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We consider the construction of generic spherically symmetric thin-shell traversable wormhole space-

times in standard general relativity. By using the cut-and-paste procedure, we comprehensively analyze

the stability of arbitrary spherically symmetric thin-shell wormholes to linearized spherically symmetric

perturbations around static solutions. While a number of special cases have previously been dealt with in

scattered parts of the literature, herein we take considerable effort to make the analysis as general and

unified as practicable. We demonstrate in full generality that stability of the wormhole is equivalent to

choosing suitable properties for the exotic material residing on the wormhole throat.
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I. INTRODUCTION

Traversable wormholes are hypothetical tunnels in space-
time, through which observers may freely travel [1,2]. These
geometries are supported by ‘‘exotic matter’’, involving a
stress-energy tensor violating the null energy condition
(NEC). That is, there exists at least one null vector k� such
that T��k

�k� < 0 on or in the immediate vicinity of the

wormhole throat (see, in particular, [3–5]). In fact, wormhole
geometries violate all the standard pointwise energy condi-
tions, and all the standard averaged energy conditions [3].
Although (most) classical forms of matter are believed to
obey (most of) the standard energy conditions [6], it is awell-
known fact that they are violated by certain quantum effects,
amongst which we may refer to the Casimir effect, Hawking
evaporation, and vacuum polarization. (See [3], and more
recently [7], for a review. For some technical details see [8].)
It is interesting to note that the known violations of the
pointwise energy conditions led researchers to consider the
possibility of averaging of the energy conditions over time-
like or null geodesics [9]. For instance, the averaged weak
energy condition (AWEC) states that the integral of the
energy density measured by a geodesic observer is non-
negative. (That is,

R
T��U

�U�d� � 0, where � is the ob-

server’s proper time.) Thus, the averaged energy conditions
areweaker than the pointwise energy conditions; they permit
localized violations of the energy conditions, as long as

they hold when suitably averaged along a null or timelike
geodesic [9].
As the theme of exotic matter is a problematic issue, it is

useful to minimize its usage. In fact, it is important to

emphasize that the theorems which guarantee the energy
condition violation are remarkably silent when it comes

to making quantitative statements regarding the ‘‘total

amount’’ of energy condition violating matter in the space-
time. In this context, a suitable measure for quantifying this

notion was developed in [10], see also [11], where it was

shown that wormhole geometries may in principle be
supported by arbitrarily small quantities of exotic matter

(an interesting application of the quantification of the total

amount of energy condition violating matter in warp drive
spacetimes was considered in [12]). In the context of

minimizing the usage of exotic matter, it was also found

that for specific models of stationary and axially symmetric
traversable wormholes the exotic matter is confined to

certain regions around the wormhole throat, so that certain

classes of geodesics traversing the wormhole need not
encounter any energy condition violating matter [13]. For

dynamic wormholes the null energy condition, more pre-

cisely the averaged null energy condition, can be avoided
in certain regions [14–16]. Evolving wormhole geometries

were also found which exhibit ‘‘flashes’’ of weak energy

condition (WEC) violation, where the matter threading the
wormhole violates the energy conditions for small intervals

of time [17]. In the context of nonlinear electrodynamics, it
was found that certain dynamic wormhole solutions obey

(suitably defined versions of) the WEC [18].
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It is interesting to note that in modified theories of
gravity, more specifically in fðRÞ gravity, the matter
threading the wormhole throat can be forced to obey
(suitably defined versions of) all the energy conditions,
and it is the higher-order curvature terms that are respon-
sible for supporting these wormhole geometries [19].
(Related issues arise when scalar fields are conformally
coupled to gravity [20,21].) In braneworlds, it was found
that it is a combination of the local high-energy bulk
effects, and the nonlocal corrections from the Weyl curva-
ture in the bulk, that may induce an effective NEC
violating signature on the brane, while the ‘‘physical’’/
‘‘observable’’ stress-energy tensor confined to the brane,
threading the wormhole throat, nevertheless satisfies the
energy conditions [22].

An interesting and efficient manner to minimize the
violation of the null energy condition, extensively analyzed
in the literature, is to construct thin-shell wormholes using
the thin-shell formalism [3,23,24] and the cut-and-paste
procedure as described in [3,25–28].Motivated in minimiz-
ing the usage of exotic matter, the thin-shell construction
was generalized to nonspherically symmetric cases [3,25],
and in particular, it was found that a traveler may traverse
through such a wormhole without encountering regions of
exotic matter. In the context of a (limited) stability analysis,
in [26], two Schwarzschild spacetimes were surgically
grafted together in such a way that no event horizon is
permitted to form. This surgery concentrates a nonzero
stress energy on the boundary layer between the two asymp-
totically flat regions and a dynamical stability analysis (with
respect to spherically symmetric perturbations) was ex-
plored. In the latter stability analysis, constraints were
found on the equation of state of the exotic matter that
comprises the throat of the wormhole. Indeed, the stability
of the latter thin-shell wormholeswas considered for certain
specially chosen equations of state [3,26], where the analy-
sis addressed the issue of stability in the sense of proving
bounded motion for the wormhole throat. This dynamical
analysis was generalized to the stability of spherically
symmetric thin-shell wormholes by considering linearized
radial perturbations around some assumed static solution of
the Einstein field equations, without the need to specify an
equation of state [28]. This linearized stability analysis
around a static solution was soon generalized to the pres-
ence of charge [29], and of a cosmological constant [30],
and was subsequently extended to a plethora of individual
scenarios [31,32], some of them rather ad hoc.

The key point of the present paper is to develop an
extremely general, flexible, and robust framework that
can quickly be adapted to general spherically symmetric
traversable wormholes in 3þ 1 dimensions. We shall con-
sider standard general relativity, with traversable worm-
holes that are spherically symmetric, with all of the exotic
material confined to a thin shell. The bulk spacetimes on
either side of the wormhole throat will be spherically

symmetric and static but otherwise arbitrary (so the for-
malism is simultaneously capable of dealing with worm-
holes embedded in Schwarzschild, Reissner-Nordström,
Kottler, or de Sitter spacetimes, or even ‘‘stringy’’ black
hole spacetimes). The thin shell (wormhole throat), while
constrained by spherical symmetry, will otherwise be per-
mitted to move freely in the bulk spacetimes, permitting a
fully dynamic analysis. This will then allow us to perform a
general stability analysis against spherically symmetric
perturbations, where wormhole stability is related to the
properties of the exotic matter residing on the wormhole
throat. We particularly emphasize that our analysis can
deal with geometrically imposed ‘‘external forces,’’ (to
be more fully explained below), a feature that has so far
been missing from the published literature. Additionally
we emphasize the derivation of rather explicit and very
general rules relating the internal structure of the worm-
hole throat to a ‘‘potential’’ that drives the motion of the
throat.
This paper is organized in the following manner: In

Sec. II we outline in detail the general formalism of generic
dynamic spherically symmetric thin-shell wormholes, and
provide a novel approach to the linearized stability analysis
around a static solution. In Sec. III, we provide specific
examples by applying the generic linearized stability for-
malism outlined in the previous section. In Sec. IV, we
draw some general conclusions.

II. FORMALISM

Let us first perform a general theoretical analysis; sub-
sequently we shall look at a number of specific examples.

A. Bulk spacetimes

To set the stage, consider two distinct spacetime mani-
folds, Mþ and M�, with metrics given by gþ��ðx�þÞ and
g���ðx��Þ, in terms of independently defined coordinate

systems x�þ and x��. A single manifold M is obtained by
gluing together the two distinct manifolds, Mþ and M�,
i.e., M ¼ Mþ [M�, at their boundaries. The latter are
given by �þ and ��, respectively, with the natural iden-
tification of the boundaries � ¼ �þ ¼ ��. This construc-
tion is depicted in the embedding diagram in Fig. 1, and is
further explored in the sections given below.
More specifically, throughout this work, we consider

two generic static spherically symmetric spacetimes given
by the following line elements:

ds2 ¼ �e2��ðr�Þ
�
1� b�ðr�Þ

r�

�
dt2�

þ
�
1� b�ðr�Þ

r�

��1
dr2� þ r2�d�2�; (1)

on M�, respectively. Using the Einstein field equation,
G�� ¼ 8�T�� (with c ¼ G ¼ 1), the (orthonormal)

stress-energy tensor components in the bulk are given by
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�ðrÞ ¼ 1

8�r2
b0; (2)

prðrÞ ¼ � 1

8�r2
½2�0ðb� rÞ þ b0�; (3)

ptðrÞ ¼ � 1

16�r2
½ð�bþ 3rb0 � 2rÞ�0 þ 2rðb� rÞð�0Þ2

þ 2rðb� rÞ�00 þ b00r�; (4)

where the prime denotes a derivative with respect to the
radial coordinate. Here �ðrÞ is the energy density, prðrÞ is
the radial pressure, and ptðrÞ is the lateral pressure mea-
sured in the orthogonal direction to the radial direction.
The � subscripts were (temporarily) dropped so as not to
overload the notation.

