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We consider generic, or ‘‘dirty’’ (surrounded by matter), stationary rotating black holes with axial

symmetry. The restrictions are found on the asymptotic form of metric in the vicinity of nonextremal,

extremal and ultraextremal horizons, imposed by the conditions of regularity of increasing strength:

boundedness on the horizon of the Ricci scalar, of scalar quadratic curvature invariants, and of the

components of the curvature tensor in the tetrad attached to a falling observer. We show, in particular, that

boundedness of the Ricci scalar implies the ‘‘rigidity’’ of the horizon’s rotation in all cases, while the

finiteness of quadratic invariants leads to the constancy of the surface gravity. We discuss the role of

quasiglobal coordinate r that is emphasized by the conditions of regularity. Further restrictions on the

metric are formulated in terms of subsequent coefficients of expansion of metric functions by r. The

boundedness of the tetrad components of curvature tensor for an observer crossing the horizon is shown to

lead in the horizon limit to diagonalization of the Einstein tensor in the frame of a zero angular momentum

observer on a circular orbit (ZAMO frame) for horizons of all degrees of extremality.
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I. INTRODUCTION

The properties of near-horizon geometry play an essen-
tial role in many important issues in gravitational physics.
One of them is the constancy of the surface gravity � that is
crucial for the validity of the laws of black hole mechanics
[1] which were later recognized as laws of thermodynam-
ics with � related to the temperature of the system [2].
Another property is the constancy of the angular velocity
of a black hole !H that coincides with the horizon value of
the metric function ! responsible for rotation (see details
below) and allows one to consider a horizon as a solid
rigidly rotating object. The fundamental properties of the
near-horizon geometry established in [1] claim the con-
stancy of � and !H but tell nothing of the asymptotic form
of the metric and the rate with which !�!H approaches
zero. Meanwhile, these details become very important,
for example, in the relation between the symmetries
of the near-horizon geometry and the universality of the
Bekenstein-Hawking entropy. This served as a motivation
for closer examination of the properties of the metric near
the horizon for the ‘‘dirty’’ (surrounded by matter) black
holes, undertaken in [3] for static and in [4] for stationary
geometries. The aforementioned papers were mainly de-
voted to the nonextremal case. The ultraextremal one was
only touched upon partially, while the extremal case es-
caped consideration at all. Roughly speaking, the extremal
case corresponds to the degenerate horizons of the second
order while the ultraextremal case implies the multiple
horizon of the third order or higher. More explicit

definition of such horizons in terms of the metric functions
will be given in the text below.
In the present paper, we extend the results of [4] to the

extremal and ultraextremal cases for which � ¼ 0. We find
the asymptotic expansion of the metric near the horizon
compatible with the regularity of the geometry. It turns out
that one cannot simply put � ¼ 0 in the formulas derived in
[4] since the asymptotic expansion for ! changes qualita-
tively. It is worth stressing that knowledge of such proper-
ties is necessary in a number of different physical
problems. First of all, it concerns the issue of the black
hole entropy [3,4], which in the (ultra)extremal case be-
comes much more subtle and even contradictory [5]. The
attempts to give a self-consistent description of the entropy
in the extremal case were made for the spherically sym-
metric case [6,7] but to generalize them to rotating geome-
tries, detailed information on the asymptotic behavior of
the metric near the horizon is needed.
Apart from this, it is required by a number of concrete

physical and astrophysical applications. Let us give a
couple of examples. Quite recently, the effect of accelera-
tion of particles by rotating black holes (the BSW effect,
named after the authors of [8], M. Banados, J. Silk, and
S.M.West) was discovered for theKerr extremalmetric [8].
Later on, it was generalized to generic rotating dirty black
holes, both for the extremal and nonextremal cases [9]. One
of the key features of thiswork consisted in a proper account
for the difference in the asymptotic behavior of the metric
function ! responsible for rotation for extremal and non-
extremal black holes (see Eqs. (12) and (13) of [9]). The
validity of such an expansion in the extremal case can be
checked for the Kerr metric directly but it is important to
have it in the general case as well. Another example is
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studying the limiting transition from the rotating so-called
quasiblack hole—an object on the threshold of forming a
horizon in a horizonless configuration—to the black hole
limit [10]. Such a limit turns out to bewell defined onlydue to
the validity of the same asymptotic expansion of ! (see
Eq. (5) in [11]). Apart from this, the properties of different
kinds of observers in the vicinity of a black hole (orbiting
around it or falling through the horizon) are important in the
membrane formalism [12].

We find the restrictions which come from the two types
of requirements. The first one is the finiteness of some
curvature invariants imposed on the properties of the near-
horizon geometry. This is done by examining the same
invariants that were considered in [3,4] for the nonextremal
case. Thus our approach is purely geometric and, similarly
to [3,4] and contrary to [1], does not use any energy
conditions imposed on matter near the horizon.

Meanwhile, there is also another regularity requirement
not considered in [3,4]. It states that in the frame attached
to an observer crossing the horizon all curvature tensor
components should be finite. If we want the vicinity of the
horizon to be regular, the requirement under discussion
imposes strong restrictions on the metric functions. If this
requirement is violated, while the first one from the pre-
vious paragraph is satisfied, the corresponding space-time
represents a so-called truly naked black hole (TNBH).
Such objects, introduced and discussed in [13–15], gener-
alized some previous observations made in [16,17]. From
the mathematical viewpoint, their horizons are examples
of the so-called nonscalar curvature singularities (see
Chapter 8 of [18,19]).

The paper is organized as follows. In Sec. II, we give
basic definitions of different types of horizons (nonextre-
mal, extremal, ultraextremal) and describe briefly the met-
rics we consider. In Sec. III, we examine the Ricci scalar
and the invariants quadratic with respect to the Ricci tensor
and derive the restrictions on the metric functions that are
necessary and sufficient for their finiteness. Also, we dis-
cuss the role of the requirement of the metric’s analyticity
near the horizon and that of the quasiglobal coordinate. In
Sec. IV, the properties of the components of the Riemann
tensor in the vicinity of the horizon are discussed for
observers with zero angular momentum on circular orbits
(OZAMOs) and for observers crossing the horizon. In
Sec. V we illustrate the general results on the example of
Kerr-Newman vacuum solution. The on-horizon structure
of the Einstein tensor in the OZAMO frame is considered
in Sec. VI. Our summary and conclusion are given in
Sec. VII. In the Appendix , we give some useful formulas
for the Einstein tensor in the OZAMO frame.

II. BASIC FORMULAS

A. Types of horizons

In the simplest, spherically symmetric case of a black hole
metric in terms of the so-called quasiglobal coordinate r

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ R2ðrÞd�2; (1)

the event horizon is the surface r ¼ rh ¼ const, on which
fðrÞ ! 0. We assume that near the horizon f� ðr� rhÞp.
For the horizon to be nonsingular and allow analytic continu-
ation into the inner region, p must be an integer (for more on
this, see [15]). The horizon is referred to as nonextremal
if p ¼ 1 [so r ¼ rh is a simple zero of fðrÞ], extremal if
p ¼ 2, and ultraextremal if p � 3.
Making a change of variables from r to the proper

distance to the horizon n and using the Gaussian normal
coordinates, we can write the metric in the neighborhood
of the horizon as

ds2 ¼ �N2ðnÞdt2 þ dn2 þ r2ðnÞd�2; (2)

where NðnÞ is the lapse function. In the nonextremal case

NðnÞ � �n (3)

at the horizon, where � is the surface gravity. In the
extremal case, n� lnðr� rhÞ and

N � e�an (4)

(a > 0 is a constant), and in the ultraextremal one,

N � n�k; (5)

with k ¼ p
p�2 > 0. The condition N ¼ 0 on the horizon

means that in the extremal and ultraextremal cases it is
situated at infinite distance n ! þ1.
In the absence of specific symmetries, the form of

metric (1) is no longer valid. Then, the asymptotic depen-
dence of the lapse function on the proper distance to the
horizon can be taken as a definition of the horizon type: it is
nonextremal if NðnÞ � n, extremal if (4) holds, and ultra-
extremal in a case where relation (5) holds with k > 0.

