of the emerging difficulties were already
pointed out in our previous work [22]. However, with an
effective action as a basis one can immediately construct
conserved mass and spin length parameters. Conserved
quantities—associated with symmetries (Killing vectors)
of the background—were already found in [23] and are
actually the same as in the spinning test body (or pole-
dipole) case [14]. In a Kerr background this gives rise to a
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conserved binding energy and a total angular momentum
of the test body.

For aligned spins and circular orbits in the equatorial
plane we compute the gauge-invariant relation between
binding energy and total angular momentum. This comple-
ments recent results on this relation from full numerical
simulations for comparable masses [39] and from the con-
servative part of the self-force for extreme mass ratios [40].
While both of these results are valid for nonspinning
binaries only, we include spin and quadrupole effects
(including tidal deformations) due to the smaller object in
the extreme mass ratio case here. Furthermore, we compare
our result with various post-Newtonian Hamiltonians or
potentials.

The structure of the paper is as follows. In Sec. II, we
briefly recapitulate some of our findings from [22]. We
then rewrite the equations of motion for a generalized
supplementary condition. Subsequently, in Sec. III, we
work out the effective potential for spinning test bodies
on equatorial orbits with aligned spin in a Kerr back-
ground. In Sec. IV we introduce our explicit quadrupole
model. In particular we identify a masslike quantity at this
multipole order which is conserved in an approximative
sense. Furthermore, we work out the effective potential in
terms of a set of dimensionless parameters, and discuss the
values of these parameters for astrophysically relevant
situations. This is followed by a discussion of the binding
energy in Sec. V, in which we also compare our results to
corresponding ones in a self-force and post-Newtonian
context. We draw our final conclusion in Sec. VI. In
Appendix A we collect some misprints which we found
in the literature regarding the effective potential of pole-
dipole test bodies. Appendices B, C, D, and E contain
supplementary material regarding our calculations. In
Appendix F, we summarize our notation and conventions
and provide a brief overview of different quantities and
units used throughout the work.

II. BASIC EQUATIONS

A. Equations of motion

The equations of motion of an extended test body up to
the quadrupolar order are given, see [22] for a derivation in
the context of Tulczyjew’s multipolar approximation
method, by the following set of equations:

�pa

ds
¼ 1

2
Rabcdu

bScd þ 1

6
raRbcdeJ

bcde; (1)

�Sab

ds
¼ 2p½aub� � 4

3
R½a

cdeJ
b�cde: (2)

Here ua :¼ dYa=ds denotes the 4-velocity of the body
along its world line (normalized to uaua ¼ 1), pa the
momentum, Sab ¼ �Sba the spin, and Jabcd the quadru-
pole moment with the following symmetries:

Jabcd ¼ J½ab�½cd� ¼ Jcdab; (3)

J½abc�d ¼ 0 , Jabcd þ Jbcad þ Jcabd ¼ 0: (4)

Thus, Jabcd has the same (algebraic) symmetries as the
Riemann tensor. The corresponding stress-energy tensor of
the test body can be written in the following (singular)
form:

ffiffiffiffiffiffiffi�g
p

Tab¼
Z
ds

�
uðapbÞ�ð4Þ �1

3
Rcde

ðaJbÞedc�ð4Þ

�rcðScðaubÞ�ð4ÞÞ�2

3
rdrcðJdðabÞc�ð4ÞÞ

�
: (5)

From Eq. (2) it follows that the momentum is given by

pa ¼ mua þ �Sab

ds
ub þ 4

3
ubR

½a
cdeJ

b�cde; (6)

where we used m :¼ pau
a.

B. Conserved quantities

We encountered already in [22], that for the pole-dipole
case (Jabcd ¼ 0), the quantity

E� ¼ pa�
a þ 1

2
Sabra�b; (7)

is conserved if �a is a Killing-vector, rðb�aÞ ¼ 0. In [[23],
p. 210] it was further shown that this is a conserved
quantity even at all higher multipole orders.
Other conserved quantities depend on the supplementary

condition. For the spin length S given by 2S2 :¼ SabS
ab

one obtains:

S
dS

ds
¼ 1

2

dS2

ds
¼ 1

2
Sab

�Sab

ds

¼ Sabp
aub � 2

3
SabR

a
cdeJ

bcde:

(8)

It is easy to see that in the pole-dipole case the spin lengthS is
conserved for the twowell-known supplementary conditions
of Tulczyjew (paS

ab ¼ 0), and Frenkel (uaS
ab ¼ 0).

For the mass m, defined by m2 :¼ papa, the following
relations hold:

m 2 ¼ m2 þ �Sab

ds
paub þ 4

3
paubR

½a
cdeJ

b�cde; (9)

dm

ds
¼�pa

ds

pb

mm

�
�Sab

ds
þ4

3
R½a

cdeJ
b�cde

�
þ m

6m

�Rbcde

ds
Jbcde:

(10)

The last relation follows from an insertion of (2) into the

expression �pa

ds pb
�Sab

ds and use of �pa

ds pa ¼ m
�m
ds . Hence in

the pole-dipole case the massm is conserved if one chooses
Tulczyjew’s spin supplementary condition. However, for
the Frenkel condition the mass m is conserved in the pole-
dipole case.
An extension of conserved spin length and masses to the

quadrupole case is one of the main obstacles in the present
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work. Wewill come back to this in Sec. IV in the context of
an explicit quadrupole model.

C. Spin supplementary condition and equations
of motion

A spin supplementary condition has to be imposed to
close the system of equations (1) and (2) even in the
pole-dipole approximation. Here we rewrite the equations
of motion with the help of the following supplementary
condition:

Sabfb ¼ 0: ð�Þ (11)

This condition allows for an easy transition between the
widely used Frenkel (fa ¼ ua) and Tulczyjew (fa ¼ pa)
conditions.

Taking the total derivative of (11) leads to a relation
between pa and ua:

ua ¼ 1

pfff

�
ubfbp

aþSab
�fb
ds

� 4

3
fbR

½a
cdeJ

b�cde
�
: (12)

We now have the option to eliminate ua or pa from the
equations of motion.

Eliminating ua Insertion of (12) into the equation of
motion for the spin (2) yields:

�Sab

ds
¼ 2Sc½apb�

pfff

�fc
ds

� 4

3
W½a

f Wb�
g Rf

cdeJ
gcde: (13)

Here we defined the projectorWa
b with respect to the vector

entering the supplementary condition (11), i.e.,

Wa
b
:¼ �a

b �
pafb
pfff

; faW
a
b ¼ 0; (14)

Wa
bp

b ¼ 0; Wa
c S

cb ¼ Sab: (15)

Now the spin dynamics is fixed, provided that �fads is mean-

ingful and Jabcd is somehow given. This spin equation of
motion also manifestly preserves the spin supplementary
condition.

When ua is replaced in favor of pa, the following
relation between the velocity and the momentum is often
more useful than (12)

ua¼� p̂a þ 2SacSdeRdecb

4m2 þ ScdSefRcdef

p̂b; (16)

where

p̂a :¼ m

m2
pa � 1

m2

�

ds
ðSabpbÞ � 4

3m2
R½a

cdeJ
b�cdepb

þ 1

6m2
SabrbRcdefJ

cdef; (17)

¼ m

m2
pa � Sab

m2

�pb

ds
þ 1

6m2
SabrbRcdefJ

cdef

� 4

3pgfg
�̂a
fR

½f
cdeJ

b�cdefb þ �̂a
bS

bc

pfff

�fc
ds

: (18)

In the last equation we introduced �̂b
a :¼ �b

a � pap
b=m2.

