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We construct the perturbative solution of the charged black hole in the Kaluza-Klein spacetime with the

matched asymptotic expansion method. The corrections to the thermodynamic variables are calculated up to

the post-Newtonian order. We confirmed that the method can work very well in the Einstein-Maxwell theory.
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I. INTRODUCTION

In the last decade, the higher-dimensional black holes
have been known to have much richer structure than in
four-dimensional spacetime [1]. The discovery of the black
ring solution [2,3] revealed that the uniqueness and the
horizon topology theorem in four dimension are no longer
valid in higher dimensions.

The similar breakdown happens in the Kaluza-Klein
spacetimes. When the mass scale is smaller than the scale
of the extra dimension, black string solutions and the
black holes localized in the Kaluza-Klein spacetime (the
caged black hole solutions) exist for the same total mass,
which have different horizon topologies. Furthermore,
there exist the uniform black strings (UBS) and the nonuni-
form black strings (NUBS). The NUBS phase bifurcates
from the UBS phase at the marginally stable mode of the
Gregory-Laflamme instability [4,5]. This system admits
interesting phenomena such as the topology changing
phase transition from the NUBS phase to the caged black
hole phase, and the critical dimension for the stability of
the NUBS phase [6].

Since it is difficult to construct the exact solutions of the
black objects with the nontrivial horizon topology, the
numerical or perturbative approach is helpful in the analy-
sis of higher dimensions. In the Kaluza-Klein spacetime,
the small, caged black holes have been first studied pertur-
batively using a single coordinate patch [7,8]. Gorbonos
and Kol used two coordinate patches and introduced the
systematic procedure to obtain the solutions perturbatively
[9]. This perturbative method is called the matched asymp-
totic expansion (MAE). The MAE can be applied to a
spacetime having at least two separate scales. Using the
MAE, they constructed the small, caged black holes up to
the post-Newtonian order in the asymptotic zone [9,10].
This method is also useful in the ultraspinning limit of the
black objects [11,12].

The effective field theory (EFT) method [13] is another
useful method for systematically obtaining the thermody-
namic properties of such spacetime, which is considered to
be equivalent with the MAE method. In the EFT method,
the small scales are integrated out to give the effective
Lagrangian for the coarse-grained black objects. This is

applied to the caged black holes [14,15]. The caged black
holes with charge are also studied by the EFT [16].
In this paper, we will generalize the MAE method to the

Einstein-Maxwell theory and construct the perturbative
solution of the charged black holes in the Kaluza-Klein
spacetime. In the neutral limit, the solutions here reproduce
the neutral results [10]. We also calculated the correction to
the thermodynamic variables up to the post-Newtonian
order which confirms the EFT result [16].
The organization of this paper is as follows. In Sec. II,

we explain the setup of the caged black hole and the
matching method. In Sec. III, the Newtonian order is
solved at the asymptotic zone. In Sec. IV, we solve the
near zone perturbation. In Sec. V, we match the near zone
results with the results in Sec. III and evaluate some of the
thermodynamic variables. In Sec. VI, we solve the post-
Newtonian equation at the asymptotic zone. In Sec. VII, we
compute the post-Newtonian correction to the global
charges and analyze the thermodynamic properties of so-
lutions. We summarize our work in Sec. VIII. In the
Appendixes, we will present some useful formulae and
the details of the computations.

II. MATCHED ASYMPTOTIC EXPANSION

In this section, we introduce the method of the matched
asymptotic expansion in the (nþ 3)-dimensional Kaluza-
Klein spacetime with the Einstein-Maxwell theory. The
action is given by

S ¼
Z �

1

16�G
R� 1

4
F��F

��

� ffiffiffiffiffiffiffi�g
p

dnþ3x; (1)

where F�� is the field strength of the Maxwell field A�

defined by F�� ¼ @�A� � @�A�. In this paper we choose

the unit ofG ¼ 1, hereafter. The Einstein equation becomes

R�� � 1

2
Rg�� ¼ 8�T��; (2)

where the energy-momentum tensor is given by

T�� ¼ F�
�F�� � 1

4
F��F

��g��; (3)

and the field equation for the Maxwell field is
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F��
;� ¼ 0: (4)

We consider a static, localized black hole solution in the
Kaluza-Klein spacetimewhich is called ‘‘caged black hole.’’
Then we take the small black hole limit in which the scale of
the black hole �0 is much smaller than the compactification
scale L. Since the Maxwell charge is bounded above by the
extreme limit, it can be assumed to be the same order as the
mass ��n

0 . Therefore, we can perform a similar treatment

with the neutral case [9,10].
In this small black hole limit we have two asymptotic

zones. The spacetime asymptotes to the flat Kaluza-Klein
spacetime in the asymptotic zone (� � �0) and the
charged spherical black hole in the near zone (� � L).
Let us introduce two coordinate systems. In the asymptotic
zone, it is better to use the cylindrical coordinates ðr; zÞ as

ds2 ¼ �dt2 þ dz2 þ dr2 þ r2d�2
n (5)

in which the z-direction is periodic as z� zþ L.
The periodicity requires that we must consider the
gravity from the mirror images of the black hole. This is
equivalent to the infinite array of black holes in the higher-
dimensional Minkowski spacetime. In the near zone, on the
other hand, it is better to use the spherical coordinates
ð�; �Þ in order to see the black hole perturbation as

ds2 ¼ �dt2 þ d�2 þ �2ðd�2 þ sin2�d�2
nÞ: (6)

In the asymptotic zone, the relation between two coordi-
nate systems is

r ¼ � sin�; z ¼ � cos�: (7)

We expand the metric and the Maxwell field in both
zones. In the near zone, we consider the black hole pertur-
bation with the expansion parameter 1=L as

gðnearÞ�� ¼ gðBHÞ�� þ X1
k¼1

hðnear;kÞ�� ; (8)

where hðnear;kÞ �Oð1=LkÞ. gðBHÞ�� is the metric of the (nþ3)-
dimensional background charged black hole spacetime

gðBHÞ�� dx�dx� ¼ �fð�Þdt2 þ 1

fð�Þd�
2 þ �2d�2

nþ1; (9)

where

fð�Þ ¼ 1� �n
0

�n þ
	2

4

�2n
0

�2n
; (10)

and 	 is a dimensionless charge parameter which becomes
j	j ¼ 1 in the extreme limit. The total mass of this black
hole is