B. Axially symmetric space-times

Consider a generic axially symmetric rotating black hole
space-time. Its metric in the vicinity of the horizon can be
written in terms of Gaussian normal coordinates as

ds2 ¼ �N2dt2 þ g��ðd��!dtÞ2 þ dn2 þ gzzdz
2; (6)

where n is the proper distance to the horizon, on which
N ¼ 0. Due to the symmetries, the metric functions here
do not depend on t and �. Instead of n and z one can use
coordinates r and �, similar to the Boyer-Lindquist ones
for the Kerr metric. Throughout the paper we assume that
the fundamental constants G ¼ c ¼ ℏ ¼ 1.
In what follows, we use notations for the indices

�; �; �; . . . ¼ 0; 1; 2; 3 ¼ t; �; n; z; (7)

i; j; k; l; . . . ¼ 1; 2; 3 ¼ �; n; z; (8)

A; B; C; . . . ¼ 0; 1 ¼ t; �; (9)
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a; b; c; . . . ¼ 2; 3 ¼ n; z: (10)

Under the listed assumption of symmetry, the nonvanishing
Christoffel symbols for the metric (6) read

�A;aB ¼ 1

2
@agAB; �a;AB ¼ � 1

2
@agAB;

�a;bc ¼ ð2Þ�a;bc;
(11)

�A
aB ¼ 1

2
gAD@agBD; �a

AB ¼ � 1

2
gab@bgAB;

�a
bc ¼ ð2Þ�a

bc;
(12)

where ð2Þ�a;bc and
ð2Þ�a

bc are the Christoffel symbols for

the two-dimensional metric gab.

III. CURVATURE INVARIANTS

A. Ricci scalar

In what follows, we need the expression for the Ricci
scalar R. Let us consider the foliation of the space-time by
hypersurfaces t ¼ const with the unit normal vectors u� ¼
N�0

�. Then one can use the general formula (see, e.g.,

Eq. (3.43) in the textbook [20])

R ¼ ð3ÞRþ ðKijKij � K2Þ � 2��
;�: (13)

Here, the semicolon denotes a covariant derivative with

respect to the metric g��;
ð3ÞR is the Ricci scalar of the slice

t ¼ const, Kij is its extrinsic curvature tensor

Kij ¼ u�;�e
�
ðiÞe

�
ðjÞ; (14)

where e
�
ðiÞ are the orthonormal basis vectors within the

hypersurface, and

�� � u�u�;� � u�u�;�: (15)

It is convenient to choose e�ðiÞ along the coordinate

axes ð�; n; zÞ. Then, after straightforward calculations,
we obtain that

�0 ¼ �� ¼ 0; �a ¼ gab@b lnN; (16)

K�� ¼ Kab ¼ 0; Ka� ¼ �g��

2N
@a!: (17)

Rewriting �
�
;� in terms of the three-metric gik, we can

recast the scalar curvature in the form

R ¼ ð3ÞRþ g��

2N2
ðr!Þ2 � 2

ð3Þ�N
N

; (18)

where ð3Þ�N is the Laplacian calculated with respect to the
metric gik of the slice t ¼ const; ðr!Þ2 ¼ gabð@a!Þð@b!Þ
coincides for the metrics g��, gij, and gab, since ! does

not depend on t and �.
The third term comes from �

�
;� and is the same as in the

static case [3], while the second one appears due to nonzero

extrinsic curvature of hypersurfaces dt ¼ 0 in axially sym-
metric space-times.
The right-hand part of (18) in an explicit form is

R ¼ ð3ÞRþ g��

2N2
½ð@n!Þ2 þ g�1

zz ð@z!Þ2�

�
�
2

�
@2nN

N
þ g�1

zz

@2zN

N

�
þ @nð	� þ 	zÞ � @nNN

þ g�1
zz @zð	� � 	zÞ � @zNN

�
; (19)

where 	� ¼ lng�� and 	z ¼ lngzz; the terms in brackets

come from extrinsic curvature, the ones in braces from �;�
� .

B. Nonextremal horizons

In this section we repeat the results obtained in [4] in
order to lay down the scheme to be used later for (ultra)
extremal horizons, write out the results explicitly for mean-
ingful comparison and interpretation, and correct some
minor errors made in the cited paper.

1. Ricci scalar

Let us consider R in the vicinity of the horizon where,
by definition, the lapse function has the asymptotic form
N � �n (3). As all derivatives of N are bounded, the term

�ð3Þ�N=N [the terms in braces in Eq. (19)] contains only
divergences of the order �1=n. Meanwhile, assuming
expansion of ! of the same type (we reserve notation !i

to use it below)

!ðn; zÞ ¼ !HðzÞ þ !̂1ðzÞnþ !̂2ðzÞn2 þ . . . ; (20)

the terms originating from the contribution of external
curvature contain divergences �1=n2:

R ¼ g��

2

��
@n!

N

�
2 þ g�1

zz

�
@z!

N

�
2
�
þO

�
1

n

�
: (21)

As it is a sum of squares, in order for them not to diverge
stronger than the remaining term �1=n, we need both
@n! ¼ Oð ffiffiffi

n
p Þ and @z! ¼ Oð ffiffiffi

n
p Þ, but taking into account

that expansion (20) contains only integer powers of n, this
is reduced to

@n! ¼ OðNÞ; @z! ¼ OðNÞ (22)

when N ! 0. In terms of expansion coefficients, this
means the rigidity of the horizon’s rotation !H ¼ const
and also that !1 ¼ 0, so that expansion (20) reads

!ðn; zÞ ¼ !H þ !̂2ðzÞn2 þ !̂3ðzÞn3 þ . . . : (23)

It can also be rewritten as a series by N

!ðn; zÞ ¼ !H þ ~!2ðzÞN2 þ ~!3ðzÞN3 þ . . . ; (24)

so @z! ¼ OðN2Þ also holds. Note that those are not
sufficient conditions for R to be finite, but further con-
straints are more conveniently obtained from the quadratic
invariants.
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2. Quadratic invariants

Let us now consider the traceless part Q�� ¼ R�� �
1
4Rg�� of the Ricci tensor squared

R2 � 4Q��Q
�� � 4R��R

�� � R2: (25)

The expressions for the quadratic invariants do not seem
to have an elegant form in terms of the three- and two-
dimensional geometries, and in their explicit forms are
rather lengthy, so we will not provide them here. In the
limit n ! 0 for the nonextremal horizon, however, one can
obtain

R2¼
�
16

�
@2nN

�

�
2þ 8

gzz

�
@zN

N

�
2þð@n	�Þ2þð@n	zÞ2

�
H
� 1
n2

þO

�
1

n

�
; (26)

where subscript H denotes that all of the quantities are
taken at the horizon. Note that the derivatives of 	n;� are

by n, not by z as given in [4]. This is again the sum of
squares, and we obtain four conditions on the metric
functions, which lead to their expansions of the form

N ¼ �nþ �̂3ðzÞn3 þ . . . ; (27)

g�� ¼ g�HðzÞ þ ĝ�2ðzÞn2 þ . . . ; (28)

gzz ¼ gzHðzÞ þ ĝz2ðzÞn2 þ . . . ; (29)

where the surface gravity � is constant. Expansions (23)
and (27)–(29) coincide with the corresponding results of
[4] [Eqs. (15)–(17) and (19)]. It is straightforward to check
that under those conditions the Ricci scalar (19) is regular.
It turns out that the terms �1=n in R2 also vanish, so both
R2 and the Kretschmann scalar Kr can be shown to be
bounded.

