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We compare dynamics and waveforms from binary neutron star coalescence as computed by new long-

term (� 10 orbits) numerical relativity simulations and by the tidal effective-one-body (EOB) model

including analytical tidal corrections up to second post-Newtonian order. The current analytic knowledge

encoded in the tidal EOB model is found to be sufficient to reproduce the numerical data up to contact

and within their uncertainties. Remarkably, no calibration of any tidal EOB free parameters is required,

beside those already fitted to binary black holes data. The inclusion of second post-Newtonian order

tidal corrections minimizes the differences with the numerical data, but it is not possible to significantly

distinguish them from the leading-order tidal contribution. The presence of a relevant amplification of

tidal effects is likely to be excluded, although it can appear as a consequence of numerical inaccuracies.

We conclude that the tidally completed effective-one-body model provides nowadays the most advanced

and accurate tool for modeling gravitational waveforms from binary neutron star inspiral up to contact.

This work also points out the importance of extensive tests to assess the uncertainties of the numerical data

and the potential need of new numerical strategies to perform accurate simulations.

DOI: 10.1103/PhysRevD.86.044030 PACS numbers: 04.30.Db

I. INTRODUCTION

Gravitational waves (GWs) emitted by binary neutron
star (BNS) inspiral and coalescence will be detectable by
advanced LIGO-VIRGO detectors. The tidal signature in
such waves is (mainly) proportional to the tidal polariz-
ability parameter �2 that yields the ratio between the
tidally induced quadrupole moment and the companion’s
perturbing tidal gradient. The tidal parameter �2 depends
on the neutron star equation of state (EOS) and it is related
to the relativistic generalization of the Newtonian, dimen-
sionless, Love number [1–5] k2 as �2 ¼ 2=ð3GÞk2R5,
where R is the star radius and G the Newton constant.
The late-inspiral part of the GW signal, where tidal effects
are stronger, can be used to measure the tidal Love number
and thus to extract information about the nuclear EOS. A
recent study [6] of the measurability of G�2, based on the
tidal extension [7] of the effective-one-body (EOB) model
[3,8–11], has shown that from a detection of GWs up to
merger all normal matter content (npe�) EOS with maxi-
mum mass * 1:97M� can be distinguished at 95% con-
fidence with signal-to-noise ratio 16 and for any physical
mass ratio.1

Accurate theoretical modeling of GWs from BNS
coalescence is a challenging task. High post-Newtonian
(PN) tidal corrections and resummation techniques are
needed to push the validity of the (semi) analytical models
up to contact. Next-to-leading-order (NLO, fractional 1PN

accuracy) [7] (then confirmed in Ref. [12]) and next-to-
next-to-leading-order (NNLO, fractional 2PN accuracy)
relativistic corrections to the tidal interaction energy have
been computed recently using effective-field-theory tech-
niques [13]. Fractional 1PN tidal corrections to the wave-
form were also obtained in Ref. [14]. The high-PN tidal
corrections effectively amplify the magnitude of leading-
order (LO) tidal effects, and are now incorporated in the
tidal EOB model [6,7,15], which is currently the most
sophisticated analytical tool available to model the dynam-
ics and waveforms of neutron star (or even mixed) binaries
up to contact.
Numerical relativity (NR) simulations are the funda-

mental tool to compute the dynamics and waveform of
the last few orbits of a coalescing BNS system. NR data
can be used to calibrate yet uncalculated higher-order tidal
effects and to test the reliability of the analytical models.
To date, however, only a few works have explored this
important problem [16–18].
A first comparison [16] between waveforms from three-

orbits NR simulations and the standard, point-mass,
Taylor-T4 PN approximant pointed out that the dephasing
accumulated during the last orbits up to merger can be
observed and used to constrain the EOS. As discussed
there, a major limitation of that work was probably given
by the length of the NR data available at the time.
Long-term (nine and eleven orbits) BNS numerical

simulations were presented in Refs. [17,19], and compared
there with the prediction of the tidal EOB model. By
performing a gauge-invariant and frequency-based analy-
sis of the phasing, it was found that the tidal interaction
predicted by the numerical simulation is important even in
the early part of the signal. To model it analytically, it was

1On the contrary, if only the early inspiral waveform is
considered, i.e., only GW frequencies & 450 Hz (for a BNS
with individual masses 1:4M�) it is not possible to measure G�2

with sufficient accuracy to discriminate among different
EOS [5].
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necessary to introduce effective fractional 2PN tidal
corrections to the EOB model, yielding an amplification
of the analytically predicted tidal effects [7], via the free
parameter ��2; the simulations constrained it2 in the range
40 & ��2 & 100. That analysis also pointed out that a more
detailed analysis of finite-resolution uncertainties on long-
inspiral BNS waveforms was needed to correctly estimate
the magnitude of tidal effects.

Recently, this important task was undertaken in
Ref. [18], that presented the first comprehensive analysis
of the uncertainties on the waveforms due to‘ truncation
and finite extraction error in a nine-orbit BNS simulation.
In the same work, NR waveforms were compared to the
tidal T4 approximant [5] including also NLO tidal correc-
tions [7,12,14]. Significant effects on the phasing due to
high-order tidal effects were observed in the ‘‘best data’’
(extrapolated from various resolutions), although a more
conservative error estimate did not allow to distinguish
higher-order tidal effects.

Motivated by these works and by the last analytical
results of Ref. [13], we address in this paper the following
question: Is the current analytical knowledge necessary
and sufficient to reproduce NR data within their
uncertainties?

We present results about new NR long-term simulations
and their comparison with the up-to-date EOB model
[7,15] which includes the NNLO tidal corrections of
Ref. [13]. Two different sets of simulations of the same
initial data are considered and some difficulties in obtain-
ing NR data of sufficient accuracy are pointed out. We
experimentally estimate the contact frequency of the
binary, a fundamental information for a comparison with
analytical models. NR data are then compared to the EOB
model by carefully taking into account their uncertainties.
We make use of the gauge-invariant relation between the
(reduced) binding energy E and the (reduced) angular
momentum j of the system in order to analyze the dynam-
ics of the binary [20]. The phasing of the waveforms is
studied both in the time domain and by means of a gauge-
invariant and frequency-based approach which does not
require us to fix any relative (phase and time) alignment
between the waveforms [19].