M0 ¼ ðnþ 1Þ!nþ1�
n
0

16�
; (11)

where !k ¼ 2�ðkþ1Þ=2=�ðkþ1
2 Þ is the area of the

k-dimensional unit sphere, Sk. The background Maxwell
field is

A�dx
� ¼ Q0

n!nþ1�
n dt; (12)

where the total charge of the background black hole is
given by

Q0 ¼
Z

�F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ
32�

s
!nþ1�

n
0	 (13)

and the nonvanishing component of the field strength is the
electric field

Ft� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ
32�

s
	

�n
0

�nþ1
� E: (14)

In the asymptotic zone, we consider the post-Newtonian
expansion with the expansion parameter �0 as

g
ðasymÞ
�� ¼ 
�� þ

X1
m¼1

h
ðasym;mÞ
�� ; (15)

where hðasym;mÞ �Oð�m
0 Þ and 
�� is the metric of the

(nþ 3)-dimensional Kaluza-Klein spacetime (5). The
Maxwell field is also expanded in the same way. It is worth
noting that the Newtonian approximation is the order of �n

0

because the mass M is written as �n
0 �GM.

Now we are ready to consider the matching procedure
between the two zones. In the limit �0 � L, there exists
the overlap region (�0 � � � L) in which we will match
the two expansions order by order. The ‘‘matching ladder’’
can be understood by the dimensional counting. If we take
the harmonic gauge, the linear part of the post-Newtonian
equation in the order of �m

0 becomes

hh
ðasym;mÞ
�� ¼ 0; (16)

where h ¼ 
��@�@�. Since we consider the static space-

time, it reduces to the Laplace equation. The homogeneous
solutions with a multipole l behave as �l and ��l�n. For
the asymptotic zone, the near zone black hole seems to
have multipole moments and behaves as ��l�n. From the
dimensional counting, the terms with ��l�n in asymptotic
solution of Oð�m

0 Þ appear in the dimensionless form

hðasym;mÞ
�� 3 �m

0

Lm�l�n�lþn
: (17)

Therefore, the near solution of Oð1=LkÞ contributes to the
asymptotic solution with the multipole l of Oð�kþnþl

0 Þ.
Similarly, the gravity from the mirror images of the

black hole affects the near zone geometry in the form of
multipole moments at the infinity, which are proportional
to �l. The dimensional counting shows

hðnear;kÞ�� 3 �k�l
0 �l

Lk
: (18)

Then, the asymptotic solution of Oð�m
0 Þ determines to the

near solution with the multipole l of Oð1=LmþlÞ.
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III. NEWTONIAN POTENTIAL
IN ASYMPTOTIC ZONE

We start the matching of the near zone solutions with the
Newtonian order solution in the asymptotic zone. We will
omit the script ‘‘near’’ or ‘‘asym’’ for brevity. As explained
in the previous section, the near zone background metric of
Oð1=L0Þ gives the correction to the asymptotic metric in
Oð�n

0Þ. At this order, the solution is just the Newtonian

potential from the array of the point source as in the neutral
case [9]. In the harmonic gauge @� �h�� ¼ 0 where
�h�� ¼ h�� � 1

2h
��, the linearized Einstein equation is

� 1

2
h �hðnÞ�� ¼ 8�TðnÞ

��: (19)

Since T�� is written in terms of the square of F�� and

the leading order of F�� is the Newtonian order, the

Einstein equation is the same as the vacuum case at this

order (namely, TðnÞ
�� ¼ 0). The boundary condition in the

overlap region is determined by the behavior of the near
background metric. In the overlap region, the near zone
background metric in the harmonic coordinates is given as
Oð1=L0Þ terms in Eq. (D8), which becomes

gðBHÞtt ’ �1þ �n
0

�n ; (20a)

gðBHÞij ’
�
1þ �n

0

n�n

�
�ij: (20b)

Requiring the periodicity in z-direction and the harmonic
condition, the homogeneous solution with a pole at the
origin is given by

hðnÞtt ¼ � � �n
0

X1
k¼�1

1

ðr2 þ ðz� kLÞ2Þn=2 ; (21a)

hðnÞij ¼ 1

n
��ij: (21b)

Since� ’ �n
0=�

n as � � L, the coefficients are determined

by the match with Eq. (20). This is equivalent to the
Newtonian potential from the infinite array of point masses,

TðnÞ
tt ¼ X1

k¼�1
M0�

nþ1ðxÞ�ðz� kLÞ: (22)

Imposing the Lorenz gauge @�AðnÞ
� ¼ 0, the Maxwell

equation is

hAðnÞ
� ¼ 0: (23)

In the same way, the solution is given by

AðnÞ
t ¼ � � Q0

n!nþ1

X1
k¼�1

1

ðr2 þ ðz� kLÞ2Þn=2 : (24)

This is also equivalent to the potential obtained from the
infinite array of point charges,

JðnÞt ¼ X1
k¼�1

Q0�
nþ1ðxÞ�ðz� kLÞ: (25)

Now we can see that the gauge potential is proportional to
the Newtonian potential,

� ¼ Q0

n!nþ1�
n
0

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

32�n

s
	�: (26)

� is expanded in the overlap region for r, z � L,

� ¼ �n
0

�n þ
X1
k¼0

2
ðnþ 2kÞ�
n
0�

2k

Lnþ2k
Cn=2
2k ðcos�Þ; (27)

where C�
l ðxÞ is the Gegenbauer polynomial (see

Appendix A for the definition).

IV. NEAR ZONE PERTURBATION

We now proceed to the leading order in the near zone. The
leading order correction in the near zone comes from the
asymptotic solution ofOð�n

0Þ in the previous section. In this
paper, we only consider the monopole (l ¼ 0) correction
which is Oð1=LnÞ.
Here, we calculate the linear perturbation around the

black hole metric of Eq. (9) as g�� ¼ gðBHÞ�� þ h��. Since

we consider the static perturbation, we can set the following
ansatz for the metric perturbation

ds2 ¼ �fð1þ A0Þdt2
þ f�1ð1þ B0Þd�2 þ �2ð1þ E0Þd�2

nþ1; (28)

and for the Maxwell field perturbation

A�dx
� ¼

�
Q0

n!nþ1�
n þ a0

�
dt: (29)