C. (Ultra)extremal horizons

1. Extremal case

In the neighborhood of an extremal horizon, the lapse
function has the asymptotic form N � e�an (4) and we
assume expansion of all other metric functions in terms of
e�an ! 0 (the horizon is at n ! þ1). Then the term

�ð3Þ�N=N in R is regular, and the only potentially danger-
ous terms that can diverge at the horizon in this case are the
ones in Eqs. (18) and (19) with derivatives of !, originat-
ing from the contribution of extrinsic curvature. Therefore,
we are again led to

@n! ¼ OðNÞ; @z! ¼ OðNÞ (30)

for N ! 0, and the asymptotic expansion for ! reads

! ¼ !H þ ~!1ðzÞN þOðN2Þ; (31)

where !H is constant. This is the same conclusion as for
the nonextremal case (24); however, in contrast to nonex-
tremal horizons, now there is no restriction on ~!1.
Looking into the quadratic invariants, on substitution of

(31) into (25) one can see that the invariant R2 is finite on
the horizon. We have checked that under the same assump-
tions the Kretschmann scalar is bounded as well, so the
regularity of quadratic algebraic invariants of the curvature
tensor provides no additional constraints.

2. An attempt to depart from analyticity

For the metric (6), � ¼ ð@N@nÞH. In what follows, we deal

with the horizons for which � ¼ 0. One can try to extend
the definition of the extremal horizon and take, say,
a ¼ aðzÞ in (4) instead of a ¼ const. This choice, however,
is incompatible with the requirement of analyticity of the
metric (1).
Analyticity can be defined in terms of the quasiglobal

coordinate rwhich behaves near the horizon as the Kruskal
one [21,22]. This is impossible for metric (6) in the whole
space-time, but nonetheless such a coordinate can be in-
troduced approximately in the vicinity of the horizon: in
the region where the Gaussian normal coordinates work,
we can always pass from variable n to r ¼ rðnÞ, such that
metric has the form

ds2 ¼ �N2ðr; zÞdt2 þ g��ðd��!dtÞ2 þ dr2

AðrÞ þ gzzdz
2;

(32)

with AðrÞ � N2ðr; zÞ � rp for N ! 0.
For nonextremal horizons (p ¼ 1) this was done in

Sec. VII of Ref. [23], but generalization to multiple hori-
zons (p � 2) is straightforward. The index p should be an
integer if we want to have the metric analytical and ex-
tendable across the horizon. This rules out the dependence
aðzÞ in (4). Nonetheless, for completeness, we investigate
below the case of aðzÞ as well, relaxing the requirement of
analyticity and relying on a weaker condition of the finite-
ness of curvature invariants only.
We assume the asymptotic form for the lapse function in

the vicinity of the horizon n ! þ1 is

N ¼ AðzÞe�aðzÞn þ BðzÞe�2aðzÞn þ . . . ; (33)

and examine whether such an asymptotic expression is
compatible with the finiteness of R and R2.

When a ¼ aðzÞ, the term ð3Þ�N=N in R (18) is not
regular, but contains only polynomial divergences, and
the exponential divergences can only be in the term with
the derivatives of!. The conditions on the expansion of!,
imposed in order to eliminate them, are reduced then to the
ones obtained in the simpler case (31).
It turns out that, after substitution of (31) and (33) into

R2, all of the exponential divergences in R2 vanish, and
only the polynomial ones remain. The worst possible

I. V. TANATAROVAND O.B. ZASLAVSKII PHYSICAL REVIEW D 86, 044019 (2012)

044019-4



remaining terms are proportional to n4, as each power of
n arises from differentiation by z, and it can be shown that

R2 ¼ n4

4

�
a0ðzÞ
g��gzz

�
4

H
� ½ð4� 3g��!

2
1Þ2

þ 2g2��!
4
1�H þOðn3Þ: (34)

The factor by n4 is an explicitly positive quantity, so the
divergence vanishes if and only if a0ðzÞ ¼ 0. Then, all of
the lower degree divergences also vanish and R2 is regular.
The Kretschmann scalar in this case can be shown to be
regular as well. Thus, even the rather weak requirement of
finiteness of R2 forces us to reject the dependence of a on z.

3. Quasiglobal coordinate

Given two radial-type coordinates, n and r, it is natural
to ask the question: in terms of which coordinate, n or r or
some other, should we write expansions of the metric
functions?

Note now that restrictions on the metric we have ob-
tained till now, by ruling out scalar curvature singularities,
are of two kinds: one is that some expansion coefficients
are zero and the other is that some other expansion coef-
ficients are constant on the horizon. The conditions of the
first type appear in the nonextremal case only.

For the sake of simplicity, from now on we redefine the
coordinate r in such a way that rh ¼ 0. For a nonextremal
horizon we, following [4], assumed expansion of metric by
n. In this case it is a generalization of expansion by r: if
g�� is expanded into a series by r, thenNðnÞ is a series with
odd powers of n, while!, g��, and gzz are series with even

powers of n. Thus, the obtained regularity conditions of the
first type actually tell us that the first terms of the assumed
expansions by n are actually only integer powers of r:

g��ðr; zÞ ¼ gðhÞ��ðzÞ þ gð1Þ��rþ oðrÞ; (35)

N2ðr; zÞ ¼ �2rþ ~�2r
2 þ oðr2Þ: (36)

It is likely that if we considered scalar curvature
invariants involving derivatives of higher order (e.g.,
R���
;�R

���
;�), we would obtain further conditions de-

manding that terms with even powers of n for N, and odd
powers of n for the other metric functions should be zero.

The idea that metric functions should be expanded in
terms of the quasiglobal coordinate is also strengthened by
the analysis of extremal horizon made in the previous
paragraph. In this case, expansions of ! or gii in terms
of powers of n are just not viable, leading inevitably to
scalar curvature singularity, while expansions in terms of r
are perfectly admissible.

In Sec. IV we will obtain further indications that this
reasoning is correct from consideration of boundedness of
tetrad components of the curvature tensor in a tetrad at-
tached to an observer crossing a nonextremal horizon.

4. Ultraextremal case

For the ultraextremal case, expansions in terms of n and
in terms of r are in general incompatible, as opposed to
the nonextremal case, because r� nm with noninteger
m ¼ � 2

p�2 . In contrast to [4], we assume expansions of

metric functions in terms of r:

N2 ¼ �pðzÞrp þ �pþ1ðzÞrpþ1 þ �pþ2ðzÞrpþ2 þOðrpþ2Þ;
(37)

! ¼ !HðzÞ þ!1ðzÞrþ!2ðzÞr2 þOðr3Þ; (38)

g�� ¼ g�HðzÞ þ g�1ðzÞrþ g�2ðzÞr2 þOðr3Þ; (39)

gzz ¼ gzHðzÞ þ gz1ðzÞrþ gz2ðzÞr2 þOðr3Þ: (40)

Then the term �ð3Þ�N=N in R (18) is bounded, and
in order to have the Ricci curvature bounded, the two
conditions

@n! ¼ OðNÞ; @z! ¼ OðNÞ (41)

must hold. The first one is satisfied automatically as soon
as we assume expansions in terms of r:

@n!