The derivation of relation (16) at the quadrupole order is
analogous to the one at the pole-dipole order given in [41].
Note that (16) is only valid, if the supplementary condition
(11) holds.
The mass quantity m :¼ pau

a must be obtained from
(16) and uaua ¼ 1, as s is the proper time in our case. But
one may as well use a different convention for the parame-
ter s, namely uaU

a ¼ 1 where Ua :¼ pa=m. Then it holds
m ¼ m, which makes the relation between ua and pa fully
explicit, see also [23]. Now one can insert (16) into (1),
which finally eliminates ua from the equations of motion.
If desired, one can further decompose (1) into an equation
for Ua and m, but we will not explicitly follow this
approach here.
Eliminating pa Eq. (12) can be written as

pa ¼ 1

ufff

�
pbfbu

a � Sab
�fb
ds

þ 4

3
fbR

½a
cdeJ

b�cde
�
:

(19)

Insertion into the equation of motion for the spin (2) yields:

�Sab

ds
¼ 2Sc½aub�

ufff

�fc
ds

� 4

3
X½a
f X

b�
g Rf

cdeJ
gcde; (20)

where the projector Xa
b is now given by

Xa
b
:¼ �a

b �
uafb
ufff

; faX
a
b ¼ 0; (21)

Xa
bu

b ¼ 0; Xa
cS

cb ¼ Sab: (22)

As in the previous case this spin equation of motion
manifestly preserves the spin supplementary condition.
With the help of the relations1

fap
a ¼ mfau

a þ Sabua
�fb
ds

þ 4

3
faubR

½a
cdeJ

b�cde; (23)

pa ¼ mua � �a
bS

bc

ufff

�fc
ds

þ 4

3
�a
b

fg

ufff
R½b

cdeJ
g�cde; (24)

we can orthogonally decompose (1) with respect to ua into
an equation for ua, and into an equation for m:

m
�ua
ds

¼ 1

2
Rabcdu

bScd þ �ag

�

ds

�
�g
bS

bc

ufff

�fc
ds

� 4

3
�g
b

fh
ufff

R½b
cdeJ

h�cde
�
þ 1

6
�f
arfRbcdeJ

bcde;

(25)

1Here �a
b
:¼ �a

b � uaub denotes the projector with respect to
the velocity as usual.

INFLUENCE OF INTERNAL STRUCTURE ON THE MOTION . . . PHYSICAL REVIEW D 86, 044033 (2012)

044033-3



dm

ds
¼ ��ub

ds

Sbc

ufff

�fc
ds

þ �ub
ds

4

3

fg

ufff
R½b

cdeJ
g�cde

þ 1

6

�Rbcde

ds
Jbcde: (26)

Obviously uau
a ¼ 1 is preserved. Observe that we have

eliminated pa from all equations of motion.

III. SPINNING TEST BODIES IN
A KERR BACKGROUND

In the following, we are going to study test bodies
endowed with spin in the field of a rotating source
described by the Kerr metric.

A. Kerr metric

In Boyer-Lindquist coordinates (t, r, �, �), the Kerr
metric takes the form:

ds2 ¼
�
1� 2Mr

�2

�
dt2 þ 4aMrsin2�

�2
dtd�� �2

�
dr2

� �2d�2 � sin2�

�
r2 þ a2 þ 2a2Mrsin2�

�2

�
d�2;

(27)

where M is the mass, a the Kerr parameter, and

� ¼ r2 � 2Mrþ a2; �2 ¼ r2 þ a2cos2�: (28)

The Kerr metric allows for two Killing vector fields
given by

�
E

a ¼ �a
t ; �

J

a ¼ �a
�: (29)

Furthermore, we have

ffiffiffiffiffiffiffi�g
p

:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðgabÞ

q
¼ �2 sin�: (30)

B. Equatorial orbits for aligned spin

In the following we are going to focus on equatorial
orbits, i.e.,

� ¼ �

2
; p� ¼ 0; (31)

and the case of aligned spin, with respect to the rotating
background source, defined by

Sa� ¼ 0: (32)

The self-consistency of this configuration was shown in
[33,36], see also Appendix C of the present paper. These
assumptions leave us with the six remaining components
fpt; pr; p�; Str; Sr�; S�tg, which can be determined from
the following set of equations:

Sabpb ¼ 0; SabS
ab ¼ 2S2; pap

a ¼ m2;

E ¼ pa�
E

a þ 1

2
Sabra�

E

b;

�J ¼ pa�
J

a þ 1

2
Sabra�

J

b;

(33)

in terms of the massm, the spin length S, the energy E, and
the angular momentum J. Remember the corresponding
Komar quantities of the Kerr background at this point. The
one belonging to the Killing vector �

E

a is just the black hole

mass (or energy), the other one, belonging to �
J

a, yields the

angular momentum. This motivates to call E and J the
energy and angular momentum of the test body, as they are
based on the same isometries, or Killing vectors. Note that
from here on we use the Tulczyjew condition, i.e., the first
equation in (33), as supplementary condition in our multi-
pole formalism. For this condition, we define the spin
vector Sa as follows:

Sa ¼ 1

2m
�abcdpbScd ¼ 1

2m
ffiffiffiffiffiffiffi�g

p "abcdpbScd;

Sab ¼ 1

m
�abcdpcSd ¼ 1

m
ffiffiffiffiffiffiffi�g

p "abcdpcSd:
(34)

From this definition and the assumptions in (31) and (32) it
becomes clear, that Sa has only one nonvanishing compo-
nent, i.e.,

Sa ¼ S��a
�: (35)

Using the relation 2SaS
a ¼ �SabS

ab together with the
definition of the spin length from (33), we obtain

� S� ¼ �S=
ffiffiffiffiffiffiffiffiffiffiffiffi�g��

p
: (36)

Notice that for usual spherical coordinates @� points in the
opposite direction as @z in the equatorial plane. Therefore
S� < 0 corresponds to a spin aligned to @z. Further dis-
cussion of the spin orientation is given in Appendix B. As
usual we absorb the sign by allowing for negative spin
length S in the following. This in turn allows us to express
the components of the spin tensor in terms of the spin
length, i.e.,

Srt ¼ �S
ffiffiffiffiffiffiffiffiffiffiffiffi�g��

p
m

ffiffiffiffiffiffiffi�g
p p� ¼ � Sp�

mr
;

S�t ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffi�g��

p
m

ffiffiffiffiffiffiffi�g
p pr ¼ Spr

mr
;

S�r ¼ �S
ffiffiffiffiffiffiffiffiffiffiffiffi�g��

p
m

ffiffiffiffiffiffiffi�g
p pt ¼ �Spt

mr
;

(37)

where in the last step we took into account that we are in
the equatorial plane.
The definitions of E and J in (33) allow us to express pt

and p� in terms of the constants of motion, i.e.,
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pt ¼
E� MS

mr3
ðJ � aEÞ

1� MS2

m2r3

; (38)

p� ¼
�J � aMS

mr3
½aEð1� r3

a2M
Þ � J�

1� MS2

m2r3

: (39)

With the last two expressions and the definition of the mass
m from (33) we are able to express the radial component of
the linear momentum, pr, in terms of the constants of
motion, the test body mass, the test body spin, and the
parameters characterizing the spacetime, i.e.,

ðprÞ2 ¼ A0ðA1J
2 þ A2JEþ A3E

2 þ A4Þ: (40)

Here the functions A0 ¼ A0ðM;m; S; rÞ, A1;...;4 ¼
A1;...;4ðM;m; S; r; aÞ are explicitly given by

A0 ¼ m2M

ðS2M�m2r3Þ2 ; (41)

A1 ¼ S2Mþ 2mrSaþ 2r3m2 �m2r4

M
; (42)

A2 ¼ 2mr4S

M
� 6r3Sm� 4am2r3 � 2S2aM

� 2S2ar� 4mrSa2; (43)

A3 ¼ 2a2m2r3 þ 2a3rSmþ 2S2r3 þ 6r3Samþ r6m2

M

þ 2S2ra2 þ S2Ma2 � S2r4

M
þ a2r4m2

M
; (44)

A4 ¼ 2r3S2m2 � S4M� r6m4

M
þ 2M2S4

r
� 4Mr2S2m2

þ 2r5m4 � a2S4M

r2
þ 2a2S2m2r� a2m4r4

M
: (45)

An alternative form of pr is the following one:�
pr

m

�
2 ¼ 1

�

�
	
E2

m2
� 2


JE

m2r
þ �

J2

m2r2
� �

�
; (46)

	 ¼
�
1þ a2

r2
þ

�
1þM

r

�
aS

mr2

�
2 � �

r2

�
a

r
þ S

mr

�
2
; (47)


