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We numerically construct an one-parameter family of initial data of an expanding inhomogeneous

universe model which is composed of regularly aligned black holes with an identical mass. They are initial

data for vacuum solutions of the Einstein equations. We call this universe model the ‘‘black hole universe’’

and analyze the structure of these initial data. We study the relation between the mean expansion rate of

the 3-space, which corresponds to the Hubble parameter, and the mass density of black holes. The result

implies that the same relation as that of the Einstein-de Sitter universe is realized in the limit of the large

separation between neighboring black holes. The applicability of the cosmological Newtonian N-body

simulation to the dark matter composed of black holes is also discussed. The deviation of the spatial

metric of the cosmological Newtonian N-body system from that of the black hole universe is found to be

smaller than about 1% in a region distant from the particles, if the separation length between neighboring

particles is 20 times larger than their gravitational radius. By contrast, the deviation of the square of the

Hubble parameter of the cosmological Newtonian N-body system from that of the black hole universe is

about 20% for the same separation length.

DOI: 10.1103/PhysRevD.86.044027 PACS numbers: 98.80.Jk

I. INTRODUCTION

The homogeneous and isotropic universe model has
enjoyed great success in explaining the observational
data. By contrast, as anyone well knows, our universe is
not exactly homogeneous and includes a lot of objects
which serve as local nonlinear inhomogeneity. Usually,
effects of local nonlinear structures on the global property
of the universe are considered in an intuitive way or using
some approximate methods. One of the effective ways to
test the validity of our intuition or the approximation is to
construct and study an exact or almost exact solution of the
field equations, which may not be so realistic but should be
able to fully describe nonlinear effects in an inhomoge-
neous universe model.

One example of exact inhomogeneous solutions is the
so-called Swiss-cheese universe model [1,2]: the dust in an
arbitrary number of nonoverlapping spherical regions is
removed in a model of the homogeneous and isotropic
universe filled with dust, and then each removed region
is filled with a Schwarzschild black hole of the same mass
as that of the removed dust. The remaining dust-filled
region, which is corresponding to ‘‘cheese,’’ is playing
the role of the glue to connect Schwarzschild patches.
However, due to the existence of the cheese region, the
Swiss-cheese model may be too special to see significant
effects of local inhomogeneities on the global evolution of

the universe. Hence, it is important to study a universe
model in which black holes are uniformly distributed
without the cheese region. We call such an inhomogeneous
universe model the ‘‘black hole universe’’ in this paper.
About this issue, one innovative work was done by

Lindquist and Wheeler in 1957 [3] and this work has
been recently revisited in Refs. [4,5]. They divided a
virtual 3-sphere into N cells (N ¼ 5, 8, 16, 24, 120 and
600) and put a black hole portion of the Schwarzschild
spacetime on a spherical region centered in each cell.
Then they derived the equation of motion for this ‘‘lattice
universe’’ from junction conditions between the
Schwarzschild cell and the 3-sphere. It is demonstrated
that the maximal radius of the lattice universe asymptotes
to that of the corresponding homogeneous and isotropic
closed universe filled with dust in the limit of the large
number of black holes. Here we should note that the lattice
universe is not an exact solution and there are gaps between
each Schwarzschild black hole (see Fig. 3 in Ref. [3]).
Our purpose in this paper is to numerically construct

initial data of the black hole universe. As a first step, we
consider regularly aligned black holes with an identical
mass. By its symmetry, no anisotropic relative velocities
between neighboring black holes will appear, and this
system is similar to a cold gas, i.e., dust. In order to obtain
such initial data sets, we consider a black hole at the center
of a cubic region and impose the periodic boundary con-
ditions on its faces. A recipe for the initial data of the black
hole universe and numerical procedure is given in Sec. II.
The degree of inhomogeneity of the black hole universe is
demonstrated in Sec. III A by calculating the traceless part
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of the 3-dimensional Ricci curvature tensor of the initial
hypersurface. The structure of the initial hypersurface is
investigated in Sec. III B by searching for horizons.

One of the fascinating issues of inhomogeneous universe
models is the so-called averaging problem. Naively, we
expect that a universe model with local inhomogeneities,
such as the black hole universe, can be globally described
by a homogeneous universe model on average. However,
the effect of local inhomogeneities on the global expansion
definitely exists and the expansion history may be different
from that of the homogeneous and isotropic universe [6–9].
This issue has been discussed a lot in past years (see
reviews [10–12] and references therein), however there
are few analyses which are applicable to inhomogeneous
models with highly nonlinear metric inhomogeneity.1 To
solve this issue, we need to rely on numerical relativity.
Our work may be the first step for the concrete analysis of
the effects of nonlinear inhomogeneities in expanding
universes. Although we cannot address the real time evo-
lution of the black hole universe yet, the one-parameter
family of initial data sets can be regarded as a fictitious
time evolution of the black hole universe. Using the initial
data sets, we study the cosmic volume expansion rate of the
black hole universe model in Sec. III C.

The cosmological N-body simulation is a powerful tool
for studying the structure formation in the universe by
dealing with the motion of point particles, based on the
cosmological Newtonian approximation. Since the inter-
action between these particles is the only gravity, the
cosmological N-body simulation follows the time evolu-
tion of the dark matter in the cosmological context. The
black hole is a candidate of the ingredient for the dark
matter, and it is believed that the cosmological N-body
simulation is applicable also to the black-hole dark matter.
But it is a quite nontrivial issue whether the point particles
in the cosmological N-body simulation can be simply
identified with black holes. Hence, it is important to see
in what situation the cosmological Newtonian N-body
simulation is valid for the black hole universe. This issue

is discussed in Sec. III D. Section IV is devoted to a
summary.
In this paper, we use the geometrized units in which the

speed of light and Newton’s gravitational constant are one,
respectively.