The energy conditions will play an important role in the
analysis that follows, so we will at this stage define the
NEC. The latter is satisfied if T��k

�k� � 0, where T�� is

the stress-energy tensor and k� any null vector. Along the
radial direction, with k�̂ ¼ ð1;�1; 0; 0Þ in the orthonormal
frame, where T�̂ �̂ ¼ diag½�ðrÞ; prðrÞ; ptðrÞ; ptðrÞ�, we

then have the particularly simple condition

T�̂ �̂k
�̂k�̂ ¼ �ðrÞ þ prðrÞ ¼ ðr� bÞ�0

4�r2
� 0: (5)

Note that in any region where the t coordinate is timelike
[requiring r > bðrÞ] the radial NEC reduces to �0ðrÞ> 0.

The NEC in the transverse direction, �þ pt � 0, does not
have any direct simple interpretation in terms of the metric
components.
We emphasize that the results outlined in this work are

also valid for the case of an intra-universe wormhole, i.e.,
with a single manifold with a wormhole connecting distant
regions. This is indeed true as long as the bulk geometries
are both asymptotically flat, then they can be viewed as
widely separated parts of the same asymptotically flat
spacetime (to an arbitrarily good approximation that gets
better as the two wormhole mouths get further and further
separated). For instance, see Fig. 2 for a spacetime diagram
depicting a thin-shell wormhole in an asymptotically flat
spacetime, represented by two manifolds joined at a radial
coordinate a.

B. Extrinsic curvature

The manifolds are bounded by hypersurfaces �þ and
��, respectively, with induced metrics gþij and g�ij . The
hypersurfaces are isometric, i.e., gþij ð�Þ ¼ g�ij ð�Þ ¼ gijð�Þ,
in terms of the intrinsic coordinates, invariant under the
isometry. As mentioned above, single manifold M is
obtained by gluing togetherMþ andM� at their bounda-
ries, i.e.,M ¼ Mþ [M�, with the natural identification
of the boundaries � ¼ �þ ¼ ��. The three holonomic
basis vectors eðiÞ ¼ @=@�i tangent to � have the following

components e
�
ðiÞj� ¼ @x

�
�=@�i, which provide the induced

metric on the junction surface by the following scalar
product gij ¼ eðiÞ � eðjÞ ¼ g��e

�
ðiÞe

�
ðjÞj�. The intrinsic met-

ric to � is thus provided by

a

future timelike infinity

past timelike infinity
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FIG. 2. The spacetime diagram for a thin-shell wormhole in an
asymptotically flat spacetime, represented by two manifolds
Mþ and M�, joined at a radial coordinate a, at the junction
surface �.

FIG. 1 (color online). The figure depicts an embedding dia-
gram of a traversable thin-shell wormhole. A single manifoldM
is obtained by gluing together two distinct spacetime manifolds,
Mþ and M�, at their boundaries, i.e., M ¼ Mþ [M�, with
the natural identification of the boundaries � ¼ �þ ¼ ��.
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ds2� ¼ �d�2 þ að�Þ2ðd�2 þ sin2�d�2Þ: (6)

Thus, for the static and spherically symmetric spacetime
considered in this work, the single manifold, M, is
obtained by gluing Mþ and M� at �, i.e., at fðr; �Þ ¼
r� að�Þ ¼ 0. The position of the junction surface is given
by x�ð�; �;�Þ ¼ ðtð�Þ; að�Þ; �; �Þ, and the respective
4-velocities (as measured in the static coordinate systems
on the two sides of the junction) are

U�
� ¼

0
@e���ðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a þ _a2
q
1� b�ðaÞ

a

; _a; 0; 0

1
A; (7)

where the overdot denotes a derivative with respect to �,
which is the proper time of an observer comoving with the
junction surface.

We shall consider a timelike junction surface �, defined
by the parametric equation of the form fðx�ð�iÞÞ ¼ 0. The
unit normal 4-vector, n�, to � is defined as

n� ¼ �
��������g	
 @f

@x	
@f

@x


���������1=2 @f

@x�
; (8)

with n�n
� ¼ þ1 and n�e

�
ðiÞ ¼ 0. The Israel formalism

requires that the normals point from M� to Mþ [24].
Thus, the unit normals to the junction surface, determined
by Eq. (8), are given by

n
�
� ¼ �

0
@ e���ðaÞ

1� b�ðaÞ
a

_a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
þ _a2

s
; 0; 0

1
A: (9)

Note (in view of the spherical symmetry) that the above
expressions can also be deduced from the contractions
U�n� ¼ 0 and n�n� ¼ þ1. The extrinsic curvature,

or the second fundamental form, is defined as Kij ¼
n�;�e

�
ðiÞe

�
ðjÞ. Differentiating n�e

�
ðiÞ ¼ 0 with respect to �j,

we have

n�
@2x�

@�i@�j ¼ �n�;�

@x�

@�i

@x�

@�j ; (10)

so that in general the extrinsic curvature is given by

K�
ij ¼ �n�

�
@2x�

@�i@�j þ �
��
	


@x	

@�i

@x


@�j

�
: (11)

Note that for the case of a thin-shell Kij is not continuous

across �, so that for notational convenience, the disconti-
nuity in the second fundamental form is defined as
�ij ¼ Kþ

ij � K�
ij .

Using Eq. (11), the nontrivial components of the extrin-
sic curvature can easily be computed to be

K��
� ¼ � 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
þ _a2

s
; (12)

K��
� ¼ �

8><
>:

€aþ b�ðaÞ�b0�ðaÞa
2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ðaÞ
a þ _a2

q þ�0�ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
þ _a2

s 9>=
>;;

(13)

where the prime now denotes a derivative with respect to
the coordinate a.
Several comments are in order:
(i) Note that K��

� is independent of the quantities ��,
a circumstance that will have implications later in
this article. This is most easily verified by noting that
in terms of the normal distance ‘ to the shell � the
extrinsic curvature can be written as Kij ¼ 1

2 @‘gij ¼
1
2n

�@�gij ¼ 1
2n

r@rgij, where the last step relies on

the fact that the bulk spacetimes are static. Then
since g�� ¼ r2, differentiating and setting r ! a
we have K�� ¼ anr. Finally

K��
� ¼

nr

a
; (14)

which is a particularly simple formula in terms of the
radial component of the normal vector, and which
easily lets us verify (12).

(ii) For K�� there is an argument (easily extendable to
the present context) in Ref. [3] (see especially pages
181–183) to the effect that

K��
� ¼ �ðmagnitude of the physical

4-acceleration of the throatÞ: (15)

This gives a clear physical interpretation to K��
�

and rapidly allows one to verify (13).
(iii) There is also an important differential relationship

between these extrinsic curvature components:

d

d�
fae��K��

�g ¼ e��K��
� _a: (16)

The most direct way to verify this is to simply
differentiate, using (12) and (13) above. Geo-
metrically, the existence of these relations between
the extrinsic curvature components is ultimately
due to the fact that the bulk spacetimes have been
chosen to be static. By noting that

d

da

�
1

2
_a2
�
¼

�
d

da
_a

�
_a ¼ €a; (17)

we can also write this differential relation as

d

da
fae��K��

�g ¼ e��K��
�: (18)

(iv) We emphasize that including the possibility that
��ðaÞ � 0 is already a significant generalization
of the extant literature.