We write the linearized Einstein equation as

�R�� ¼ 8�

�
�T�� � 1

nþ 1
ðgðBHÞ���T��

� Tð0Þ��h��ÞgðBHÞ�� � 1

nþ 1
Tð0Þh��

�
� 8��S��; (30)

where Tð0Þ
�� is the energy-momentum tensor of the back-

ground. The components of Tð0Þ
�� are given by

�Tð0Þt
t ¼ �Tð0Þr

r ¼ Tð0Þ�
� ¼ Tð0Þ�i

�i

¼ 1

2
E2 ¼ nðnþ 1Þ	2

64�

�2n
0

�2nþ2
; (31)

where f�igi¼1...n are coordinates of S
n. The explicit forms for

each components of �R�� and �S�� are given in Eqs. (C9)

and (C10). The Maxwell equation becomes

@�

�
�nþ1a00 �

Q0

2!nþ1

ððnþ 1ÞE0 � A0 � B0Þ
�
¼ 0: (32)
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This can be easily integrated as

a00 ¼
E
2
ððnþ 1ÞE0 � A0 � B0 þ 2�0Þ; (33)

where �0 is an integral constant. Using the above and
Eq. (C10), �S�� becomes

�Stt ¼ n2	2

4

�2n
0

�2nþ2
½ðnþ 1ÞE0 � A0 þ 2�0�; (34a)

�S�� ¼ n	2

4

�2n
0

�2nþ2
½ðnþ 1ÞE0 � B0 þ 2�0�; (34b)

and

�S�� ¼ �n	2

4

�2n
0

�2nþ2
½E0 � A0 � B0 þ 2�0�; (34c)

where �S��¼gðBHÞ���S��. Subtracting the ��-component
from the tt-component in Eq. (30), we obtain the following
equation:

�E00
0 þ 2E0

0 � A0
0 � B0

0 ¼ 0; (35)

which is the same with the neutral cases. Another indepen-
dent equation comes from the ��-component in Eq. (30),

1

2
�2ðfE00

0 þf0E0
0Þþðnþ1Þ�fE0

0þ
1

2
�fðA0

0�B0
0Þ

þnðE0�B0Þ¼ n	2

4

�2n
0

�2n
½ðnþ1ÞE0�B0þ2�0�: (36)

Integrating Eq. (35), we have

�E0
0 þ E0 � A0 � B0 ¼ �2C1; (37)

where C1 is an integral constant. Imposing

A0 þ B0 þ ðn� 1ÞE0 ¼ 0 (38)

as the residual gauge condition, Eq. (37) can be solved as

E0 ¼ 2C1

n
þ C2�

n
0

�n ; (39)

where C2 is an integral constant.
To solve Eq. (36) in the gauge condition (38), we

introduce a new variable defined by

� � � 1

n� 1
ðA0 þ nB0Þ ¼ E0 � B0; (40)

where A0 and B0 are written by � as

A0 ¼ �� nE0; B0 ¼ E0 ��: (41)

Using the above and Eq. (39), Eq. (36) becomes

�ðf�Þ0 þ nf� ¼ n�2n
0

2�2n
½	2ð�0 þ C1Þ þ nC2� (42)

and then the solution is given by

f� ¼
~C3�

n
0

�n � �2n
0

2�2n
½	2ð�0 þ C1Þ þ nC2�; (43)

where ~C3 is an integral constant. Even after imposing the
gauge condition (38), there is still the remaining gauge
degree of freedom � ! �þ �C�n

0=2�
n�1, which changes

Eqs. (39) and (43) as

E0 ! 2C1

n
þ C0

2�
n
0

�n ; (44a)

f� !
~C3

0�n
0

�n � �2n
0

2�2n
½	2ð�0 þ C1Þ þ nC0

2�; (44b)

where C0
2 ¼ C2 þ �C and ~C3

0 ¼ ~C3 þ n�C. Therefore C2

can be the pure gauge, and we define the gauge invariant

combination C3 � ~C3 � nC2. Here, C3 is the ambiguity of
the bare mass and �0 is the ambiguity of the bare charge
which we can freely choose.
As the boundary condition at the horizon, we impose the

regularity conditions for A0, B0, and E0 which fix the
horizon position. We write the position of the outer event
horizon as �þ, which is the larger root of fð�Þ ¼ 0,

�nþ ¼ 1

2
�n
0ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
Þ: (45)

The regularity of � at � ¼ �þ is guaranteed; this condi-
tion is satisfied if the right-hand side of Eq. (43) vanishes as
� ! �þ, which gives

1

2
	2ð�0 þ C1Þ þ 1

2
nC2 ¼ ðC3 þ nC2Þ�

nþ
�n
0

: (46)

In general, the perturbed spacetime may not become
extremal or neutral when the background spacetime is
extremal (	 ¼ 1) or neutral (	 ¼ 0). Then, we will further
fix the parameter region of 	 so that the solution becomes
extremal when 	 ¼ 1 and neutral when 	 ¼ 0. The ex-
tremal condition is attained by imposing that the right-hand
side of Eq. (43) has the double roots, ðf�Þ0j�¼�þ;	¼1 ¼ 0,

which becomes

ð�0 þ C1 þ nC2Þj	¼1 ¼ 0 ¼ ðC3 þ nC2Þj	¼1; (47)

where we used Eq. (46). The neutral condition is

ð2C3 þ nC2Þj	¼0 ¼ 0: (48)

Although Ci and �0 may depend on 	 in general, we
can set these to satisfy the above conditions for not only
	 ¼ 0, 1 but also arbitrary 	 as

C2 ¼ C3 ¼ 0; �0 ¼ �C1: (49)

Therefore, � becomes zero, that is,

� ¼ 0: (50)

Then, from Eqs. (33), (39), and (41), the perturbation
becomes
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A0 ¼ �2C1; (51a)

B0 ¼ 2C1

n
; (51b)

E0 ¼ 2C1

n
; (51c)

a0 ¼ � C1Q0

n!nþ1�
n þ �1; (51d)

where �1 is an integral constant. As a result, the near
solutions depend on two parameters, C1 and �1, which
are determined by matching with the asymptotic solutions
in the overlap region.

V. MATCHING FROM THE
NEWTONIAN POTENTIAL

As mentioned in Sec. II, the near zone monopole cor-
rection of Oð1=LnÞ comes from the monopole parts of the
Newtonian order asymptotic solution. The monopole from
the asymptotic zone behaves as a constant which has the
dimensionless form �n

0=L
n at the Newtonian order.

