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We present several classes of exact solutions in the Einstein-Klein-Gordon system with a cosmological

constant. The spacetime has spherical, plane, or hyperbolic symmetry and the higher-dimensional

solutions are obtained in a closed form only in the plane symmetric case. Among them, the class-I

solution represents an asymptotically locally anti-de Sitter (AdS) dynamical black hole or wormhole.

In four and higher dimensions, the generalized Misner-Sharp quasilocal mass blows up at AdS infinity,

inferring that the spacetime is only locally AdS. In three dimensions, the scalar field becomes trivial and

the solution reduces to the Bañados-Teitelboim-Zanelli black hole.
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I. INTRODUCTION

In comparison with stationary black holes, understand-
ing of dynamical black holes is still far from clear.
Although there is a lot of potentially interesting subjects
such as thermodynamical properties, dynamical stability,
or Hawking radiation, the absence of the preferred time
direction makes them intractable. Also, lack of concrete
exact solutions in simple systems is one of the main
reasons for the relatively slow progress.

In the present paper, among others, we focus on asymp-
totically anti-de Sitter (AdS) dynamical black holes. In the
history of gravitation physics, AdS black holes had been
considered unrealistic and eccentric configurations for a
long time. However, they stepped into the limelight by the
discovery of the AdS/CFT duality [1]. Now AdS black
holes have new significance as a stage to study strongly
coupled gauge theories and occupy a central position of
research in string theory.

The motivation of the study in the present paper is
twofold. One comes from the AdS/CFT duality. While a
static AdS black hole corresponds to the field theory at the
boundary which has finite temperature in equilibrium, a
dynamical AdS black hole would correspond to some field
theory in the nonequilibrium state. Actually, an asymptoti-
cally AdS spacetime has been studied in a dynamical
setting as a holographic dual to the Bjorken flow [2].
While the dynamical spacetime in Ref. [2] was constructed
perturbatively, exact dynamical AdS black holes are desir-
able to derive more specific results.

The second motivation comes from the recently found
dynamical instability of the AdS spacetime. Although the
AdS vacuum is known to be stable at the linear level, its
nonlinear instability was numerically found with a mass-
less Klein-Gordon field in arbitrary dimensions [3]. (See
also Ref. [4].) It was both numerically and analytically
supported that an AdS black hole forms as a result of this
instability [3,5]. However, there is an argument that static

AdS black holes are also unstable at the nonlinear level [6].
(See also Ref. [7].) Therefore, the final fate of the insta-
bility of the AdS vacuum or a static AdS black hole is
still not clear at present. In this context, not only a static
configuration but also a dynamical configuration is the
candidate of the final state. An example is an oscillating
or time-periodic spacetime [8]. Therefore, an exact dy-
namical black-hole solution might represent the final state
or an intermediate stage during the time evolution and
must be useful for further study.
In the present paper, we consider spacetimes with

spherical, plane, or hyperbolic symmetry in arbitrary di-
mensions. It is well known in this system that the no-hair
theorem holds for a wide class of scalar fields, which
prohibits asymptotically flat black holes with nontrivial
configurations of scalar fields [9]. Here one assumes stat-
icity to prove the no-hair theorem. For a massless Klein-
Gordon field, even a stronger result is available, namely the
no-hair theorem independent of the asymptotic condition
for the spacetime and the value of �. (See Appendix A for
the proof.) As a result, all the known solutions with a
nontrivial scalar field in this system contain naked singu-
larities both for � ¼ 0 [10] and � � 0 [11], and the only
possible static black hole is the Schwarzschild[-(A)dS]
black hole with a constant scalar field or its topological
generalization.
Therefore, in order to obtain nontrivial black-hole solu-

tions, one has to remove the assumption of staticity. In four
dimensions, a set of exact dynamical and inhomogeneous
solutions has been obtained by many authors [12–17]. In
the present paper, we generalize this set of solutions and
show that some of the solutions describe a locally AdS
dynamical black hole. In the case where the Klein-Gordon
field is purely imaginary, namely ghost, an AdS dynamical
wormhole may be realized.
In the following section, we give our spacetime ansatz

and present the solutions. In Sec. III, we show that the
class-I solution represents an AdS dynamical black hole or
wormhole. In Sec. IV, we discuss the properties of other
classes of solutions. Concluding remarks are summarized*hideki@cecs.cl
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in Sec. V. The scalar no-hair theorem for a massless Klein-
Gordon field is shown in Appendix A. In Appendix B, we
present the counterpart of our solution in the case without a
cosmological constant. In Appendix C, it is shown that the
class-I solution with a real scalar field does not represent a
wormhole. Our basic notation follows Ref. [18]. The con-
vention for the Riemann curvature tensor is ½r�;r��V� ¼
R�

���V
� and R�� ¼ R�

���. The Minkowski metric is

taken to be mostly plus sign, and Greek indices run over
all spacetime indices. We adopt the units such that only the
n-dimensional gravitational constant Gn is retained.

II. PRELIMINARIES

A. System

We consider the Einstein-Klein-Gordon-� system in
arbitrarynð� 3Þ dimensions. The field equations areG�� þ
�g�� ¼ �2

nT�� and h� ¼ 0, where �n is defined by the

n-dimensional gravitational constant Gn as �n :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�Gn

p
.

The energy-momentum tensor for the Klein-Gordon
field is

T�� ¼ r��r��� 1

2
g��r��r��: (2.1)

In this paper, we consider an n-dimensional warped
product manifold Mn � M2 � Kn�2 with the line element

ds2 ¼ g��dx
�dx� ¼ gABðyÞdyAdyB þ RðyÞ2�ijðzÞdzidzj;

(2.2)

where gAB is a Lorentzian metric on M2 and R is a scalar
on M2. Kn�2 is an ðn� 2Þ-dimensional unit space of
constant curvature, where k denotes its curvature taking
the values 1, 0, and �1, and �ijðzÞ is the metric on Kn�2.