N
¼ dr

dn

@r!

N
¼

ffiffiffiffi
A

p
N

@r!� @r! ¼ Oð1Þ: (42)

The second one implies that the first (qþ 1) expansion
coefficients of !, starting from !H and ending with !q

with q ¼ ½ðpþ 1Þ=2� (brackets here denote the integer
part), do not depend on z, and depending on the parity of
p the corresponding term in R is either Oð1Þ or oð1Þ:

! ¼ !H þ . . .þ!q�1r
q�1 þ!qðzÞrq þ . . . ; (43)

p ¼ 2q� 1: N � rq�1=2 ) @z!� rq ¼ oðNÞ; (44)

p ¼ 2q: N � rq ) @z!� rq ¼ OðNÞ: (45)

The general form of expansions for quadratic invariants
is rather complicated, because the series starting with r0

and ones starting with rp get intermixed. However, one can
check that for specific cases p ¼ 3; . . . ; 8, assuming the
restrictions on ! obtained above hold, both R2 and K are
regular. Thus, just as in the extremal case, no additional
constraints are obtained.

D. Intermediate results: Eliminating scalar
curvature singularity

As mentioned above, the restrictions on metric obtained
from the demand of boundedness of scalar curvature in-
variants for any type of horizon are of two kinds. Those of
the first kind, when some expansion coefficients are zero,
can be summarized in the following way: expansion of the
metric has the form (35) and (36), i.e., the first several
terms are a part of a series by the quasiglobal coordinate
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r� n2 rather than by n. This is obtained for nonextremal
horizons, while for (ultra)extremal ones we assume expan-
sion by r from the very beginning, with � ¼ 0 and the first
term �rp.

The restrictions of the second kind are reduced to
(i) restrictions on ! (41)

@z! ¼ OðNÞ (46)

which enforce the ‘‘rigidity’’ of the horizon’s rotation [in
the nonextremal case this also implies @z! ¼ OðN2Þ], and
(ii) the constancy of the surface gravity [which holds by
definition for (ultra)extremal horizons with � ¼ 0].

IV. TETRAD COMPONENTS
OF CURVATURE TENSOR

In the preceding section, we considered the conditions
imposed on the metric by the finiteness of two curvature
invariants. Meanwhile, more detailed information about
the properties of the metric near the horizon is required.
One may ask, what is the behavior of the gravitational
characteristics which can be directly measured by an ob-
server? In other words, we are interested in the components
of the curvature tensor in the tetrad frame attached to
different observers.

In particular, we consider two classes of them. The
observer of the first type is orbiting a black hole outside
of the horizon on a circular orbit, with its angular momen-
tum equal to zero. Such observers were introduced in [24]
for the case of the Kerr metric and are usually referred to as
ZAMOs (zero angular momentum observers), but we pre-
fer to be more specific and will call them ‘‘orbital zero
angular momentum observers,’’ or OZAMOs for brevity.
The observer of the second type falls through the horizon
inside the black hole, freely or with finite proper accelera-
tion, with conserving energy and angular momentum also
equal to zero. We will call them ‘‘falling zero angular
momentum observers,’’ or FZAMOs for brevity.

Physically, the conditions on the metric which can be
derived from the finiteness of the tetrad components of the
curvature tensors can be different for OZAMOs and
FZAMOs. OZAMO frame is the most natural generaliza-
tion of the static frame in a static space-time to stationary
metric. In the static case, the Kretschmann invariant Kr
can be written in terms of the separate components of the
curvature tensor as a sum of squares, so the finiteness of Kr
requires the finiteness of each of them. Correspondingly,
any algebraic invariant composed from the curvature ten-
sor will be also finite. In the stationary case, the expression
for Kr includes terms with different signs because of mixed
components (with indices 0 and �), so the general picture
is much more complicated.

Even in the static case, the components of the curvature
tensor in the FZAMO frame responsible for tidal forces can
be significantly enhanced near the horizon [16,17]. This
amounts to infinite values of some of them [13,14], which

remains compatible with the finiteness of curvature invar-
iants. The corresponding objects represent the so-called
truly naked black holes. If we want the metric to be
completely regular, we should exclude such space-times.
However, for this purpose, it is insufficient to examine the
curvature invariants and the information about properties
of FZAMO is required.
Thus we need (i) to clarify the connection between the

finiteness of curvature invariants and the conditions ob-
tained in the OZAMO frame, and (ii) to derive the corre-
sponding conditions for FZAMO which are expected to
give in general additional constraints on the properties of
the metric.

A. Orbital ZAMO frame

First of all, let us consider the components of curvature
tensor R��
� in the coordinate frame (t�nz). Using the

Gauss-Codazzi equations [20] for the Riklm components
(without zero indices), we get

Riklm ¼ ð3ÞRiklm þ ðKilKkm � KikKlmÞ; (47)

thus, using (16) we have explicitly

Rabcd ¼ ð3ÞRabcd; (48)

Ra�b� ¼ ð3ÞRa�b� � g2��

4

@a!

N

@b!

N
; (49)

while R�abc ¼ 0 due to symmetry. Thus, the conditions

(22) are necessary for R��
� to be bounded, and direct

calculation of the other components shows that they are
also sufficient for that:

R��
� ¼ Oð1Þ , R ¼ Oð1Þ: (50)

This fact does not seem to have any deep physical meaning
by itself, though, as the finiteness of curvature tensor in the
given (badly behaved) coordinate frame is irrelevant to
regularity of geometry or observables.
Now let us consider an OZAMO (zero angular momen-

tum observer) on a circular orbit n ¼ const, z ¼ const. The
corresponding frame is defined by the tetrad

hð0Þ ¼ �Ndt; hð1Þ ¼ ffiffiffiffiffiffiffiffiffi
g��

p ðd��!dtÞ;
hð2Þ ¼ dn; hð3Þ ¼ ffiffiffiffiffiffiffi

gzz
p

dz:
(51)

The tetrad components of the curvature tensor in this frame
will be denoted by tildes, e.g., ~R��
�. As the components

in the coordinate frame R��
� are bounded and do not

generally tend to zero, and there is a divergent factor in
h�ð0Þ � 1=N, naive expectations would be that ~R0i0j �
h
�
ð0Þh

�
ð0ÞR�i�j diverge as 1=N2 and ~R0ijk as 1=N. However,

as we show below, this is not the case.
The components ~Ra�b� in the OZAMO frame differ

from Ra�b� (49) only by a factor of the order of unity;

thus, the conditions (22) are at least necessary for the
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boundedness of ~R��
�. Assuming they hold, direct calcu-

lation shows that all of the other components of the curva-
ture tensor in the OZAMO frame are finite with the
possible exception of

~R 0123 ¼ � 1

2

ffiffiffiffiffiffiffiffiffi
g��

gzz

s
@z!

N

@nN

N
þOð1Þ; (52)

~R 0312 ¼ þ 1

2

ffiffiffiffiffiffiffiffiffi
g��

gzz

s
@z!

N

@nN

N
þOð1Þ: (53)

However, as @nN=N � @rN � rp=2�1, in the
(ultra)extremal case p � 2 those are also regular, so no
additional constraints appear; and in the nonextremal case
the two conditions (22) actually imply that @z! ¼ OðN2Þ
[see (23)], so there are no additional constraints in this case
either. Thus, for all types of horizons

~R��
� ¼ Oð1Þ , R ¼ Oð1Þ: (54)

We see therefore that in the vicinity of a regular horizon an
OZAMO observer always experiences finite tidal forces,
even though his acceleration itself may diverge (at a non-
extremal horizon).