Since the leading order terms in the near zone perturba-
tion are not affected by the gauge transformation into the
harmonic coordinates (D7), the near solution in the overlap
region (�0 � �) becomes

hðnear;nÞtt ¼ �fA0 ’ 2C1; (52a)

hðnear;nÞ�� ¼ B0

f
’ 2C1

n
; (52b)

hðnear;nÞ�� ¼ �2E0 ¼ 2C1

n
�2: (52c)

On the other hand, the �n
0=L

n term in the expansion of the

Newtonian potential (27) is

hðasym;nÞ
tt ¼ � ¼ �n

0

�n þ 2
ðnÞ�
n
0

Ln þ � � � (53)

and the matching provides

C1 ¼ 
ðnÞ�
n
0

Ln : (54)

We now define the expansion parameter �¼
ðnÞ�n
0=L

n.

Also, for the Maxwell field the leading order term of the
near solution matches the gauge potential � of the asymp-
totic solution in the overlap region as

Aðnear;nÞ
t ’ �1 ¼ 2Q0

n!nþ1�
n
0

�: (55)

Then, combining Eq. (51) with the ansatz (28) and (29),
the near zone metric up to Oð1=LnÞ becomes

gðnearÞtt ¼ �fð1� 2�Þ þOð1=L2nÞ; (56a)

gðnearÞ�� ¼ 1

f

�
1þ 2�

n

�
þOð1=L2nÞ; (56b)

gðnearÞ�� ¼ �2

�
1þ 2�

n

�
þOð1=L2nÞ; (56c)

and the gauge potential in the near zone is

AðnearÞ
t ¼ Q0

n!nþ1�
n þ

2�Q0

n!nþ1�
n
0

�
1� �n

0

2�n

�
þOð1=L2nÞ:

(57)

From the leading order near solution (56), the correction to
the local constants can be computed. The surface gravity �
becomes

� ¼ 1

2

j@�gttjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttg��
p

���������¼�þ

¼ 1

2
jf0j

�
1þ f

f0
A0
0 þ

1

2
ðA0 � B0Þ

����������¼�þ

¼ n�n
0

2�nþ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p �
1� nþ 1

n
�

�

¼ �0

�
1� nþ 1

n
�

�
;

(58)

where �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
n�n

0=2�
nþ1þ is the surface gravity for

L ¼ 1. The horizon area A becomes

A ¼ !nþ1ðg��Þðnþ1Þ=2j�¼�þ

¼ !nþ1�
nþ1þ

�
1þ nþ 1

n
�

�

¼ A0

�
1þ nþ 1

n
�

�
; (59)

where A0 is the horizon area for L ¼ 1.
We can also calculate the electrostatic potential U,

U � Atj�¼�þ � Atj�¼1

¼ Q0

n!nþ1�
nþ
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
�Þ

¼ U0ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
�Þ;

(60)

where U0 is the electrostatic potential for L ¼ 1. We note
that the boundary condition of the asymptotic solution
leads to Atj�¼1 ¼ 0.

VI. MONOPOLE MATCHING IN
POST-NEWTONIAN ORDER

The leading correction to the mass and tension in the asymp-
totic zone are computed through the monopole perturbation of
the post-Newtonian order Oð�2n

0 Þ. The near zone perturbation
of Oð1=LnÞ considered in the previous section gives the
boundary condition in the overlap region, which behaves as
�2n
0 =Ln�n. First, we present the post-Newtonian equation for

the gravity and the Maxwell field and then solve them.
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A. Post-Newtonian order perturbation equation

In the asymptotic zone, we consider perturbations of the
metric and Maxwell fields to the post-Newtonian order,

g�� ¼ 
�� þ hðnÞ�� þ hð2nÞ�� ; A� ¼ AðnÞ
� þ Að2nÞ

� ; (61)

where hð2nÞ�� and Að2nÞ
� are the post-Newtonian corrections. In

the harmonic gauge, the post-Newtonian equation becomes

� 1

2
hhð2nÞ�� þ R½2�

��½hðnÞ; hðnÞ�

¼ 8�

�
Tð2nÞ
�� � 1

nþ 1

��Tð2nÞ

�� 
��

�
; (62)

where we used the Einstein equation of the Newtonian order

GðnÞ
�� ¼ TðnÞ

�� ¼ 0. R½2�
�� is the second order perturbation of

the Ricci tensor, which gives a source term from the
Newtonian order of Eqs. (21) and (24). The Maxwell equa-
tion in this order is given by

hAð2nÞ
� þ @�

�
hðnÞ

2
FðnÞ�

� � hðnÞ��FðnÞ
�� � hðnÞ��FðnÞ��

�
¼ 0:

(63)

Using Eq. (26), then, Eqs. (62) and (63) become

h

�
hð2nÞtt þ 1

2

�
1þ 	2

2

�
�2

�
¼ 0; (64a)

h

�
hð2nÞij � 1

2n2

�
1� n	2

2

�
�2�ij

�
¼ �nþ 1

2n
ð1� 	2Þ�;i�;j þ nþ 1

n
ð��;iÞ;j; (64b)

h

�
Að2nÞ
t þ 1

2n!nþ1

Q0

�n
0

�2

�
¼ 0: (64c)

The general solution is constructed by the inhomogeneous and homogeneous solutions. The coefficients of the homoge-
neous solution are determined by the boundary condition. We write the general solution as follows:

hð2nÞtt ¼ � 1

2

�
1þ 	2

2

�
�2 þ st

�n
0

Ln �; (65a)

hð2nÞij ¼ 1

2n2

�
1� n	2

2

�
�2�ij þ sij

�n
0

Ln�þ Pf

�Z
½�ðL=2Þ;ðL=2Þ�	Rnþ1

Gðx; x0ÞSijðx0Þdnþ2x0
�
; (65b)

Að2nÞ
t ¼ � Q0

2n!nþ1�
n
0

�2 þ sA
�n
0

Ln �; (65c)

where Pf means the finite part of the integration and st, sij,
sA are the dimensionless coefficients of the homogeneous
solution. The Green function in the compact space,
½�L=2; L=2� 	Rnþ1, is given by

Gðx;x0Þ¼� 1

n!nþ1

	 X1
m¼�1

1

ððx�x0Þ2þðz� z0 �mLÞ2Þðn=2Þ ; (66)

where x is the coordinate vector of Rnþ1, which gives
r ¼ jxj. We write the integrand as

S ij ¼ �nþ 1

2n
½ð1� 	2Þð�;i�;jÞ � 2ð��;iÞ;j�: (67)