II. CONSTRUCTION OF INITIAL DATA
FOR THE BLACK HOLE UNIVERSE

A. Constraint equations

In this paper, we are interested in the initial data of the
vacuum Einstein equations. The initial data of the Einstein
equations is equivalent to intrinsic and extrinsic geometries
of a spacelike hypersurface, i.e., the intrinsic metric �ij and

the extrinsic curvature Kij, which represents how the

spacelike hypersurface is embedded into the 4-dimensional
spacetime. These are partially determined by the following
four components of the Einstein equations:

R þ K2 � KijK
ij ¼ 0; (1)

DjK
j
i �DiK ¼ 0; (2)

where R and Di are Ricci curvature scalar and the cova-
riant derivative with respect to the intrinsic metric �ij,

respectively, and K ¼ �ijKij. Equation (1) is called the

Hamiltonian constraint, whereas Eq. (2) is called the
momentum constraint.
Following an established procedure (see, e.g., Ref. [15]),

we adopt the Cartesian spatial coordinate system and
rewrite �ij and Kij as

�ij ¼ �4~�ij; (3)

Kij ¼ ��10

�
~DiXj þ ~DjXi � 2

3
~�ij ~DkX

k þ Âij
TT

�

þ 1

3
��4 ~�ijK; (4)

where � :¼ ðdet�ijÞð1=12Þ, ~Di is covariant derivative with

respect to the conformal metric ~�ij, and Âij
TT satisfies the

transverse and traceless conditions,

~D jÂ
ij
TT ¼ 0; ~�ijÂ

ij
TT ¼ 0: (5)

The conformal factor � is determined so that the con-
straint equations are satisfied. The conformal metric ~�ij

has not six but five independent components due to the
constraint det~�ij ¼ 1. The three of the five components of

~�ij can be always eliminated by the spatial coordinate

transformation, and hence there are two physically mean-
ingful components which can be freely chosen.
In the decomposition (4), mutually independent six

components of Kij are expressed by Xi, Âij
TT and K. The

longitudinal traceless part composed of Xi is determined so
that the constraint equations are satisfied, whereas the trace

1One of few exceptional examples was given in Ref. [13].
They studied the volume expansion rate of a kind of the Swiss-
cheese model and showed that the cosmic volume expansion can
be accelerated by nonlinear inhomogeneities. While we were
writing this paper, Ref. [14] appeared. In Ref. [14], the authors
analytically constructed N-body solutions of Einstein’s con-
straint equations by considering regularly arranged distributions
of discrete masses in topological 3-spheres. Significant differ-
ences between our present work and Ref. [14] are the spatial
topology and the existence of the cosmic volume expansion. In
our present case, the spatial topology is T3 with one point
removed, and the expansion rate is finite while the initial data
sets considered in Ref. [14] have a topology of S3 with N points
removed, and their expansion rates vanish, i.e., time symmetric.
One of the remarkable advantages of our work over Ref. [14] is
that a dynamical simulation of an expanding universe is possible
starting from our initial data, while only a contracting universe is
possible with the initial data given in Ref. [14].
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part K is related to the degree of freedom to choose the
foliation of the spacetime by the family of spacelike hyper-
surfaces, or in other words, time slicing. By contrast, the

transverse and traceless part Âij
TT has two independent

components which can be freely chosen. These two com-

ponents of Âij
TT and the physically meaningful two compo-

nents of ~�ij are usually regarded as physical degrees of

freedom to set initial data for gravitational waves.
In order to avoid the cosmic volume expansion caused

by artificial gravitational radiation, we assume trivial form
of the conformal metric and no transverse and traceless
part of the extrinsic curvature

~� ij ¼ �ij; (6)

Â
ij
TT ¼ 0; (7)

where �ij is Kronecker’s delta. As usual, we denote the

inverse of ~�ij by ~�ij which is also equal to Kronecker’s

delta �ij. Then, Eqs. (1) and (2) are written as

4�þ 1

8
ð ~LXÞijð ~LXÞij��7 � 1

12
K2�5 ¼ 0; (8)

4 Xi þ 1

3
@i@jX

j � 2

3
�6@iK ¼ 0; (9)

where 4 is the flat Laplacian, @i is the ordinary de-
rivative, and

ð ~LXÞij :¼ @iXj þ @jXi � 2

3
�ij@kX

k: (10)

Here, note that Xi :¼ ~�ijX
j ¼ Xi and @i :¼ ~�ij@j ¼ @i,

ð ~LXÞij ¼ ~�ik ~�jlð ~LXÞkl ¼ ð ~LXÞij, etc. We solve these equa-

tions by assuming an appropriate functional form of K as
shown below.