Namely the Riemann tensor on Kn�2 is given by

ðn�2ÞRijkl ¼ kð�ik�jl � �il�jkÞ; (2.3)

where the superscript ðn� 2Þ means the geometrical
quantity on Kn�2.

The generalized Misner-Sharp quasilocal mass is a
scalar on M2 defined by

m :¼ ðn� 2ÞVðkÞ
n�2

2�2
n

Rn�3½�~�R2 þ k� ðDRÞ2�; (2.4)

where ~� :¼ 2�=½ðn� 1Þðn� 2Þ�, DA is the covariant de-
rivative on M2 and ðDRÞ2 :¼ gABðDARÞðDBRÞ [19–22].

VðkÞ
n�2 denotes the volume of Kn�2 if it is compact and

otherwise arbitrary. m has the monotonicity and positivity

properties for arbitrary (positive) VðkÞ
n�2 and is constant in

vacuum [21,22]. In the asymptotically flat or AdS case, that
coefficient is fixed in such a way that it converges to the
global mass such as the Arnowitt-Deser-Misner mass [23]
or Abbott-Deser mass [24].

In the nonstatic spacetime, there is no timelike Killing
vector to define a natural time slicing. In such a case, the
Kodama vector K� :¼ �	��r�R defines a preferred time
direction in the untrapped region, where 	�� ¼ 	ABðdxAÞ�
ðdxBÞ� and 	AB is a volume element of ðM2; gABÞ [25]. The
Kodama vector is timelike (spacelike) in the untrapped
(trapped) region defined by ðDRÞ2 > ð<Þ0. On the trapping
horizon defined by ðDRÞ2 ¼ 0, the Kodama vector be-
comes null.

B. Generalized Lake solution

In the present paper, we consider solutions in the follow-
ing form:

ds2 ¼ Hð�Þ�2½�dt2 þ d�2 þ SðtÞ�ijðzÞdzidzj�; (2.5)

Hð�Þ ¼

8>>>>>>>><
>>>>>>>>:

ffiffiffiffiffiffiffiffiffi
�~�

p
sin� ½class-I ð�< 0Þ�;ffiffiffiffiffiffiffiffiffi

�~�
p

� ½class-II ð�< 0Þ�;ffiffiffiffiffiffiffiffiffi
�~�

p
sinh� ½class-III ð�< 0Þ�;ffiffiffiffiffiffiffiffiffi

�~�
p

cosh� ½class-III ð�> 0Þ�:

(2.6)

The physical domain is the region with S > 0. The areal

radius is given by R ¼ ð"HÞ�1S1=2, where " ¼ �1 is
chosen such that R is nonnegative. These classes of solu-
tions have been investigated as solutions with a stiff fluid,
which is equivalent to a massless Klein-Gordon field if the
gradient of the scalar field is timelike [26]. They were first
obtained by Lake [12] for n ¼ 4 and k ¼ 1 and indepen-
dently obtained by other authors [13–15]. The global
structure and physical properties were investigated in
Ref. [27]. The solutions with n ¼ 4 and general k were
obtained by Collins and Lang [16] and also in Ref. [17].
Keeping in mind this history, we call these classes of
solutions the generalized Lake solution in the present
paper.
The system reduces to the following master equation

for S:

4kðn� 3ÞSþ ðn� 4Þ _S2 þ 4ðn� 2ÞwS2 þ 2 €SS ¼ 0;

(2.7)

where a dot denotes the derivative with respect to t and the
constant w is 1, 0, and �1 for class-I, -II, and -III, respec-
tively. The Klein-Gordon field is given as

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þðn� 3Þ

�2
n

s Z t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

S
þ

_S2

4S2
þ w

s
d�t: (2.8)

The scalar field is homogeneous � ¼ �ðtÞ in our coordi-
nate system.
The energy-momentum tensor has the form of T�

� ¼
diagð��;�; � � � ; �Þ, where� ¼ ð1=2ÞH2 _�2 is the energy
density of the scalar field. Important physical quantities are
given as
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� ¼ 1

2
H2 _�2 (2.9)

¼ ðn� 2Þðn� 3ÞH2

2�2
n

�
k

S
þ

_S2

4S2
þ w

�
; (2.10)

m ¼ ðn� 2ÞVðkÞ
n�2S

ðn�1Þ=2

2�2
nð"HÞn�3

�
k

S
þ

_S2

4S2
þ w

�
; (2.11)

ðDRÞ2 ¼ �S

� _S2

4S2
�H02

H2

�
; (2.12)

where a prime denotes the derivative with respect to �.
� � 0 andm> 0 are satisfied in the spherically symmetric
class-I solution (k ¼ w ¼ 1). Using 	t� ¼ H�2, the

Kodama vector is written as

K� @

@x�
¼ �"H0S1=2

@

@t
� 1

2
"HS�1=2 _S

@

@�
: (2.13)

The master equation (2.7) is solved analytically in three
and four dimensions for any k but only for k ¼ 0 in higher
dimensions, which will be presented later. In order to see
the qualitative property of the solution, we introduce a new

variable X :¼ Sðn�2Þ=2 and write the master equation as

€X¼�kðn� 2Þðn� 3ÞXðn�4Þ=ðn�2Þ � ðn� 2Þ2wX: (2.14)

This equation is integrated by parts to give

E ¼ 1

2
_X2 þ VðkÞðXÞ; (2.15)

VðkÞðXÞ :¼ ðn� 2Þ2
2

ðkX2ðn�3Þ=ðn�2Þ þ wX2Þ; (2.16)

where E is an integration constant. This is a simple one-
dimensional potential problem for the variable XðtÞð� 0Þ.