B. Matching from the near solution

Now, we determine the coefficients st, sij, sA of the

homogeneous term by matching with the near solution.
The monopole moment of the near solution behaves as
���n. Then the relevant terms of this order in the overlap
region have the dependence of �2n

0 =Ln�n in the dimen-

sionless form. Transforming Eqs. (56) and (57) into the
harmonic coordinates (D7), the near zone solution up to the
relevant order becomes

gðnearÞtt ¼ �
�
1� 2�� ð1� 2�Þ�

n
0

�n

�
þOð1=L2n; 1=�2nÞ; (68a)

gðnearÞij ¼
�
1þ 2�

n
þ

�
1þ 2�

n

�
�n
0

n�n

�
�ij þOð1=L2n; 1=�2nÞ; (68b)

AðnearÞ
t ¼ 2�Q0

n!nþ1�
n
0

þ Q0

n!nþ1�
n ð1� �Þ þOð1=L2n; 1=�2nÞ: (68c)

We extract the monopole moment of Oð1=LnÞ,
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gðnearÞtt ��2
ðnÞ �2n
0

Ln�n ; (69a)

gðnearÞij � 2
ðnÞ
n2

�2n
0

Ln�n �ij; (69b)

AðnearÞ
t �� 
ðnÞQ0

n!nþ1�
n
0

�2n
0

Ln�n : (69c)

Meanwhile, the corresponding terms in the post-Newtonian
solution (65) are

hð2nÞtt �
�
st � 2
ðnÞ

�
1þ 	2

2

��
�2n
0

Ln�n ; (70a)

hð2nÞij �
�
sij þ 2
ðnÞ

n2

�
1� n	2

2

�
�ij

�
�2n
0

Ln�n ; (70b)

Að2nÞ
t �

�
sA � 2
ðnÞQ0

n!nþ1�
n
0

�
�2n
0

Ln�n : (70c)

The finite part of the integration term in Eq. (65b)
does not contribute to the monopole moment in the

overlap region. The matching between two solutions
shows

st ¼ 	2
ðnÞ; (71a)

sij ¼ 	2

n

ðnÞ�ij ¼ st

n
�ij; (71b)

sA ¼ 
ðnÞQ0

n!nþ1�
n
0

: (71c)

Therefore, the post-Newtonian correction is deter-
mined as

hð2nÞtt ¼ � 1

2

�
1þ 	2

2

�
�2 þ 	2��; (72a)

hð2nÞij ¼ 1

2n2

�
1� n	2

2

�
�2�ij þ 	2

n
���ij þ Pf

�Z
½�ðL=2Þ;ðL=2Þ�	Rnþ1

Gðx; x0ÞSijðx0Þdnþ2x0
�
; (72b)

Að2nÞ
t ¼ � Q0

2n!nþ1�
n
0

�2 þ Q0

n!nþ1�
n
0

��: (72c)

VII. GLOBAL CHARGES AND
THERMODYNAMICS

In this section, we compute the global charges and
confirm that the first law of the thermodynamics holds
for the current cases.

A. Global charges

Now, we calculate the post-Newtonian correction
to the global charges. The (nþ 2)-dimensional mass M
and tension � of the asymptotically Kaluza-Klein
spacetime are determined by the asymptotic behavior
[17,18]

h
ðasymÞ
tt ’ ct

rn�1
; (73)

hðasymÞ
zz ’ cz

rn�1
: (74)

Then, we find

M ¼ !nL

16�
ðnct � czÞ; (75)

� ¼ !n

16�
ðct � nczÞ: (76)

The total electric charge Q is determined in the same way,

A
ðasymÞ
t ’ Q

ðn� 1Þ!nL

1

rn�1
: (77)

To extract the global charges, we take the limit r � L, z.
As in Eq. (B1), � becomes

� ’ n!nþ1

ðn� 1Þ!n

�n
0

Lrn�1
: (78)

Since the Green function in Eq. (66) has a similar behavior
as �, the integration becomes

Z
½�ðL=2Þ;ðL=2Þ�	Rnþ1

Gðx; x0ÞSijðx0Þdnþ2x0

’ � 1

ðn� 1Þ!n

1

Lrn�1

Z
½�ðL=2Þ;ðL=2Þ�	Rnþ1

Sijðx0Þdnþ2x0:

(79)

Then, Eq. (72) gives

h
ðasym;2nÞ
tt ’ n!nþ1	

2
ðnÞ
ðn� 1Þ!n

�2n
0

Lnþ1

1

rn�1
; (80)
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h
ðasym;2nÞ
zz ’!nþ1	

2
ðnÞ
ðn�1Þ!n

�2n
0

Lnþ1

1

rn�1

þ ðnþ1Þð1�	2Þ
2nðn�1Þ!nLr

n�1
Pf

�Z
dnþ1x

Z L=2

�L=2
dz�2

;z

�
:

(81)

The second term in SzzðxÞ does not contribute to Eq. (81)
because it is the total derivative. The finite part of the
integration is computed in Ref. [10]

Pf

�Z
dnþ1x

Z L=2

�L=2
dz�2

;z

�
¼ �ðn� 1Þn
ðnÞ!nþ1�

2n
0

Ln :

(82)

As a result, the ADM mass and tension become

M ¼ ðnþ 1Þ!nþ1�
n
0

16�

�
1þ 1

2
ð1þ 	2Þ�

�

¼ M0

�
1þ 1

2
ð1þ 	2Þ�

�
; (83)

�L ¼ nðnþ 1Þ!nþ1�
n
0

32�
ð1� 	2Þ�

¼ n

2
M0ð1� 	2Þ�:

(84)

From Eq. (72c), the total charge Q becomes

Q ¼ Q0ð1þ �Þ: (85)

At 	 ¼ 0, these results reproduce the results in the neutral
case [10].

Moreover, in the extremal case (	 ¼ 1) we can confirm
that our results correspond to the exact solutions in
Ref. [19]. The exact solutions of the (nþ 3)-dimensional
extremal caged black hole are given by

ds2 ¼ �H�2dt2 þH2=n�ijdx
idxj;

A�dx
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

8�n

s
H�1dt;

(86)

where

HðxiÞ ¼ 1þ�
X1

k¼�1

1

ðr2 þ ðz� kLÞ2Þðn=2Þ : (87)

If we set � ¼ �n
0ð1þ �Þ=2, at 	 ¼ 1 the perturbative

solutions constructed agree with the above solutions up
to Oð�Þ.