B. Falling ZAMO frame

1. Choice of tetrad for a falling observer

If there’s a Killing vector ��, then the quantity ��u� is

conserved for a free-falling particle with 4-velocity u�.
Moreover, conservation of u��� along the worldline of

any particle, not necessarily free falling, is equivalent to its
acceleration being zero along the Killing vector field:

a��� ¼ ðu�r�u
�Þ�� ¼ u�r�ðu���Þ � u�u�r���

¼ u�r�ðu���Þ:
(55)

As the two Killing vectors for the axially symmetric metric
are @t and @�, the two corresponding quantities that con-

serve on geodesics are energy E ¼ �ut and angular
momentum L ¼ u� (for particles of unit mass, which

will be considered hereafter).
Let us consider FZAMO, i.e., the observer with zero

angular momentum and conserving energy that is falling
towards the horizon relative to an OZAMO. According to
what is written above, the t and � components of his
acceleration are zero. So, this class of observers obviously
includes some of the free-falling ones, with corresponding
values of E and L.

We attach the tetrad to FZAMOs and investigate the
restrictions on the metric that would ensure that the curva-
ture tensor components in this tetrad are bounded. The
tetrad can be built in three steps:

(i) First, we take the tetrad of the OZAMO frame (51).
(ii) Second, we rotate the frame in the n� z plane by

angle �

~eð2Þ ¼ hð2Þ cos�þ hð3Þ sin�;

~eð3Þ ¼ �hð2Þ sin�þ hð3Þ cos�:
(56)

(iii) Finally, we make a boost in the direction of ~eð2Þ:

eð0Þ ¼ 	ðhð0Þ þ v~eð2ÞÞ; eð1Þ ¼ hð1Þ;

eð2Þ ¼ 	ð~eð2Þ þ vhð0ÞÞ; eð3Þ ¼ ~eð3Þ;
(57)

where

	 ¼ E

N
(58)

is the Lorentz factor of the observer with respect to

the OZAMO frame, v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=	2

p
is the physical

velocity, and vn ¼ v cos� and vz ¼ v sin� are its
spatial components.

We do not consider below particles with E ¼ 0. Those
are a specific case of critical particles, defined in general
by the relation E�!HL ¼ 0, which are special and give
rise to many interesting phenomena, such as the BSW
effect [8].
We will also impose one additional restriction on the

observers:

� ¼ OðNÞ: (59)

It always holds in the spherically symmetric case due to an
additional constant of motion. In the axially symmetric
nonextremal case, it can be shown to follow explicitly
from the boundedness of a particle’s scalar acceleration.
Extremal, and all the more so ultraextremal, general axially
symmetric metrics in principle allow motion even with
� ¼ Oð1Þ. However, such particles and corresponding met-
rics are also in a sense quite special, unique to extremal
horizons, and should be investigated separately. We will
not go into details here (they will be reported elsewhere),
but instead, though it may seem rather arbitrary, we just
assume (59) in all cases.

2. Nonextremal horizons

The components of curvature tensor in the tetrad frame
feðiÞg (57), attached to FZAMO, will be denoted by hats,

e.g., R̂��
�. Assuming expansions (23) and (27)–(29), the

components responsible for the tidal forces experienced by
the observer are as follows near the horizon:

R̂ 0101 ¼ � 3E2

2�2g�H

ĝ�3

n
þOð1Þ; (60)

R̂ 0202 ¼ Oð1Þ; (61)

R̂ 0303 ¼ � 3E2

2�2g�H

ĝz3
n

þOð1Þ; (62)
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R̂ 0102 ¼ � 3E

2�2

ffiffiffiffiffiffiffiffiffi
g�H

p !̂3

n
þOð1Þ; (63)

R̂0103 ¼
E2 ffiffiffiffiffiffiffiffiffi

g�H
p

2�3 ffiffiffiffiffiffiffiffi
gzH

p
�
�

n
3

ffiffiffiffiffiffiffiffi
gzH

p
!̂3 � !̂0

3

�
1

n
þOð1Þ; (64)

R̂ 0203 ¼ Oð1Þ: (65)

The necessary and sufficient conditions for them to be
bounded are

ĝ z3 ¼ ĝ�3 ¼ !̂3 ¼ 0:

It can be checked that all of the other components of the
curvature tensor are also bounded under these assumptions.

Together with conditions (35) and (36), already taken
into account, these restrictions can be reformulated espe-
cially simply in terms of the quasiglobal coordinate:

g�� ¼ gðhÞ�� þ gð1Þ��rþ gð2Þ��r2 þ oðr2Þ: (66)

Thus, when we excluded scalar curvature singularity, we
had to assume that metric is expanded in terms of r instead
of n up to at least the terms �r� n2 (35), with N2 up to
�r2 � n4 (36); and now, excluding also truly naked black
holes, we have to demand that the same condition holds for
all components of g�� at least up to terms �r2 � n4.

On the other hand, we see that there is no restriction on
the first nonzero expansion coefficients of g�� after the

leading terms (they are allowed to be functions of z) and in
this sense the restrictions obtained from the OZAMO and
FZAMO frames are the same. We will see below that in the
(ultra)extremal case this is not so.

3. Extremal horizons

In order to extract the necessary and sufficient condi-
tions of regularity of the curvature tensor in the FZAMO
tetrad in the extremal and ultraextremal cases it appears not

to be enough to consider only the tidal forces R̂0i0j (i, j ¼
1, 2, 3). So we look at all of the components in the order
that allows us to extract those conditions most efficiently.

Assuming the only restriction obtained for extremal
horizons from the demand of curvature invariants’ regular-
ity!H ¼ const (31), the smallness of � (59) and expansion
of metric in terms of r of general form (37)–(40) for
extremal horizons, with p ¼ 2, so that

N2 ¼ �2ðzÞr2 þ �3ðzÞr3 þOðr4Þ; (67)

the asymptotics of some of the tetrad components are
given by

R̂0101� R̂1212� R̂0112� 1

r2
½g0�H�

0
2þg2�Hð!0

1Þ2�; (68)

R̂0103 � R̂0123 � rR̂0312 � rR̂1223 � 1

r2
½2�2!

0
1 �!1�

0
2�;
(69)

R̂ 0203 � R̂0223 � 1

r
½2�0

2 � 3g�H!1!
0
1�; (70)

R̂ 0113 �!1!
0
1

r
: (71)

For their boundedness it is necessary that !0
1 ¼ �0

2 ¼ 0.

Under those conditions the expressions for R̂��
� are

further simplified and we see, in particular, that

R̂ 0101 � R̂0103 � R̂1212 � R̂0112 � �0
3

r
: (72)

Thus, the necessary conditions are

!0
1 ¼ �0

2 ¼ �0
3 ¼ 0: (73)

They can be rewritten as

@z! ¼ OðN2Þ; @zN
2

N2
¼ OðN2Þ: (74)

This set now can be verified to be sufficient for all the
tetrad components of the curvature tensor to be bounded.
They are clearly more strict conditions on the metric than
just those that are necessary for the boundedness of scalar
invariants (30).