¼
�
1þ a2

r2
þ

�
1þM

r

�
aS

mr2

��
a

r
þ MS

mr2

�
� �

r2

�
a

r
þ S

mr

�
;

(48)

� ¼
�
a

r
þ MS

mr2

�
2 � �

r2
; (49)

� ¼ �

r2
�; � ¼

�
1� MS2

m2r3

�
2
: (50)

C. Effective potential (pole-dipole case)

We may define the functions Uþ and U� by

ðprÞ2 ¼ 	

�
ðE�UþÞðE�U�Þ; (51)

so that

U�
m

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

	
þM2

r2

2�	�

	2

J2

m2M2

s
þM

r




	

J

mM
: (52)

Forpr to be a real numberwe need to have bothE � Uþ and
E � U�, or both E � Uþ and E � U� (under the assump-
tion2 that 	> 0). For usual cases (and positive energy
E � 0) the important relation is E � Uþ. This justifies to
callUþ effective potential: The object can only move in the
region where E � Uþ and the turning points are given by
E ¼ Uþ, because then pr ¼ 0—which implies ur ¼ 0, see
Appendix C. Therefore the minimum of Uþ,

@Uþ
@r

¼ 0; (53)

together withE ¼ Uþ defines circular orbits. Thus, one can
easily find circular orbit solutions by solving (53) for the

FIG. 1. Energy E ¼ U�, in units of m, as a function of the
radius r, in units of M.

2We numerically checked that	> 0 in the regimeM< r<1,
�M � a � M, �Mm � S � Mm.
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radial coordinate r in terms of constants of motion and the
other constant parameters. For this class of solutions the
energy is constrained by E ¼ Uþ.

We have plotted the solutions for the energy E ¼ U� for
different spin configurations in Fig. 1, these can be directly
compared to the ones found in [35].

IV. EXPLICIT QUADRUPOLE MODEL

We are interested in the models for quadrupole defor-
mations induced by spin given by [[27], Eqs. (1) and (16)]
and for adiabatic tidal quadrupole deformations given by
[[29], (19)], or by [[30], (5)]. These models are an exten-
sion of the point-mass action, see Appendix D, and the
corresponding equations of motion have been worked out
in a general fashion already in [42]. In particular, equation,
[[42], (19)] provides a formula for the quadrupole Jabcd.
Other recent treatments (not based on an action principle)
of tidal effects in the context of general relativity can be
found in [43–45]. Inspired by the above-mentioned models
we now consider

Jabcd ¼�m

m

�
1

m
p½aQb�cdþ 1

m
p½dQc�baþ 3

m2
p½aQb�½cpd�

�
;

(54)

where

Qab ¼ cES2S
a
eS

be ��2E
ab;

Qbcd ¼ � 2�2

m
�dc

eap
eBba;

Eab ¼ 1

m2
Racbdp

cpd;

Bab ¼ 1

2m2
�aecdRbf

cdpepf:

The quantities cES2 ,�2, and�2 are assumed to be constants,
and parameterize quadrupole deformations induced by the
spin and by tidal forces of the spacetime. Furthermore, Eab

represents the gravito-electric tidal field, and Bab the
gravito-magnetic (frame-dragging) tidal field, see, e.g.,
[46]. (The convention for Bab used in [30,31] differs from
the one adopted in the present paper by a factor of 2.) Notice
that the overall factor ofm=m in Jabcd makes the equations
of motion reparametrization invariant. We choose the spin
supplementary condition of Tulczyjew,

Sabpb ¼ 0; (55)

as this condition is most convenient for the derivation of an
effective potential (similar to the pole-dipole case).

A. Spin length

For the explicit model given by (54) we have

S
dS

ds
¼ � 1

6�2

SabðQa
deQ

bde þ 2Qdc
aQdcbÞ

þ�2SabE
a
dE

bd þ cES2E
adSabS

beSed; (56)

where (8) and the Tulczyjew condition were used.
Furthermore, one has a symmetry of the combinations

Eab; Ea
dE

bd; Qa
deQ

bde; Qdc
aQdcb; (57)

and the antisymmetry of

Sab; SadS
deSeb; (58)

under exchange of a and b. It immediately follows that the
spin length is conserved,

dS

ds
¼ 0: (59)

This conservation law could be expected, as the action
given in Appendix D—which served as an inspiration for
the present quadrupole model—possesses a symmetry
under rotations of the body-fixed frame. But the action is
only consistent with the spin supplementary condition to a
certain power in spin, whereas the conservation found here
made no reference to such an approximation.

B. Masslike quantity

How a possibly conserved masslike quantity is related to
the usual masses m, or m, crucially depends on an explicit
model for the quadrupole. In the present paper a conserved
masslike quantity is related to a parameter within the
underlying action, which is a constant by assumption.
However, the action is only consistent with the spin
supplementary condition in an approximate sense, which
translates here to the fact that we were only able to find a
masslike quantity which is approximately constant.
We therefore introduce a multipole counting scheme by

a symbol 
 of the form

m ¼ Oð
0Þ; ua ¼ Oð
0Þ; �pa

ds
¼ Oð
1Þ; (60)

Sab¼Oð
1Þ; �Sab

ds
¼Oð
2Þ; Jabcd¼Oð
2Þ: (61)

We will neglect Oð
3Þ terms in the following. Under these
conditions, (10) simplifies to

dm

ds
¼ 1

6

�Rabcd

ds
Jabcd þOð
3Þ: (62)

We define the masslike parameter � given by

� :¼ mþ cES2

2
EabS

a
cS

cb þ�2

4
EabE

ab þ 2�2

3
BabB

ab:

(63)

This mass is indeed approximately conserved,

d�

ds
¼ 0þOð
3Þ: (64)

Notice that pa ¼ mua þOð
2Þ and (9) lead to
m2 ¼ m2 þOð
3Þ. This implies that the Tulczyjew and
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the Frenkel condition are actually equivalent within this
approximation.

One can guess (63) by realizing that—because of repar-
ametrization invariance—the Lagrangian (or Routhian
RM) must be equal to

RM ¼ uapa � m ¼ mþOð
3Þ: (65)

In fact, (63) is identical to (D1) with Sabub � Sabpb ¼ 0
and u2 ¼ 1 inserted.

C. Dimensionless parameters and realistic values

Before we work out the effective potential for the
quadrupole case, it is useful to introduce dimensionless
variables,3

r̂ :¼ r

M
; Ĵ :¼ J

Mm
; Ê :¼ E

�
; (66)

â 1 :¼ a

M
; â2 :¼ S

G�2
: (67)

Astrophysically reasonable values for the dimensionless
spin variables are given by

jâ1j & 1; jâ2j & 1: (68)

Notice that

S

Mm
¼ qâ2 þOð
3Þ; with q :¼ G�

M
; (69)

so spin effects are strongly suppressed for extreme mass
ratios q 	 1.

The tidal deformation parameters �2 and �2 are usually
made dimensionless with the help of the area radius R of
the object, see [[47], (48) and (72)], i.e.,

k2 :¼ 3G�2

2R5
; j2 :¼ 48G�2

R5
: (70)

These parameters can be obtained by matching predictions
derived from the effective action (Appendix D) to solutions
of the field equations describing a single object (in asymp-
totically flat spacetime). This illustrates the phenomeno-
logical character of the quadrupole model. Realistic values
for neutron stars are k2 
 0:1 and j2 
�0:02, while for
black holes �2 
 0, and �2 
 0, see [44,47]. For tidal
deformations of black holes see also [48–50] and referen-
ces therein. An estimate for white dwarfs is k2 
 0:01 [51].

For convenience we also define a dimensionless radius R̂,

R̂ :¼ R

G�
; (71)

which is just the inverse of the compactness of the test
body. Finally, we introduce

CES2 :¼ �cES2 ; (72)

which for neutron stars is of the orderCES2 
 5 [52] and for
black holes it holds CES2 ¼ 1. Now we are ready to express
the effective potential in terms of dimensionless quantities
only.