There is the apparent difference between our results and
the results by the EFT calculation [16]. This simply comes
from the ambiguity of the parametrization. For example,
see Eqs. (3.7) and (3.25) in Ref. [16] which are M and �.
Changing the gauge condition in Eq. (49) gives the differ-
ent length scale �0 ! �0ð1þ �1ð	ÞÞ and charge parame-
trization 	 ! 	ð1þ �2ð�;	ÞÞ. We note that, to keep

	 ¼ 1 be the extreme limit, one requires �2ð�; 1Þ ¼ 0
further. To reproduce the results by the EFT, we should
impose the following gauge condition instead of Eq. (49),

C2 ¼ � 2�nþC1

n�n
0

; C3 ¼ C1; �0 ¼ 0: (88)

B. First law and the Smarr formula

Here we confirm that our solutions satisfy the Smarr
formula

nM ¼ nþ 1

8�
�Aþ �Lþ nQU; (89)

and the first law

dM ¼ �dLþ 1

8�
�dAþUdQ: (90)

Collecting the thermodynamic variables from
Eqs. (58)–(60), (83), and (84), we write

M¼M0

�
1þ1

2
ð1þ	2Þ�

�
; A¼A0

�
1þnþ1

n
�

�
;

Q¼Q0ð1þ�Þ; �¼�0

�
1�nþ1

n
�

�
;

U¼U0ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�	2

p
�Þ; �L¼n

2
M0ð1�	2Þ�; (91)

where

M0 ¼ ðnþ 1Þ!nþ1�
n
0

16�
;

A0 ¼ !nþ1�
nþ1
0

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p

2

�ðnþ1Þ=n
;

Q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ
32�

s
!nþ1�

n
0	�0 ¼ n�n

0

2�nþ1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
;

U0 ¼ Q0

n!nþ1�
nþ
:

(92)

From the direct computation, the above expressions are
easily confirmed to follow Eq. (89) up to Oð�Þ.
To confirm the first law for the current case, we take the

variation of M with L, A and Q. Changing the variables
from ð�0; �; 	Þ to ðL;A; QÞ, the variation becomes

ð@LMÞA;Q

ð@AMÞL;Q
ð@QMÞL;A

2
664

3
775 ¼ @ð�0; �; 	Þ

@ðL;A; QÞ

ð@�0
MÞ�;	

ð@�MÞ�0;	

ð@	MÞ�0;�

2
664

3
775

¼ @ð�0; �; 	Þ
@ðL;A; QÞ

nM=�0

M0ð1þ 	2Þ=2
M0	�

2
664

3
775:

(93)

Using L¼
ðnÞð1=nÞ�0�
�ð1=nÞ, the Jacobian @ð�0;�;	Þ=

@ðL;A;QÞ is computed as
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@ð�0; �; 	Þ
@ðL;A; QÞ ¼

�
@ðL;A; QÞ
@ð�0; �; 	Þ

��1

¼
�0�=L �n�=L 0

�0�0ð1� ð2nþ 1Þ�=nÞ=8�nM0 ��0=8�M0 �	�0=8�M0

�0U0ð1� 2�Þ=nM0 �U0=M0 U0ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p
=	M0

2
664

3
775:

(94)

Using this, we can show that the variation ofM satisfies the
first law (90) up to Oð�Þ,

ð@LMÞA;Q

ð@AMÞL;Q
ð@QMÞL;A

2
664

3
775 ¼

�

�=8�

U

2
664

3
775: (95)

Note that this is also achieved through the Harrison
transformation from the neutral seed solutions [20]. On
the other hand, our argument gives us a direct confirmation
using the direct construction of the perturbative solutions.

VIII. SUMMARYAND DISCUSSION

In this paper, we constructed the perturbative solution of
the small black holes with the Maxwell charge in the caged
spacetime using the matched asymptotic expansion. The
expansion of the Maxwell field can be performed in the
same way as the metric. Although our results seem differ-
ent with the EFT calculation in Ref. [16], this is just the
difference in the parametrization. We also confirmed the
first law and the Smarr formula, which were shown for a
sequence of charged black objects in Kaluza-Klein space-
time in Ref. [20].

Another way to construct the charged solution is to use
the Harrison transformation [20,21], which produces the
charged dilatonic solution from the neutral seed solution.
However, the charged stationary solution like the rotating
black ring cannot be produced by the Harrison transforma-
tion. In such case, one should rely on some perturbative
methods with the Maxwell field, as we used in this paper.
Since the charged black ring is studied only by the black-
fold approach [22], it is also interesting to study the
charged black ring beyond the blackfold approach.

We have not included the finite size effect which comes
from the deformation of the horizon. To see this effect, we
must consider the multipole perturbation which will be
studied in future work.
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APPENDIX A: GEGENBAUER POLYNOMIALS

The Gegenbauer polynomials C�
l ðxÞ are defined as the

coefficients of the following generating function:

1

ð1� 2xtþ t2Þ� ¼ X1
l¼0

C�
l ðxÞtl; (A1)

where C�
l ðxÞ is written as

C�
l ðxÞ ¼

ð�1Þl
l!2l

�ð�þ 1
2Þ�ðlþ 2�Þ

�ð2�Þ�ðlþ �þ 1
2Þ
ð1� x2Þðð1�2�Þ=2Þ

	 dl

dxl
½ð1� x2Þðð2lþ2��1Þ=2Þ�: (A2)

It follows the equation

ð1� x2Þy00 � ð2�þ 1Þy0 þ lðlþ 2�Þy ¼ 0: (A3)

APPENDIX B: ASYMPTOTIC LIMIT OF THE
NEWTONIAN POTENTIAL

In the limit, r � z, L, the Newtonian potential � in
Eq. (21a) behaves as

�¼ X1
m¼1

�n
0

ðr2þm2L2Þðn=2Þ
��

1� 2mLz

r2þm2L2
þ z2

r2þm2L2

��ðn=2Þþ
�
1þ 2mLz

r2þm2L2
þ z2

r2þm2L2

��ðn=2Þ�þ �n
0

ðr2þz2Þðn=2Þ

¼ 2�n
0

Lrn�1

X1
m¼1

L=r

ð1þðmL=rÞ2Þðn=2Þ þOð1=rnÞ¼ 2�n
0

Lrn�1

Z 1

0

dt

ð1þ t2Þðn=2ÞþOð1=rnÞ¼ n!nþ1

ðn�1Þ!n

�n
0

Lrn�1
þOð1=rnÞ: (B1)
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APPENDIX C: MULTIPOLE PERTURBATION
IN THE NEAR ZONE

In this appendix, we give the equation for the multipole
perturbation around the charged black hole.