GARCIA, LOBO, AND VISSER PHYSICAL REVIEW D 86, 044026 (2012)

044026-4



C. Lanczos equations: Surface stress energy

The Lanczos equations follow from the Einstein equa-
tions applied to the hypersurface joining the bulk space-
times, and are given by

Sij ¼ � 1

8�
ð�i

j � �i
j�

k
kÞ: (19)

Here Sij is the surface stress-energy tensor on �. In particu-

lar, because of spherical symmetry considerable simplifica-
tions occur, namely �i

j ¼ diagð��
�; �

�
�; �

�
�Þ. The surface

stress-energy tensor may be written in terms of the surface
energy density, 
, and the surface pressure, P , as Sij ¼
diagð�
;P ;P Þ. The Lanczos equations then reduce to


 ¼ � 1

4�
��

�; (20)

P ¼ 1

8�
ð��

� þ ��
�Þ: (21)

Taking into account the computed extrinsic curvatures,
Eqs. (12) and (13), we see that Eqs. (20) and (21) provide
us with the following expressions for the surface stresses:


¼� 1

4�a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�bþðaÞ

a
þ _a2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b�ðaÞ

a
þ _a2

s �
; (22)

P ¼ 1

8�a

�
1þ _a2 þ a €a� bþðaÞþab0þðaÞ

2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a þ _a2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
þ _a2

s
a�0þðaÞ

þ 1þ _a2 þ a €a� b�ðaÞþab0�ðaÞ
2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ðaÞ
a þ _a2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
þ _a2

s
a�0�ðaÞ

�
: (23)

The surface stress-energy tensor on the junction surface� is
depicted in the embedding spacetime diagram in Fig. 3, in
terms of the surface energy density, 
, and the surface
pressure, P .

Note that the surface mass of the thin shell is given by
ms ¼ 4�a2
, a quantity which will be extensively used
below. Note further that the surface energy density 
 is
always negative, (which is where the energy condition
violations show up in this thin-shell context), and further-
more that the surface energy density 
 is independent of
the two quantities ��.

D. Conservation identity

The first contracted Gauss-Codazzi equation, sometimes
called simply the Gauss equation, or in general relativity
more often referred to as the ‘‘Hamiltonian constraint,’’ is

G��n
�n� ¼ 1

2
ðK2 � KijK

ij � 3RÞ: (24)

Together with the Einstein equations this provides the
evolution identity

Sij �Kij ¼ �½T��n
�n��þ�: (25)

The convention ½X�þ� � Xþj� � X�j� and �X �
1
2 ðXþj� þ X�j�Þ is used. The second contracted Gauss-

Codazzi equation, sometimes called simply the Codazzi or
the Codazzi-Mainardi equation, or in general relativity
more often referred to as the ‘‘Arnowitt-Deser-Misner
constraint’’ or ‘‘momentum constraint,’’ is

G��e
�
ðiÞn

� ¼ Kj
ijj � K;i : (26)

Together with the Lanczos equations this provides the
conservation identity

Si
jji ¼ ½T��e

�
ðjÞn

��þ�: (27)

When interpreting the conservation identity Eq. (27), con-
sider first the momentum flux defined by

½T��e
�
ð�Þn

��þ� ¼ ½T��U
�n��þ�

¼
�
�ðTt̂ t̂ þ Tr̂ r̂Þ

_a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðaÞ

a þ _a2
q

1� bðaÞ
a

�þ
�
; (28)

FIG. 3 (color online). The figure depicts an embedding dia-
gram of a traversable thin-shell wormhole. The single manifold
M is obtained by gluing together Mþ and M�, at junction
surface �. The surface stress-energy tensor on � is given in
terms of the surface energy density, 
, and the surface pressure,
P . See the text for details.
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where Tt̂ t̂ and Tr̂ r̂ are the bulk stress-energy tensor com-
ponents given in an orthonormal basis. This flux term
corresponds to the net discontinuity in the (bulk) momen-
tum flux F� ¼ T��U

� which impinges on the shell. (This

flux term is identically zero in all the currently extant
literature.) Applying the (bulk) Einstein equations we see

½T��e
�
ð�Þn

��þ� ¼ _a

4�a

�
�0þðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
þ _a2

s

þ�0�ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
þ _a2

s �
: (29)

It is useful to define the quantity

� ¼ 1

4�a

�
�0þðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
þ _a2

s

þ�0�ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
þ _a2

s �
(30)

and to let A ¼ 4�a2 be the surface area of the thin shell.
Then in the general case, the conservation identity provides
the following relationship:

d


d�
þ ð
þ P Þ 1

A

dA

d�
¼ � _a; (31)

or equivalently

dð
AÞ
d�

þ P
dA

d�
¼ �A _a: (32)

The first term represents the variation of the internal energy
of the shell, the second term is the work done by the shell’s
internal force, and the third term represents the work done
by the external forces. Once could also brute force verify
this equation by explicitly differentiating (22) using (23)
and the relations (16). If we assume that the equations of
motion can be integrated to determine the surface energy
density as a function of radius a, that is, assuming the
existence of a suitable function 
ðaÞ, then the conservation
equation can be written as


0 ¼ � 2

a
ð
þ P Þ þ�; (33)

where 
0 ¼ d
=da. We shall carefully analyze the inte-
grability conditions for 
ðaÞ in the next subsection. For
now, note that the flux term (external force term) � is
automatically zero whenever �� ¼ 0; this is actually
a quite common occurrence, for instance in either
Schwarzschild or Reissner-Nordström geometries, or
more generally whenever �þ pr ¼ 0, so it is very easy
for one to be mislead by those special cases. In particular,
in situations of vanishing flux � ¼ 0 one obtains the

so-called ‘‘transparency condition,’’ ½G��U
�n��þ� ¼ 0;

see [32]. The conservation identity, Eq. (27), then reduces
to the simple relationship _
 ¼ �2ð
þ P Þ _a=a. But in
general the transparency condition does not hold, and
one needs the full version of the conservation equation as
given in Eq. (31).
Physically, it is particularly important to realize that

merely specifying the two bulk geometries ½g��ab is not
enough to fully determine the motion of the throat-some
sort of assumption must be made regarding the internal
behavior of the physical material concentrated on the
throat itself, and we now turn to investigating this critically
important point.

E. Integrability of the surface energy density

When does it make sense to assert the existence of a
function
ðaÞ? Let us start with the situation in the absence
of external forces (we will rapidly generalize this) where
the conservation equation,

_
 ¼ �2ð
þ P Þ _a=a; (34)

can easily be rearranged to

_



þ P
¼ �2

_a

a
: (35)

Assuming a barotropic equation of state P ð
Þ for the
matter on the wormhole throat, this can be integrated to
yield

Z 



0

d �


�
þ P ð �
Þ ¼ �2
Z a

a0

d �a

�a
¼ �2 lnða=a0Þ: (36)

This implies that a can be given as some function að
Þ of

, and by the inverse function theorem implies over
suitable domains the existence of a function 
ðaÞ. Now
this barotropic equation of state is a rather strong assump-
tion, albeit one that is very often implicitly made when
dealing with thin-shell wormholes (or thin-shell gravastars
[33–35], or other thin-shell objects). As a first general-
ization, consider what happens if the surface pressure is
generalized to be of the form P ða;
Þ, which is not
barotropic. Then the conservation equation can be rear-
ranged to be


0 ¼ � 2½
þ P ða; 
Þ�
a

: (37)

This is a first-order (albeit nonlinear and nonautonomous)
ordinary differential equation,which at least locallywill have
solutions
ðaÞ. There is no particular reason to be concerned
about the question of global solutions to this ordinary differ-
ential equation, since in applications one is most typically
dealing with linearization around a static solution.
If we now switch on external forces, that is �� � 0,

then one way of guaranteeing integrability would be to
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demand that the external forces are of the form �ða;
Þ,
since then the conservation equation would read


0 ¼ � 2½
þ P ða;
Þ�
a

þ�ða;
Þ; (38)

which is again a first-order albeit nonlinear and nonauton-
omous ordinary differential equation. But how general is
this � ¼ �ða;
Þ assumption? There are at least two situ-
ations where this definitely holds:

(i) If �þðaÞ ¼ ��ðaÞ ¼ �ðaÞ, then � ¼ ��0ðaÞ
,
which is explicitly of the required form.

(ii) If bþðaÞ¼b�ðaÞ¼bðaÞ, then �¼ 1
2½�0þðaÞþ

�0�ðaÞ�
, which is again explicitly of the required
form.