Using the following expression,

k

S
þ

_S2

4S2
þ w ¼ 2E

ðn� 2Þ2X2
; (2.17)

we obtain simple expressions of �, � and m:

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 3ÞE
ðn� 2Þ�2

n

s Z t d�t

Sð�tÞðn�2Þ=2 ; (2.18)

� ¼ ðn� 3ÞEH2

ðn� 2Þ�2
nS

n�2
; (2.19)

m ¼ EVðkÞ
n�2

ðn� 2Þ�2
nð"HÞn�3Sðn�3Þ=2 : (2.20)

It is clear that the energy density of the scalar field and the
quasilocal mass are positive (negative) for E> ð<Þ0 and
then the scalar field is real (purely imaginary, namely
ghost). In three dimensions, the scalar field becomes trivial

and we have � ¼ 0 and m ¼ constant. The spacetime is
then locally (A)dS.

C. AdS infinity

It is shown that, in the case of �< 0, Hð�1Þ ¼ 0
corresponds to AdS infinity. (In contrast, H cannot be
zero for �> 0 in the class-III solution.) Indeed,

lim
�!�1

R��
�� ¼ ~�ð
�

�
�
� � 


�
�
�

�Þ (2.21)

is satisfied. We actually show that the affine parameter �
blows up at � ¼ �1 along null geodesics. In the spacetime
(2.5), there is a conformal Killing vector ��dx

� ¼ H�2d�

satisfying the conformal Killing equation:

L �g�� ¼ 2c g��; c :¼ �H0

H
: (2.22)

Along a null geodesic, with its tangent vector k�, there
is a conserved quantity Cð�Þ :¼ ��k

�. The following

expression

Cð�Þ ¼ H�2 d�

d�
(2.23)

is integrated to give

1

Cð�Þð�� �0Þ ¼

8>>>>>><
>>>>>>:

~� tan� ½class-I�;
~�� ½class-II�;
~� tanh� ½class-III ð�< 0Þ�;
~�= tanh� ½class-III ð�> 0Þ�:

(2.24)

Therefore, H ¼ 0 for �< 0 corresponds to � ! 1. AdS
infinity is given by � ¼ 0 in the class-II and -III solutions,
and by � ¼ N� in the class-I solution, where N is an
integer.
It is seen in Eqs. (2.19) and (2.20) that the spacetime is

indeed vacuum at AdS infinity (H ¼ 0), but m blows up
there. The quasilocal mass m with k ¼ 1 converges to the
Abbott-Deser mass in the asymptotically AdS spacetime
[22] under the Henneaux-Teitelboim falloff condition [28].
(See Ref. [29] for the higher-dimensional version.) Its
contraposition means that if m blows up, the falloff rate
is slower than the Henneaux-Teitelboim condition and the
spacetime is asymptotically only locally AdS [30].

D. Static solution

There is a static solution S ¼ S0 of the master equation
(2.7) in the case of kw < 0 in four and higher dimensions:

S0 ¼ � kðn� 3Þ
ðn� 2Þw ; (2.25)

� ð���0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðn� 2Þw

�2
n

s
t; (2.26)

EXACT DYNAMICAL AdS BLACK HOLES AND WORMHOLES . . . PHYSICAL REVIEW D 86, 044016 (2012)

044016-3



where �0 is constant. The energy density and the quasilo-
cal mass are given by

� ¼ �ðn� 2ÞwH2

2�2
n

; (2.27)

m ¼ �ðn� 2ÞwVðkÞ
n�2S

ðn�1Þ=2
0

2ðn� 3Þ�2
nð"HÞn�3

: (2.28)

While the metric is static, the scalar field is time dependent.
In the class-III solution with k ¼ 1, the Klein-Gordon field
is real, while it is ghost in the class-I solution with k ¼ �1.
We do not present the detailed analysis for this static

solution, but the Penrose diagram is Fig. 1(d) for the class-I
solution with k ¼ �1 and the solution represents a static
AdS wormhole. (See Ref. [31] for the wormhole solution
without �.) The Penrose diagram for the class-III solution
with k ¼ 1 is Fig. 2(a) for �< 0 and Fig. 2(f) for �> 0.
Hereafter we do not consider the static case.

III. CLASS-I SOLUTION

We are interested in the class-I solution because the
coordinate system covers the maximally extended space-
time and describes an asymptotically locally AdS black
hole or wormhole.
In four dimensions, S is given by

SðtÞ ¼ 1

2
ð�kþ 2C1 sin2tÞ; (3.1)

where C1 is a constant. The energy density and the quasi-
local mass are given by

� ¼ ð4C2
1 � k2ÞH2

4�2
4S

2
; m ¼ VðkÞ

2 ð4C2
1 � k2Þ

4�2
4"HS1=2

: (3.2)

The energy density is positive (negative) for 4C2
1 > ð<Þk2.

The AdS vacuum is realized for k ¼ 1,�1 with 4C2
1 ¼ k2.

(For k ¼ 0, C1 ¼ 0 is not allowed since it gives S � 0.)
The scalar field with positive energy density is given by

�ð���0Þ ¼

8>>><
>>>:

ffiffiffiffiffiffi
1

2�2
4

q
ln

��������
ffiffiffiffiffiffiffiffiffiffiffiffi
4C2

1
�k2

p
þð�k tantþ2C1Þffiffiffiffiffiffiffiffiffiffiffiffi

4C2
1�k2

p
�ð�k tantþ2C1Þ

�������� ½for k ¼ 1;�1�;
ffiffiffiffiffiffi
1

2�2
4

q
ln

��������1�cos2t
sin2t

�������� ½for k ¼ 0�:
(3.3)

The scalar field with negative energy density is given as

� ð���0Þ ¼ i

ffiffiffiffiffiffi
2

�2
4

s
arctan

��k tantþ 2C1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4C2

1

q
�
; (3.4)

where i2 ¼ �1.
In arbitrary dimensions, S and � for the class-I solution

are given in closed forms only for k ¼ 0:

SðtÞ ¼ C1½sinðn� 2Þt�2=ðn�2Þ; (3.5)