B. Boundary condition and the trace
of the extrinsic curvature

As mentioned above, we adopt the Cartesian coordinate
system x ¼ ðx; y; zÞ and put a nonrotating black hole at the
origin x ¼ 0 denoted hereafter by O. The black hole is
represented by a structure like the Einstein-Rosen bridge in
our initial hypersurface. Thus the origin O corresponds to
the asymptotically flat spatial infinity and is often called
the puncture. We focus on a cubic region �L � x � þL,
�L � y � þL and�L � z � þL and call this region the
domain D. Since our aim is to construct the initial data of
an expanding universe model with periodically aligned
black holes, we impose the periodic boundary conditions;
a point x ¼ ð�L; y; zÞ is identified with a point x ¼
ðþL; y; zÞ, etc. Because of this boundary condition, the
domain D is homeomorphic to the 3-torus T3. Since
infinity is not included in the spacetime manifold, the
initial hypersurface is D with O removed, which is de-
noted by D-fOg, and thus it is homeomorphic to T3 with

one point removed.2 The covering space of D-fOg
represents a cosmological model with regularly aligned
black holes as shown in Fig. 1. Hereafter, we regard D as
a cubic domain with boundary @D in the covering space.
Here, we again note that the trace part of the extrinsic

curvature K corresponds to the degree of freedom to
choose the time slicing. In order to find the appropriate
time slicing condition, first of all, we see the homogeneous
and isotropic universe model. In this case, the expansion
rate H which is called the Hubble parameter is related to
the extrinsic curvature by

H ¼ � 1

3
K: (11)

The above relation implies that K of the expanding black
hole universe model must be negative at least around the
boundary of the cubic domainD. By contrast, the maximal
slicing condition K ¼ 0 is appropriate for the foliation of
the domain in the neighborhood of the asymptotically flat
spatial infinity, and henceK should vanish in the vicinity of
O (see Appendix ).
Taking the above discussions into account, we assume

KðxÞ ¼ �3HeffWðRÞ; (12)

where Heff is a positive constant which corresponds to the
effective Hubble parameter, R :¼ jxj, and

WðRÞ ¼

8>>><
>>>:
0 for r 0�R� ‘

��36½ðR��� ‘Þ6��6�6 for ‘�R� ‘þ�

1 for ‘þ��R

;

(13)

‘ and � being constants which satisfy ‘ < �< L (see
Fig. 2).

FIG. 1 (color online). The cubic region of our coordinates.

2A similar configuration to our case was considered within the
Lemaı̂tre-Tolman family of exact models in Refs. [16,17].
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C. Extraction of the singularity at the center

Since K vanishes in the vicinity of the origin O, Xi and
� should behave as those of the Schwarzschild spacetime
with the static isotropic coordinate system,

Xi ’ 0; (14)

� ’ �c þ M

2R
; (15)

where �c and M are positive constants. Since � itself is
singular at O, we cannot handle � numerically. Thus,
instead of �, we solve the constraint equations for the
following new variable c :

c ðxÞ :¼ �ðxÞ � M

2R
½1�WðRÞ�: (16)

Thanks to the second term proportional to ½1�WðRÞ� in
the right-hand side of the above equation, c is regular atO
and satisfies the periodic boundary conditions.

The mass of a black hole is given by the Arnowitt-Deser-
Misner (ADM) mass which is defined by the surface
integral over the spacelike infinity at O. To see the ADM
mass explicitly, we introduce a new radial coordinate

~R ¼ M2

4R
: (17)

Then, by using a spherical polar coordinate system, the
asymptotic form of the infinitesimal line element for
R ! 0, or equivalently, ~R ! 1, becomes

d l2 ’
�
�c þ M

2R

�
4½dR2 þ R2ðd�2 þ sin2�d�2Þ� (18)

¼
�
1þ�cM

2 ~R

�
4½d ~R2 þ ~R2ðd�2 þ sin2�d�2Þ�: (19)

It is seen from the last equality of Eq. (19) that the mass of
a black hole is given by �cM. Here note that there is a
freedom of constant scaling of coordinates x ! Cx. Using

this freedom, we impose �c ¼ 1, and thus the mass of a
black hole is equal to M.

D. Hubble equation as an integrability condition

Integrating Eq. (8) over the physical domainD-fOg, we
obtain the following equation:

2�Mþ1

8

Z
D-fOg

ð ~LXÞijð ~LXÞij��7dx3�3

4
H2

effV¼0; (20)

where, by noting that the origin O can be regarded as the
only boundary of D-fOg with the periodic boundary con-
dition, the integral of �� is rewritten asZ
D-fOg

��d3x¼�lim
R!0

Z 2�

0

Z �

0

@�

@R
R2 sin�d�d�¼ 2�M;

(21)

and we have defined V by

V :¼
Z
D-fOg

W2�5d3x: (22)

By rewriting Eq. (20), we have the effective Hubble equa-
tion as

H2
eff ¼

8�

3
ð�BH þ � KÞ; (23)

where �BH and � K are defined by

�BH :¼ M

V
; (24)

� K :¼ 1

16�V

Z
D-fOg

ð ~LXÞijð ~LXÞij��7d3x: (25)

Since V may be regarded as the effective volume of the
expanding region, �BH and � K may be regarded as the
mass density of black holes and the kinetic energy density
of the spacetime, respectively. The effective Hubble equa-
tion gives a relation between two constants, the mass of the
black holeM and the effective Hubble parameterHeff , and,
at the same time, it is an integrability condition of the
constraint equations. How to guarantee this relation will
be described in Sec. II F.

E. Momentum constraints

In this subsection, we rewrite the momentum constraints
(9) into the numerically solvable forms. First, we define
Z by

Z :¼ @iX
i: (26)

Then, by taking the divergence of Eq. (9), we obtain

4 Z ¼ 1

2
@ið�6@iKÞ: (27)

Equation (9) is rewritten as

FIG. 2 (color online). The functional form of WðRÞ.
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4 Xi ¼ 1

3
@iZþ 2

3
�6@iK: (28)

The system we consider is unchanged if it rotates 2�=3
radians around the line x ¼ y ¼ z. By virtue of this dis-
crete symmetry, it is enough to solve Eq. (28) for only one
component of Xi, since the other two components can be
immediately given by this symmetry.