D. Effective potential (quadrupole case)

Let us recall how the effective potential in the
pole-dipole case was derived. Under the assumption of
equatorial orbits (31) and aligned spin (32), the six inde-
pendent equations (33) are solved for the six variables
fpt; pr; p�; Str; Sr�; S�tg. All components of pa and Sab

can then be expressed in terms of fr; E; J; S; a;M;mg.
Besides the rather technical issue of proofing the existence
of equatorial orbits for our quadrupole model (see
Appendix C), there are no changes in this part of the
derivation. The spin supplementary condition in (33) is
still valid/chosen, the second and third equation in (33)
are just the definitions of spin length S and dynamical mass
m, and it was shown in [[23], p. 210] that energy E and total
angular momentum J of the test body are given by the same
expressions as in the pole-dipole case, even if genericmulti-
pole corrections are included. The bottom line is that the
solutions for pa and Sab found in Sec. III B are still valid.
The effective potential was defined as value of E for which
pr vanishes. Notice that pr ¼ 0 implies that the orbit either
has a turning point or is circular, see Appendix C.
The most important application of the effective potential

is to find circular orbit solutions. These are given by a
minimum of the effective potential in the radial coordinate
r. We therefore need to work out the r dependence of the
quantities entering the effective potential when our quad-
rupole model is used. The spin length S is still constant, so
the only correction is coming from the dynamical mass m.
Indeed, m is not a constant any more and given by (63).
More generally, we conclude that whenever the supple-
mentary condition Sabpb ¼ 0 is used, and the spin length is
constant, the quadrupole and higher multipoles enter the
effective potential via a r dependence of the dynamical
mass m only. This is similar to canonical theories for self-
gravitating bodies, in which just the mass-shell constraint
is modified, see [[53], Eq. (5.28)].
Inserting the solutions for pa and Sab from Sec. III B into

(63) and writing the result in terms of dimensionless quan-
tities, we obtain

m

�
¼ 1� CES2q

2â22
2r̂3

�
1þ 3

�
Ĵ � â1Ê

r̂

�
2
�

� k2q
4R̂5

r̂6

�
1þ 3

�
Ĵ � â1Ê

r̂

�
2 þ 3

�
Ĵ � â1Ê

r̂

�
4
�

� j2q
4R̂5

4r̂6

��
Ĵ � â1Ê

r̂

�
2 þ

�
Ĵ � â1Ê

r̂

�
4
�
þOð
3Þ:

(73)
3Note that in our units c ¼ 1, so ½G� ¼ m=kg, see also

Appendix F for an overview.
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Consistent with our approximation we have replaced m by
� on the right hand side and neglected higher orders of S.

Similarly one may replace Ê by the 
0-order solution for
the effective potential. Otherwise the equation pr ¼ 0with�

pr

�

�
2 ¼ 1

�

�
	Ê2 � 2


Ĵ

r̂
Êþ �

Ĵ2

r̂2
� �

m2

�2

�
; (74)

would contain higher orders of Ê, and it would be difficult
to solve for the effective potential analytically. If one

treats Ê in (73) perturbatively, then one still has only two
solutions,

Û � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

	

m2

�2
þ 
2 � 	�

	2

Ĵ2

r̂2

s
þ 


	

Ĵ

r̂
; (75)

to pr ¼ 0. Here Û� ¼ U�=�. For completeness, we also
give the auxiliary variables in (75) in terms of dimension-
less quantities,

	¼
�
1þ â21

r̂2
þ
�
1þ1

r̂

�
qâ1â2
r̂2

�
2� �̂

r̂2

�
â1
r̂
þqâ2

r̂

�
2þOð
3Þ;

(76)


 ¼
�
1þ â21

r̂2
þ

�
1þ 1

r̂

�
qâ1â2
r̂2

��
â1
r̂
þ qâ2

r̂2

�

� �̂

r̂2

�
â1
r̂
þ qâ2

r̂

�
þOð
3Þ; (77)

� ¼
�
â1
r̂
þ qâ2

r̂2

�
2 � �̂

r̂2
þOð
3Þ; (78)

� ¼ �̂

r̂2
�; (79)

� ¼
�
1� q2â22

r̂3

�
2 þOð
3Þ; (80)

�̂ ¼ r̂2 � 2r̂þ â2: (81)

Notice that m appears here only within the S-dependent
terms, where it can simply be substituted by the conserved
masslike parameter � within the used approximation.

E. Tidal disruption

When tidal forces become too large the test body can be
disrupted. This limits the effects of tidal deformation on
the effective potential. Equating the tidal force and the self-
gravitational force of a nonrotating test body on its surface
in Newtonian theory leads to

2M

Gr3
R &

�

R2
; (82)

which provides a rough estimate for the orbital separation
r at which tidal disruption may become relevant. In dimen-
sionless variables this reads

r̂ 3 * 2q2R̂3: (83)

On the other hand, an estimate for (73) by its leading
post-Newtonian contribution, cf. Sec. VD, reads (for the
nonrotating case, â2 ¼ 0)

m

�
� 1� k2q

4R̂5

r̂6
; (84)

which limits the possible difference of the masses due to
tidal disruption as

��m

�
&

k2
4

1

R̂
: (85)

This can be understood as follows. The dynamical mass m
also includes the tidal interaction energy, which (for
k2 > 0) is negative, thus the dynamical mass is reduced.
This can be interpreted as a reduction of the gravitational
potential energy (with respect to the ‘‘external’’ gravita-
tional field) of the object due to its tidal deformation. If the

tidal interaction energy reaches the order of k2=ð4R̂Þ, then
the object is starting to get disrupted. This in turn limits the
possible reduction of m due to tidal effects. Implications
are discussed in the following.
Notice that the estimate in the present section is just

Newtonian and thus might not be accurate for very com-
pact objects like neutron stars; see, e.g., [54] for this case.

V. BINDING ENERGY

In this section we explain how the gauge invariant
relation between binding energy and total angular momen-
tum can be obtained from the effective potential (for
circular orbits and aligned spin). The various spin and
quadrupole contributions to this relation are separated
and compared against each other.
The (conservative) self-force correction to the binding

energy recently derived in [40] is also included in our plots
as a further reference point. Results from full numerical
simulations can be found in [39].

A. Definition

The effective potential Uþ takes the value of the con-
stant energy E of the test body in the case pr ¼ 0, e.g.,
for circular orbits (53). We therefore define the binding
energy as

e :¼ Ûþ � 1; (86)

under the condition that the orbit is circular (53), or

@eðr̂; ĴÞ
@r̂

¼ 0: (87)

This condition allows one to solve for the radial coordinate
r̂, which can subsequently be eliminated to arrive at the

binding energy eðĴÞ as a function of the total angular

momentum Ĵ. This relation eðĴÞ is actually gauge invari-
ant, which in the present context can be understood easily.
That is, both the energy E and the total angular momentum
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J are scalars defined in a covariant manner based on the
Killing vectors of the background Kerr spacetime, and
circular orbits are a gauge independent concept.

Given the square root, and the high powers of r̂ appear-
ing in Uþ, it is necessary to solve (87) numerically.
However, in order to better separate the different contribu-

tions to eðĴÞ and analyze their scaling behavior in q, R̂, etc.,
we will expand (86) and (87) in the multipole counting
parameter 
 in the following. This allows one to solve (87)
for r̂ order-by-order in 
 analytically if the background is
Schwarzschild, i.e., â1 ¼ 0. We will first consider the
Schwarzschild case in the next section and come back to
a Kerr spacetime in Sec. VC. But in general it is expected
to be more accurate to not expand the square root appear-
ing within the effective potential, as this better reflects the
nonlinear aspect of gravitational interaction. This is of
particular importance if one extrapolates to comparable
masses q
 1, but this is beyond the scope of the present
work.