The paper is organized as follows. In Sec. II the tidal
EOBmodel used here is reviewed. In Sec. III the numerical
simulations are presented. The EOB/NR comparison is
discussed in Sec. IV. Concluding remarks are in Sec. V.
We use units G ¼ c ¼ M� ¼ 1, unless otherwise stated.

II. TIDAL SECOND POST-NEWTONIAN ORDER
EFFECTIVE-ONE-BODY MODEL

The tidal extension of the EOB model of the binary
dynamics has been defined in Ref. [7] and then improved

in Refs. [6,13] to include fractional 2PN corrections in the
tidal part of the EOB potential AðrÞ. In particular, we refer
the reader to Appendix A of Ref. [6] for a collection of
ready-to-use formulas that define the EOB dynamics and
waveforms including fractional 2PN tidal effects. Here we
only summarize the main points.
The EOB radial potential has the form

AðuÞ ¼ A0ðuÞ þ AtidalðuÞ; (1)

where u � 1=r ¼ GM=ðc2rABÞ is the Newtonian potential,
M ¼ MA þMB the total mass, rAB the relative separation,
A0ðuÞ denotes the point-mass potential and AtidalðuÞ is the
supplementary tidal contribution of the form

AtidalðuÞ ¼ X4
‘¼2

��T
‘u

2‘þ2Âð‘Þ
tidalðuÞ: (2)

The point-mass potential is defined using the usual Padé
resummation of the 5PN Taylor expansion of the A func-
tion with the 4PN and 5PN EOB parameters ða5; a6Þ,
A0ðuÞ ¼ P1

5½1� 2uþ 2�u3 þ a4�u
4 þ a5�u

5 þ a6�u
6�,

where a4 ¼ 94=3� ð41=32Þ�2, � ¼ MAMB=M
2, and Pn

m

denotes an ðn;mÞ Padé approximant. Following the finding
of Ref. [3] (then substantially confirmed by Ref. [21]) we
fix the free EOB parameters to the values a5 ¼ �6:37 and
a6 ¼ þ50 which lie within the extended region in the
ða5; a6Þ plane yielding a good fit of the binary black hole
equal-mass simulations.
In the tidal contribution, Eq. (2), the terms �T

‘u
2‘þ2

represent the LO tidal interaction, while the additional

factor Âð‘Þ
tidalðuÞ takes into account the effect of distance-

dependent, higher-order relativistic contributions to the
dynamical tidal interactions: 1PN (first-order in u, or
NLO), 2PN (of order u2, or NNLO), etc. The dimension-
less EOB tidal parameter �T

‘ is related to the tidal polar-

izability coefficients G�A;B
‘ of each neutron star as

�T
‘ � �A

‘ þ �B
‘ ; (3)

where

�A
‘ � ð2‘� 1Þ!!MB

MA

G�A
‘

ðGM=c2Þ2‘þ1
: (4)

Here we take advantage of the new analytical results of
Ref. [13] and we use the newly computed expressions of

Âð‘Þ
tidalðuÞ for ‘ ¼ 2 and ‘ ¼ 3 at NNLO accuracy. Focusing

on the most relevant equal-mass case (� ¼ 1=4), the rela-
tivistic correction to the tidal potential reads

Â
ð‘Þ
tidalðuÞ ¼ 1þ �ð‘Þ

1 uþ �ð‘Þ
2 u2; (5)

where the coefficients �ð‘Þ
1;2 are, in this particular case,

pure numbers. Specializing to the equal-mass case
Eqs. (6.9)–(6.10) and Eqs. (6.21) and (6.22) of Ref. [13]
we obtain

2A similar conclusion, ��2 � 40, was also reached in Ref. [7]
using nonconformally flat, NR stationary BNS sequences.
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Â
ð2Þ
tidalðuÞ ¼ 1þ 5

4
uþ 85

14
u2; (6)

Â
ð3Þ
tidalðuÞ ¼ 1þ 7

4
uþ 257

48
u2; (7)

Â
ð4Þ
tidalðuÞ ¼ 1; (8)

where we indicated explicitly the absence of (yet uncom-
puted) higher-order corrections to the ‘ ¼ 4 relativistic
contribution. The EOB waveform and radiation reaction
is computed as in Ref. [19] and takes explicitly into
account the 1PN tidal corrections of Ref. [14] (see
Appendix A of Ref. [6] for the precise definition of the
EOB waveform with tidal corrections).

Equations (6)–(8) define the most advanced tidal EOB
model based on analytical information only. In Ref. [19] a

slightly simplified representation of the functions Âð‘Þ
tidal was

used. Since at the time the NNLO calculation was not

completed yet, and only �ð2Þ
1 ¼ 5=4 was known, one was

using the following NNLO effective expression for the
relativistic tidal corrections

Â
ð‘Þ
tidal ¼ 1þ ��1uþ ��2u

2; (9)

with ��1 � �ð2Þ
1 ¼ 5=4 fixed to be the same for ‘ ¼ 2, 3, 4

and ��2 taken as a free effective parameter (for all ‘’s) to be
fitted for by comparison with NR simulations. Although in
the following we shall mainly focus on the purely analyti-
cal 2PN tidal EOB model defined by Eq. (6), we shall also
contrast some predictions of the effective 2PN EOB model
given by Eq. (9) with the numerical data.

The last important concept we want to remember is the
definition of contact between the two stars. This quantity is
important because the analytical model ceases, in princi-
ple, to be valid after this moment. Such a formal contact
moment was introduced in Eqs. (72) and (77) of Ref. [7] by
the condition that the EOB radial separation rAB becomes
equal to the sum of the tidally deformed radii of the two
stars, namely

rcontactAB ¼ ð1þ hA2�AðrcontactAB ÞÞRA þ A $ B; (10)

where �AðrABÞ ¼ MBR
3
A=ðr3ABMAÞ is the dimensionless

parameter controlling the LO strength of the tidal defor-
mation of body A by its companion B, RA is the star radius
and hA2 is the shape Love number [15,22]. The dimension-
less quantity hA2 (computed assuming that the relative
separation between the two stars is infinite [15]) is of order
unity; in general, one is expecting it not to be a constant,
but rather to be a function of the relative separation r (i.e.,
of u) and to increase as r decreases (this was found for
example in a related black-hole study [22]). More pre-
cisely, given the behavior of the dimensionless quadrupolar
Love number (e.g., for body A) kA2 ¼ 3G�2=ð2R5