1. Ansatz

The static spacetime can be written in this form

ds2 ¼ gttðxÞdt2 þ gijðxÞdxidxj: (C1)

In this ansatz, we consider the linear perturbations around

the black hole as g�� ¼ gðBHÞ�� þ h��, where the back-

ground metric is given by

gðBHÞ�� dx�dx� ¼ �fð�Þdt2 þ d�2

fð�Þ þ �2d�2
nþ1: (C2)

Since the background metric has SOðnþ 2Þ symmetry, we
can expand the perturbations in terms of the spherical
harmonics on the (nþ 1)-dimensional sphere. Here, we
consider only scalar perturbations. We explicitly write all
nonzero components of the perturbations,

htt ¼ �f
X1
l¼0

Alð�ÞYl; (C3a)

h�� ¼ f�1
X1
l¼0

Blð�ÞYl; (C3b)

h�a ¼ f�1
X1
l¼1

Clð�ÞDaYl; (C3c)

hab ¼ �2
X1
l¼1

Dlð�Þ
�
DaDb � 1

nþ 1
�abD2

�
Yl

þ �2�ab

X1
l¼0

Elð�ÞYl; (C3d)

where �ab is the metric of the (nþ 1)-dimensional unit
sphere andDa denotes the covariant derivative with respect
to �ab. Here, Yl is the spherical harmonics with l-th multi-
pole moment, which satisfies D2Yl ¼ �lðlþ nÞYl. The
gauge transformation for the metric perturbations is given

by h�� ! h�� þL�g
ðBHÞ
�� under the infinitesimal coordi-

nate transformations x� ! x� � ��. Then, the components
transform as

Al ! Al þ f0

f
�
�
l ; Bl ! Bl þ 2�

�0
l � f0

f
�
�
l ;

Cl ! Cl þ ��
l þ f�2
 0l ; Dl ! Dl þ 2
l;

El ! El þ 2

�
��
l �

2lðlþ nÞ
nþ 1


l; (C4)

where we have expanded �� with the harmonics Yl and 
l
defined as �a ¼ 
lDaYl. Note that we have not transformed
the time coordinate t. Using the above gauge degrees of
freedom ��

l and 
l, we can set Cl ¼ Dl ¼ 0 [9]. In the

monopole case, C0 and D0 are automatically zero and then
��
0 becomes the residual gauge. For the vector potential, we

write the perturbations �At, �A�, and �Aa as

�At ¼
X1
l¼0

alð�ÞYl; (C5a)

�A� ¼ X1
l¼0

blð�ÞYl; (C5b)

�Aa ¼
X1
l¼1

clð�ÞDaYl: (C5c)

The Uð1Þ gauge transformation of �A� ! �A� þ @�c ,

where c is a scalar function, transforms the potential as

bl ! bl þ c 0
l; cl ! cl þ c l; (C6)

where c lð�Þ is the expansion coefficient of c for
the spherical harmonics Yl. Therefore, we can set cl ¼ 0
(l � 0) by choosing c l appropriately. In the monopole case,
we also set b0 ¼ 0 because c0 is automatically zero. The
field strength becomes

�Ft� ¼ �X1
l¼0

a0lYl; (C7a)

�Fta ¼ �X1
l¼1

alDaYl; (C7b)

�F�a ¼ �X1
l¼1

blDaYl: (C7c)

2. Perturbation equation

The Einstein equation for the linear perturbation is

�R�� ¼ 8�

�
�T�� � 1

nþ 1
ðgðBHÞ���T��

� Tð0Þ��h��ÞgðBHÞ�� � 1

nþ 1
Tð0Þh��

�
� 8��S��: (C8)

Under the metric ansatz (C3), the nonvanishing compo-
nents of �R�� become
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�Rtt ¼ � f

4�2
½�2�2fA00

l � ð3�2f0 þ 2ðnþ 1Þ�fÞA0
l þ �2f0B0

l � ðnþ 1Þ�2f0E0
l

� 2ð�2f00 þ ðnþ 1Þ�f0ÞðAl � BlÞ þ 2lðlþ nÞAl�Yl; (C9a)

�R�� ¼ 1

4�2f
½�2�2fA00

l � 2ðnþ 1Þ�2fE00
l � 3�2f0A0

l þ ð�2f0 þ 2ðnþ 1Þ�fÞB0
l

� ðnþ 1Þð�2f0 þ 4�fÞE0
l þ 2lðlþ nÞBl�Yl; (C9b)

�R�a ¼ 1

4�f
½�2�fA0

l � 2n�fE0
l � ð�f0 � 2fÞAl þ ð�f0 þ 2nfÞBl�DaYl; (C9c)

�Rab ¼ 1

2

�
��2fE00

l � ð�2f0 þ 2ðnþ 1Þ�fÞE0
l � �fðA0

l � B0
lÞ þ 2ð�f0 þ nfÞðBl � ElÞ þ lðlþ nÞEl

�
Yl�ab

� 1

2
½Al þ Bl þ ðn� 1ÞEl�DaDbYl; (C9d)

where we write only the l-th pole components. On the other
hand, the nonvanishing components of �S�� become

�Stt ¼ �f
n

nþ 1
ð2Ea0l þ E2BlÞYl; (C10a)

�S�� ¼ 1

f

n

nþ 1
ð2Ea0l þ E2AlÞYl; (C10b)

�Sab ¼ �2�ab

1

nþ 1
½�2Ea0l

þ E2ðEl � Al � BlÞ�Yl; (C10c)

�S�a ¼ 1

f
EalDaYl; (C10d)

�Sta ¼ fEblDaYl; (C10e)

where E is defined by Eq. (14). From �Rta ¼ 0 and
Eq. (C10e), we see bl ¼ 0 for l � 0. Moreover, alðl � 0Þ
is determined by using the Einstein equation from
Eqs. (C9c) and (C10d). Therefore, we do not need to solve
the Maxwell equation directly to determine alðl � 0Þ.