�ð���0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

ðn� 2Þ�2
n

s
ln

��������
1� cosðn� 2Þt
sinðn� 2Þt

��������: (3.6)

The energy density and the quasilocal mass are given by

� ¼ ðn� 2Þðn� 3ÞH2

2�2
n½sinðn� 2Þt�2 ; (3.7)

m ¼ ðn� 2ÞVð0Þ
n�2C

ðn�1Þ=2
1

2�2
nð"HÞn�3½sinðn� 2Þt�ðn�3Þ=ðn�2Þ : (3.8)

In three dimensions (n ¼ 3), we obtain � � 0 and m ¼
constant and the solution represents a Bañados-Teitelboim-
Zanelli black hole in the nonstandard coordinates [32].
It is not difficult to understand the causal structure of the

spacetime (2.5). SðtÞ ¼ 0 corresponds to curvature singu-
larity, of which existence depends on the parameters. Since
the metric on ðM2; gABÞ in the solution (2.5) is conformally
flat, a light ray runs along a 45-deg straight line in the
ð�; tÞ plane. The Penrose diagrams for this solution are
presented in Fig. 1. (See Table I.) The spacetime represents
a dynamical black hole or wormhole depending on the
parameters.

BHEHBHEH

(a)

(c)

(b)

(d)

BHEHBHEH

BHEHBHEH

FIG. 1. Portions of the ð�; tÞ plane covering the maximally
extended spacetime of the class-I solution. The corresponding
Penrose diagrams have the same structures. A zigzag and a thick
line correspond to a curvature singularity and AdS infinity,
respectively. BHEH stands for the black-hole event horizon.
(a)–(c) represent a black hole, while (d) represents a wormhole.
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A. Dynamical AdS black holes

If the energy density is positive, there are spacelike
curvature singularities given by SðtÞ ¼ 0. As a result, the
solution represents a dynamical black hole. Since both H
and S are periodic, the ð�; tÞ plane is divided by singular-
ities and AdS infinities into an infinite number of portions.
The physical portions with positive S are all equivalent.
First let us see the case with k ¼ 0. Without loss of

generality, we assume C1 > 0 and consider a physical
portion defined by t ¼ ð0; �=ðn� 2ÞÞ and � ¼ ð0; �Þ,
which covers the maximally extended spacetime. The
event horizon in this portion is given by t ¼ �� ðn� 3Þ=
ðn� 2Þ� and t ¼ ��þ �=ðn� 2Þ and the Penrose dia-
gram is (b) in Fig. 1 for n ¼ 4 and (c) for n � 5.
On the other hand, in the case with k ¼ 1, �1 in four

dimensions, the period of t in a physical portion is different.
The period is shorter (longer) than�=2 for k ¼ 1ðk ¼ �1Þ.
Hence, the Penrose diagram is (c) in Fig. 1 for k ¼ 1 and
(a) for k ¼ �1.
For the class-I solution, the trapping horizon is deter-

mined by

ðDRÞ2 ¼ �S

� _S2

4S2
� 1

tan2�

�
¼ 0: (3.9)

In the case of k ¼ 0, the trapping horizon is expressed in a
simple form as

tanðn� 2Þt ¼ � tan�: (3.10)

Thus, the trapping horizon is also drawn by spacelike
straight lines in the ð�; tÞ plane. For n ¼ 4, the trapping
horizon is given by

�kþ 2C1 sin2t

2C1 cos2t
¼ � tan�: (3.11)

In order to show its signature, we study the induced metric
on the trapping horizon in the ð�; tÞ plane:

ds2 ¼ ð4C2
1 � k2Þðk2 þ 12C2

1 � 8C1k sin2tÞ
Hð�Þ2ðk2 þ 4C2

1 � 4C1k sin2tÞ2
dt2: (3.12)

A portion of the trapping horizon with ds2 > ð<Þ0 is
spacelike (timelike). We can show that the trapping
horizon is spacelike if 4C2

1 � k2 > 0, namely the energy
density of the scalar field is positive. It is obvious for
k ¼ 0, �1 by the following expression:

)f()a(

i i

(b)

i

iiBHEH

(g)

i

ii

(e)

i

ii

iii

(j)

i

ii

iii

BHEH

BHEH

)h()c(

i i

)i()d(

i i

FIG. 2. The Penrose diagrams for the class-II and -III solu-
tions. (a)–(e) [(f)–(j)] correspond to the case with �< ð>Þ0.
(c), (d), (h), and (i) correspond to the special case of the class-III
(c) solution with kþD5 ¼ 0. Coordinate boundaries repre-
sented by dashed lines are extendable. The ð�; tÞ plane is divided
by singularities and AdS infinity into several portions and each
of them represents a distinct spacetime. The parameters are
required to give S > 0 for the physical spacetime and the left
halves of (a)–(e) are equivalent to the right halves. The region
(ii) in (e) is maximally extended and contains an event horizon,
but there is no regular Cauchy surface.

TABLE I. The Penrose diagrams for the class-I solution with
positive energy density and n � 4. In the case of k ¼ �1 with
negative energy density, the Penrose diagram is Fig. 1(d).

n ¼ 4 n � 5

k ¼ 0 Fig. 1(b) Fig. 1(c)

k ¼ 1 Fig. 1(c) Figs. 1(a) and 1(b), or 1(c)

k ¼ �1 Fig. 1(a) Figs. 1(a) and 1(b), or 1(c)
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k2 þ 12C2
1 � 8C1k sin2t ¼ 3ð4C2

1 � k2Þ � 8kS: (3.13)

For k ¼ 1, using the inequality 0< S 	 ð�1þ 2jC1jÞ=2,
the above equation is evaluated as

12jC1j2 � 8jC1j þ 1 	 3ð4C2
1 � 1Þ � 8S < 3ð4C2

1 � 1Þ:
(3.14)