The boundary condition for Xx is given as follows,

Xx ¼ 0 on x ¼ 0 and x ¼ L; (29)

@yX
x ¼ 0 on y ¼ 0 and y ¼ L; (30)

@zX
x ¼ 0 on z ¼ 0 and z ¼ L: (31)

The first condition is the Dirichlet type and the second and
third ones are Neumann type boundary conditions. These
boundary conditions lead toZ

D-fOg
Zdx3 ¼

Z
D�fOg

@iX
idx3 ¼ 0: (32)

The above equation is a consistency condition that the
solutions should satisfy.

It should be noted that the integrals of the source terms
of the Poisson Eqs. (27) and (28) overD-fOg should vanish
by the consistency with the periodic boundary conditions
and the boundary condition at the originO. We can see that
these conditions are automatically satisfied. The integral of
the source term of Eq. (27) is equivalent to the surface
integral over the spatial infinity at O, whereas K vanishes
in the neighborhood of O. Hence the integral of the source
term of Eq. (27) vanishes. Since @xZ and �6@xK are odd
functions of x, we haveZ þL

�L
dx

�
� 4

3
@xZþ 1

3
�6@xK

�
¼ 0: (33)

Hence, the integral of the x-component of the source term
of Eq. (28) vanishes. The same is true for the other com-
ponents of Eq. (28).

F. Numerical procedure

As shown in the preceding section, we have to solve the
following three coupled Poisson equations,

4c ¼ 4
�
M

2R
WðRÞ

�
� 1

8
ð ~LXÞijð ~LXÞij��7 þ 1

12
K2�5;

4Z ¼ 1

2
@ið�6@iKÞ; 4Xi ¼ � 1

3
@iZþ 2

3
�6@iK:

In order to get numerical solutions of the above equations,
we adopt the method of finite differentiations. By replacing
all derivative terms by finite differences, we have a very
large simultaneous equation. We solve this simultaneous
equation by the Successive Over-Relaxation method. We
denote the values of c , Z and Xi at each iteration step by
c 0; c 1; c 2 . . . , and so on, where the subscript 0 denotes a

trial value. At the (nþ 1)-th step of the iteration, the terms
corresponding to the source terms of the Poisson equations
are estimated by using c n, Zn and Xi

n.
If we complete the n-th step of the iteration, we obtain

Zn which satisfies the boundary conditions (29)–(31).
Here, we should note that this Zn does not necessarily
satisfy the consistency condition (32). In order to obtain
Zn which satisfies Eq. (32), we can use the degree of
freedom to add a constant to Z as follows,

Z ! Z0 :¼ Z� 1

L3

Z
D-fOg

dx3Z: (34)

Z0 is also a solution of Eq. (27) and further satisfies
Eq. (32), if Z is a solution of Eq. (27). Thus, before evaluat-
ing the source term, we reset the value of Zn as follows:

Zn ! Z0
n ¼ Zn � 1

L3

Z
D-fOg

dx3Zn: (35)

It should also be noted that the boundary conditions
already given are not enough to close the simultaneous
equation, since these boundary conditions do not deter-
mine homogeneous solutions of the Poisson equations for
c and Xi, i.e., their zero modes. (The zero mode of Z is
already fixed by Eq. (35).) For this purpose, we need to
specify the values of c and Xi at one of all numerical grids.
We fix the zero modes of c and Xi so that c ð0Þ ¼ 1 and
Xið0Þ ¼ 0, or in other words, before evaluating the source
terms, we add constants to c n and Xi

n as

c nðxÞ ! c 0
nðxÞ :¼ c nðxÞ � c nð0Þ þ 1; (36)

Xi
nðxÞ ! X0i

n ðxÞ :¼ Xi
nðxÞ � Xi

nð0Þ: (37)

Note that c ð0Þ ¼ 1 is equivalent to the choice of �c ¼ 1
in Eq. (15). Eventually, we evaluate the source terms by
using c 0

n, Z
0
n and X0i

n instead of c n, Zn and Xi
n. The value

of Heff is also evaluated through Eq. (23) by using c 0
n, Z

0
n

and X0i
n so that the integrability condition is satisfied.

FIG. 3 (color online). Results of convergence test.
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G. Results

We solved the constraint equations in the parameter
domain 2:8Rg � L � 20Rg, where

Rg :¼ M

2
: (38)

As will be shown later, the horizons of a black hole are
located at R ’ Rg. The parameters � and ‘ which deter-

mine K are set to be � ¼ 0:2Rg and ‘ ¼ L� 0:4Rg. We

could not get convergence for L smaller than 2:8Rg. This

result implies that there is no solution for L < 2:8Rg on our

assumptions: conformally flat metric and no transverse-
traceless part of the extrinsic curvature. The results of the
convergence test for each value of L=Rg are shown in

Fig. 3. The second order convergence is confirmed in all
cases for the value ofH2

eff where the reference valueH
2
ref is

given by the least-square fit. We plot c , Z and Xx on z ¼ 0
and z ¼ L planes as functions of x and y for L ¼ 2:8Rg and

L ¼ 10Rg in Figs. 4–6.

FIG. 4 (color online). c on z ¼ 0 and z ¼ L planes as functions of x and y for L ¼ 2:8Rg and L ¼ 10Rg.