. But in general we will need a more complicated set of
assumptions to assure integrability, and the consequent
existence of some function 
ðaÞ. A model that is always
sufficient (not necessary) to guarantee integrability is to
view the exotic material on the throat as a two-fluid system,
characterized by 
� and P�, with two (possibly indepen-
dent) equations of state P�ð
�Þ. Specifically, take


� ¼ � 1

4�
ðK�Þ��; (39)

P � ¼ 1

8�
fðK�Þ�� þ ðK�Þ��g: (40)

In view of the differential identities

d

d�
fae��K��

�g ¼ e��K��
� _a; (41)

each of these two fluids is independently subject to

d

d�
fe��
�g ¼ � 2e��

a
f
� þ P�g _a; (42)

which is equivalent to

fe��
�g0 ¼ � 2e��

a
f
� þ P�g: (43)

With two equations of state P�ð
�Þ these are two non-
linear first-order ordinary differential equations for 
�.
These equations are integrable, implicitly defining func-
tions 
�ðaÞ, at least locally. Once this is done we define


ðaÞ ¼ 
þðaÞ þ 
�ðaÞ; (44)

and

msðaÞ ¼ 4�
ðaÞa2: (45)

While the argument is more complicated than one might
have expected, the end result is easy to interpret: We can
simply choose
ðaÞ, or equivalentlymsðaÞ, as an arbitrarily
specifiable function that encodes the (otherwise unknown)
physics of the specific form of exotic matter residing on the
wormhole throat.

F. Equation of motion

To qualitatively analyze the stability of the wormhole,
assuming integrability of the surface energy density [that
is, the existence of a function
ðaÞ], it is useful to rearrange
Eq. (22) into the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�bþðaÞ

a
þ _a2

s
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b�ðaÞ

a
þ _a2

s
�4�a
ðaÞ: (46)

Squaring this equation, rearranging terms to isolate the
square root, and finally by squaring once again, we deduce
the thin-shell equation of motion given by

1

2
_a2 þ VðaÞ ¼ 0; (47)

where the potential VðaÞ is given by

VðaÞ ¼ 1

2

�
1�

�bðaÞ
a

�
�
msðaÞ
2a

�
2 �

�
�ðaÞ
msðaÞ

�
2
�
: (48)

Here msðaÞ ¼ 4�a2
ðaÞ is the mass of the thin shell. The
quantities �bðaÞ and �ðaÞ are defined, for simplicity, as

�bðaÞ ¼ bþðaÞ þ b�ðaÞ
2

; (49)

�ðaÞ ¼ bþðaÞ � b�ðaÞ
2

; (50)

respectively. This gives the potential VðaÞ as a function of
the surface massmsðaÞ. By differentiating with respect to a
[using (17)], we see that the equation of motion implies

€a ¼ �V 0ðaÞ: (51)

It is sometimes useful to reverse the logic flow and deter-
mine the surface mass as a function of the potential.
Following the techniques used in [34], suitably modified
for the present wormhole context, a brief calculation yields

m2
sðaÞ ¼ 2a2

�
1�

�bðaÞ
a

� 2VðaÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �bðaÞ

a
� 4VðaÞ þ

�
2VðaÞ þ

�bðaÞ
a

�
2 � �ðaÞ2

a2

s �
; (52)
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where one is forced to take the positive root to guarantee
reality of the surface mass. Noting that the radical factor-
izes we see

m2
sðaÞ ¼ 2a2

�
1�

�bðaÞ
a

� 2VðaÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
� 2VðaÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
� 2VðaÞ

s �
;

(53)

and in fact

msðaÞ ¼ �a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
� 2VðaÞ

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
� 2VðaÞ

s �
; (54)

with the negative root now being necessary for compati-
bility with the Lanczos equations. Note the logic here:
assuming integrability of the surface energy density, if
we want a specific VðaÞ, this tells us how much surface
mass we need to put on the wormhole throat (as a function
of a), which is implicitly making demands on the equation
of state of the exotic matter residing on the wormhole
throat. In a completely analogous manner, the assumption
of integrability of 
ðaÞ implies that after imposing the
equation of motion for the shell one has


ðaÞ ¼ � 1

4�a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
� 2VðaÞ

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
� 2VðaÞ

s �
; (55)

while

P ðaÞ ¼ 1

8�a

�
1� 2VðaÞ � aV0ðaÞ � bþðaÞþab0þðaÞ

2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a � 2VðaÞ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
� 2VðaÞ

s
a�0þðaÞ

þ 1� 2VðaÞ � aV 0ðaÞ � b�ðaÞþab0�ðaÞ
2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ðaÞ
a � 2VðaÞ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
� 2VðaÞ

s
a�0�ðaÞ

�
(56)

and

�ðaÞ ¼ 1

4�a

�
�0þðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
� 2VðaÞ

s

þ�0�ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
� 2VðaÞ

s �
: (57)

The three quantities f
ðaÞ;P ðaÞ;�ðaÞg (or equivalently
fmsðaÞ;P ðaÞ;�ðaÞg) are related by the differential conser-
vation law, so at most two of them are functionally
independent.

G. Linearized equation of motion

Consider a linearization around an assumed static solu-
tion (at a0) to the equation of motion 1

2
_a2 þ VðaÞ ¼ 0, and

so also a solution of €a ¼ �V0ðaÞ. Generally a Taylor
expansion of VðaÞ around a0 to second order yields

VðaÞ ¼ Vða0Þ þ V 0ða0Þða� a0Þ þ 1

2
V 00ða0Þða� a0Þ2

þO½ða� a0Þ3�: (58)

But since we are expanding around a static solution, _a0 ¼
€a0 ¼ 0, we automatically have Vða0Þ ¼ V 0ða0Þ ¼ 0, so it
is sufficient to consider

VðaÞ ¼ 1

2
V 00ða0Þða� a0Þ2 þO½ða� a0Þ3�: (59)

The assumed static solution at a0 is stable if and only
if VðaÞ has a local minimum at a0, which requires
V00ða0Þ> 0. This will be our primary criterion for worm-
hole stability, though it will be useful to rephrase it in terms
of more basic quantities.
For instance, it is extremely useful to express m0

sðaÞ and
m00

s ðaÞ by the following expressions:

m0
sðaÞ ¼ þmsðaÞ

a
þ a

2

( ðbþðaÞ=aÞ0 þ 2V 0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a� 2VðaÞp

þ ðb�ðaÞ=aÞ0 þ 2V0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a� 2VðaÞp

)
(60)

and

m00
s ðaÞ ¼

( ðbþðaÞ=aÞ0 þ2V 0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�bþðaÞ=a�2VðaÞp þ ðb�ðaÞ=aÞ0 þ2V 0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�b�ðaÞ=a�2VðaÞp
)
þa

4

( ½ðbþðaÞ=aÞ0 þ2V 0ðaÞ�2
½1�bþðaÞ=a�2VðaÞ�3=2þ

½ðb�ðaÞ=aÞ0 þ2V 0ðaÞ�2
½1�b�ðaÞ=a�2VðaÞ�3=2

)

þa

2

( ðbþðaÞ=aÞ00 þ2V 00ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�bþðaÞ=a�2VðaÞp þ ðb�ðaÞ=aÞ00 þ2V 00ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�b�ðaÞ=a�2VðaÞp
)
: (61)
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Doing so allows us to easily study linearized stability, and
to develop a simple inequality on m00

s ða0Þ by using the
constraint V 00ða0Þ> 0. Similar formulas hold for 
0ðaÞ,

00ðaÞ, for P 0ðaÞ, P 00ðaÞ, and for �0ðaÞ, �00ðaÞ. In view
of the redundancies coming from the relations msðaÞ ¼
4�
ðaÞa2 and the differential conservation law, the only
interesting quantities are �0ðaÞ, �00ðaÞ.