Since the lower bound is positive for 4C2
1 � 1> 0, it is

concluded that the trapping horizon is spacelike.
In the case with k ¼ �1 and n � 5, the solution is not

obtained in a closed form, but we can prove that it repre-
sents an AdS black hole if the energy density of the scalar
field is positive, namely E> 0. For k ¼ 1, the potential
(2.16) is monotonically increasing for X � 0 and hence
the solution exists only for E> 0. Then, the domain of t
in the maximally extended spacetime of the solution is
given by t0 < t < t0 þ T, where Xðt0Þ ¼ Xðt0 þ TÞ ¼ 0.
This is also the case for k ¼ �1 with E � 0. The period T
is defined by

T :¼ 2
Z X¼XbðkÞ

X¼0

dXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� VðkÞðXÞÞ

q ; (3.15)

where XbðkÞ is defined by E ¼ VðkÞðXbðkÞÞ. The spacetime

admits a wormhole throat if T � � because the period of
the coordinate � is�; however it is not allowed if the scalar
field has positive energy density. (See Appendix C for the
proof.) Since t ¼ t0 and t ¼ t0 þ T are both spacelike
curvature singularities, the corresponding Penrose dia-
gram is Figs. 1(a)–1(c) for �=2< T < �, T ¼ �=2, and
0< T < �=2, respectively. Although the diagrams are
different depending on the value of T, the solution repre-
sents a dynamical AdS black hole.

B. Dynamical AdS wormholes

In the case of k ¼ �1 in four dimensions, if 4C2
1 < k2,

then the energy density is negative and S is positive definite
for �1< t <1. (There is no physical solution for k ¼ 1
because S is negative definite if 4C2

1 < k2.) The Klein-
Gordon field then becomes ghost and there is no curvature
singularity in the spacetime. As a result, the spacetime is
a dynamical AdS wormhole described by the Penrose
diagram (d) in Fig. 1.

Let us discuss the signature of the trapping horizon.
Since ð1� 2jC1jÞ=2 	 S 	 ð1þ 2jC1jÞ=2 is satisfied in
the present case, the right-hand side of Eq. (3.13) is eval-
uated as

12jC1j2 � 8jC1j þ 1 	 3ð4C2
1 � 1Þ þ 8S

	 12jC1j2 þ 8jC1j þ 1: (3.16)

While the upper bound is positive definite, the lower
bound is positive for 0 	 jC1j< 1=6 and negative for

1=6< jC1j< 1=2. Therefore, the trapping horizon is time-
like for 0 	 jC1j< 1=6. In contrast, the trapping horizon
has both timelike and spacelike portions for 1=6< jC1j<
1=2. For jC1j ¼ 1=6, the lower bound of Eq. (3.16) is 0 and
the trapping horizon becomes null only at the moment of
the bounce characterized by _S ¼ 0 and €S > 0.
It is shown that an AdS wormhole is realized also for

k ¼ �1 and n � 5 if E< 0; namely the energy density is
negative. In the case of k ¼ �1, the potential (2.16) in the
master equation has a negative minimum Vð�1Þ ¼ Vexð<0Þ,
where

Vex :¼ �n� 2

2

�
n� 3

n� 2

�
n�3

: (3.17)

As a result, in the solution with E satisfying Vex <E< 0,
the value ofX (and hence S) oscillates and never becomes 0.
Hence, the corresponding Penrose diagram is Fig. 1(d) and
the spacetime describes a dynamical AdS wormhole.

IV. CLASS-II AND -III SOLUTIONS

Next let us consider the class-II and -III solutions. We
only consider the case in which the solution is obtained in a
closed form.
In four dimensions, SðtÞ is given by

SðtÞ ¼

8>>>>>><
>>>>>>:

�kt2 þ 2D1tþD2 ½class-II�;
1
2 ðkþ 2D3 cosh2tÞ ½class-IIIðaÞ�;
1
2 ðkþ 2D4 sinh2tÞ ½class-IIIðbÞ�;
1
2 ðkþD5e

2tÞ ½class-IIIðcÞ�;

(4.1)

where D1–D5 are constants. The class-III solution was
further classified into three. The energy density and the
quasilocal mass are written as

� ¼ �0H
2

4�2
4S

2
; m ¼ VðkÞ

2 �0

4�2
4"HS1=2

; (4.2)

where the constant �0 is defined by

�0 :¼ 4Sn�2

�
k

S
þ

_S2

4S2
þ w

�
(4.3)

¼

8>>>>>><
>>>>>>:

4ðkD2 þD2
1Þ ½class-II�;

k2 � 4D2
3 ½class-IIIðaÞ�;

k2 þ 4D2
4 ½class-IIIðbÞ�;

k2 ½class-IIIðcÞ�:

(4.4)

The relation between �0 and the energy constant E in the
master equation (2.15) is �0 ¼ 8E=ðn� 2Þ2. The Klein-
Gordon field with positive energy density is given by

HIDEKI MAEDA PHYSICAL REVIEW D 86, 044016 (2012)

044016-6



�ð���0Þ ¼

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ffiffiffiffiffiffi
1

2�2
4

q
ln

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1
þkD2

p
þðD1�ktÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
1
þkD2

p
�ðD1�ktÞ

�������� ½class-II ðk ¼ 1;�1Þ�;
ffiffiffiffiffiffi
1

2�2
4

q
lnj2D1tþD2j ½class-II ðk ¼ 0Þ�;

ffiffiffiffiffiffi
1

2�2
4

q
ln

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�4D2

3

p
þðk�2D3Þ tanhtffiffiffiffiffiffiffiffiffiffiffiffiffi

k2�4D2
3

p
�ðk�2D3Þ tanht

�������� ½class-IIIðaÞ ðk ¼ 1;�1Þ�;
ffiffiffiffiffiffi
1

2�2
4

q
ln

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4D2

4

p
þð2D4�k tanhtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

k2þ4D2
4

p
�ð2D4�k tanhtÞ

�������� ½class-IIIðbÞ ðk ¼ 1;�1Þ�;
ffiffiffiffiffiffi
1

2�2
4

q
ln

��������1þe2t

1�e2t

�������� ½class-IIIðbÞ ðk ¼ 0Þ�;
ffiffiffiffiffiffi
1

2�2
4

q
lnjD5 þ ke�2tj ½class-IIIðcÞ�:

(4.5)

The scalar field with negative energy density is given as

�ð���0Þ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

i
ffiffiffiffi
2
�2
4

q
arctan

�
D1�ktffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðD2
1þkD2Þ

p
�

½class-II ðk ¼ 1;�1Þ�;

i
ffiffiffiffi
2
�2
4

q
arctan

�
ðk�2D3Þ tanhtffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2
3�k2

p
�

½class-IIIðaÞ ðk ¼ 1;�1Þ�;

i
ffiffiffiffi
2
�2
4

q
arctanðe2tÞ ½class-IIIðaÞ ðk ¼ 0Þ�;

i
ffiffiffiffi
2
�2
4

q
arctan

�
2D4�k tanhtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðk2þ4D2

4
Þ

p
�

½class-IIIðbÞ ðk ¼ 1;�1Þ�:

(4.6)

In higher dimensions, the metric function S of the nonvacuum solution is obtained in a closed form only for k ¼ 0:

SðtÞ ¼

8>>><
>>>:

½ðn� 2ÞD1tþD2�2=ðn�2Þ ½class-II�;
D3½coshðn� 2Þt�2=ðn�2Þ ½class-IIIðaÞ�;
D4½sinhðn� 2Þt�2=ðn�2Þ ½class-IIIðbÞ�:

(4.7)

The energy density and the quasilocal mass are written as

� ¼ ðn� 2Þðn� 3Þ�0H
2

8�2
nS

n�2
; (4.8)

m ¼ ðn� 2ÞVð0Þ
n�2�0

8�2
nð"HÞn�3Sðn�3Þ=2 ; (4.9)

where �0 defined by Eq. (4.3) is

�0 ¼

8>>><
>>>:

4D2
1 ½class-II�;

�4Dn�2
3 ½class-IIIðaÞ�;

4Dn�2
4 ½class-IIIðbÞ�:

(4.10)

The class-III(c) with k ¼ 0 is vacuum, so we do not treat here. The scalar field is given as

�ð���0Þ ¼

8>>>>>><
>>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�3

ðn�2Þ�2
n

q
lnjðn� 2ÞD1tþD2j ½class-II�;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðn�3Þ
ðn�2Þ�2

n

q
arctanðeðn�2ÞtÞ ½class-IIIðaÞ�;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�3

ðn�2Þ�2
n

q
ln

��������1þeðn�2Þt
1�eðn�2Þt

�������� ½class-IIIðbÞ�:
(4.11)

Since the energy density is negative, the scalar field is ghost in the class-III(a) solution.
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As the class-I solution, the ð�; tÞ plane for the class-II
or -III solution is divided by the lines of curvature singu-
larities or AdS infinity but into a finite number of portions,
unlike the class-I solution. The structure of the ð�; tÞ plane
is classified by the number of spacelike curvature singu-
larities given by SðtÞ ¼ 0. (See Table II.)

The corresponding Penrose diagrams are drawn in
Fig. 2. In those diagrams, the regular coordinate boundary
� ¼ �1, which consists of null hypersurfaces in Fig. 2
drawn by dashed lines, is extendable. This is obvious by
Eq. (2.24) since � ¼ �1 corresponds to a finite value of
the affine parameter �. Furthermore,� ! 0 andm ! 0 are
satisfied for � ¼ �1 along null geodesics. This fact in-
dicates that a variety of C1 extension is possible beyond
this coordinate boundary without introducing any matter
field on the junction surface. One possible extension is to
attach an exact (A)dS spacetime [27].

Although � ¼ �1 is regular and extendable along
null geodesics, it is singular along spacelike curves with
t ¼ constant, where � blows up. Therefore, although the
regions (ii) in Figs. 2(e) and 2(j) are maximally extended,
there is no regular Cauchy surface. The regions (ii) in
Figs. 2(b) and 2(e) and (iii) in Fig. 2(e) contain a black-
hole event horizon.

V. SUMMARY

Wehave presented a set of exact solutions in the Einstein-
Klein-Gordon system with a cosmological constant in ar-
bitrary dimensions. The spacetime has spherical, plane, or
hyperbolic symmetry and admits a spatially conformal
Killing vector. The solution is obtained in a closed form
in three and four dimensions for any k but only for k ¼ 0 in
higher dimensions. Even in the case without the explicit
form, it is able to understand the qualitative properties of
the solutions by analyzing the equivalent one-dimensional
potential problem. In three dimensions, the solution reduces
to the locally (A)dS vacuum.

For �< 0, the spacetime is asymptotically locally AdS.
The quasilocal mass blows up at AdS infinity while the
energy density converges to zero, which infers the slow
falloff to the AdS infinity. Some of the solutions admit a
black-hole event horizon.

In the class-I solution, the coordinate system covers the
maximally extended spacetime and the solution with a real

scalar field describes a dynamical AdS black hole. If the
scalar field is ghost, the solution represents a dynamical
AdS wormhole. While the solution with k ¼ �1 in four
dimensions represents the dynamical formation of a black
hole, the black hole is eternal in the case of k ¼ 1 in four
dimensions and k ¼ 0 in nð� 4Þ dimensions. It is still not
clear whether the black hole is eternal or not in the case of
k ¼ �1 in higher dimensions.
For the class-II and -III solutions, we have analyzed the

global structures in four dimensions and in higher dimen-
sions with k ¼ 0. The regular coordinate boundary is ex-
tendable and the C1 extension beyond it would be possible.
There are several cases where the spacetime contains a
black-hole event horizon; however, the coordinate system
does not cover the maximally extended spacetime or there
is no regular Cauchy surface in the spacetime.
In summary, the class-I solution may be a good model of

a dynamical AdS black hole for further investigations.
Thermodynamical properties, dynamical stability, and the
Hawking radiation are interesting subjects to study, of
which results will shed light on dynamical properties of
AdS black holes.
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APPENDIX A: NO-HAIR THEOREM
FOR A KLEIN-GORDON FIELD

In this appendix, we present a simple proof of the no-
hair theorem for a Klein-Gordon field; there is no Killing
horizon in the spacetime represented by the metric (2.2) if
the spacetime is static and the Klein-Gordon field is static
and inhomogeneous. We note that this result is independent
of the value of � and the asymptotic condition for the
spacetime.