B. Corrections in Schwarzschild spacetime

1. Spin effects

There is a subtlety that needs to be discussed when
looking at effects of the test body’s spin â2. Namely, the
total angular momentum also contains the spin of the test
body. In canonical formulations, the total angular momen-
tum is just the sum of the canonical orbital angular
momentum lc and the spin of the object, i.e.,

lc :¼ 1

M�
ðJ � SÞ ¼ Ĵ � qâ2: (88)

The reason is that the total angular momentum generates
rotations of the whole system on the phase space, which
directly decompose into a rotation of the orbital variables
(generated by lc) and a rotation of the object (generated by
the spin), see, e.g., [[53], Sec. 4.1.2]. If one now considers
the Newtonian energy of point-masses

eNðr̂; lcÞ ¼ l2c
2r̂2

� 1

r̂
; (89)

and rewrites it in terms of the total angular momentum

eNðr̂; ĴÞ ¼ Ĵ2

2r̂2
� 1

r̂
� â2Ĵq

r̂2
þOð
2Þ; (90)

an apparent spin-dependence of the binding energy arises.
However, if one compares spinning and nonspinning

systems at the same total angular momentum Ĵ, one is
comparing them for different orbital angular momentum,
i.e., one is comparing them in different orbital configura-
tions. The difference in their energies is just due to this
change of the orbit, and not due to an actual spin interac-
tion. There is nothing wrong here, this just shows that

comparing eðĴÞ can be misleading. We will therefore use
eðlcÞ for comparisons here, as for the same value of lc the
system is approximately in the same orbital configuration.

In order to better separate the different contributions
to the binding energy, we make a series expansion of the
form

r̂ ¼ r̂0 þ 
r̂1 þ 
2r̂2 þ . . . : (91)

This, together with Ĵ ¼ lc þ qâ2, is inserted into (87) and
the whole expression is expanded in 
. Then one can solve
for r̂ order-by-order in 
, i.e., the 
0 part of (87) is solved
for r̂0, the 
1 part of (87) is solved for r̂1, and so on. The
solution for r̂ is then plugged into eðr̂; lcÞ leading to eðlcÞ,
which is expanded again,

eðlcÞ ¼ e0ðlcÞ þ 
e1ðlcÞ þ 
2e2ðlcÞ þ . . . : (92)

The correction e1ðlcÞ does not contain quadrupole contri-
butions and is linear in the spin â2 and mass ratio q. In
Figs. 2(a) and 2(b) we have plotted the ‘‘normalized’’
relative difference to the leading order e0ðlcÞ,

log 10

��������e1ðlcÞe0ðlcÞ
���������log10jqâ2j; (93)

which does not depend on â2 and q (this corresponds to
setting â2 ¼ 1 ¼ q). The correction e2ðlcÞ can be split as

e2ðlcÞ ¼ eS
2

2 ðlcÞ þ e
C
ES2

2 ðlcÞ þ ek22 ðlcÞ þ ej22 ðlcÞ; (94)

into tidal quadrupole contributions ek22 ðlcÞ and ej22 ðlcÞ pro-
portional to k2 and j2, respectively, a quadratic-in-spin

quadrupole e
C
ES2

2 ðlcÞ proportional to CES2 , and a remaining

term eS
2

2 ðlcÞ which is quadratic in spin.

The spin parts are again normalized,

log 10

��������eS
2

2 ðlcÞ
e0ðlcÞ

���������log10jq2â22j; (95)

log 10

��������e
C
ES2

2 ðlcÞ
e0ðlcÞ

���������log10jCES2q
2â22j; (96)

and plotted in Figs. 2(a) and 2(b)—tidal effects will
be discussed in the next section. These plots also show
recent results for the conservative part of the self-force
normalized as

log 10

��������eTBBðlcÞ � e0ðlcÞ
e0ðlcÞ

���������log10jqj; (97)

where eTBBðlcÞ is the binding energy given in a parametric
form in [40], see also Appendix E for an explicit expres-
sion. The difference eTBBðlcÞ � e0ðlcÞ changes its sign at a
certain value of lc, which appears in the plots as a pole. It
should be stressed that our results do not include contribu-
tions that arise from a perturbation of the background
spacetime due to the spin or quadrupole of the test body.
Notice that the transition from the normalized curves to

realistic curves in Figs. 2(a) and 2(b) is straightforward. If
one considers a mass ratio of q ¼ 10�2, then the self-force
curve (97) is just shifted down by log10q ¼ �2. Similarly,
for a rotating star—with â2 ¼ 10�0:5 � 0:32 and
CES2 ¼ 100:5 � 3:2—the correction linear in spin (93) is
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shifted down by �2:5, the curve (95) is shifted down by
�5, and the CES2-quadrupole curve (96) is shifted down by
�4:5 (still for q ¼ 10�2). For a black hole one may even
assume â2 
 1, furthermore we have CES2 ¼ 1. The latter
case is illustrated in Fig. 2(c). Notice that the dominant

scaling is coming from the mass ratio q. The linear-in-spin
correction and the self-force scale with the same power
of q. One can also easily obtain the sign of the correction
�e to the binding energy, it holds

sgn ðe1Þ ¼ sgnðâ2Þ; sgnðeS22 Þ ¼ �1; (98)

sgn ðeCES2

2 Þ ¼ �sgnðCES2Þ; (99)

while the self-force correction eTBB � e0 has a positive
sign for small lc and a negative sign for large lc.
The plots confirm that the multipole approximation

introduced in the present paper is well justified, as the
quadrupole effects are always at least an order of magni-
tude weaker than the linear spin effects—within the con-
text of the quadrupole model adopted in this work. Also
notice that the quadrupole effects scale with a higher power
of the mass ratio q than the linear spin corrections.
To further illustrate the difference between the parame-

ters lc and Ĵ, we also include a plot of the binding energy

eðĴÞ in Fig. 3.

2. Tidal effects

For the tidal contributions we also plot normalized
quantities,

log 10

��������e
k2
2 ðlcÞ
e0ðlcÞ

���������log10jk2q4R̂5j; (100)

log 10

��������e
j2
2 ðlcÞ
e0ðlcÞ

���������log10jj2q4R̂5j; (101)

see Figs. 4(a) and 4(b). Notice that the change in the
effective potential due to tidal deformations, and thus their
backreaction to the orbit, is proportional to the difference
between dynamical mass m and constant mass parameter

�. The scaling in q and R̂ then immediately follows
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FIG. 2 (color online). Plots illustrating spin and self-force
corrections to the binding energy of a multipolar object in
Schwarzschild spacetime â1 ¼ 0. In (a) and (b) the corrections
are normalized by subtracting their dependence on q, â2, and
CES2 , see (97), (93), (95), and (96) [belonging to curves (*), (**),
(***), and (****), respectively].
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FIG. 3 (color online). Binding energy in terms of Ĵ. This plot
makes clear that one has to be careful when in comes to the
parameterization of the strength of different corrections. In
contrast to the lc parameterization, effects from the internal
structure—in this case the spin—of the test body, appear more
pronounced in the Ĵ parametrization. The quadrupole curve is
not affected.
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from (73). This suggests that tidal effects are most relevant
for big (noncompact) objects due to the proportionality to

R̂5. However, due to tidal disruption the maximal possible

tidal backreaction is proportional to 1=R̂, cf. Eq. (85).