For practical calculations, it is extremely useful to con-
sider the dimensionless quantity

msðaÞ
a

¼ 4�
ðaÞa

¼�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�bþðaÞ
a

� 2VðaÞ
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b�ðaÞ

a
� 2VðaÞ

s �
;

(62)

and then to express ½msðaÞ=a�0 and ½msðaÞ=a�00 by the
following expressions:

½msðaÞ=a�0 ¼ þ 1

2

( ðbþðaÞ=aÞ0 þ 2V 0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a� 2VðaÞp þ ðb�ðaÞ=aÞ0 þ 2V0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ðaÞ=a� 2VðaÞp
)

(63)

and

½msðaÞ=a�00 ¼ þ 1

4

( ½ðbþðaÞ=aÞ0 þ 2V0ðaÞ�2
½1� bþðaÞ=a� 2VðaÞ�3=2 þ

½ðb�ðaÞ=aÞ0 þ 2V 0ðaÞ�2
½1� b�ðaÞ=a� 2VðaÞ�3=2

)

þ 1

2

( ðbþðaÞ=aÞ00 þ 2V 00ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a� 2VðaÞp þ ðb�ðaÞ=aÞ00 þ 2V 00ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ðaÞ=a� 2VðaÞp
)
: (64)

It is similarly useful to consider

4��ðaÞa ¼
�
�0þðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
� 2VðaÞ

s
þ�0�ðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
� 2VðaÞ

s �
; (65)

for which an easy computation yields

½4��ðaÞa�0 ¼ þf�00þðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a� 2VðaÞ

q
þ�00�ðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a� 2VðaÞ

q
g

� 1

2

(
�0þðaÞ

ðbþðaÞ=aÞ0 þ 2V 0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a� 2VðaÞp þ�0�ðaÞ ðb�ðaÞ=aÞ0 þ 2V0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ðaÞ=a� 2VðaÞp
)

(66)

and

½4��ðaÞa�00 ¼ f�000þðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a� 2VðaÞ

q
þ�000�ðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a� 2VðaÞ

q
g

�
(
�00þðaÞ

ðbþðaÞ=aÞ0 þ 2V0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a� 2VðaÞp þ�00�ðaÞ ðb�ðaÞ=aÞ0 þ 2V 0ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ðaÞ=a� 2VðaÞp
)

� 1

4

(
�0þðaÞ

½ðbþðaÞ=aÞ0 þ 2V 0ðaÞ�2
½1� bþðaÞ=a� 2VðaÞ�3=2 þ�0�ðaÞ ½ðb�ðaÞ=aÞ0 þ 2V0ðaÞ�2

½1� b�ðaÞ=a� 2VðaÞ�3=2
)

� 1

2

(
�0þðaÞ

ðbþðaÞ=aÞ00 þ 2V00ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a� 2VðaÞp þ�0�ðaÞ ðb�ðaÞ=aÞ00 þ 2V 00ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ðaÞ=a� 2VðaÞp
)
: (67)

We shall evaluate these quantities at the assumed stable solution a0.

H. The master equations

In view of the above, to have a stable static solution at a0 we must have

msða0Þ ¼ �a0

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþða0Þ

a0

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ða0Þ

a0

s 9=
;; (68)

while
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m0
sða0Þ ¼ msða0Þ

2a0
� 1

2

(
1� b0þða0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþða0Þ=a0

p þ 1� b0�ða0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ða0Þ=a0

p
)

(69)

and

m00
s ða0Þ � þ 1

4a30

(½bþða0Þ � a0b
0þða0Þ�2

½1� bþða0Þ=a0�3=2
þ ½b�ða0Þ � a0b

0�ða0Þ�2
½1� b�ða0Þ=a0�3=2

)
þ 1

2

(
b00þða0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� bþða0Þ=a0
p þ b00�ða0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ða0Þ=a0
p

)
: (70)

This last formula in particular translates the stability condition V 00ða0Þ � 0 into a rather explicit and not too complicated
inequality on m00

s ða0Þ, one that can in particular cases be explicitly checked with a minimum of effort.
For practical calculations it is more useful to work with msðaÞ=a in which case

½msðaÞ=a�0
��������a0

¼ þ 1

2

( ðbþðaÞ=aÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

p þ ðb�ðaÞ=aÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a

p
)��������a0

(71)

and

½msðaÞ=a�00
��������a0

� þ 1

4

( ½ðbþðaÞ=aÞ0�2
½1� bþðaÞ=a�3=2

þ ½ðb�ðaÞ=aÞ0�2
½1� b�ðaÞ=a�3=2

)��������a0

þ 1

2

( ðbþðaÞ=aÞ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

p þ ðb�ðaÞ=aÞ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=aÞ

p
)��������a0

: (72)

In the absence of external forces this inequality [or the equivalent one form00
s ða0Þ above] is the only stability constraint one

requires. However, once one has external forces (�� � 0), there is additional information:

½4��ðaÞa�0
��������a0

¼ þf�00þðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

q
þ�00�ðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a

q
gja0

� 1

2

(
�0þðaÞ

ðbþðaÞ=aÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

p þ�0�ðaÞ ðb�ðaÞ=aÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a

p
)��������a0

(73)

and [provided �0�ða0Þ � 0]

½4��ðaÞa�00ja0 � f�000þðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

q
þ�000�ðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a

q
gja0 �

(
�00þðaÞ

ðbþðaÞ=aÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

p þ�00�ðaÞ ðb�ðaÞ=aÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a

p
)

�
���������

a0

� 1

4

(
�0þðaÞ

½ðbþðaÞ=aÞ0�2
½1� bþðaÞ=a�3=2

þ�0�ðaÞ ½ðb�ðaÞ=aÞ0�2
½1� b�ðaÞ=a�3=2

)���������
a0

� 1

2

(
�0þðaÞ

ðbþðaÞ=aÞ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

p þ�0�ðaÞ ðb�ðaÞ=aÞ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a

p
)���������

a0

: (74)

If �0�ða0Þ � 0, we simply have

½4��ðaÞa�00ja0 � f�000þðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

q
þ�000�ðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a

q
gja0 �

(
�00þðaÞ

ðbþðaÞ=aÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

p þ�00�ðaÞ ðb�ðaÞ=aÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a

p
)

�
���������

a0

� 1

4

(
�0þðaÞ

½ðbþðaÞ=aÞ0�2
½1� bþðaÞ=a�3=2

þ�0�ðaÞ ½ðb�ðaÞ=aÞ0�2
½1� b�ðaÞ=a�3=2

)���������
a0

� 1

2

(
�0þðaÞ

ðbþðaÞ=aÞ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ=a

p þ�0�ðaÞ ðb�ðaÞ=aÞ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ=a

p
)���������

a0

: (75)

Note that these last three equations are entirely vacuous in the absence of external forces, which is why they have not
appeared in the literature until now.

III. APPLICATIONS

In discussing specific examples one now ‘‘merely’’ needs to apply the general formalism described above. Several
examples are particularly important, some to emphasize the features specific to possible asymmetry between the two
universes used in traversable wormhole construction, some to emphasize the importance of NEC nonviolation in the bulk,
and some to assess the simplifications due to symmetry between the two asymptotic regions.
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A. Borderline NEC nonviolation in the bulk: ��¼0

On extremely general grounds we know the NEC must
be violated somewhere in the spacetime of a traversable
wormhole. By explicit computation we have seen that NEC
violation in the bulk region external to the wormhole throat
is equivalent to �0�ðrÞ< 0. Thus to minimize NEC
violations for thin-shell wormholes we should demand
�0�ðrÞ�0 in the bulk. The boundary of this region corre-
sponds to �� ¼ ðconstantÞ, which by a simple linear
change of the time coordinates can be recast in the form
�� ¼ 0. Thus the situation �� ¼ 0 is particularly inter-
esting not just because of mathematical simplicity, but
physically interesting because it corresponds to the physi-
cal constraint that the bulk regions on either side of the
wormhole throat be on the verge of violating the NEC.
This �� ¼ 0 condition is satisfied, for instance, when the
bulk spacetimes are Schwarzschild, Reissner-Nordstrom,
de Sitter, Kottler (Schwarzschild-de Sitter), or Reissner–
Nordstrom–de Sitter, though the bulk spacetimes can be
more general than any of these. Key features of the��¼0
traversable wormholes are that in the bulk

�ðrÞ ¼ �prðrÞ ¼ 1

8�r2
b0; ptðrÞ ¼ � 1

16�r
b00; (76)

while on the throat


 ¼ � 1

4�a

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a
þ _a2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�ðaÞ

a
þ _a2

s #
;

(77)

P ¼ 1

8�a

�
1þ _a2 þ a €a� bþðaÞþab0þðaÞ

2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bþðaÞ

a þ _a2
q

þ 1þ _a2 þ a €a� b�ðaÞþab0�ðaÞ
2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b�ðaÞ
a þ _a2

q �
; (78)

with the external forces vanishing (� ¼ 0). Stability of an
assumed static solution at a0 then devolves into a single
inequality (70) or the equivalent (72) being imposed upon
m00

s ða0Þ.