AÞ, that
through Eqs. (2)–(5) can be seen to be amplified into an
‘‘effective’’ Love number depending on u like

keff2 ¼ kA2 ð1þ �ð2Þ
1 uþ �ð2Þ

2 u2Þ; (11)

hA2 should be similarly replaced by an ‘‘effective’’ shape
Love number of the form (at 2PN accuracy)

heff2 ¼ hA2 ð1þ �ð2Þ
1 uþ �ð2Þ

2 u2Þ; (12)

where �ð2Þ
1 and �ð2Þ

2 indicate formally the 1PN and 2PN
corrections to hA2 . Though their analytical values are cur-
rently not known, Ref. [19] found that the effective
(u-independent) value heff2 ¼ 3 was necessary to allow
the EOB-predicted contact, Eq. (10), to occur always
before the NR-defined merger. We shall briefly comment
in Sec. IVabout the magnitude of the amplification needed
on hA2 through Eq. (12) so to reconcile the EOB contact
defined by Eq. (10) with a certain NR-defined contact.

III. NUMERICAL SIMULATIONS

Target waveforms for the comparison with different
analytical predictions are computed via NR simulations
like those presented in great detail in Ref. [18]. While NR
simulations of BNS have reached a certain maturity (see
Ref. [23] for the most recent review), intrinsic difficulties
in the treatment of general relativistic hydrodynamics
make the numerical calculations of small effects in long
simulations still very challenging. Note that the study of
tidal effects in the late inspiral requires us to resolve (at
least) dephasing of& 0:5 rad over ten cycles. In particular
the numerical viscosity of high-resolution-shock-capturing
scheme (HRSC) typically employed, is strongly dependent
on the reconstruction scheme (cell-interfaces interpola-
tion) and plays an important role in the accuracy of the
simulations, see e.g., Refs. [24,25]. While partially under
control in short (three orbits) runs by the use of 3rd order
reconstructions, long-term simulations such as those pre-
sented here are challenging, also due to the computational
cost of extensive testing.
In this work we consider long-term evolutions

(� 10 orbits) of an equal-mass conformally-flat (CF) and
irrotational initial configuration of Arnowitt-Deser-Misner
(ADM) massM0

ADM ¼ 3:00506ð2Þ and angular momentum
J0ADM ¼ 9:716ð1Þ. The initial separation is d� 50 associ-

atedwithGW frequency of�394 Hz. The fluid is described
by a �-law EOS (� ¼ 2) and isentropic evolutions were
considered as in Ref. [18]. The baryonic mass of each star
is Mb ¼ 1:62500ð0Þ, the gravitational mass of each star
in isolation is M=2 ¼ MA ¼ MB ¼ 1:51483ð7Þ, radius
and compactness are respectively R ¼ 10:82065ð0Þ and
C ¼ 0:14. The corresponding ‘ ¼ 2 dimensionless Love
number is k2 � kA2 ¼ kB2 ¼ 0:07890ð1Þ and the ‘ ¼ 2
shape Love number is h2 � hA2 ¼ hB2 ¼ 0:8699. The initial
configuration [26] is computed with the LORENE library
and publicly available, and was already considered in
Refs. [17–19].

TIDAL EFFECTS IN BINARY NEUTRON STAR COALESCENCE PHYSICAL REVIEW D 86, 044030 (2012)

044030-3



Evolutions were performed with the BAM code de-
scribed in Refs. [25,27,28]. Here we mention the general
relativistic hydrodynamics is handled with finite-
differencing HRSC based on primitive reconstruction, the
Local-Lax-Friedrichs central scheme for the numerical
fluxes and Runge-Kutta time integrators, see e.g.,
Ref. [29]. Cartesian grids and Berger-Oliger adaptive-
mesh-refinement (‘‘moving boxes’’ technique) are used.
The grid setup, resolutions, gauge parameters, and finite
differencing stencils for the metric sector are exactly the
same as the convergent series discussed in Ref. [18]; they
are listed for completeness in Table I.

We point out here that focusing on isentropic evolutions
is justified by the following facts: (i) physically, BNS
evolutions are expected to be isentropic up to contact;
(ii) any analytic model cannot describe nonisentropic
effects (e.g., shock heating); and (iii) previous works dem-
onstrated [19,25] that considering nonisentropic evolutions
actually leads to smaller tidal effects.

Two series of simulations were performed: one is the
convergent series presented in Ref. [18], where the HRSC
employs the (formally) 3rd order convex-essentially-non-
oscillatory (CENO3) for primitive reconstruction and a 3rd
order Runge-Kutta scheme. The second series is computed
with the same setup except the use of the (formally)
5th order weighted-essentially-non-oscillatory (WENOZ)
method of Ref. [30] and a Runge-Kutta scheme of 4th
order. In Ref. [18] it was presented a detailed analysis of
the uncertainties that affect the waveform due to truncation
and finite-extraction errors; the new data computed for this
work show analogous features. However, we observed
differences between the two data sets. For a given resolu-
tion, the merger in the CENO data occurs earlier than in
the WENO data. The dominant multipole ‘ ¼ m ¼ 2
of the metric waveforms, h22, obtained from the two differ-
ent setups is displayed in Fig. 1. In abscissa we use the
retarded time u � t� r�, where r� ¼ rS þ 2MADM�
logðrS=ð2MADMÞ � 1Þ, and rS is the Schwarzschild radius
corresponding to the isotropic (coordinate) radius r.
The waveforms are extracted at the outermost radius
r ¼ 750 ¼ 247:55M. The simulations compute wave-
forms from the Newman-Penrose scalar c 4, that is then
decomposed in spherical harmonics modes, c ‘m