FIG. 5 (color online). Z on z ¼ 0 and z ¼ L planes as functions of x and y for L ¼ 2:8Rg and L ¼ 10Rg.
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III. ANALYSIS OF THE INITIAL DATA

A. Inhomogeneities

First, we demonstrate the inhomogeneities of our initial
data. For this purpose, we investigate the following quantity:

� :¼ �ac�bdRT
abR

T
cd

�ik�jlRijRkl

; (39)

whereRij andRT
ij denote the 3-dimensional Ricci curvature

tensor and its traceless part, respectively. We use � as a
measure of homogeneity and isotropy, since a region with
� ¼ 0 and @iR ¼ 0 is homogeneous and isotropic. Since
we are interested in the inhomogeneities far from black holes,
we plot the value of � on z ¼ L plane, which is one of the
faces of the domainD, as a function of x and y in Fig. 7. The
quantity � almost vanishes in the vicinity of a vertex

x ¼ y ¼ z ¼ L. Further, the norm of the traceless part of
the extrinsic curvature ��12ð ~LXÞijð ~LXÞij is much less than

the square of the trace part of the extrinsic curvatureK2 in the
neighborhoods of the vertices. We find from the Hamiltonian
constraint together with this fact that R ’ �K2 ¼ constant
and hence Rij ’ �3H2

eff�ij, in these regions. Thus, the

neighborhoods of the vertices are well approximated by the
Milne universe model which is the Minkowski spacetime
foliated by the family of homogeneous and isotropic space-
like hypersurfaces with a negative Ricci curvature scalar.
Conversely, around the center of a face of D (x ¼ y ¼ 0
and z ¼ L), the inhomogeneity remains even if L � Rg. We

may understand this result as follows. If the neighborhoods of
all faces ofD were well approximated by the Milne universe
model, a 3-hyperboloid would be tiled with the lattice
structure shown in Fig. 1. However, this consequence
conflicts with a mathematical theorem about ‘‘tiling’’[4,18].

FIG. 6 (color online). Xx on z ¼ 0 and z ¼ L planes as functions of x and y for L ¼ 2:8Rg and L ¼ 10Rg.

FIG. 7 (color online). � on z ¼ 0 and z ¼ L planes as functions of x and y for L ¼ 2:8Rg and L ¼ 10Rg.
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Therefore, our initial data cannot be homogeneous and
isotropic in the neighborhoods of all faces of D even for
L � Rg as is explicitly shown in Fig. 7.

B. Horizons

We define a horizon as a spacelike closed 2-surface with
vanishing expansion of a null vector field normal to the
2-surface. There are two independent null directions nor-
mal to the 2-surface, so there are two kinds of horizons
accordingly. Here, we consider these horizons in the
domain D-fOg. A closed 2-surface divides the domain
D-fOg into two regions. In this paper, since we are inter-
ested in the horizons associated with a black hole, we focus
on a case in which one of the two regions includes the
puncture. We call the domain including the puncture the
inside, whereas the other domain is called the outside.
Then, we call the direction from a point on a closed
2-surface to the outside the outgoing direction, whereas
the opposite direction is called ingoing direction.
Accordingly, we name a horizon with vanishing expansion
of the outgoing null vector field the black hole (BH)
horizon, whereas a horizon with vanishing expansion of
the ingoing null vector field is named the white hole (WH)
horizon.

The expansions of the null vector fields normal to this
2-surface are given by

	� ¼ ð�ij � sisjÞð�Disj � KijÞ; (40)

where the subscript þ means that of the outgoing null,
whereas the subscript� represents that of the ingoing null,
and si is the outgoing unit vector which is normal to this
2-surface and tangent to the initial hypersurface. Defining
~si and ~si as

~s i :¼ c 2si; ~si :¼ �ij~s
j; (41)

we rewrite 	� in the form

	� ¼ ð~si~sj � �ijÞ
�
��6ð ~LXÞij þ 1

3
�ijK

�
���2@i~s

i � 4��2~si@i ln�: (42)

In this paper, instead of solving the equation 	� ¼ 0,
we investigate the expansions of the null vector fields
normal to various spheres centered at the origin O. The
conformal unit vector ~si normal to the sphere of the radius
R is given by

~s i ¼ xi

R
: (43)

If the initial hypersurface is almost spherically symmetric
near the horizon, the horizon is also almost spherically
symmetric and ~si is a good approximation of the unit vector
field normal to the horizon. In Fig. 8, we plot the expan-
sions 	� as functions of R on the following three lines:

ðiÞy ¼ 0; z ¼ 0; ðiiÞx ¼ y; z ¼ 0; ðiiiÞx ¼ y ¼ z:

From these figures, we see that there are spheres which
are very good approximations of horizons; the expansion
	þ or 	� at the intersections of these spheres and the lines
(i)–(iii) vanishes. The coordinate radius R of the BH hori-
zon is equal to 1:14Rg in the case of L ¼ 2:8Rg, whereas it

is equal to Rg in the case of L ¼ 10Rg. The coordinate

radius R of the WH horizon is equal to 0:92Rg in the case

of L ¼ 2:8Rg, whereas it is equal to Rg in the case of

L ¼ 10Rg. In the case of L ¼ 2:8Rg, the WH horizon is

located inside the BH horizon. Since the domain R & Rg is

well approximated by the Schwarzschild BH, we can say
that the initial hypersurface is passing through the future of
the bifurcation point of the horizons for L ¼ 2:8Rg. On the

other hand, in the larger L cases, since the WH and BH
horizons coincide with each other, we may say that the
initial hypersurface is passing through a domain very close
to the bifurcation point.