4. Ultraextremal horizons

In this case, it is more convenient to work in terms of
metric functions and their asymptotics, rather than in terms
of their expansions, as the series starting with r0 and rp are
multiplied and divided, so the resulting series for arbitrary
p are hard to deal with. Thus we do the following. First, we
calculate the exact expressions for the components of the
curvature tensor in the FZAMO tetrad, and inspect them
for divergences in assumptions (59) and

N2 � AðrÞ � rp; p > 2; @z! ¼ OðNÞ; (75)

where the last condition comes from the finiteness of
curvature scalars according to (46). Then starting from
some component we write out the explicit condition of
its boundedness in the form fðg��; @�g��Þ ¼ Oð1Þ, where
f includes all of the potentially divergent terms. This
condition is then used to simplify the expressions for the
other components, and allows us to write out the next
condition that is needed for the finiteness of the next
component. This procedure is repeated until all of the
components are finite, and this gives us, by construction,

the set of necessary and sufficient conditions for R̂��
� to

be regular. The choice of specific succession can signifi-
cantly simplify the conditions and their subsequent reduc-
tion. Our choice leads to the following sequence:
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1: R̂0113: @r! � @z! ¼ OðN2Þ; (76)

2: R̂0101: @z	�

@zN
2

N2
þ g��

�
@z!

N

�
2 ¼ OðN2Þ; (77)

3: R̂0203:
@zN

2

N2
¼ OðrÞ , �0

p ¼ 0; (78)

4: R̂0303: @zð	z�3	�Þ@zN
2

N2
þ
�
@zN

2

N2

�
2�2

@2zN
2

N2
¼OðN2Þ;

(79)

5: R̂0313: @zð	z�3	�Þ �@z!�2@2z!þ@zN
2

N2
@z!¼OðN2Þ;

(80)

6: R̂0103: @rð	z � 3	�Þ � @z!� 2@r@z!

þ 2
@rN

2

N2
@z!� @zN

2

N2
@r! ¼ OðN2Þ: (81)

Note that if (74) hold, then the six conditions (76)–(81)
are also satisfied. So (74) are sufficient but not in general
necessary conditions for the ultraextremal case.

It should be noted that the order of the obtained restric-
tions on metric is not what would be expected from naive
considerations: while the components of curvature tensor
in OZAMO frame are bounded, which is ensured by con-
ditions @z! ¼ OðNÞ, etc. (and which in itself is not ex-
pected from naive considerations), making the boost into
the FZAMO frame with Lorentz factor �1=N, we intro-
duce divergent factors, the worst of which are �1=N2; so,
one would expect that regularity conditions change to, e.g.,
@z! ¼ OðN3Þ. The correct conditions turn out to be much
softer, and the restriction (59) is essential here.

5. Simplest case: p¼ 3

Let us obtain the explicit restriction on the metric that
the six conditions (76)–(81) imply in terms of the metric
functions’ expansion coefficients by r (37)–(40) in the
simplest case of ultraextremal horizon, for p ¼ 3.
Condition 2 is equivalent to �0

p ¼ 0; after substitution of

(37)–(40) into the left-hand side of the remaining five, we
demand that all terms up to�r2 are equal to zero, as in this
case OðN2Þ is Oðr3Þ. After some algebra we obtain that
there are three possible variants.

(1) The first is the one to be expected, with @zN
2 ¼

OðN4Þ and @z! ¼ OðN2Þ, which in terms of expan-
sion coefficients means

�0
3 ¼ �0

4 ¼ �0
5 ¼ 0; (82)

!0
H ¼ !0

1 ¼ !0
2 ¼ 0 (83)

with no other constraints. The expansions them-
selves are then

N2ðr; zÞ ¼ �3r
3 þ �4r

4 þ �5r
5 þ �6ðzÞr6 þ . . . ;

(84)

!ðr; zÞ ¼ !H þ!1rþ!2r
2 þ!3ðzÞr3 þ . . . ;

(85)

with g�� and gzz given by the general formulas (39)

and (40). Here and below in this section we under-
line the coefficients in the expansions that do not
depend on z.

(2) The second possible variant is more exotic:

�0
3 ¼ �0

4 ¼ 0; but �0
5 � 0; (86)

!0
H ¼ !0

2 ¼ 0; !1 ¼ 0; (87)

g0�H ¼ 0; (88)

gzH ¼ const � ð�0
5Þ2; (89)

so that the expansions (37)–(40) read

N2ðr; zÞ ¼ �3r
3 þ �4r

4 þ �5ðzÞr5 þ . . . ; (90)

!ðr; zÞ ¼ !H þ!2r
2 þ!3ðzÞr3 þ . . . ; (91)

g��ðr; zÞ ¼ g
�H

þ g�1ðzÞrþ . . . ; (92)

gzzðr; zÞ ¼ const � ð�0
5Þ2 þ gz1ðzÞrþ . . . : (93)

(3) Lastly, there is one more variant, most exotic, with
expansion coefficients

�0
3 ¼ 0; but �0

4 � 0; (94)

!0
H ¼ 0; !1 ¼ !2 ¼ 0; (95)

g0�H ¼ g0�1 ¼ 0; (96)

gzH ¼ C1 � ð�0
4Þ2;

gz1 ¼ gzH

�
2
�0
5

�0
4

� �4

�3

þ C2

�
;

(97)

where C1;2 are constants, such that the metric

functions are

N2ðr; zÞ ¼ �3r
3 þ �4ðzÞr4 þ �5ðzÞr5 þ . . . ; (98)

!ðr;zÞ¼!Hþ!3ðzÞr3þ!4ðzÞr4þ . . . ; (99)

g��ðr; zÞ ¼ g
�H

þ g
�1
rþ g�2ðzÞr2 þ . . . ; (100)
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gzzðr; zÞ ¼ C1 � ð�0
4Þ2

�
1þ

�
2
�0
5

�0
4

� �4

�3

þ C2

�
r

�

þ gz2ðzÞr2 þ . . . : (101)

For larger values of p we would obtain more exotic
variants of regular horizons.

V. EXAMPLE: KERR-NEWMAN METRIC

To illustrate the above properties, let us consider the
simplest and, at the same time, one of the most physically
important cases—the Kerr-Newman metric. In the Boyer-
Lindquist coordinates, this metric can be written as [25]

ds2¼�
�
1�2Mr�Q2

�

�
dt2

�2að2Mr�Q2Þsin2�
�

dtd�þ�

�
dr2þ�d�2

þ
�
r2þa2þð2Mr�Q2Þa2sin2�

�

�
sin2�d�2; (102)

where a is the angular momentum parameter, Q is the
electric charge, � � r2 þ a2cos2�, and

� ¼ r2 � 2Mrþ a2 þQ2 ¼ ðr� rþÞðr� r�Þ; (103)

where r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
are the roots of equation

� ¼ 0. The larger root rþ corresponds to the event
horizon.

The expression for the metric can be rewritten in the
form (6) with

! ¼ að2Mr�Q2Þ
�ðr2 þ a2Þ þ ð2Mr�Q2Þa2sin2�

¼ að2Mr�Q2Þ
ðr2 þ a2Þ2 � a2�sin2�

;
(104)

N2 ¼ ��

ðr2 þ a2Þ2 � a2�sin2�
: (105)

Two cases should be considered separately.

A. Nonextremal horizon, M2 > a2 þ Q2

Let us consider the near-horizon region, r ! rþ. Then,
the proper distance between the points with coordinates
r and rþ is

n � 2
ffiffiffiffiffiffiffi
�þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ � r�

p ; (106)

where �þ � r2þ þ a2cos2�. Correspondingly, Eq. (105)
gives us

N � �n; (107)

where

� ¼ rþ � r�
2ðr2þ þ a2Þ (108)

is the surface gravity of the Kerr-Newman black hole. It
follows from (104) that

!�!H � aðr� rþÞ
�
2ðM� 2rþÞ
ðr2þ þ a2Þ2 þ a2sin2�ðrþ � r�Þ

ðr2þ þ a2Þ3
�
;

(109)

where !H ¼ !ðr ¼ rþÞ ¼ aðr2þ þ a2Þ�1 ¼ const. Thus,
the first correction to !H has the order r� rþ � N2, in
agreement with (24).