4 . The

metric multipoles h‘m are calculated from the c ‘m
4 by

integrating the relation c ‘m
4 ¼ €h‘m. To do the integration,

we use the frequency-domain procedure of Ref. [31] with a
low-frequency cut off at !0 ¼ 0:02=M. The signal is inte-
grated from the very beginning of the simulation, in order
to include also the initial burst of radiation related to the
use of CF initial data. This radiation is often called (some-
how improperly) ‘‘junk’’ radiation. Note that in the text for
brevity we consider the metric waveform multiplied by the
extraction radius without explicitly changing the notation,
i.e., h‘m � rh‘m. As it is clear from Fig. 1, at a given
resolution, CENO and WENO waveforms accumulate a
significant relative dephasing towards merger; uncertain-
ties due to the HRSC numerical viscosity become larger as
the simulation time advances and eventually dominant over
truncation (and finite extraction) errors towards contact
(M!22 � 0:07 [18], see below for an estimate of the GW
frequency of the contact), where any convergent behavior
is lost. For both data sets the higher the resolution, the later
is the merger [18,25]. In practical terms, Fig. 1 indicates
that the differences in the HRSC effectively influence the
magnitude of the tidal interaction between the two stars,
from a larger value for the CENO data to a smaller one for
the WENO data.
This effect can be properly quantified by exploring the

actual dynamics of the BNS system so as to contrast it with
the corresponding point-mass one. An intrinsic, gauge-
invariant way of doing so is by means of the relation
between the total energy E and total angular momentum

TABLE I. Summary of the grid configurations and of the runs.
Columns: name of the configuration, maximum refinement level,
minimum moving level, number of points per direction in the
moving levels, resolution per direction in the level l ¼ lmax,
number of points per direction in the nonmoving levels, resolu-
tion per direction in the level l ¼ 0.

Run lmax lmv Nmv
xyz hlmax

Nxyz h0

L 7 4 100 0.1875 160 24

M 7 4 128 0.1466 176 18.75

H 7 4 160 0.1172 212 15

FIG. 1 (color online). Numerical quadrupolar gravitational
waveform extracted at the outermost radius robs ¼ 750 ¼
247:55 M for the CENO and WENO data (run H). Top: real
part and amplitude (dashed lines). Bottom: frequency. The
vertical lines mark the contact of the WENO data.
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J of the system, EðJ Þ. Following Ref. [20] that computed
this quantity for binary black hole (BBH) systems, E andJ
are obtained from the NR data as

E NRðuÞ ¼ E0 ��ENR
rad ðuÞ; (13)

J NRðuÞ ¼ jJ0 ��JNRrad ðuÞj: (14)

Here, E0 ¼ M0
ADM=M and J ¼ J0ADM=M

2 are the initial
ADM mass and angular momentum expressed in units of
the total gravitational mass of the stars in isolation; �ENR

rad

and �J NR
rad (expressed in the same units) are the radiated

energy and angular momentum between the initial
(retarded) time u0 and u. They are computed from the
multipole moments of the metric waveform h‘m and of

its time derivative _h‘m, as

�ENR
rad ðuÞ

1

16�

X‘max

‘¼2

X‘
m¼0

Z u

u0

du0j _h‘mðu0Þj2; (15)

�J NR
zradðuÞ

1

16�

X‘max

‘¼2

X‘
m¼1

Z u

u0

du0m=½h‘mðu0Þ _h�‘mðu0Þ�: (16)

In Eq. (14) we also included the x and y component of the
angular momentum loss, �J NR

x and �J NR
x , though, as

expected, they are of order 10�10 and negligible in prac-
tice. For convenience, we work with the binding energy
per reduced mass E � ðE �MÞ=� and the dimension-
less rescaled angular momentum j � J =M�, where
� ¼ MAMB=M.

The main panel of Fig. 2 compares the NR relations
ENRðjÞ computed for the two data series (CENO and
WENO) with two analytical, point-mass, curves: the
canonical PN expanded EðjÞ relation [see Eq. (5) of
Ref. [20]], dashed line, and the NR-tuned, EOB resummed
one (dash-dotted line), that was found in Ref. [20] to show
an excellent agreement with corresponding BBH numeri-
cal curve3 (see Fig. 2 of Ref. [20], top panel). The ENRðjÞ
curves used here were obtained from waveforms taken at
the outermost extraction radius, robs ¼ 750 ¼ 247:55M,
and, for simplicity, by including only the ‘ ¼ m ¼ 2multi-
pole in the calculation of Eqs. (13) and (14). To illustrate
the influence of the uncertainties due to finite resolution,
instead of displaying the NR data as a simple curve, we
present them as the shaded band that is included between
the medium (run M, bottom border) and high (run H, top
border) resolutions. The diagram illustrates that, while the
CENO data graze the EOB point-mass curve at the very
beginning of the simulation (see the inset in which the
WENO and CENO curves are indistinguishable) they visi-
bly deviate from it after, indicating the presence of strong

tidal effects. On the contrary, the WENO data remain
always very close to the point-mass EOB curve, so as to
be almost indistinguishable on the scale of the main plot.
We experimentally conclude that the more dissipative

numerical setup (CENO data) artificially amplifies tidal
effects, leading to severe inaccuracies on the waveform
phasing. The improvements obtained in the WENO data
and the availability of convergence tests and error
estimates [18] are crucial for the comparison with the
analytical information presented below.
Let us finally briefly comment on the inset of Fig. 2,

which focuses only on the initial part of the ENRðjÞ curve.
Similarly to the black-hole case (see inset of Fig. 1 of
Ref. [20]), the initial state of the system is very close to
the point-mass, 3PN canonical EðjÞ curve. Then the effect
of the losses due to the junk radiation moves the initial state
down, close to the EOB curve. Note in addition that this
early-inspiral part the NR curve is above the point-mass
EOB curve because only the ‘ ¼ m ¼ 2 mode has been
included. We shall explore the effect of the other multi-
poles in the next section, in the context of the detailed
comparison with the tidal EOB model.
For the comparison with analytical predictions, it is

important to have an estimate of some contact frequency
extracted from the NR data, since the tidal EOB model
ceases to be valid after this frequency. However, connect-
ing the (local, strong-field) dynamics, parametrized by the
dynamical time t, of the two objects with the radiation

FIG. 2 (color online). Numerical dynamics: EðjÞ curves for
two series of simulation (CENO and WENO data), and for two
point-mass analytical models (EOB resummed and ‘‘canonical’’
Taylor-expanded 3PN). The vertical dashed line marks the
angular momentum at contact. Note that the CENO and
WENO curves are perfectly superposed at the beginning of the
simulations (see inset).