FIG. 8 (color online). 	� as functions of R for L ¼ 2:8Rg and L ¼ 10Rg.
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C. Effective Hubble equation

The mass density of black holes �H defined by Eq. (24)
is roughly estimated at about M=8L3. If the kinetic energy
density � K defined by (25) is much less than �BH, the
effective Hubble parameter Heff is roughly estimated at
about H2

eff � 8��BH=3� �M=3L3. Then, in the covering

space of the domainD-fOg, the numberNBH of black holes
within a sphere of the cosmological horizon radius H�1

eff is

about

NBH � 1

M
� 4�

3
H�3

eff �BH � 1

4

�
3L3

2�R3
g

�
1=2

: (44)

If L=Rg is much larger than unity, there are many black

holes within a sphere of the cosmological horizon radius,
and thus the black hole universe would be very similar to
the Einstein-de Sitter (EdS) universe.

From the above consideration, we expect that the
effective Hubble parameter and the mass density of
black holes asymptotically satisfy the Hubble equation of
the EdS universe in the limit of L=Rg ! 1. That is, we

expect that the effective Hubble parameter behaves asymp-
totically as

H2
eff !

8�

3
�BH: (45)

This means that the contribution of � K decreases with
larger L=Rg. We depict � K=�BH as a function of L=Rg in

Fig. 9. It is seen from this figure that � K=�BH asymptoti-
cally vanishes for large L=Rg and the effective Hubble

equation approaches that of the EdS universe.
It is suggestive to regard the one-parameter family of the

initial data sets as a fictitious time evolution of the black
hole universe. Equation (23) gives the effective Hubble
parameter at each time of the fictitious evolution. If we
define an effective scale factor by

aV :¼ V1=3; (46)

Eq. (45) means thatH2
eff asymptotically behaves as / 1=a3V

when the universe expands enough.
Other remarkable ways to define effective scale factors

are to use the proper area of the boundary and the proper
length of the edge of the cubic domain D. Let aA and aL
denote the effective scale factors defined by using the
proper area and the edge length, respectively. aL is defined
by the proper length of a edge itself and aA is defined by

aA :¼
ffiffiffiffi
A

6

s
; (47)

where A is the proper area of @D. In addition, we define the
fiducial scale factor aEdS by using the Hubble equation of
the EdS universe as follows:

a3EdS :¼
8�

3H2
eff

: (48)

The relation between effective scale factors and the effec-
tive Hubble parameter is shown in Fig. 10. All effective

scale factors asymptotically behave as / H�2=3
eff for larger

L=Rg, that is, the behavior of the effective Hubble parame-

ter as a function of an effective scale factor agrees with that
of the EdS universe at late time of the fictitious time
evolution. We note that, even though all effective scale

factors are asymptotically proportional to H�2=3
eff , the pro-

portionality coefficients are different from each other. It
seems that the proportionality coefficient for aV asymptoti-
cally agrees with that for aEdS, but it is not true for aA and
aL (see the right panel of Fig. 10).

D. Comparison with the Newtonian approximation
and backreaction effect

One possible way of approximation which consider-
ably reduces the numerical effort is the cosmological
Newtonian approximation. The cosmological N-body
simulation based on this approximation scheme is very
useful to study the structure formation in the universe
indeed. TheN-body simulation follows the motion of point
particles gravitationally interacting with each other, and
these particles are regarded as the dark matter in the
cosmological context. The black hole is a candidate for
the ingredient of the dark matter in our universe. However,
since the black hole is a highly relativistic object, it is
nontrivial whether the dark matter composed of black holes
is well described by the cosmological N-body simulation
based on the Newtonian approximation. Our black hole
universe model is a relativistic version of the cosmological
N-body system, and thus, by using this model, we can see
in what situation the Newtonian N-body simulation cor-
rectly describes the motion of the dark matter composed of
black holes.
In the cosmological Newtonian approximation scheme,

the gravitational force is given by the spatial gradient of the
Newtonian potential � which is related to the conformalFIG. 9 (color online). � K=�BH as a function of L=Rg.
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factor� by 1� 2� ¼ �4, and thus the Newtonian poten-
tial is obtained by solving the Hamiltonian constraint,
which gives the Hubble equation after averaging. Since
the metric is assumed to be almost equal to that of the EdS
universe model, the term proportional to ð ~LXÞijð ~LXÞij
should be so small that it is a negligible higher order
correction in the Hamiltonian constraint. Hence, we do
not need to solve the momentum constraint.