TABLE II. The number of spacelike curvature singularities in the Penrose diagram of the ð�; tÞ plane for the class-II and -III
solutions with k ¼ 1, �1 in the four-dimensional nonvacuum case. For k ¼ 0 in nð� 4Þ dimensions, there is one singularity in the
class-II and -III(b) solutions while there is no singularity in the class-III(a) solution.

No. of singularities 0 1 2

Class-II D2
1 þ kD2 < 0 D2

1 þ kD2 ¼ 0 D2
1 þ kD2 > 0

Class-III(a) D3ðkþ 2D3Þ> 0 or D3 ¼ 0 kþ 2D3 ¼ 0 D3ðkþ 2D3Þ< 0
Class-III(b) D4 ¼ 0 D4 � 0 Not applicable

Class-III(c) D5ðkþD5Þ> 0 or D5 ¼ 0 D5ðkþD5Þ 	 0 with D5 � 0 Not applicable
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We adopt the following coordinates for the static space-
time:

ds2 ¼ �fðrÞe�2
ðrÞdt2 þ fðrÞ�1dr2 þ RðrÞ2�ijdz
idzj:

(A1)

We can replace R by r without loss of generality if R is
not constant. For � ¼ �ðrÞ, the Klein-Gordon equation
h� ¼ 0 gives

d

dr
ðe�
Rn�2f�0Þ ¼ 0 ! �0 ¼ C�e




fRn�2
; (A2)

where C� is a constant and a prime denotes here the

derivative with respect to r. If C� is zero, � is constant.

The trace of the Einstein equation gives the expression of
the Ricci scalar R:

R ¼ �2
nðr�Þ2 þ 2n

n� 2
� ¼ �2

n

C2
�e

2


fR2ðn�2Þ þ
2n

n� 2
�;

(A3)

where we used Eq. (A2). A Killing horizon is defined by
fðrhÞ ¼ 0 with j
ðrhÞj<1, where r ¼ rh is its location
satisfying 0<RðrhÞ<1. Equation (A3) shows R ! 1
for r ! rh, namely a curvature singularity at r ¼ rh, unless
C� ¼ 0. Therefore, the Killing horizon is allowed only in

the case where � is constant.

APPENDIX B: GENERALIZED
ROBERTS SOLUTION

In this appendix, we present the counterpart of the
generalized Lake solution in the case without a cosmologi-
cal constant. The conformal self-similarity naturally re-
duces to the homothetic self-similarity in the absence of
a characteristic scale introduced by the cosmological
constant.

First let us derive the master equation for the system.
Introducing the double-null coordinates ðu; vÞ on ðM2; gABÞ
and assuming that ðM2; gABÞ is flat and � ¼ �ð �zÞ, where
�z :¼ v=u, the line element for the homothetic self-similar
spacetime is given by

ds2 ¼ �2duð�zduþ ud�zÞ þ u2Sð�zÞ�ijdz
idzj: (B1)

The Einstein tensor and the energy-momentum tensor for
the scalar field are written as

Gu
u ¼ n� 2

4u2S2
½ðn� 5Þ �zS02 � 2ðn� 3ÞSS0

� 2kðn� 3ÞS þ 4�zSS00�; (B2)

Gu
�z ¼ � n� 2

4uS2
ðS02 � 2SS00Þ; G�z

u ¼ 0; (B3)

G�z
�z ¼

ðn� 2Þðn� 3Þ
4u2S2

ð�2kS � 2SS0 þ �zS02Þ; (B4)

Gi
j ¼

n� 3

4u2S2
½ðn� 6Þ�zS02 � 2ðn� 4ÞSS0

� 2kðn� 4ÞS þ 4�zSS00�
i
j (B5)

and

Tu
u ¼ �u�2 �z�02; Tu

�z ¼ �u�1�02; (B6)

T �z
u ¼ 0; T �z

�z ¼ u�2 �z�02; Ti
j ¼ �u�2 �z�02
i

j;

(B7)

where a prime denotes here the derivative with respect to �z.
Then, the Einstein equation gives the following master

equation for S:

0 ¼ ðn� 4Þ�zS02 � 2ðn� 3ÞSS0 � 2kðn� 3ÞS þ 2�zSS00:

(B8)

The solution for this master equation is obtained in a closed
form for n ¼ 4 or k ¼ 0. (The solution for n ¼ 3 is vac-
uum and hence locally flat, as shown below.) In the case of
n ¼ 4, S is given by

S ð�zÞ ¼ �k�zþ E1 �z
2 þ E2; (B9)

where E1 and E2 are constants. For k
2 � 4E1E2 > 0, � is

real and given as

�ð���0Þ ¼

8>>><
>>>:

ffiffiffiffiffiffi
1

2�2
4

q
ln

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�4E1E2

p
þðk�2E1 �zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2�4E1E2

p
�ðk�2E1 �zÞ

�������� for E1 � 0;

ffiffiffiffiffiffi
1

2�2
4

q
lnjE2 � k�zj for E1 ¼ 0:

(B10)

For k2 � 4E1E2 < 0, � is ghost and given by

� ð���0Þ ¼ i

ffiffiffiffiffiffi
2

�2
4

s
arctan

�
k� 2E1 �zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E1E2 � k2

p
�
: (B11)

In the case of k ¼ 0, the solution is obtained as
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S ¼ ðE1 �z
n�2 þ E2Þ2=ðn�2Þ; (B12)

�ð���0Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðn�2Þðn�3ÞE1E2

�2
n

s Z �z ẑðn�4Þ=2

E1ẑ
n�2þE2

dẑ:

(B13)

It is noted that k2 ¼ 4E1E2 gives the Minkowski
spacetime.