3Although the canonical PN curve was very close to the CF
initial state, it was found to progressively deviate from the
numerical calculation, giving then an inaccurate representation
of the point-mass dynamics.
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observed in the wave-zone unambiguously, is a nontrivial
task. In first approximation, any phenomenon occurring in
the strong-field region at dynamical time t reaches the
observer robs at retarded time u ¼ t� r�ðrobsÞ. For sim-
plicity, in the following we shall assume such relation to
connect the two events, though, in doing so, we are ne-
glecting an additional time-delay due to the propagation of
the signal in the strong-field region. In Fig. 3 we show
snapshots of the rest-mass density in the orbital plane at a
few dynamical times around the contact of the two stars.
The pictures indicate clearly that at tc � 2382M the well-
known shearing contact is taking place. The corresponding
GW frequency is M!22ðuc ¼ 2382MÞ � 0:078, and the
corresponding value of the angular momentum is jc �
3:63. The latter is shown in the dashed vertical line in
Fig. 2. Note that the final merger (e.g., formally defined
by the first peak of jh22j) occurs later, at M!22 � 0:13.

IV. EFFECTIVE-ONE-BODY/NUMERICAL
RELATIVITY COMPARISON

In this section we consider only the WENO data and
compare them with the tidal EOB model. We present two
types of comparisons, one for the dynamics, through the
EðjÞ curve, and one for the phasing. We shall take as
‘‘best’’ (multipolar) waveform the one computed with the
highest resolution available and extracted at the outermost
radius robs ¼ 247:55M.

A. Dynamics

Let us first compare the NR ENRðjÞ relation to the
corresponding analytical prediction. This is done in the
left panel of Fig. 4. Together with the point-mass analytical
curves (EOB and canonical 3PN) already shown in Fig. 3,
we also display the analytical EðjÞ EOB curve that includes
tidal effects (solid, red online) at NNLO order. The nu-
merical curve (solid, black online) is different from the
corresponding band of Fig. 2 in that �J NR

rad and �ENR
rad

include all multipolar contributions up to ‘max ¼ 4. Note
that, although the symmetry of the system implies that all
multipoles with odd values of m have to be zero, they are
actually nonzero, and are included in the computation of
the losses to which they contribute as very small amplitude,
structureless noise. In these simulations, differently from
Ref. [19], we do not impose rotational (‘‘�’’) symmetry on
the orbital plane, but evolve instead the equations in the
whole plane z > 0. To give numbers in the ‘ ¼ 2 case,

during the inspiral it is, at maximum, j _h22j � 5� 10�3,

j _h20j � 2� 10�5 and j _h21j � 6� 10�6.
Though the m ¼ 0 modes are practically negligible

during the inspiral, they actually contribute to the initial
burst of radiation and thus they must be included in the
computation of ENRðjÞ. For example, during this epoch,

that lasts for�25M, j _h20j � 0:5� j _h22j and j _h40j � 0:5�
j _h44j. By contrasting the insets of Fig. 3 and of the left
panel of Fig. 4, we observe that the subdominant

FIG. 3 (color online). Binary dynamics from WENO NR simulations. Contour plot of the rest-mass density on the equatorial plane.
The snapshots indicate the contact happens around dynamical time tc � 2382 M. This dynamical time, corresponding to observer’s
retarded time uc ¼ t� robs� , locates the contact at GW frequency M!c

22 � 0:078. Run H.
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multipoles drive the NR curve not only below the point-
mass curve, but even below the tidal EOB curve.4 Like in
Fig. 3, the dashed vertical line marks the location of the
NR-contact. We note in passing that to make the EOB-
contact consistent with the NR-defined contact we should
replace in Eq. (10) the value h2 ¼ 0:8699 (which would
give a EOB contact frequency slightly smaller than the
merger frequency5 M!22 � 0:094) with heff2 � 3:4, which
yields an EOB contact frequency�0:078. This estimate of
the deformation of each star coming from actual data is
consistent with the guess of Ref. [19] (heff2 ¼ 3), but further
work will be needed to understand, numerically and ana-
lytically, the actual amplification experienced by h2.

By close inspection of the plot we observe that the NR
curve actually changes its slope: around j� 3:8 it lies
between the tidal and point-mass curves, while during
contact the curve bends again below the tidal EOB one.
We argue this behavior is caused by numerical inaccura-
cies, for example small violations of mass conservation, to
which the computation of ENRðjÞ is extremely sensitive. It
was not possible to identify the precise cause, but we
mention that it corresponds to a numerical oscillation at
the fourth digit of ENRðjÞ.

The differences between numerical data and the analyti-
cal predictions are made precise in the right panel of
Fig. 4. The four curves represent the four differences
EX � EEOBtidal where the label X indicates in turn: NR

(thick, red online) with ‘max ¼ 4; NR (thin, black online)
with ‘max ¼ 2; NR (thick, dashed, black online) with
‘max ¼ 4 extrapolated at infinite extraction radius; EOB
point-mass (dash-dotted, black online). The shaded region
represents the estimated uncertainty affecting the best
waveform. It has been obtained by taking into account
the following three effects: (i) resolution; (ii) finite extrac-
tion radius; and (iii) contribution of higher multipoles. To
compute it, we first took the following differences between
ENRðjÞ curves: (i) between H and M data, �EHM;
(ii) between H data extrapolated at infinite extraction
radius and at robs ¼ 247:55M, �EH1. The extrapolation
was done from data at robs ¼ f400; 500; 600; 700; 750g,
aligned using retarded time, taking a quadratic fit; and
(iii) between H data with ‘max ¼ 4 and with ‘max ¼ 2,
�EH

‘ . Then the final (conservative) error-bar is obtained

as �NREðjÞ ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�EH1Þ2 þ ð�EHMÞ2 þ ð�EH

‘ Þ2
q

. Note

that at large values of j (beginning of the simulation) the
most relevant uncertainty is the one due to the finite radius
and to the choice of ‘max; after that, finite-resolution effects
become dominant.
The analysis of the dynamics shows that the NR data are

consistent with the state-of-the-art tidal EOB model and
distinguishable from the point-mass EOB model up to
contact (jc ¼ 3:62). Remarkably the NR curves stay very
close to the tidal EOB up to j� 3:5 point at which the
differences with the point-mass curves are at least two-
sigma beyond the uncertainties.

B. Waveforms and phasing

Let us now compare the waveforms and quantify the
phase difference accumulated between NR and EOB data

FIG. 4 (color online). Comparison between EOB and NR dynamics. Left panel: reduced binding energy (E) versus reduced angular
momentum (j) curves. Right panel: differences with the tidal EOB model. The shaded region represents the estimated uncertainties on
the ‘‘best’’ numerical curve. Numerical data are consistent with the tidal EOB model.