Therefore, in order to produce a strong tidal backreaction,
it is in fact important to consider objects which are very
compact (like white dwarfs or neutron stars), such that their
own gravitational field can still hold the object together
when the tidal forces become strong.
For example, for a white dwarf one can take k2 ¼ 0:01

and R̂ ¼ 104. For a mass ratio of q ¼ 10�4 the
k2-quadrupole curve is then shifted up by þ2, while the
self-force curve is shifted down by �4. Tidal disruption
can be expected when the k2 curve reaches

log 10

�
k2

4R̂

�
� �6:6; (102)

see (85). Thus, the tidal backreaction can reach the same
order as the self-force before the object is disrupted. For

neutron stars one has R̂
 5 and k2 ¼ 0:1, so disruption
only happens at about �2:3. However, this Newtonian
estimate might not be very accurate for neutron stars. On
the other hand, the k2 curve for a neutron star is shifted
further down by �1:5 even for a mass ratio q ¼ 10�1

(where the used approximation is not accurate any more).
For neutron stars the tidal backreaction is most relevant for
comparable masses, as it can become very strong in this
case. The signs of the corrections are given by

sgn ðek22 Þ ¼ �sgnðk2Þ; sgnðej22 Þ ¼ �sgnðj2Þ: (103)

C. Corrections in Kerr spacetime

For Kerr spacetime, â1 � 0, one can still separate the
various contributions to the binding energy. This is com-
pletely analogous to the case â1 ¼ 0, except that we are not
solving for r0 analytically. Still one can write the zeroth-
order approximation of (87) as [[55], Eq. (2.13)]

lc ¼ r̂20 � 2â1
ffiffiffiffiffi
r̂0

p þ â21ffiffiffiffiffi
r̂0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂20 þ 2â1

ffiffiffiffiffi
r̂0

p � 3r̂0

q ; (104)

which is most conveniently inverted numerically.
Plots for the linear and quadratic spin contributions for a

pole-dipole particle are shown in Fig. 5, and quadrupole
contributions can be found in Fig. 6. For negative â1 the
contributions are stronger than the Schwarzschild ones for
the same value of lc. However, the last stable circular orbit
is also reached at greater values of lc, so finally larger
corrections are possible in the Schwarzschild case (at
values of lc where the Kerr orbits are already unstable).
For positive â1 the opposite is true: the curve is below the
Schwarzschild one, but the last stable circular orbit is
located at lower lc. For the case â1 ¼ 1 the last stable orbit
reaches the horizon of the black hole. Therefore the test
body can orbit much closer to the horizon, where the field
is very strong. This finally allows the same contributions to
become one or two—or even more for tidal effects—orders
of magnitude stronger than in the Schwarzschild case if
â1 > 0. This can make tidal effects for neutron stars inter-
esting again even beyond the comparable mass case.
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FIG. 4 (color online). Plots illustrating tidal and self-force
corrections to the binding energy of a multipolar object in
Schwarzschild spacetime â1 ¼ 0. In (a) and (b) the corrections
are normalized by subtracting their dependence on q, R̂, k2, and
j2, see (97), (100), and (101) [belonging to curves (*), (**), and
(***), respectively].
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D. Comparison with post-Newtonian Hamiltonians

We will now compare our result for the binding energy

eðĴÞ with post-Newtonian Hamiltonians. We first calculate

the post-Newtonian expansion of our result for eðĴÞ (which
is valid to all post-Newtonian orders). Then again we

calculate eðĴÞ from post-Newtonian Hamiltonians (valid
for generic mass ratio q) and expand in the mass ratio q.
Both should lead to the same result, as the regimes of

approximation overlap and the relation eðĴÞ is gauge invari-
ant. We include in our comparison all (conservative) post-
Newtonian Hamiltonians in the Arnowitt-Deser-Misner
transverse-traceless (ADMTT) gauge known to date.

We start with a definition of the post-Newtonian
expansion. The post-Newtonian approximation is a weak

field (r̂ � 1) and slow motion (lc � 1 or Ĵ � 1) approxi-
mation. For bound orbits the Newtonian virial theorem

establishes a relation Ĵ2 
 r̂. It is convenient to introduce
a post-Newtonian bookkeeping parameter 
PN and asso-
ciate power counting rules to all variables,

lc¼Oð
�1
PNÞ; Ĵ¼Oð
�1

PNÞ; r̂¼Oð
�2
PNÞ: (105)

Notice that â1, â2, CES2 , k2, j2, and R̂ are in fact further
expansion variables that are not related to the post-
Newtonian approximation, which suggests to count them

as Oð
0PNÞ. This approach will indeed be followed here
with the only exception that we formally assume

R̂ ¼ Oð
�1
PNÞ: (106)

This choice is of course quite arbitrary and is only made
because otherwise the tidal interactions would formally
appear at very high post-Newtonian order only (which
somewhat underestimates their effect and would require
us to expand to very high order for the comparison).
Using these power counting rules it is straightforward to

expand eðr̂; ĴÞ in 
PN,
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eðr̂; ĴÞ ¼ 1
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� Ĵ2

4r̂
þ Ĵ4
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� Ĵ6

16r̂3
� 5Ĵ8
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9â21Ĵ
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12PNÞ: (107)

Next we solve the condition defining circular orbits (87) for r̂ (order-by-order in 
PN) and insert the result into (107). This
leads to the post-Newtonian expanded gauge-invariant relation
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þ â1q
4R̂5

2Ĵ5
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12PNÞ: (108)

Now we establish the connection to the (conservative)
post-Newtonian HamiltonianH within the ADMTT gauge.
We include the Hamiltonians

H ¼ HN þH1PN þH2PN þH3PN þHSO
LO þHSO

NLO

þHSO
NNLO þHS1S2

LO þHS1S2
NLO þHS1S2

NNLO þHS2

LO

þHS2

NLO þHS3

LO þHk2
LO þHj2

LO þ . . . ; (109)

which we will list in the following in the center-of-mass
frame for aligned spins together with the corresponding
literature. Further, we already expand the Hamiltonians in
the mass ratio q to the order needed for the comparison.

The Newtonian (N), first post-Newtonian (1PN), and
second post-Newtonian (2PN) Hamiltonians are given by

HN ¼ � 1

r̂c

�
1� l2c

2r̂c

�
; (110)

H1PN ¼ 1

2r̂2c

�
1� 3l2c

r̂c
� l4c

4r̂2c

�
; (111)

H2PN ¼ � 1

4r̂3c

�
1� 10l2c

r̂c
� 5l4c

2r̂2c
� l6c

4r̂3c

�
; (112)

see, e.g., [56–58], and references therein. Here r̂c denotes
the ADMTT-gauge (canonical) radial coordinate. The
third post-Newtonian level was first tackled in [59]. But the
result contained two ‘‘ambiguity’’ parameters, which were
subsequently determined [60,61], see also [62]. (Dimensional
regularization must be used to avoid such ambiguities [63].)
An alternative derivation of the equations of motion at the
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third post-Newtonian order can also be found in [64,65]. The
full result in the test body limit reads

H3PN ¼ 1

8r̂4c

�
1� 25l2c

r̂c
� 27l4c

2r̂2c
� 7l6c

2r̂3c
� 5l8c

16r̂4c

�
: (113)

The leading order (LO) spin-orbit (SO) and S1S2
Hamiltonians are given by

HSO
LO ¼ 2â1lc

r̂3c
þ 3qâ2lc

2r̂3c
; (114)

HS1S2
LO ¼ � qâ1â2

r̂3c
; (115)

see [66–69]. These references also contain the S1S1 interac-
tionpotential for theblackhole caseCES2 ¼ 1. Theparameter
CES2 was introduced in [70]. The sum of S1S1 and S2S2
interactions can be written as

HS2

LO ¼ � â21
2r̂3c

� CES2q
2â22

2r̂3c
: (116)

The next-to-leading order (NLO) spin-orbit Hamiltonian was
derived within the ADMTT gauge in [71,72],

HSO
NLO ¼ � 6â1lc

r̂4c
� 5qâ2lc

r̂4c

�
1þ l2c

8r̂c

�
: (117)

Other results on this interaction can be found in [73–78]. The
next-to-leading order S1S2 Hamiltonian [72,79] is given by

HS1S2
NLO ¼ 6qâ1â2

r̂4c

�
1� l2c

4r̂c

�
; (118)

see also [78,80,81]. The next-to-leading order S1S1 and S2S2
interaction Hamiltonians reads [82,83]

HS2

NLO ¼ q2â22
r̂4c

�
ð2CES2 þ 1Þ � 5ðCES2 � 1Þl2c

4r̂c

�

þ â21
2r̂4c

�
5� 3l2c

2r̂c

�
; (119)

see also [27,28,78,84]. Recently even next-to-next-to-leading
order (NNLO) spin interactionHamiltonianswere calculated,
namely, the spin-orbit one in the test-spin limit [38] (see [85]
for the complete result)

HSO
NNLO ¼ 21â1lc

2r̂5c
þ 3qâ2lc

8r̂5c

�
25þ 9l2c

r̂c
þ 7l4c

6r̂2c

�
; (120)

and also the S1S2 Hamiltonian [86,87]

HS1S2
NNLO ¼ � 9qâ1â2

4r̂5c

�
7� 4l2c

r̂c
� l4c

2r̂2c

�
: (121)

The Hamiltonians cubic in the spins derived in [88,89] are
only valid for binary black holes (i.e., CES2 ¼ 1) and can be
summarized as

HS3

LO ¼ lc
4r̂5c

ðâ1 þ qâ2Þ2ð4â1 þ qâ2Þ; (122)

see also [38].4 The leading order tidal interaction
Hamiltonians read [30]

Hk2
LO ¼ � k2q

4R̂5

r̂6c
; Hj2

LO ¼ � j2q
4R̂5l2c
4r̂8c

: (123)

Higher order tidal interactions are considered in [30,31,90],
but results therein can not immediately be included in the
present comparison as they are not given in the form of
Hamiltonians within the ADMTT gauge.
Finally, we solve the condition defining circular orbits

@Hðr̂c; lcÞ
@r̂c

¼ 0; (124)

order-by-order in 
PN for the ADMTT radial coordinate r̂c
and eliminate r̂c from the Hamiltonian. We find that the

result HðlcÞ agrees with eðĴÞ given by (108) for all the
Hamiltonians shown in the present section (taking into

account that lc ¼ Ĵ � qâ2).