Before considering a point particle as the ingredient of
the N-body simulation, we assume that the particle is a
spherical ball with the finite energy density �ðxÞ. Further,
we assume the similar situation to our black hole universe;
the particle has the mass M, the center of the particle is
located at the origin O in the cubic domainD whose edge
length is 2L, and the periodic boundary condition is im-
posed. By definition, we have

M ¼
Z
D
�ðxÞd3x: (49)

The time slicing condition up to the Newtonian order is
assumed to be

K ¼ �3HN; (50)

where HN is the effective Hubble parameter up to the
Newtonian order and is determined by

H2
N ¼ 8�

3
� M

8L3
: (51)

Here note that HN is the same as the Hubble parameter of
the background EdS universe model. Then, since nonlinear
terms with respect to � in the Hamiltonian constraint are
linearized with respect to �, the Hamiltonian constraint
takes the following form in the cosmological Newtonian
scheme [19,20]:

4� ¼ 4�

�
�ðxÞ � M

8L3

�
: (52)

In the cosmological Newtonian approximation scheme, �
can be much larger than M=8L3, but � should be so small
that j�j is much smaller than unity.
Let us consider the case in which the size of the particle

is much smaller than L. In this case, since the tidal force
can be neglected, it is enough to consider the energy
density for a point-particle given by M�ðxÞ instead of the
finite energy density �ðxÞ. Using this approximation, we
can accurately estimate the gravitational force produced by
a particle at points of other particles. Then the Hamiltonian
constraint in the cosmological N-body system is given by

4� ¼ 4�M�ðxÞ � �M

2L3
: (53)

Equation (53) is the basic equation for the cosmological
N-body simulation based on the Newtonian approximation
scheme.
In our case, since the � diverges at O in the black hole

universe, it is obvious that the cosmological Newtonian
approximation is not applicable in whole region ofD-fOg.
When we compare the black hole universe with the
cosmological Newtonian system given by Eq. (53), the
point-particle approximation, i.e., �ðxÞ ¼ M�ðxÞ, should
be regarded as a technical simplification. Hence, it is a very
nontrivial issue whether a point-particle in the cosmologi-
cal Newtonian N-body system may be identified with a
black hole.
In order to numerically obtain solutions of Eq. (53), we

decompose � as follows:,

� ¼ ��M

R

�
1�WðRÞ

�
: (54)

The equation for � is given by

4� ¼ �4
�
M

R
WðRÞ

�
� �M

2L3
: (55)

This can be numerically integrated in D-fOg by using the
same method as in Sec. II F.

FIG. 10 (color online). Effective scale factors (left panel) and deviations of them from the fiducial scale factor aEdS y (right panel) as
functions of the effective Hubble parameter.
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To show the deviation of the solution obtained by the
cosmological Newtonian approximation from the corre-
sponding relativistic one, we plot the following quantity:


 :¼
���������

4 � 1þ 2�

�4

��������: (56)

In Fig. 11, 
 is plotted as a function of the coordinates
x and y on z ¼ 0 and z ¼ L planes for L ¼ 2:8Rg and

L ¼ 20Rg, respectively. We can see that while the devia-

tion around the boundary of D is a few tens of percent for
L ¼ 2:8Rg, it is less than 1% for L ¼ 20Rg. This result

implies that the cosmological Newtonian approximation
predicts the spatial metric around the boundary of D very
accurately for L � 20Rg.

As mentioned, the effective Hubble parameter HN de-
fined by Eq. (51) agrees with that of the background
Einstein-de Sitter universe model. The so-called backreac-
tion effect is the change of the Hubble parameter from the
background value due to the nonlinear effect of the inho-
mogeneities. Thus, in the present case, we call the effect
which causes a difference between the full relativistic
Hubble parameter Heff and the background value HN the
backreaction effect.

To see the significance of the backreaction effect, we
compare H2

eff to H2
N with fixed L=Rg. As a result of the

numerical investigation, we find that H2
N has about 20%

deviation from H2
eff even for L ¼ 20Rg. We plot the value

of 1�H2
eff=H

2
N as a function of L=Rg in Fig. 12. It is

worthwhile to notice that the Newtonian Hubble parameter
is larger than the relativistic one. This means that the
backreaction effect acts as the brake in the black hole
universe model. Further, our result means that, in the
case of L � 20Rg, the backreaction effect is so large that

the cosmological Newtonian approximation cannot predict

correctly the global cosmic volume expansion rate.
However, Fig. 12 suggests that the deviation of HN from
Heff decreases with larger L=Rg, and hence it seems that
the NewtonianN-body simulation becomes correct asymp-
totically for L=Rg ! 1.

As already shown, in the case of L ¼ 20Rg, the relative

difference in the spatial metric between the Newtonian
scheme and the full relativistic one is a few percents on
the boundary of D, and hence the relative differences in
the length of an edge and the area of a face are also a few
percents. Furthermore, � K defined by Eq. (25) is about 2%
of �BH (see Fig. 9). Thus, the difference between H2

eff and

H2
N comes from the difference between the volume V

defined by Eq. (22) and 8L3; V is about 1.3 times larger
than 8L3.
Here, we should note that the backreaction effect is large

even in the case of L ¼ 20Rg, but, as shown in the preced-

ing section, the expansion law of the black hole universe
model might be almost the same as that of the EdS
universe. These results would imply that the backreaction

FIG. 11 (color online). 
 on z ¼ 0 and z ¼ L surfaces for L ¼ 2:8Rg and L ¼ 20Rg.

FIG. 12 (color online). 1�H2
eff=H

2
N as a function of L=Rg.
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effect in the black hole universe model would not change
the expansion law from the EdS universe model but
apparently shifts the time to the future. However, in order
to get a definite conclusion, the investigation of the time
evolution is necessary.