4The tidal EOB curve is below the corresponding point-mass
one indicating that, due to the attractive nature of tidal interac-
tion, the system is gravitationally more bound.

5Similarly, the ‘‘bare’’ contact, with h2 ¼ 0, is even closer to
the merger, giving M!22 � 0:106.
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in the last orbits of the inspiral. Focusing on the ‘ ¼ m ¼ 2
mode, we first present a time domain comparison of the
amplitude and frequency, and then switch to a more quan-
titative analysis of the phasing. Higher multipoles are
discussed at the end of the section.

In Fig. 5 we contrast the NR waveform (thin solid line,
black online) with 4 different analytical models: the EOB
point-mass (no tides, dash-dotted line), the tidal EOB with

only LO tidal effects [i.e., we set Âtidal
‘ ¼ 1 for all ‘’s in

Eq. (2)], dashed, thick curves, blue online), the 2PN-
accurate (NNLO) tidal EOB model (solid thick curves,
red online) and the PN-expanded Taylor T4 model with
leading-order tidal effects (see Sec. IIIC of Ref. [19]). We
show together the gravitational frequency (top left) and
waveform modulus (top right) while the corresponding
differences (EOB-NR) are exhibited in the bottom panels.

The vertical dashed line on each panel indicates the NR
contact frequency M!c

22 � 0:075, after which we don’t
expect any analytical model to be accurate. The relative
time, � and phase, �, shifts that are necessary to align the
analytical to the numerical waveform are determined using
the procedure described in Sec. A of Ref. [19], that relies
on the minimization of the 	2 of the phase difference over
a certain frequency interval. Here we use the frequency
interval ð!1; !2Þ ¼ ð0:038; 0:049Þ=M, (corresponding to
ðu1; u2Þ=M ¼ ð165:8; 1610:9Þ, that begins after the initial
burst of radiation, so as to remove also possible inaccura-
cies due to the integration procedure needed to get h22 from
c 22

4 . The shaded regions in the bottom panels indicate the
NR uncertainty, that takes into account finite-extraction
radius and finite resolution effects. It is obtained by:
(i) Richardson extrapolating the two highest resolutions

FIG. 5 (color online). Comparing numerical and analytical ‘ ¼ m ¼ 2 waveform: frequency (left panels) and modulus (right
panels). The vertical line locates the NR contact. The shaded regions in the bottom panels are error estimates on the NR frequency and
modulus.
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assuming second-order convergence and taking the differ-
ence with run H data and (ii) similarly, taking the differ-
ence between the NR waveform extrapolated in extraction
radius6 and the one at robs ¼ 750. In practice, for the first
half of the simulation (u� 1000M) the uncertainty is
dominated by finite-extraction-radius effects, while later
it is the resolution to play the most important role. The
two contributions are then summed in quadrature and one
takes the ð	1=2Þ of the square root to obtain a two-sided
error bar. Note that the finite-resolution uncertainties
we quote are consistent with Table II of Ref. [18] and
provide an average between optimistic and conservative
estimate of the errors (obtained respectively by resolution-
extrapolated data from five and three simulations with
different resolutions).

From the top panel of Fig. 5 one sees visually how the
tidal models clearly yield a better agreement with the
numerical data than the simple point-mass EOB model.7

This information is made more quantitative in the bottom
panels, where the point-mass analytical prediction is seen to
deviate away starting from 2000 M, while the other differ-
ences remaining much flatter, and oscillating around the
error bar, up to contact. The comparison of Fig. 5 allows us
to deduce the presence of tidal effects in the very late part of
the inspiral, just before contact. However, it also indicates
that this comparison is sensible at most to leading-order
tidal effects, since, given the uncertainties on the NR data, it
is not possible to meaningfully disentangle 1PN and 2PN
tidal corrections from the leading-order ones. On these
plots, the Taylor T4 PN model with LO tidal corrections
looks consistent with the EOB predictions, yielding similar
differences with the NR waveform. Note that at the very
contact position the frequency and amplitude differences
show a clear increasing trend. This might be due either to
the ‘‘blurred’’ nature of contact in the NR data or to the lack
of suitably determined next-to-quasi-circular corrections.
For simplicity, we will not overtune here our analytical
model and postpone to a future investigation the detailed
analysis of these additional effects. Concluding the discus-
sion of Fig. 5, we mention that the oscillations in the
differences, clearly visible both in the frequency and in
the amplitude, are mainly due to residual eccentricity dur-
ing the evolution. Analogous oscillations are also observed
in the evolution of the proper distance; consistently, their
period is approximately equal to half the period of the h22
gravitational waveform (compare with Fig. 1).

We discuss now the phasing by means of a gauge-
invariant and frequency-based analysis employing the

Q! ¼ !2= _! function (where we put ! � M!22 for
simplicity) introduced and used extensively in Ref. [19].
We recall that the meaning of this function is that the
time-domain GW phase 
ð!1;!2Þ accumulated between

frequencies ð!1; !2Þ is given by the integral 
ð!1;!2Þ ¼R
!2
!1

Q!d ln!. Consequently, a change of Q!ð!Þ of the

order 	1 during a frequency octave lnð!2=!1Þ corre-
sponds to a local dephasing (around !) of �
 ’ 	1 rad.
The main advantage of the Q! diagnostics is that it is
independent of the arbitrary time and phase shifts ð�; �Þ
necessary to compare the waveforms in the time domain.
As in Ref. [19] we cannot compute Q! from the raw NR

data, but we have fitted the phase of h22 with a suitable
PN-based expression (see Eqs. (27)–(28) of Ref. [19]).
Here the best fit is given by using a sixth-order polynomial
(in contrast to the fourth-order polynomial employed in

Ref. [19]) in the variable x ¼ ½�ðtm � tÞ=5��1=8 (where tm
is a fitting parameter formally representing themerger time),
and the time interval ½tL; tR�=M ¼ ½965; 2400�, which cor-
responds to frequencies ½!L;!R� ¼ ½0:042; 0:063�=M.
TheQ! curve, so obtained, is represented by the thick-solid
line with circles in Fig. 6. The shaded region around the
curve indicates the uncertainty on the curve as given by
QNR

! 	 �QNR
!
. This numerical uncertainty �QNR

!
is estimated

by putting together the effect of truncation error, of finite
extraction radius, and of the fit. To do so, we first calculated
three otherQ! curves: one from thewaveform of the M run,
QNRM ; another from thewaveform of the H run, but extrapo-

lated at infinite extraction radius, Q
NR1

H
! ; and a third one

doing the fit of the H data with the fourth-order polynomial

FIG. 6 (color online). Comparison between various EOB Q!

curves and the NR one. The good visual agreement between the
LO and 2PN tidal EOB models and the NR curve highlights
the presence of tidal interaction during the inspiral. Note that the
effective value ��2 ¼ 100 used in Ref. [19] is incompatible with
the NR curve.