B. Mirror symmetry: b�¼b, ��¼�

Another situation in which significant simplification
arises is when the two bulk regions are identical, so that
b� ¼ b, and �� ¼ �. Key features of these symmetric
traversable wormholes are that on the throat


 ¼ � 1

2�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðaÞ

a
þ _a2

s
; (79)

P ¼ 1

4�a

"
1þ _a2 þ a €a� bðaÞþab0ðaÞ

2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðaÞ

a þ _a2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðaÞ

a
þ _a2

s
a�0ðaÞ

#
; (80)

with the external forces being rather simply determined by

� ¼ ��0ðaÞ
: (81)

C. Thin-shell Schwarzschild wormhole:
b�¼2M� and ��¼0

Consider the situation where both bulk spacetimes on
either side of the wormhole throat are portions of
Schwarzschild spacetime. Then the metric functions of
Eq. (1) are given by

b� ¼ 2M�; �� ¼ 0; (82)

respectively. For this case, inequality (70) yields the fol-
lowing inequality:

a0m
00
s ða0Þ � FðM�; a0Þ

¼
� ðMþ=a0Þ2
ð1� 2Mþ=a0Þ3=2

þ ðM�=a0Þ2
ð1� 2M�=a0Þ3=2

�
:

(83)

The dimensionless function FðM�; a0Þ is depicted as the
grey surface in Fig. 4, and the stability regions are situated
above this surface. We have considered the definition x ¼
2Mþ=a0 for convenience, so as to bring infinite a0 in to a
finite region of the plot. That is, a0 ! 1 is represented as
x ! 0, and a0 ¼ 2Mþ is equivalent x ¼ 1. Thus, the pa-
rameter x is restricted to the range 0< x< 1. We also
define the parameter y ¼ M�=Mþ, and from the denomi-
nator of inequality (83), we verify that the parameter y lies
within the range 0< y< 1=x.
From a qualitative analysis of Fig. 4, we note that large

stability regions exist for small values of x and of y. The
stability regions decrease for large values of y, i.e., for
M� 	 Mþ, and for large values of x, i.e., for regions close
to the event horizon. This analysis generalizes previous
work, where the case of M� ¼ Mþ was studied [28]. The
stability regions decrease in the vicinity of the event hori-
zon, x ! 1, and only exist for low values of y.

D. Thin-shell Reissner-Nordström wormholes

The Reissner-Nordström spacetime is the unique spheri-
cally symmetric solution of the vacuum Einstein-Maxwell
coupled equations. Its metric is given by

ds2 ¼ �
�
1� 2M

r
þQ2

r2

�
dt2 þ

�
1� 2M

r
þQ2

r2

��1
dr2

þ r2ðd�2 þ sin2�d�2Þ; (84)
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where M is the mass and Q2 is the sum of the squares
of the electric (QE) and magnetic (QM) charges. In a local
orthonormal frame, the nonzero components of the

electromagnetic field tensor are Ft̂ r̂ ¼ Er̂ ¼ QE=r
2 and

F�̂ ’̂ ¼ Br̂ ¼ QM=r
2. If jQj � M, an event horizon is

present, at a location given by

rb ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

q
: (85)

If jQj>M we have a naked singularity. In the above, we
have dropped the � subscript as to not overload the
notation.
As in the Schwarzschild solution, one may construct a

thin-shell wormhole solution, using the cut-and-paste pro-
cedure. For this case, inequality (70) yields the following
dimensionless quantity

a0m
00
s ða0Þ � GðM�; Q�; a0Þ

¼
� ðM2þ �Q2þÞ=a20
ð1� 2Mþ=a0 þQ2þ=a20Þ3=2

þ ðM2� �Q2�Þ=a20
ð1� 2M�=a0 þQ2�=a20Þ3=2

�
: (86)

The surface GðM�; Q�; a0Þ is shown in Fig. 5, and the
stability regions, a0m

00
s ða0Þ, are depicted above this surface.

As in the previous example, consider the following
definitions: (i) x ¼ 2Mþ=a0, in order to bring in
infinity, i.e., a0 ! 1 is represented as x ! 0; and
(ii) y ¼ M�=Mþ. Using these definitions, and considering
for simplicity that Qþ ¼ Q� ¼ Q, we have the following
ranges:

FIG. 4. Stability analysis for thin-shell Schwarzschild travers-
able wormholes. The stability region is that above the grey
surface depicted in the plot. The grey surface is given by the
dimensionless quantity FðM�; a0Þ, defined by the right-hand
side of inequality (83). We have considered the range 0< x ¼
Mþ=a0 < 1 and 0< y ¼ M�=Mþ < 1=x, respectively. Note
that a large stability region exists for low values of x ¼
2Mþ=a0 and of y ¼ M�=Mþ. For regions close to the event
horizon, x ! 1, the stability region decreases in size and only
exists for low values of y. See the text for details.

FIG. 5. Stability analysis for thin-shell Reissner-Nordström traversable wormholes. The stability region is that above the grey
surface. The grey surface is given by the dimensionless quantity GðM�; Q�; a0Þ, defined in Eq. (86). The values of jQj=Mþ ¼ 1 and
jQj=Mþ ¼ ffiffiffi

3
p

=2 are depicted in the left and right plots, respectively. Note that for decreasing values of jQj=Mþ, the stability regions
decrease substantially for low values of M�=Mþ and for high values of 2Mþ=a0. See the text for more details.
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0< x <
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q2=M2þ

q ;

0< y<
1þ x2ðQ2=4M2þÞ

x
:

(87)

The first range can be deduced from the condition that
rb < a0 <þ1; the second range can easily be deduced
from the denominators of inequality (86).

To now analyze the stability regions, we simply consider
specific values for jQj=Mþ. The values of jQj=Mþ ¼ 1

and jQj=Mþ ¼ ffiffiffi
3

p
=2 are depicted in the left and right

plots, respectively, of Fig. 5. Note that for decreasing
values of jQj=Mþ, the stability regions decrease substan-
tially for low values of M�=Mþ and for high values of
Mþ=a0. More specifically, if one were to construct thin-
shell Reissner-Nordström wormholes with the junction
interface close to the event horizon, one would need high
values for the charge in order to have stable solutions.

E. Thin-shell variant of the Ellis wormhole: b�¼R2�=r
It is perhaps instructive to consider an explicit case

which violates some of the energy conditions in the bulk.
Consider, for instance, the case given by the following
shape functions: b� ¼ R2�=r, (so that b�ðrÞ=r ¼ R2�=r2),
which were used in the Ellis wormhole [36]. (Note that
Ellis’ terminology is slightly unusual, and we have re-
phrased his work in more usual terminology.)

1. Zero momentum flux: ��¼ 0

As an initial step, consider the absence of external forces,
so that � ¼ 0. For this case one verifies that the NEC is
borderline satisfied in the bulk. However, the WEC is vio-
lated as one necessarily has negative energy densities, which
is transparent from the following stress-energy profile:

�ðrÞ ¼ �prðrÞ ¼ �ptðrÞ ¼ � R2�
8�r4

: (88)

Stability regions are dictated by inequality (70), which yields
the following dimensionless quantity:

a0m
00
s ða0Þ � HðR�; a0Þ

¼ ðRþ=a0Þ2
ð1� R2þ=a20Þ3=2

þ ðR�=a0Þ2
ð1� R2�=a20Þ3=2

: (89)

The function HðR�; a0Þ is depicted as the grey surface in
Fig. 6 and the stability regions lie above this surface. We
consider the definition x ¼ Rþ=a0 for convenience, so as to
bring in infinity, i.e., a0 ! 1 is represented as x ! 0, and
a0 ¼ Rþ is equivalent to x ¼ 1, so that the range for x is
given by 0< x< 1. We also consider the definition y ¼
R�=Rþ, so that from the denominator of HðR�; a0Þ,
given by Eq. (89), we verify that the range of y is provided
by 0< y < 1=x. The stability analysis is similar to the
Schwarzschild thin-shell wormhole case, in that large

stability regions exist for small values of x and of y.
The stability regions decrease for large values of y, i.e., for
R� 	 Rþ, and for large values of x.