In the double-null coordinates, the metric and the gen-
eralized Misner-Sharp mass are written as

ds2 ¼ �2dudvþ ð�kuvþ E1v
2 þ E2u

2Þ�ijdz
idzj;

(B14)

m ¼ �VðkÞ
2 uvðk2 � 4E1E2Þ

2�2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�kuvþ E1v
2 þ E2u

2
p (B15)

for n ¼ 4 and

ds2 ¼ �2dudvþ ðE1v
n�2 þ E2u

n�2Þ2=ðn�2Þ�ijdz
idzj;

(B16)

m ¼ ðn� 2ÞVð0Þ
n�2E1E2ðuvÞn�3

�2
nðE1v

n�2 þ E2u
n�2Þðn�3Þ=ðn�2Þ (B17)

for k ¼ 0. This solution with k ¼ 1 and n ¼ 4 is the
Roberts solution [33]. (See also Refs. [34–40].) The case
with k ¼ 1 in arbitrary dimensions was first discussed
in Ref. [41]. This spacetime admits a homothetic Killing
vector ��ð@=@x�Þ ¼ uð@=@uÞ þ vð@=@vÞ satisfying
L�g�� ¼ 2g��. Since ðM2; gABÞ is flat, u ! �1 with

constant v or v ! �1 with constant u corresponds to
null infinity. Different from the generalized Lake solution,
the gradient of the scalar field may be spacelike in some
domain of spacetime, where the solution is not equivalent
to a solution with a stiff fluid.

APPENDIX C: NOWORMHOLE IN THE CLASS-I
SOLUTION WITH REAL SCALAR FIELD

In this appendix, we show that the class-I solution with
positive energy density does not represent a wormhole for
n � 4. This result restricts the possible Penrose diagram
for the solution without the explicit form. Here we define a
wormhole spacetime by the existence of causal curves
connecting one infinity to another and prove the nonexis-
tence of such curves. Because the orbits of timelike curves
or nonradial null curves run inside the light cone at a given
spacetime point in the ð�; tÞ plane, to show the nonexis-
tence for radial null curves is sufficient.

First we show that the areal radius R :¼ S1=2=ð"HÞ
blows up at AdS infinity in the class-I solution for n � 4,
which is characterized by Hð�Þ ¼ 0 and 0 	 SðtÞ<1. It
is obvious that R ! 1 holds if S > 0 there. AdS infinity
where S ¼ 0 is satisfied is more subtle but it is also the
case, as shown below.

In the class-I solution with positive energy density
(E> 0), the master equation (2.15) shows us the behavior
of X near X ¼ 0 (and hence S ¼ 0):

S ¼ X2=ðn�2Þ ’ ð2EÞ1=ðn�2Þjt� t0j2=ðn�2Þ; (C1)

where t0 is the time when S ¼ 0. On the other hand, the

metric function Hð�Þ behaves as H ’
ffiffiffiffiffiffiffiffiffi
�~�

p
j�j near AdS

infinity. Because d� ¼ �dt is satisfied along a radial null
curve, j�j ¼ jt� t0j is satisfied along such a light ray
going to or coming from AdS infinity with S ¼ 0. Along
this curve, the areal radius R behaves near AdS infinity as

lim
S;H!0

R ¼ lim
S;H!0

S1=2

"H
’ ð2EÞ1=½2ðn�2Þ�

ffiffiffiffiffiffiffiffiffi
�~�

p
jt� t0jðn�3Þ=ðn�2Þ

: (C2)

Therefore, the areal radius R blows up at AdS infinity.
Now we show that there is no radial null curve connect-

ing two distinct AdS infinity in the spacetime of the class-I
solution with positive energy density. Let us consider the
Einstein equation G�� þ�g�� ¼ �2

nT�� in the double

null coordinates:

ds2 ¼ �2e�fðu;vÞdudvþ Rðu; vÞ2�ijdz
idzj: (C3)

The ðu; uÞ and ðv; vÞ components of the Einstein equation
are written as

@u@uR

R
þ @uf

@uR

R
¼ � �2

n

n� 2
Tuu; (C4)

@v@vR

R
þ @vf

@vR

R
¼ � �2

n

n� 2
Tvv: (C5)

The null energy condition requires Tuu � 0 and Tvv � 0.
The generalized Lake solution is written in the double-

null coordinates by introducing u and v such that

�ðu; vÞ ¼ v� uffiffiffi
2

p ; tðu; vÞ ¼ vþ uffiffiffi
2

p : (C6)

The correspondence between Eqs. (2.5) and (C3) is

e�fðu;vÞ ¼ Hð�ðu; vÞÞ�2; R ¼ Sðtðu; vÞÞ1=2
"Hð�ðu; vÞÞ : (C7)

If the solution represents an AdS wormhole, there is a
radial null ray which travels from one AdS infinity (where
R ! 1) to the other. Obviously there is at least one posi-
tive local minimum of R along its orbit, which locally
defines a wormhole throat [42]. Without loss of generality,
this orbit is expressed by u ¼ u0 (and zi ¼ constant),
where u0 is a constant and the throat condition is then
given by @vR ¼ 0 with @v@vR > 0. Then, Eq. (C5) shows
Tvv < 0, the violation of the null energy condition at the
throat. The contraposition of this result shows that the
class-I solution with positive energy density does not rep-
resent an AdS wormhole.
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