6In Ref. [18] it was shown that in this case phase difference
due to finite-radius effects varies between �0:2 rad during the
early inspiral to �0:1 rad at merger, while the fractional differ-
ence in amplitude varies between 1% and 0.5%.

7Note that up to GW frequency M!22 � 0:1 the Taylor T4
point-mass phasing agrees very well with the NR one and thus
with the NR-tuned EOB point-mass.
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instead of the sixth-order one, Q
NRH;n¼4
! . We then computed

the differences �QH;1
! ¼ QNRH

! �Q
NR1

H
! , �QHM

! ¼ QNRH
! �

QNRM and �QH;n¼4
! ¼ QNRH

! �Q
NRH;n¼4
! and summed them

in quadrature, so to estimate the error-bar �QNR
!

¼
	1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�QHM
! Þ2 þ ð�QH1

! Þ2 þ ð�QH;n¼4
! Þ2p

that we repre-
sented in Fig. 6. This conservative error estimate is of order
unity, as it varies between ð�3;þ3Þ at ! ¼ 0:0415 and
ð�1;þ1Þ at ! ¼ 0:0603.

Together with the numerical curve we also exhibit in the
picture other five analytical EOB curves: the point-mass
EOB (dash-dotted, black online), the LO tidal EOB (thick-
dashed, blue online), the analytical, 2PN tidal EOB with

�ð2Þ
2 ¼ 85=14 (thick-solid, red online) and the effective

2PN tidal EOB with the effective values ��2 ¼ 40 and
��2 ¼ 100 used in Ref. [19] (lowermost dotted lines, black
and magenta online, from top to bottom). The figure high-
lights clearly the dependence of NR on tidal interaction.
One concludes that: (i) the NR curve is always very close
to the 2PN tidal EOB one; (ii) it is very well distinguish-
able from the point-mass prediction; (iii) the error-bar on
the NR curve is too large to appreciate the differences
between the LO and 2PN tidal EOB models; (iv) the
effective 2PN tidal EOB model used in Ref. [19] with
��2 ¼ 100 significantly overestimates the magnitude of
tidal interactions in the NR data; and (v) the effective
2PN tidal EOB model with ��2 ¼ 40 gives a good average
of the numerical points.

The most important information suggested by Fig. 6 is
that the EOB tidal model constructed using only analyti-
cally computed tidal information is by itself consistent
with the NR simulation, without the need of tuning any
additional tidal EOB flexibility parameter yielding an
effective amplification of the tidal interaction as the stars
get closer and closer. We cannot exclude that such an
amplification exists,8 but one will need much higher accu-
racy in the late inspiral phase to identify actual physical
effects. In this respect, although the value ��2 ¼ 40 fits well
the NR data, it does not indicate definitely an amplification
of tidal effects, as truncation errors are still dominant in
this frequency range and the value of ��2 is very sensitive to
small changes onQ! that are barely visible on the plot. For
instance, note how the EOB Q! is easily matching the
upper bound of the error-bar by taking ��2 ¼ 20. We expect
that the use of higher-resolutions and/or more accurate
numerical treatments of the hydrodynamics will further
move up the NR Q! curve, so to favor smaller values of
��2 than larger ones.

The (visually) small differences between the Q!’s
in Fig. 6 actually correspond to relevant dephasings, of
order 1 rad or more. This information, relative to the
frequency interval ½!1; !2�M ¼ ½0:041; 0:062�, is quanti-
fied in Table II. The 2PN (NNLO) tidal EOB model
accumulates a dephasing of 1:06 rad, the LO EOB model
1.49 rad, while the point-mass EOB 3.92 rad. The uncer-
tainties on these numbers are of the order ��
 ¼ 0:61 rad

and obtained by integrating the shaded region in Fig. 6.
Due to the fitting procedure involved in the computation

of the Q! curves [19], it is important to verify the phasing
with another diagnostic. Hence, we present also an analy-
sis based on waveform alignment as customary in the
literature. The time evolution of the phase difference
�
22ðtÞ ¼ 
XðtÞ �
NRðtÞ (where the label X can be ei-
ther EOB or T4) is shown in Fig. 7. It is computed from the
time-and-phase alignment waveforms, as in Fig. 5. The
shaded region represents the uncertainty on the NR phase.

TABLE II. Phase differences �
 ¼ 
EOB �
NR, with its
uncertainty ��
, accumulated between frequencies ½!1; !2� ¼
½0:041; 0:062�=M obtained by integrating the difference between
the NR Q! and some of the EOB curves of Fig. 6: the point-
mass, the tidal LO and the 2PN (NNLO) analytical one with

�ð2Þ
2 ¼ 85=14. The error-bar	��
 is obtained by integrating the

shaded region around the NR Q! curve in Fig. 6.

EOB model Point-mass LO tidal NNLO tidal

�
 [rad] 3.92 1.49 1.06

��
 [rad] 0.61 0.61 0.61

FIG. 7 (color online). Phase difference between various ana-
lytical phase and the NR phase. The vertical line indicates the
NR contact. The phase difference of �� 0:2 rad between the
2PN tidal EOB model and the NR waveform is compatible with
the error estimates on the latter.