3. Master equations

From the traceless part of Eqs. (C9d) and (C10c), we
obtain the following algebraic relation:

Al þ Bl þ ðn� 1ÞEl ¼ 0 (C11)

because ½ðnþ 1ÞDaDb � �abD2�Yl � 0 when l > 1.
Note that for l ¼ 0, 1 we do not have any constraint from
the perturbation equations but we can require this equation
by using the residual gauge [see Eq. (38)].
Now, we introduce the following master variables:

Al � �� n�; Bl � ���; El � �; (C12)

which satisfy Eq. (C11). Using the master variables, we
obtain the following master equations from the perturba-
tion equations:

ðnþ 1Þ�2f�00 þ ðnþ 1Þ�f�0 � ðnþ 1Þlðlþ nÞ� ¼ �2lðlþ nÞ�; (C13a)

�2f�00 þ ð2�2f0 þ ð3nþ 17Þ�fÞ�0 þ ð2n2 � lðlþ nÞÞ� ¼ 0: (C13b)

Using the new dimensionless variable x � ð�=�0Þn,
Eq. (C13) becomes

fx2
d2�

dx2
þ 2fx

d�

dx
� plðpl þ 1Þ�

¼ � 2

nþ 1
plðpl þ 1Þ� (C14a)

and

fx2
d2�

dx2
þ

�
2x

df

dx
þ 4f

�
x
d�

dx
þ ð2� plðpl þ 1ÞÞ� ¼ 0;

(C14b)

where pl � l=n. Using fðxÞ ¼ ðx� xþÞðx� x�Þ=x2,
Eq. (C14b) becomes

ðx� xþÞðx� x�Þ d
2�

dx2
þ ð4x� 2xþ � 2x�Þd�dx

þ ð2� plðpl þ 1ÞÞ� ¼ 0: (C15)

This equation has the three singular points : x ¼ x�, xþ,
and 1. Therefore, the equation for � becomes the
hypergeometric differential equation. Using � ¼
ðx� x�Þ=ðxþ � x�Þ, it becomes standard form

�ð1� �Þ d
2�

d�2
þ ð2� 4�Þ d�

d�
þ ðpl þ 2Þðpl � 1Þ� ¼ 0:

(C16)

This is the same with one for the neutral case [9].
Similarly, defining ~� � x�=ðxþ � x�Þ, Eq. (C14a)

CAGED BLACK HOLE WITH MAXWELL CHARGE PHYSICAL REVIEW D 86, 044018 (2012)

044018-11



becomes the hypergeometric differential equation with a
source term

�ð1� �Þ d
2 ~�

d�2
þ plðpl þ 1Þ ~� ¼ 2plðpl þ 1Þ

nþ 1
ð�þ eÞ�;

(C17)

where we defined e � x�=ðxþ � x�Þ. So, our multipole
solution, in general, can be written by four hypergeometric
functions and the characteristic solution for Eq. (C17). In
the neutral case, we do not need to solve the equation for�
because� is obtained directly from� using Eq. (C9c) and
�R�a ¼ 0.

APPENDIX D: GAUGE TRANSFORMATION INTO
THE HARMONIC COORDINATES

To match the near solution with the asymptotic solution
in the overlap region, we need the near solution written in
the harmonic gauge. If we write the harmonic coordinates
as x�h ðx�Þ ¼ ðt; �hð�Þ; �; . . .Þ, the harmonic condition

(r2x� ¼ 0) becomes

r2ð�h cos�Þ ¼ 0: (D1)

In the above, r2 is the Laplacian for the full near metric

g�� ¼ gðBHÞ�� þ h��. Since the monopole perturbation does

not depend on �, Eq. (D1) up to Oð1=LnÞ becomes�
1� 1

2
hðnÞ

�
@�

��
1þ 1

2
hðnÞ

�
�nþ1fð1� B0Þ@��h

�
¼ ðnþ 1Þð1þ E0Þ�n�1�h; (D2)

where hðnÞ ¼ A0 þ B0 þ ðnþ 1ÞE0 is the trace of h
ðnÞ
��.

We expand �h as �h ¼ �ð0Þ
h þ �ðnÞ

h , where �ðnÞ
h is of

Oð1=LnÞ. Then, the Oð1=L0Þ equation becomes

@�ð�nþ1f@��
ð0Þ
h Þ ¼ ðnþ 1Þ�n�1�ð0Þ

h : (D3)

Assuming �h ! � as � ! 1, the solution is given by

�ð0Þ
h ¼ �� 1

2n

�n
0

�n�1
þOð�2n

0 =�2n�1Þ: (D4)

The Oð1=LnÞ equation is

@�ð�nþ1f@��
ðnÞ
h Þ � ðnþ 1Þ�n�1�ðnÞ

h

¼ @�ð�nþ1fB0@��
ð0Þ
h Þ � 1

2
�nþ1@�h

ðnÞf@��
ð0Þ
h

� ðnþ 1Þ�n�1E0�
ð0Þ
h : (D5)

Note that the Oð1=LnÞ equation is trivial in the gauge
choice (49). Here we consider cases for general C2, C3,

�0. Assuming �ðnÞ
h ! 0 as � ! 1, the solution becomes

�ðnÞ
h ¼ C3 þ nC2

2n

�n
0

�n�1
þOð�2n

0 =�2n�1Þ: (D6)

As a result, we have

�hð�Þ ¼ �� �n
0

2n�n�1
ð1� nC2 � C3Þ þOð�2n

0 =�2n�1Þ:
(D7)

This equation gives the coordinate transformation from
ðt; �; �; . . .Þ into ðt; �hð�Þ; �; . . .Þ. In the harmonic coordi-
nates, the near zone metric and the gauge field become

gðnearÞtt ¼ �fð�Þð1þ A0ð�ÞÞ ¼ �
�
1� 2C1 � ð1� 2C1 � C3Þ�

n
0

�n
h

�
þOð1=L2n; 1=�2n

h Þ; (D8a)

gðnearÞ�h�h
¼

�
@�

@�h

�
2
f�1ð�Þð1þ B0ð�ÞÞ ¼ 1þ 2C1

n
þ �n

0

n�n
h

�
1þ 2C1

n
� C3

�
þOð1=L2n; 1=�2n

h Þ; (D8b)

gðnearÞ�� ¼ �2ð1þ E0ð�ÞÞ ¼ �2
h

�
1þ 2C1

n
þ �n

0

n�n
h

�
1þ 2C1

n
� C3

�
þOð1=L2n; 1=�2n

h Þ
�
; (D8c)

FðnearÞ
t�h

¼ Q0

!nþ1�
nþ1
h

ð1� �0 � 2C1 þOð1=L2n; 1=�n
hÞÞ: (D8d)
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