2. Nonzero external forces: ��¼�R�=r
In order to generalize the previous specific example, we

now consider a case with external forces. Specifically, let
us consider the following functions:

�� ¼ �R�
r

: (90)

These functions imply that��ða0Þ> 0, so that in addition
to the stability condition given by inequality (70), one
needs to take into account the stability condition dictated
by (74). The latter inequality yields the following dimen-
sionless quantity:

a30½4�a�ðaÞ�00 � H2ðR�; a0Þ

¼ ð6Rþ=a0 � 19R3þ=a30 þ 12R5þ=a50Þ
ð1� R2þ=a20Þ3=2

þ ð6R�=a0 � 19R3�=a30 þ 12R5�=a50Þ
ð1� R2�=a20Þ3=2

:

(91)

Note that as before, inequality (70) yields the dimen-
sionless quantity given by inequality (89), which is

FIG. 6. The plot depicts the stability region for the thin-shell
variant of the Ellis wormhole, for which b� ¼ R2�=r. The grey
surface is given by the dimensionless quantity HðR�; a0Þ, given
by the right-hand side of inequality (89). The stability region,
represented by the function a0m

00
s ða0Þ, is that above the grey

surfaces depicted in the plot. We have considered the range
0< x ¼ Rþ=a0 < 1 and 0< y ¼ R�=Rþ < 1=x. Note that
large stability regions exist for small values of x and of y. The
stability regions decrease for large values of y, i.e., for
R� 	 Rþ, and for large values of x. See the text for details.
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depicted as the grey surface in Fig. 6. The stability regions
are depicted above this surface. We consider once again the
definition x ¼ Rþ=a0, so that the range for x is given by
0< x< 1, and the definition y ¼ R�=Rþ, so that as before
the parameter y lies within the range 0< y < 1=x.

Now, in addition to the imposition of inequality (89),
depicted above the surface in Fig. 6, the stability regions
are also restricted by the condition (91), depicted in the left
plot of Fig. 7. In the latter, the stability regions are given
below the grey surface. Collecting the results outlined
above, note that the stability regions are given from the
regions above the surface in Fig. 6, and below the surface
provided by the left plot of Fig. 7. These stability regions
are depicted in the right plot of Fig. 7 in between the grey
surfaces, represented by the functions HðR�; a0Þ and
H2ðR�; a0Þ, respectively. Note the absence of stability
regions for high values of x and y.

F. New toy model: b�¼ ffiffiffiffiffiffiffiffiffiffi
rR�

p

1. Zero momentum flux: �� ¼ 0

Another new and interesting toy model is given by the
following:

b�¼ ffiffiffiffiffiffiffiffiffi
rR�

p
and ��¼0; so that b�ðrÞ=r¼

ffiffiffiffiffiffiffiffiffiffiffiffi
R�=r

q
:

(92)

The bulk stress-energy profile is given by

�ðrÞ ¼ �prðrÞ ¼ 4ptðrÞ ¼ 1

16�r2

ffiffiffiffiffiffiffi
R�
r

s
: (93)

Note that the NEC and WEC are satisfied throughout the
bulk. For this case, inequality (70) yields the following
dimensionless quantity:

a0m
00
s ða0Þ � IðR�; a0Þ ¼ 3Rþ=a0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ=a0

p
16ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ=a0
p Þ3=2

þ 3R�=a0 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�=a0

p
16ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R�=a0
p Þ3=2 : (94)

The stability regions are presented in Fig. 8. As in the
previous examples, we consider the definition x ¼ Rþ=a0
for convenience, so that the range for x is given by
0< x < 1. We also consider the definition y ¼ R�=Rþ,
so that the range of y is provided by 0< y< 1=x.
Note that, as in the previous example of the thin-shell
variant of the Ellis wormhole, large stability regions exist
for small values of x and of y. The stability regions
decrease for large values of y, i.e., for R� 	 Rþ, and for
large values of x.

FIG. 7. The plot depicts the stability regions for the thin-shell variant of the Ellis wormhole, with b� ¼ R2�=r, but now in the
presence of nonzero external forces. The latter nonzero momentum flux arises from the functions given by �� ¼ �R�=r. The grey
surface depicted in the left plot is given by H2ðR�; a0Þ, i.e., the right-hand side of inequality (91), and the stability regions are given
below this surface. We have considered, as before, the range 0< x ¼ Rþ=a0 < 1 and 0< y ¼ R�=Rþ < 1=x. Now, collecting the
results, note that the stability regions are given from the regions above the surface in Fig. 6, and below the surface provided by the left
plot. These stability regions are depicted in the right plot in between the grey surfaces, represented by the functions HðR�; a0Þ and
H2ðR�; a0Þ, respectively. Note the absence of stability regions for high values of x and y. See the text for more details.
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2. Nonzero external forces: ��¼�R�=r
As in the previous application, it is useful to generalize

the case of zero external forces. In order to have the
presence of a nonzero momentum flux term, consider
once again the following functions:

�� ¼ �R�
r

; (95)

which imply that ��ða0Þ> 0. Thus, in addition to the
stability condition given by inequality (70), one needs to
take into account the stability condition dictated by (74).
From the latter inequality, one deduces the following
dimensionless quantity:

a30½4�a�ðaÞ�00 � I2ðR�;a0Þ

¼ ð96Rþ=a0�214ðRþ=a0Þ3=2þ117R2þ=a20Þ
16ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ=a0
p Þ3=2

þð96R�=a0�214ðR�=a0Þ3=2þ117R2�=a20Þ
16ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R�=a0
p Þ3=2 : (96)

The stability regions are dictated by inequalities (94)
and (96). These are depicted above the grey surfaces in
Fig. 8 and below the surface of the left plot in Fig. 9. The
final stability regions are depicted in the right plot of Fig. 9

in between the grey surfaces, represented by the functions
HðR�; a0Þ and H2ðR�; a0Þ, respectively. As in the thin-
shell variant of the Ellis wormhole, note the absence of
stability regions for high values of x and y.

G. Thin-shell charged dilatonic wormhole

Consider a combined gravitational-electromagnetism-
dilaton system [37–39], described by the following
Lagrangian:

L ¼ ffiffiffiffiffiffiffi�g
p f�R=8�þ 2ðrc Þ2 þ e2cF2=4�g: (97)

In Schwarzschild coordinates the solution corresponding
to an electric monopole is given by the following line
element [37–39]:

ds2 ¼ �
�
1� 2M


þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 
2

p �
dt2

þ
�
1� 2M


þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 
2

p ��1 r2

r2 þ 
2
dr2

þ r2ðd�2 þ sin2�d’2Þ; (98)

where we have dropped the subscripts � for notational
convenience. The nonzero component of the electromag-
netic tensor is given by Ft̂ r̂ ¼ Q=r2, and the dilaton field is

given by e2c ¼ 1�Q2=Mð
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 
2

p Þ. The parame-
ter 
 is defined by 
 � Q2=2M.
In terms of the formalism developed in this paper, the

metric functions are provided by

bðrÞ ¼ r

�
1�

�
1þ 
2

r2

��
1� 2M


þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 
2

p ��
; (99)

�ðrÞ ¼ � 1

2
ln

�
1þ 
2

r2

�
: (100)

An event horizon exists at rb ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
=M

p
. Note that

�0ðrÞ is given by

�0ðrÞ ¼ 
2

að
2 þ a2Þ ; (101)

which is positive throughout the spacetime. Thus, the stabil-
ity regions are restricted by the inequalities (70) and (74).
We consider for simplicity 
þ ¼ 
�. The expressions

for inequalities (70) and (74) are extremely lengthy, so we
will not write them down explicitly. We define the follow-
ing parameters: x ¼ 2Mþ=a and y ¼ M�=Mþ. The junc-
tion interface lies within the range rb < a <1, so that the
range of the parameter x is given by

0< x<
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

2M2
þ

r : (102)

FIG. 8. The stability regions for the toy model thin-shell
wormhole with b� ¼ ffiffiffiffiffiffiffiffiffi

rR�
p

, �� ¼ 0 are given above the grey
surfaces depicted in the plot. The grey surface is given by the
dimensionless quantity IðR�; a0Þ, given by the right-hand side of
inequality (94). We have considered the range 0< x ¼
Rþ=a0 < 1 and 0< y ¼ R�=Rþ < 1=x. Large stability regions
exist for small values of x and of y. Note that the stability regions
decrease for large values of y, i.e., for R� 	 Rþ, and for large
values of x.
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FIG. 9. The plot depicts the stability regions for the toy model thin shell, with b� ¼ ffiffiffiffiffiffiffiffiffi
R�r

p
, but now in the presence of nonzero

external forces. The latter nonzero momentum flux arises from the functions given by�� ¼ �R�=r. The grey surface depicted in the
left plot is given by I2ðR�; a0Þ, i.e., the right-hand side of inequality (96), and the stability regions are given below this surface. We
have considered, as before, the range 0< x ¼ Rþ=a0 < 1 and 0< y ¼ R�=Rþ < 1=x. Now, collecting the results, note that the
stability regions are given from the regions above the surface in Fig. 8, and below the surface provided by the left plot. These stability
regions are depicted in the right plot in between the grey surfaces, represented by the functions IðR�; a0Þ and I2ðR�; a0Þ, respectively.
Note the absence of stability regions for high values of x and y. See the text for more details.