8Especially on the basis of the analytical considerations of
Ref. [13] suggesting that �ð2Þ

2 might be replaced by an effective
distance dependent coefficient �eff

2 ðuÞ � �ð2Þ
2 =ð1� rLRuÞ, rLR

denoting the EOB effective light-ring location. Note however
that the corresponding Q! curve would be indistinguishable
from the nonresummed one on the plot.
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The qualitative information given by this plot confirms the
analysis of the phasing given by the Q!: tidal effects are
clearly visible before contact and the current analytical
knowledge is sufficient to match the NR phasing up to
contact (dashed vertical line in the figure). It is not pos-
sible, however, to distinguish in the NR data the effect of
higher-order tidal effects from LO ones. Interestingly, on
this plot the T4 tidal LO model performs marginally worse
than the corresponding EOBmodel,�� 0:3 rad at contact
and notably out of the estimated NR uncertainty. Note that
the phase difference varies in the range 	0:2 rad from the
beginning of the simulation (after the initial burst) up to
contact. This value is consistent with lower value �
�
��
 � 0:5 obtained from Table II. For completeness, in

Fig. 7 we also added the two phase differences with the
effective 2PN tidal EOB model, with ��2 ¼ 20 and
��2 ¼ 40. They are both well within the error bar, although,
consistently with the Q! analysis, the value ��2 ¼ 20 ac-
tually yields a smaller dephasing at contact. In conclusion,
putting together the information of Figs. 6 and 7, state-of-
the art numerical simulations allow us to conclude that, if
any actual amplification of tidal effects exists, it yields,
conservatively, ��< 40 (as a conservative estimate), or,
more likely, ��2 < 20.

We conclude this section with a few comments about the
accuracy of the higher-order multipoles, that are actually

included in the computation of ENRðjÞ. Figure 8 compares
the modulus of the most relevant subdominant numerical
multipoles ‘ ¼ 3, m ¼ 2 and ‘ ¼ m ¼ 4 with the corre-
sponding EOB waveforms. To our knowledge, this com-
parison has never been shown before. The visual
agreement is rather good, with both analytical multipoles
averaging the corresponding numerical ones practically up
to contact, as it was the case for the ‘ ¼ m ¼ 2 case. From
the picture one also sees the large initial burst of junk
radiation that must be included in the accurate computation
of the ENRðjÞ relation.

V. CONCLUSIONS

In this paper we have presented a comparison between
dynamics and waveform from BNS coalescence computed
from long-term (� ten orbits) NR simulations and the
tidal EOB model including all the known tidal PN correc-
tions [13].
New numerical simulations have been presented which

improve quantitatively previous results [18]. A set of simu-
lations which employ the same initial data, grid setup, and
resolutions of Ref. [18], but adopt a higher-order recon-
struction method in the HRSC scheme and time integrator,
has shown that tidal effects can be overestimated by
numerical inaccuracies. While the data show convergent
behavior before the contact, around this point and later the
uncertainties related to numerical viscosity do not seem
completely under control, and actually become dominant
over truncation errors.
In order to compare NR data with the analytical EOB

model, we estimated the GW frequency of the contact as
M!c

22 � 0:078.
The dynamics of the system has been investigated by

means of the EðjÞ relation between the reduced binding
energy E and the reduced angular momentum j, computed
here for the first time for BNS simulations and presented in
Fig. 4. The tidal EOB model is consistent with the NR data
up to contact (j ¼ 3:63) and even later, up to j� 3:5.
The effects of tidal interactions are clearly visible in the

NR/EOB waveforms. The comparison of amplitude and
frequency (Fig. 5) indicates that tidal effect become sig-
nificant in the very late part of the inspiral, just before
contact. Given the uncertainties on the NR data, it is not
possible to meaningfully disentangle 1PN (NLO) and
2PN (NNLO) tidal corrections from the LO ones. The T4
tidal model with LO tidal corrections is slightly worse
(� 0:3 rad) than the EOB model when getting close to
contact. The phasing was studied by means of both a
gauge-invariant, frequency-based analysis employing the
Q! diagnostic [19] and a standard time and phase-shift
alignment procedure. The results of the former method are
collected in Fig. 6 and Table II, the ones of the latter in
Fig. 7. The Q! diagnostic is more affected by the noise of
the data which results in somehow larger uncertainties; the
time and phase alignment suffers of ambiguities in the

FIG. 8 (color online). Comparing EOB and NR waveform
moduli for the most relevant subdominant multipoles h23 and
h44. The vertical line marks the NR-defined contact time.
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choice of the interval and potentially underestimates actual
differences accumulated up to the alignment interval. In
summary, while they give slightly different numbers, the
picture emerging from the two phasing analyses is consis-
tent: tidal effects are clearly visible during the late inspiral
up to contact and the current analytical knowledge is
sufficient to match the NR phasing. It is not possible,
however, to distinguish in the NR data the effect of
higher-order tidal effects from LO ones. We observe that
after contact and up to merger (i.e., for about one further
orbit), the 2PN EOB model performs better than any other
analytical tidal model; note however that the extension of
any analytical model beyond contact has only an effective
meaning.

In conclusion, we have shown that the current analytical
knowledge incorporated into the EOB model is sufficient
to reproduce within the uncertainties the numerical data up
to contact. No calibration of any tidal effective-one-body
free parameter is required, beside those already fitted to
binary black holes data. While the 2PN (NNLO) model
minimizes the differences with the NR data, it is not
possible to significantly distinguish it from the 1PN (LO)
model. Obviously, we cannot exclude the presence of a
further amplification of tidal interaction as the star gets
close (as suggested by Ref. [13]), but the present NR data
indicate that this effect, if present, is smaller than what was
believed in the past [19] (i.e., ��2 ¼ 100) and it is not
possible to estimate it precisely. A conservative analysis
points to ��2 < 40, though we think that a more likely
estimate (at one-sigma level) is ��2 < 20. Note in addition
that for higher, more realistic compactness (say C ¼
0:16–0:18) tidal effects are even smaller, thus potentially
more difficult to extract from the numerical data. Similar
considerations also hold for the use of realistic EOS, which
present their own numerical challenges to be used in NR
simulations.

As a consequence, the 2PN-accurate tidal EOB model
[13] used in this work9 should be considered in the future as
the most reliable choice to produce exact/target data for the
development of templates for data-analysis purposes [6].
This work also pointed out the importance of extensive

numerical tests to assess the uncertainties of the numerical
data, and the potential need of new numerical strategies to
perform accurate simulations. Considering that the simu-
lations presented here are the longest and employ the
among the highest resolutions to date, error assessment
and convergence tests appear absolutely necessary in
future studies of this kind. Because the use of significantly
higher resolutions (e.g., �4003 points covering each star)
and extensive tests seem to be computationally unfeasible,
the development of alternative and more accurate numeri-
cal methods seems unavoidable to further improve and
confirm our results.
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