VI. CONCLUSIONS

In this work we have investigated the influence of the
internal structure of test bodies on their motion within the
context of a multipolar approximation scheme. Corrections
arising from the spin (dipole) and quadrupole moment
were worked out explicitly for equatorial orbits, with
aligned spin, in Kerr spacetime. In particular our explicit
model for the quadrupole, which also allows for tidal
deformations of the test body, goes beyond previous inves-
tigations in the literature in a multipolar context.
Our comparison with recent numerical results for

structureless bodies—which take into account the self-
force—makes clear, that the corrections arising from the
extendedness of the body can play a role in the description
of the motion and should be carefully dealt with. A final
statement regarding the magnitude of effects coming from
different corrections (internal structure or self-force) de-
pends on many factors. The figures in the present work
immediately identify the relevant contributions needed to
achieve a specific accuracy in the binding energy. As we
have pointed out in the context of the binding energy, one
should be careful when it comes to the parametrization of
possible contributions in terms of different variables, cf. the

4Also Hamiltonians of quartic order in spin are given in
[88,89]. However, complete agreement with the results of the
present paper could not be found yet. The deviation indicates
that the S4 Hamiltonian discussed in [89] does not vanish, in
contrast to the conclusion therein. Also notice that a misprint at
quartic order in spin was corrected in the arXiv version of [88]
recently.
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corresponding discussion regarding parameters lc and Ĵ.
One should also stress at this point, that only the
conservative parts of the self-force in Schwarzschild
spacetime—which were the only ones readily available in
the literature—were taken into account in our comparison.

Our work clearly indicates the necessity of future in-
depth comparisons of different approximation schemes. In
particular, as soon as results for the self-force in Kerr
spacetime become available they should be compared to
our findings here. Another interesting open question re-
gards the possibility of extrapolating our results to less
extreme mass ratios, i.e., intermediate mass ratios or even
comparable masses, in the future. Whether such an ex-
tension of one of the existing multipolar approximation
schemes can be consistently worked out is open for
debate. A promising approach is to substitute masses or
other parameters in a certain way, which at least for the
self-force works astonishingly well [91] and can also be
understood as a change of expansion parameters [40]. A
comparison with post-Newtonian results (not expanded in
the mass ratio) can serve as a guide to identify proper
variable replacements. The post-Newtonian expansion of

the gauge invariant relation eðĴÞ can further be used to
match coefficients of an effective action with higher order
spin couplings in the future. For example, if we would
have kept the constant CES2 for both objects in the post-

Newtonian Hamiltonian HS2

LO or HS2

NLO (which can be

derived directly from the effective action [27,53]), then
a comparison with the result from the present paper
would show that one has to set CES2 ¼ 1 for the central

black hole. The relation eðĴÞ is also very useful to
check results of post-Newtonian or post-Minkowskian
approximations.

The above-mentioned extensions of the approximation
method are required for the creation of gravitational wave
template banks in the comparable mass case. Although
numerical simulations are optimally suited for the late
inspiral phase of such a binary, they currently are not
able to cover the whole parameter space in an acceptable
timeframe if both objects are spinning. A synergy of
numeric and analytic methods is needed.
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APPENDIX A: MISPRINTS WITHIN THE
EFFECTIVE POTENTIAL

There seem to be minor errors or misprints in the
literature on the effective potential for the pole-dipole
case [33–36]. We will summarize here which misprints
need correction in order to achieve agreement with the
result in the present paper, Eqs. (46)–(50) and (52).
Equation [[33], (7a)] must read

	 ¼ A

�
. . .þ 2sa

r

�
3þ a2

r2

�
þ . . .

�
; (A1)

where the dots are an abbreviation for correct terms in this
Appendix. In [36] there are two sign errors in the
Appendix, namely

� ¼ . . .� �2�M2; (A2)

ki ¼ . . .� Bi

J

Mr
þ . . . : (A3)

In [[35], Eq. (2.24)] the expression for Z must read

Z ¼ �
�ðMS2

�2r2
� rÞ2�2

. . .
: (A4)

Finally, we find full agreement with [34] except for an
overall sign of the spin S. We will argue in the next
Appendix how to correctly identify the corotating and
counter-rotating cases.

APPENDIX B: ON THE ORIENTATION
OF THE SPIN

Whether the spatial components of the spin vector Sa

allow a straightforward determination of the spin orienta-
tion depends on the sign choice in (34), which in turn
depends on conventions for the spin tensor and the signa-
ture of spacetime.
The simplest way to identify the spin orientation for the

sake of the present paper is via the angular momentum J
defined by (33),

J ¼ �p� þ ðg�t;rp� � g��;rptÞ S

2mr
: (B1)

In the weak field (large r) and slow motion limit we have

g�t;r � 0, g��;r � �2r, p� � �mr2 _�, and pt � m.

Therefore it holds

J � Lþ S; (B2)

where the orbital angular momentum L ¼ mr2 _� is aligned
to @z if L > 0. This shows that for S > 0 the spin is aligned
to @z.
More generally, one may define the angular momentum

J in the weak field and slow motion limit via the energy-
momentum tensor as
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Ji � 
ikl
Z

d3xxkTl0; (B3)

which is still applicable if the spacetime possesses no
rotational symmetry. From (5) we obtain

Tl0 � m _Yl�ðxi � YiÞ � 1

2
@kðSkl�ðxi � YiÞÞ; (B4)

and (34) leads to Si � 1
2 
iklS

kl. Therefore it holds

Ji � Li þ Si; (B5)

where Li :¼ m
iklY
k _Yl is the usual Newtonian orbital

angular momentum vector. Notice that for usual spherical
coordinates @� points in the opposite direction as @z in the
equatorial plane. Therefore S� < 0 corresponds to a spin
aligned to @z.

APPENDIX C: EXISTENCE OF EQUATORIAL
AND CIRCULAR ORBITS

The conditions for equatorial orbits (31) and aligned
spin (32) must be preserved under the time evolution, i.e.,

_� ¼ u� ¼ 0; _p� ¼ 0; _Sa� ¼ 0: (C1)

Similarly, for the interpretation of the effective potential
and the existence of circular orbits, it is important that
under the condition pr ¼ 0 it follows that

_r ¼ ur ¼ 0; (C2)

or in words, if pr ¼ 0 then there is either a turning point of
the orbit or the orbit is circular (in both cases ur ¼ 0).

In order to prove these statements one can use the
relation (16) and the equations of motion. It is further
beneficial to use the coordinate time as the worldline
parameter instead of the proper time, i.e., ut ¼ 1 (which
is why we formulated our model (54) in a reparametriza-
tion invariant manner). In the pole-dipole case the state-
ments abovewhere shown in, e.g., [33,36]. This calculation
must be repeated for the quadrupole model (54) now. As
the details of such a calculation do not provide any physi-
cal insight, we simply relied on a brute force calculation
using Mathematica [92] together with the free xTensor and
xCoba packages [93,94]. We found that the statements
generalize to the quadrupole case.