FIG. 10. Thin-shell dilaton wormhole for 
 ¼ 1=2. The left plot describes the stability regions above the grey surface, given by (70),
while the right plot describes the stability regions below the grey surface, i.e., inequality (74). From the left plot, one verifies shows that
the stability regions decrease significantly for increasing values of x, within the considered range of 0< y< 1. In counterpart, the right
plot shows that the stability regions decrease significantly for decreasing values of y. These latter stability regions further decrease for
increasing values of x. See the text for more details.
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FIG. 11. Thin-shell dilaton wormhole for 
 ¼ 1=8. The left plot describes the stability regions above the grey surface, given by (72),
while the right plot describes the stability regions below the grey surface, i.e., inequality (74). The left plot shows qualitatively that the
stability regions decrease significantly for increasing values of x, in the relevant range of 0< y< 1. From the right plot, one verifies
that the stability regions decrease significantly for decreasing values of y. See the text for more details.

FIG. 12 (color online). The plots depict the final stability regions for the thin-shell dilaton wormhole. The left plot describes the
stability regions given by 
 ¼ 1=2, while the right plot describes stability regions given by 
 ¼ 1=8. The final stability regions are
depicted in between the surfaces of different shades of grey. Note that the stability regions decrease for decreasing values of 
. More
specifically, for decreasing values of 
, stability regions exist for practically very low values of y, i.e.,M� � Mþ. In this context, it is
interesting to note that in the vicinity of the event horizon, the stability regions increase for increasing values of 
, provided one has
low values of y. See the text for more details.
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In the following analysis, we only consider the regions
within the range 0< y � 1, as the stability regions lie
within this range, as will be shown below.

Consider as a first example the case for 
 ¼ 1=2, so that
the stability regions, governed by the inequalities (70) and
(74), are depicted in Fig. 10. The left plot describes the
stability regions above the grey surface, given by (70),
while the right plot describes the stability regions below
the grey surface, i.e., inequality (74). Note that the stability
condition dictated by the inequality (70) shows that the
stability regions decrease significantly for increasing val-
ues of x, within the considered range of y, i.e., 0< y < 1.
In counterpart, inequality (74) shows that the stability
regions decrease significantly for decreasing values of y.
These latter stability regions further decrease for increas-
ing values of x. As a second case consider the value 
 ¼
1=8, depicted in Fig. 11. We verify that the qualitative
results are similar to the specific case of 
 ¼ 1=2, consid-
ered above.

Collecting the above results, the final stability regions,
depicted in between the surfaces of different shades of
grey, are given in Fig. 12. The left and right plot are given
for the values of 
 ¼ 1=2 and 
 ¼ 1=8, respectively. Note
that the stability regions decrease for decreasing values of

. More specifically, for decreasing values of 
, stability
regions exist for practically very low values of y, i.e.,
M� � Mþ. In this context, it is interesting to note that in
the vicinity of the event horizon, the stability regions
increase for increasing values of 
, provided one has low
values of y.

IV. DISCUSSION AND CONCLUSION

In this work, we have developed an extremely general,
flexible and robust framework, leading to the linearized
stability analysis of spherically symmetric thin shells. The
analysis is well-adapted to general spherically symmetric
thin-shell traversable wormholes and, in this context, the
construction confines the exotic material to the thin shell.
The latter, while constrained by spherical symmetry is
allowed to move freely within the bulk spacetimes, which
permits a fully dynamic analysis. To this effect, we have
considered in great detail the presence of a flux term, which
has been widely ignored in the literature. This flux term
corresponds to the net discontinuity in the conservation law
of the surface stresses of the bulk momentum flux, and is
physically interpreted as the work done by external forces
on the thin shell.

Relative to the linearized stability analysis, we have
reversed the logic flow typically considered in the litera-
ture, and introduced a novel approach to the analysis. We
recall that the standard procedure extensively used in the
literature is to define a parametrization of the stability of
equilibrium, so as not to specify an equation of state
on the boundary surface [28–30]. More specifically, the
parameter �ð
Þ ¼ dP=d
 is usually defined, and the

standard physical interpretation of � is that of the speed
of sound. In this work, rather than adopt the latter ap-
proach, we considered that the stability of the wormhole is
fundamentally linked to the behavior of the surface mass
msðaÞ of the thin shell of exotic matter, residing on the
wormhole throat, via a pair of stability inequalities. More
specifically, we have considered the surface mass as a
function of the potential. This novel procedure implicitly
makes demands on the equation of state of the matter
residing on the transition layer, and demonstrates in full
generality that the stability of thin-shell wormholes is
equivalent to choosing suitable properties for the material
residing on the thin shell.
We have applied the latter stability formalism to a

number of specific examples of particular importance:
some presented to emphasize the features specific to pos-
sible asymmetry between the two universes used in tra-
versable wormhole construction, some to emphasize the
importance of NEC nonviolation in the bulk, and some to
assess the simplifications due to symmetry between the two
asymptotic regions. In particular, we have considered the
case of borderline NEC nonviolation in the bulk. This is
motivated by the knowledge that, on extremely general
grounds, the NEC must be violated somewhere in the
spacetime of a generic traversable wormhole, and if this
were to happen in the bulk region, this would be equivalent
to imposing�0�ðrÞ< 0 in the bulk. Thus to minimize NEC
violations for thin-shell wormholes, we have considered
the specific case of�� ¼ 0, which is particularly interest-
ing for its mathematical simplicity, and for its physical
interest as it corresponds to the constraint that the bulk
regions on either side of the wormhole throat be on the
verge of violating the NEC. We have also considered the
simplification when the two bulk regions are identical, and
analyzed the stability regions of asymmetric thin-shell
Schwarzschild wormholes and thin-shell Reissner-
Nordström wormholes in great detail. It was instructive
to consider explicit cases which violate some of the energy
conditions in the bulk. For instance, we considered
thin-shell variants of the Ellis wormhole and two new toy
models, and explored the linearized stability analysis
in the presence of zero momentum flux and nonzero ex-
ternal forces. Finally, we analyzed thin-shell dilatonic
wormholes, where the exterior spacetime solutions corre-
sponded to a combined gravitational-electromagnetic-
dilaton system.
In conclusion, by considering the matching of two

generic static spherically symmetric spacetimes using the
cut-and-paste procedure, we have analyzed the stability of
spherically symmetric dynamic thin-shell traversable
wormholes (stability to linearized spherically symmetric
perturbations around static solutions). The analysis pro-
vides a general and unified framework for simultaneously
addressing a large number of wormhole models scattered
throughout the literature. As such we hope it will serve to
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bring some cohesion and focus to what is otherwise a
rather disorganized and disparate collection of results. A
key feature of the current analysis is that we have been
able to include external forces in the form of nonzero
values for the metric functions ��ðrÞ. (This feature is
absent in much of the extant literature.) Another key
aspect of the current analysis is the focus on msðaÞ, the
‘‘mass’’ of the thin shell of exotic matter residing on
the wormhole throat, and the realization that stability of
the wormhole is fundamentally linked to the behavior of
this exotic matter via a pair of simple and relatively
tractable inequalities.
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