IV. SUMMARYAND CONCLUSION

In this paper, we have constructed numerically the initial
data of an expanding universe model which is composed of
regularly aligned black holes. This system is equivalent to
a black hole located at the center O of a cubic domain D
with periodic boundary conditions. The black hole is rep-
resented by a structure like the Einstein-Rosen bridge, and
thus O corresponds to the asymptotically flat spatial infin-
ity. Since the physical domain does not include infinity, the
physical domain is D with O removed, i.e., D-fOg whose
topology is T3 with one point removed. The functional
form of the trace of the extrinsic curvature KðxÞ has been
chosen so that K is a negative constant denoted by �3Heff

in the neighborhoods of the faces ofD and vanishes in the
neighborhood ofO, whereHeff corresponds to the effective
Hubble parameter. These requirements are compatible with
a finite expansion rate of the universe and the puncture
method to numerically treat a black hole, respectively.
Then, we can solve constraint equations by giving the
parameter L=Rg, where L is the coordinate length of an

edge of the cubic domain D, and Rg gives a coordinate

value which is almost equal to the coordinate radius of the
black hole horizon. The value of Heff is determined so that
the integral of the Hamiltonian constraint over D-fOg is
compatible with the periodic boundary conditions; this
integral leads to the effective Hubble equation. We find
from numerically obtained solutions that the neighbor-
hoods of vertices of D are well approximated by the
Milne universe, whereas the other region remains inhomo-
geneous even in the case of L � Rg. This result implies

that the initial data of the black-hole universe model is
inhomogeneous even near the faces of D irrespective of
the value of L=Rg.

We could find one white hole and one black hole horizon
in the present initial hypersurface of D-fOg, and both are
almost spherically symmetric. This result implies that the
region R & Rg is well approximated by the Schwarzschild

black hole, and the initial hypersurfaces considered here
are passing through the future of the bifurcation point of
the horizons or a very close point to it.

In order to compare our initial data with the Einstein-
de Sitter (EdS) universe, we studied the relation between
the effective mass density �BH of black holes and the
effective Hubble parameter Heff , which are defined in a
simple and natural way. Then, our numerical solutions
imply that �BH and Heff asymptotically satisfy the
Hubble equation of the EdS universe for L � Rg. Once

we regard our one-parameter family of initial data sets as a

fictitious time evolution of the black hole universe, our
result would imply that the Hubble equation of the EdS
universe would be realized when the universe expands
enough.
The validity of the Newtonian approximation in the

system has also been discussed. We numerically solved
the Hamiltonian constraint equation simplified by the cos-
mological Newtonian approximation and compared it with
the full solution with fixed L=Rg. We found that the devia-

tion of the spatial metric obtained by the cosmological
Newtonian approximation from that of the full calculation
is less than 1% for L=Rg ¼ 20 around the boundary of D
and better for larger values of L=Rg. However, the devia-

tion of the Hubble parameter defined in the cosmological
Newtonian approximation scheme and full relativistic one
is 20% even for L=Rg ¼ 20. Thus, we may say that, as

expected, the backreaction effects of the inhomogeneities
on the cosmic volume expansion are very large in the case
of L � 20Rg. However, we may also say that, for the larger

L=Rg, the backreaction effects become smaller. It is worth-

while to notice that the backreaction effect acts as the brake
for the cosmic volume expansion.
Here we note that all our results might depend on the

assumptions which have been made in Secs. II A and II B.
Since we have not solved the evolution equation, we
cannot address the real time evolution of the black hole
universe at all. Therefore, it is not clear if the dynamics of
the black hole universe can be described by the EdS
universe on average or not. One should keep in mind that
the black hole universe cannot be exactly the EdS universe
and the effect of inhomogeneities definitely exists. The
effect of the inhomogeneities might give a qualitative
difference of the global expansion history of the universe
[8,9,21,22]. By contrast, the present results would imply
that the backreaction effect would not change the
expansion law of the black hole universe from that of the
EdS universe model; the backreaction effects might merely
shift the time to the future. To attack this issue we
need further numerical efforts, and we leave it as a future
work.
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APPENDIX A: CONSTANT MEAN CURVATURE
SLICES IN SCHWARZSCHILD SPACETIME

Let us consider the Schwarzschild spacetime, whose
metric is given by

d s2 ¼ �fðrÞdt2 þ 1

fðrÞ dr
2 þ r2d�2; (A1)

where

fðrÞ ¼ 1� rg

r
: (A2)

We consider a constant mean curvature (CMC) slice given
by the form of

t ¼ hðrÞ: (A3)

The unit normal vector is given by

n� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�1 � fh02

p ðf�1; fh0; 0; Þ: (A4)

The CMC slice condition is given by

r�n
� ¼ �K , 1

r2
@rðr2nrÞ ¼ �K , nr ¼ � 1

3
Krþ C

r2

, f�1ð1� f2h02Þ ¼ Fðr; rg; K; CÞ
:¼ 1

1� rg
r þ ð� 1

3Krþ C
r2
Þ2 ; (A5)

where C is the integration constant. Then, line elements on
the CMC slice are given by

d ‘2 ¼ Fðr; rg; K; CÞdr2 þ r2d�2: (A6)

The transformation to the isotropic coordinate can be
done as follows:

d ‘2 ¼ �4ðdR2 þ R2d�2Þ; (A7)

R ¼ C exp

�
�
Z r

rmin

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr; rg; K; CÞ

q
=r

�
; (A8)

� ¼
ffiffiffiffiffiffiffiffiffi
r=R

p
; (A9)

where rmin is the largest root of Fðr; rg; K; CÞ ¼ 0 and r ¼
rmin corresponds to the throat. The minus sign is used in the
region beyond the throat. We can easily check that, in the
limit of r ! 1, the isotropic coordinate R has finite value
if K � 0. While R ¼ 0 for r ! 1 if K ¼ 0. Hence, the
coordinate region with R has an inside spherical boundary
with K � 0. This property is not compatible with the
puncture method.
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