APPENDIX D: QUADRUPOLE ACTION

In this appendix we show the extension of the point-mass
Lagrangian that inspired the quadrupole model used in the
present paper. It is actually more convenient to work with
the Legendre transformation of the Lagrangian in the angu-
lar velocity, so we are technically considering a Routhian
RM here. Combining models for quadrupole deformations
induced by spin from [[27], Eqs. (1) and (6)] and for

adiabatic tidal quadrupole deformations given by [[29],
Eq. (19)] or by [[30], Eq. (5)] leads to

RM ¼ �
ffiffiffiffiffi
u2

p
� 1

�
ffiffiffiffiffi
u2

p BabS
aucS

cb � cES2

2
ffiffiffiffiffi
u2

p EabS
a
cS

cb

� �2

4ð
ffiffiffiffiffi
u2

p
Þ3 EabE

ab � 2�2

3ð
ffiffiffiffiffi
u2

p
Þ3 BabB

ab; (D1)

where u2 :¼ uaua. Notice that some signs changed due to
the adoption to our conventions. The parameters �, cES2 ,
�2, and �2 are assumed to be constant. One may write
� ¼ m0 þ 1

2I S
2 þ . . . , where I can be interpreted as a mo-

ment of inertia and m0 as an irreducible mass, see, e.g.,
[[53], Eq. (3.28)].
The equations of motion for Lagrangians of the

type used above have been worked out in a general fashion
already in [42] and were found to be of the form used in the
present paper (see also [[53], Sec. 5.2]). In particular, [[42],
Eq. (19)] provides a formula for the quadrupole Jabcd,

Jabcd ¼ 6
@RM

@Rabcd

: (D2)

It is straightforward to derive Jabcd from this formula. But
the equations ofmotion belonging to theRM, shown in (D1),
preserve the spin supplementary condition Sabpb ¼ 0 only
approximately (in the sense of the multipole approximation
introduced in Sec. IVB), while here we are enforcing this
condition exactly. Therefore we made some minor changes
in the result for Jabcd, which are, however, in accordance
with the used approximation scheme. That is, we replaced
ua by pa=m and introduced the overall factor m=m in (54)
for the sake of reparametrization invariance (which was

ensured by factors of
ffiffiffiffiffi
u2

p
in the original expression).

APPENDIX E: EXPLICIT EXPRESSIONS FOR
THE BINDING ENERGY

In this appendix we provide explicit expressions for the
expanded binding energy if â1 ¼ 0. Although these can be
easily derived from the more compact effective potential
given in the main text using computer algebra, we display
them here for the sake of completeness. The zeroth-order
solution to (87) reads

r̂ 0 ¼ l2c
2

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

l2c

s 1
A; (E1)

and the corresponding binding energy is given by

e0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� 2

r̂0

��
1þ l2c

r̂20

�s
: (E2)

It is straightforward to solve for higher orders in terms of r̂0
and e0, resulting in
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eðlcÞ¼ e0þ â2lcq

r̂0�2
r̂�3
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2
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2
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6
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þ4r̂0ð3r̂0�47ÞÞÞÞ�2220��� l6cr̂
4
0½6ðr̂0�2Þ2½r̂0ð300þ r̂0ð�37þðr̂0�6Þr̂0ÞÞ�504��ð1þe0Þ

�½10116þ r̂0ðr̂0ð11801þ r̂0ðr̂0ð1027þ6ðr̂0�21Þr̂0Þ�4520ÞÞ�17028Þ��� l8cr̂
2
0½6ðr̂0�2Þ2

�½108þ r̂0ðr̂0ð105þ2ðr̂0�12Þr̂0Þ�192Þ��ð1þe0Þ½26892þ r̂0ðr̂0ð41277þ r̂0ðr̂0ð4115þ r̂0ð27r̂0�520ÞÞ
�17358ÞÞ�52056Þ��gþ1þe0

r̂0�2
r̂20ðl2cþ r̂20Þ�1½2r̂20�3l2cðr̂0�4Þ��1f2ðr̂0�1Þr̂20þ l2c½ð16�3r̂0Þr̂0�18�g

�
m

�
�1

�

þð1þe0Þr̂30ðl2cþ r̂20Þ�1½l2cð3� r̂0Þþ r̂20�½3l2cð4� r̂0Þþ2r̂20��1dm=�

dr̂
þOð
3Þ: (E3)

where the m=� contributions are given by (73) with Ĵ � lc, r̂ � r̂0, and Ê � 1þ e0 inserted.
The self-force correction can be derived from the formulas in [40] and reads

eTBBðlcÞ � e0ðlcÞ
q

¼ �1þ 1� 5
2 x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x0
p þ 1

2
zSFðx0Þ; (E4)

where

6x0 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

l2c

s
: (E5)

The function zSFðxÞ is given in [40] by a fit to a rational function with 5 parameters.

APPENDIX F: CONVENTIONS & SYMBOLS

In order to fix our notation, we provide some tables with definitions in this appendix. The dimensions of the different
quantities appearing throughout the work are displayed in Tables I and II. Note that we set c ¼ 1, the dimension of the

TABLE I. Dimensions of the quantities (general).

Dimension (SI) Symbol

Geometrical quantities

1 gab,
ffiffiffiffiffiffiffi�g

p
, �a

b, �
abcd, "abcd, �a

m s, Ya, dxa

m�1 @a, �ab
c

m�2 Rabc
d, Eab, Bab

Matter quantities

1 ua, Ua, p̂a, H
kg m, m, pa, �, RM

kgm Sab, Sa, S
kgm2 Jabcd, Qabc, Qab

kg=m3 T	


Auxiliary quantities

1 p̂a, fa

m�4 �ð4Þ
Operators

1 �a
b, W

a
b , �̂

a
b, X

a
b

m�1 ri,
D
ds ¼ “ _”

TABLE II. Dimensions of the quantities (Kerr).

Dimension (SI) Symbol

Geometrical quantities

1 �, �
m t, r, M, a
Matter quantities

kg E, pt, pr, S
t�, Sr�, U�

kgm J, p�, p�, S
tr, S�

Auxiliary quantities

1 	, 
, �, �, �, e, CES2 , R̂, Û
r̂, Ĵ, Ê, â1, â2, q, j2, k2, lc

m �
m2 �
kg�2 m�5 A0

kg2 mðnÞ Aðn¼3Þ
1 , Að4Þ

2 , Að5Þ
3 , Að7Þ

4

kg�1 cES2
kgm4 �2, �2
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gravitational constant then becomes ½G� ¼ m=kg. Table III contains a list with themost important symbols used throughout
the text. Latin indices denote 4-dimensional indices and run from a ¼ 0; . . . ; 3, the signature is ðþ;�;�;�Þ. The Riemann
tensor Rabd

c is defined by

r½arb�ac ¼ 1

2
Rabd

cad; (F1)

where ac is a generic vector. The volume form is given by �abcd ¼ ffiffiffiffiffiffiffi�g
p


abcd, where 
abcd is the completely antisym-
metric Levi-Civita symbol with 
0123 ¼ þ1. Notice that �abcd ¼ 
abcd=

ffiffiffiffiffiffiffi�g
p

and 
0123 ¼ �1.
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[72] J. Steinhoff, G. Schäfer, and S. Hergt, Phys. Rev. D 77,

104018 (2008).
[73] H. Tagoshi, A. Ohashi, and B. J. Owen, Phys. Rev. D 63,

044006 (2001).
[74] G. Faye, L. Blanchet, and A. Buonanno, Phys. Rev. D 74,

104033 (2006).
[75] M. Levi, Phys. Rev. D 82, 104004 (2010).
[76] R. A. Porto, Classical Quantum Gravity 27, 205001

(2010).
[77] D. L. Perrodin, Proceedings of the 12th Marcel

Grossmann meeting on General Relativity, Edited by T.
Damour, R. T. Jantzen, and R. Ruffini (World Scientific,
Singapore, 2011).

[78] S. Hergt, J. Steinhoff, and G. Schäfer, Ann. Phys. (N.Y.)
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