B. Extremal horizon, M2 ¼ a2 þQ2

Then, rþ ¼ r�, � ¼ ðr� rþÞ2. The corrections to !H

have the order r� rþ again. However, now r� rþ � N.
Moreover, the term with angular dependence in (109)
vanishes, so !�!H � ~!1N in agreement with (31),
where ~!1; !1 ¼ const according to (73).
To obtain the triple horizon, one may introduce into

consideration the cosmological term. However, we will
not list the corresponding rather cumbersome expres-
sions since the triple root does not correspond in this
case to the black hole horizon, as the region with
r > rþ is a cosmological one, with the positive factor
in ds2 at dt2.

VI. ON-HORIZON STRUCTURE OF THE
EINSTEIN TENSOR

The important property of the horizon consists in that
the Einstein tensor in the OZAMO frame becomes diago-
nal in the horizon limit. If the Einstein equations are
satisfied, this leads to important constraints on the possible
form of the equation of state near the horizon. Diagonality
of the Einstein tensor was demonstrated in [4] for nonex-
tremal horizons by direct calculations in the tetrad that
does not coincide with that of OZAMO and is not orthogo-
nal, although the discrepancy becomes negligible in the
limit under consideration. Meanwhile, the lack of ortho-
gonality generates its own corrections which are hard
to control.
Here, we show that the Einstein tensor indeed becomes

diagonal in the orthogonal frame attached to an OZAMO.
To this end, we use two different approaches. First, we
calculate the components of this tensor directly like it was
done in [4], but for a different, exactly orthonormal tetrad.
Second, we show that the structure of the Einstein tensor
can be understood if one takes into account the relationship
between OZAMO and FZAMO.

A. Direct calculation

We want to establish the asymptotic structure of the
Einstein tensor in the OZAMO frame, denoted by tildes.
The general expressions, though lengthy, are quite
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manageable and are given in the Appendix . We are inter-
ested in the difference

~G0
0 � ~G2

2 ¼
g��

2gzz

�
@z!

N

�
2 þ 1

2
fD2

ngzz þD2
ng��g

� 1

2

@nN

N
@nð	� þ 	zÞ

� 1

2gzz

@zN

N
@zð	� � 	zÞ � 1

gzz

@2zN

N
(110)

and the two nonzero off-diagonal components ~G0
1 and ~G2

3

[for explicit expressions and definition of operator D2
a (A5),

see the Appendix ; the others are zero due to symmetry]. It
was shown in [4] that in the horizon limit for the nonex-
tremal case all of the three quantities tend to zero, so that the
Einstein tensor diagonalizes. Let us show now that the
regularity conditions derived above imply that it actually
diagonalizes for arbitrary horizons, either extremal or not, in
a quite general manner.

We start from the ~G0
0 � ~G2

2 term. Rewriting the parts

with derivatives by n in terms of @r ¼
ffiffiffiffi
A

p
@n, we get

~G0
0� ~G2

2 ¼
1

2gzz

�
g��

�
@z!

N

�
2�@zN

N
@zð	��	zÞ� 2

@2zN

N

�

þAðrÞ
2

�
D2

rg��þD2
rgzzþ@r ln

A

N2

�
: (111)

The second term here is OðN2Þ, as A� N2 and therefore
@r lnðA=N2Þ ¼ Oð1Þ, for arbitrary horizons.

(i) In the nonextremal and extremal cases, the expres-
sion in the braces is also OðN2Þ due to the regularity
conditions in the form (74);

(ii) In order to see that the same holds in the ultra-
extremal case, we rewrite it as

~G0
0 � ~G2

2 ¼
1

2gzz

�
g��

�
@z!

N

�
2 þ @z	�

@zN
2

N2

�

þ 1

4gzz

�
@zð	z � 3	�Þ @zN

2

N2

þ
�
@zN

2

N2

�
2 � 2

@2zN
2

N2

�
þOðN2Þ:

(112)

The expression in the first braces is OðN2Þ due to
condition 2 (77), and the one in the second braces is
also OðN2Þ due to condition 4 (79).

Thus for all horizons

~G 0
0 � ~G2

2 ¼ OðN2Þ: (113)

Likewise, the off-diagonal components in terms of r can
be put down in the form

1ffiffiffiffiffiffiffiffiffi
g��

p ~G0
1 ¼ � 1

4gzz

�
@zð	z � 3	�Þ � @z!

þ @zN
2

N2
@z!� 2@2z!

�
1

N
þOðNÞ; (114)

ffiffiffiffiffiffiffi
gzz

p ~G3
2¼

�
g��

2
@r! �@z!�N@r@zN

� ffiffiffiffi
A

p
N2

þOðNÞ: (115)

In the nonextremal and extremal cases, the terms in braces
are OðN2Þ due to conditions (74), and in the ultraextremal
case the same result follows from conditions 1, 3, and 5
(77) and (79), (76), (78), and (80). Note that the finiteness
of scalar invariants only, which leads to @z! ¼ OðNÞ, is
not sufficient for ~G0

1 to turn to zero; the converse result was
mistakenly obtained in [4] due to the use of the tetrad
which is not exactly orthonormal.
As the result, for all horizons

~G 0
1;

~G2
3 ¼ OðNÞ: (116)

B. Kinematic origin of the on-horizon
structure of the Einstein tensor

Let us, following our general logic, assume that all
components of the curvature tensor in the FZAMO frame
fe�g are finite. Both groups of observers—FZAMOs and

OZAMOs—are related by local Lorentz boosts (57). Now,
we will show that these two circumstances entail a rather
general form of the constraints on the structure of the
Einstein tensor in the OZAMO frame fh�g (51). For sim-

plicity, we will restrict our consideration here to FZAMOs
falling relative to OZAMOs exactly in the radial direction,
so that � ¼ 0 and the second step (56) in building the
FZAMO tetrad is omitted. Recall that tildes denote tensors
calculated in the OZAMO frame, and hats those in
FZAMO frame.
Indeed, let us write down the boost (57) in the form

eð�Þ ¼ x
�hð
Þ; �; 
 ¼ 0; 2; (117)

where

x


� ¼ 	

1 v
v 1

� �
(118)

and the Lorentz factor is

	 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p ¼ E

N
; (119)

which follows from the conservation of energy and the fact
that the conserved angular momenta of both observers are
equal to zero.

Then, we can calculate Ĝ00, Ĝ22 in terms of the OZAMO
frame and take the horizon limit, in which N ! 0, v ! 1.
After some elementary algebra, one finds that

Ĝ00 ¼ ~G�
x
�
0x



0 ¼ 	2 ~G00 þ 2	v ~G02 þ 	2v2 ~G22; (120)
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Ĝ22 ¼ ~G�
x
�
2x



2 ¼ 	2 ~G22 þ 2	v ~G02 þ 	2v2 ~G00: (121)

In the horizon limit then, taking into account that due to

symmetry [see Eq. (A8) in the Appendix ] ~G02 ¼ 0

ðĜ2
2 � Ĝ0

0Þ � ðĜ22 þ Ĝ00Þ � 2	2ð ~G22 þ ~G00Þ; (122)

so, the finiteness of ðĜ0
0 � Ĝ2

2Þ requires that
ð ~G0

0 � ~G2
2Þ ¼ Oð	�2Þ ¼ OðN2Þ: (123)

In a similar way one can easily show that

Ĝ 01 ¼ 	 ~G01; Ĝ23 ¼ 	 ~G23; (124)

so the finiteness of Ĝ�� also leads to

~G 01 ¼ OðNÞ and ~G32 ¼ OðNÞ: (125)

The results coincide with those obtained above by direct
calculations in the OZAMO frame.

VII. SUMMARYAND CONCLUSION

We investigated the restrictions imposed on the metric
by the conditions of regularity of increasing strength:
boundedness of the Ricci scalar, boundedness of quadratic
scalar invariants, and boundedness of tetrad components of
the curvature tensor in a frame attached to a falling ob-
server. The results apply to generic dirty axially symmetric
rotating black holes.

Starting with the nonextremal metric written in terms of
proper distance to the horizon n, we saw in particular that
the regularity conditions demand the metric to be expanded
in terms of the quasiglobal coordinate r� n2 rather than n:
for scalar invariants and tetrad components of the curvature
tensor to be bounded, it is necessary that

g�� ¼ gðhÞ�� þ gð1Þ��rþ gð2Þ��r2 þ oðr2Þ:

For extremal and ultraextremal metrics, we wrote the
expansions of metric functions in terms of r from the very
beginning. The conditions of regularity obtained in all
cases, assuming the expansions in terms of integer powers
of r, are collected in two tables: in Table I in terms of
asymptotic behavior of metric functions and in Table II in
terms of coefficients of their expansions by r (37).
In the extremal case, those imply the uniformity of the

asymptotic behavior of the lapse function N and parameter
! near the horizon, which generalize the weakest but most
obvious restrictions on the surface gravity � ¼ const and
angular velocity of rotation !H ¼ const for nonextremal
horizons. In the ultraextremal case the same can be said
in loose terms; however, the explicit form of conditions
(76)–(81) is more complicated and cannot be unambigu-
ously interpreted in such a way.
If we write out explicitly the expansions for the lapse

function and the coefficient ! in terms of r for different
kinds of horizons, the results read simply as follows:

p ¼ 1: N2 ¼ �2rþ �2ðzÞr2 þ oðr2Þ; (126)

! ¼ !H þ!1ðzÞrþ oðrÞ; (127)

p ¼ 2: N2 ¼ �2r
2 þ �3r

3 þ �4ðzÞr4 þOðr5Þ; (128)

! ¼ !H þ!1rþ!2ðzÞrþOðr2Þ; (129)

p¼3:N2¼�3r
3þ�4r

4þ�5r
5þ�6ðzÞr6þoðr7Þ; (130)

! ¼ !H þ!1rþ!2r
2 þ!3ðzÞr3 þ oðr3Þ; (131)

however, for the ultraextremal case (p � 3) exotic variants
are also possible, given in Sec. IVB 5. The coefficients that
are constants are underlined.
It is instructive to compare the relationships between

aforementioned properties, analyticity and possibility to

TABLE I. The restrictions on metric for different types of horizons that follow from conditions
of regularity of increasing strength; each line gives the conditions for the corresponding quantity to
be bounded, additional to those stated in all the lines above ( 	 : holds by definition).

What is bounded Nonextr., p ¼ 1 Extr., p ¼ 2 Ultraextr., p > 2

Ricci scalar @z! ¼ OðN2Þ @z! ¼ OðNÞ
Quadratic invariants � ¼ const � ¼ 0	
Curvature tensor in FZAMO frame @z lnN

2, @z! ¼ OðN2Þ Six conditions

TABLE II. The same restrictions as in Table I in terms of expansion coefficients of the metric functions in powers of the quasiglobal
coordinate r (37) and for p ¼ 3 as an example of ultraextremal metric. The dots denote that there are no new conditions.

What is bounded Nonextr., p ¼ 1 Extr., p ¼ 2 Ultraextr., p ¼ 3

Ricci scalar !0
H ¼ 0 !0

H ¼ 0 !0
H ¼ !0

1 ¼ 0
Quadratic invariants �0 ¼ 0 . . . . . .
Curvature tensor in FZAMO frame . . . !0

1 ¼ 0,
�0
2 ¼ �0

3 ¼ 0
!0

1 ¼ 0 �0
3 ¼ 0;

�0
4 ¼ �0

5 ¼ 0 OR 2 exotic variants
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cross the horizon in the spherically symmetric space-times
and in the present case. For a spherically symmetric black
hole, the analyticity of the metric near the horizon guaran-
tees that an observer falling into the black hole does not
experience infinite tidal forces [15]. In the case of rotating
black holes, the situation is more subtle. The metric de-
pends on two spatial variables. In the vicinity of the
horizon, this dependence drops out from the asymptotic
expressions in the main approximation and, moreover,
within this approximation the metric can be analytical
with respect to the quasiglobal coordinate. Nonetheless,
the presence of the dependence on z in the next corrections
can give rise to infinite components of the curvature tensors
for FZAMO for (ultra)extremal horizons. For example, let
the coefficient �2 be constant still in (128) but �3 ¼ �3ðzÞ.
Then, in the main approximation the lapse function looks
analytical in term of r, but infinite curvature components
arise due to the term with �3. Therefore, it turned out that
such fundamental conditions like rigid rotation and analy-
ticity of the metric in the immediate vicinity of the horizon
are necessary but, in contrast to nonextremal ones, not
sufficient for the metric near the (ultra)extremal horizon
to be completely regular.

It was shown in [4] that in the vicinity of a nonextremal
horizon the Einstein tensor in the (orbital) ZAMO frame
diagonalizes. We generalized this result to horizons of all
degrees of extremality and showed that if the tetrad com-
ponents of the curvature tensor in the frame attached to a
falling observer stay finite, then

~G 0
0 � ~G2

2 ¼ OðN2Þ; ~G0
1; ~G

2
3 ¼ OðNÞ:

ACKNOWLEDGMENTS

The work of O. Z. was supported in part by the
Cosmomicrophysics section of the Programme of the
Space Research of the National Academy of Sciences of
Ukraine. The work of I. T. is supported in part by the Joint
DFFD-RFBR Grant No. F40.2/040.

APPENDIX: EINSTEIN TENSOR IN ZAMO FRAME

The explicit expressions for the Einstein tensor in the
OZAMO frame (51), denoted by tildes, in terms of
the proper distance to the horizon n are as follows. The
diagonal ones are

~G0
0 ¼

g��

4

��
@n!

N

�
2 þ 1

gzz

�
@z!

N

�
2
�

þ 1

2

�
D2

ngzz þD2
ng�� þ 1

gzz
D2

zg��

�

þ 1

4

�
@n	�@n	z � 1

gzz
@z	�@z	z

�
; (A1)
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4
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2� 1
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2
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2
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1
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@n	�@n	z� 1
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; (A2)

~G1
1 ¼ � 3g��

4
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@n!

N

�
2 þ 1
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N
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þ 1

2
fD2

ngzzg
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~G3
3 ¼ � g��

4
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@n!

N
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2 � 1

gzz
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@z!

N

�
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þ 1

2
fD2

ng��g

þ 1
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@2nN
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; (A4)

where the notation is used

D2
ag�¼ 1ffiffiffiffiffiffi

g�
p @a

@ag�ffiffiffiffiffiffi
g�

p ; a¼n;z; �¼��;zz; (A5)

and the off-diagonal components are

1ffiffiffiffiffiffiffiffiffi
g��

p ~G0
1 ¼

1

2

�
@2n!

N
þ 1
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~G 0
2 ¼ ~G0

3 ¼ ~G1
2 ¼ ~G1

3 ¼ 0: (A8)
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