
Reissner-Nordström black holes in extended Palatini theories

Gonzalo J. Olmo1 and D. Rubiera-Garcia2
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We study static, spherically symmetric solutions with an electric field in an extension of general

relativity containing a Ricci-squared term and formulated in the Palatini formalism. We find that all the

solutions present a central core whose area is proportional to the Planck area times the number of charges.

Far from the core, curvature invariants quickly tend to those of the usual Reissner-Nordström solution,

though the structure of horizons may be different. In fact, besides the structures found in the Reissner-

Nordström solution of general relativity, we find black hole solutions with just one nondegenerate horizon

(Schwarzschild-like) and nonsingular black holes and naked cores. The charge-to-mass ratio of the

nonsingular solutions implies that the core matter density is independent of the specific amounts of charge

and mass and of order the Planck density. We discuss the physical implications of these results for

astrophysical and microscopic black holes, construct the Penrose diagrams of some illustrative cases, and

show that the maximal analytical extension of the nonsingular solutions implies a bounce of the radial

coordinate.
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I. INTRODUCTION

According to general relativity (GR), the fate of any
sufficiently massive star is to end up its lifetime forming
a black hole, a spacetime region that contains a zero-
volume singularity of infinite density cloaked by an event
horizon. Singularity and uniqueness theorems, together
with the cosmic censorship conjecture [1], tell us that black
holes are described by solely three parameters: mass,
charge, and angular momentum, a result known as the
no-hair theorem that yields the Kerr-Newman family [2].
For any black hole, the event horizon acts as a sort of
no-way-out layer that separates the physics outside the
horizon, which is the one that we can directly explore
and find it in excellent agreement with the GR predictions
[3], from the physics of its interior, where much less is
known. When quantum phenomena come into play, the
mere existence of an event horizon induces the emission of
thermal particles via Hawking radiation [4]. Quantum
effects may also affect the details of gravitational collapse,
as recently studied in Ref. [5], and are likely to play a very
important role when the spacetime curvature reaches the
Planck scale. In fact, it is generally accepted that classical
black hole singularities should be removed by quantum
gravitational effects. However, our current understanding
of quantum gravity is not mature enough to provide a clear
and detailed description of how this could occur. It seems
thus justified to explore phenomenological approaches to
this problem hoping to gain some new insights that help us
to better understand how black hole structure could be
modified by quantum gravity effects.

As the singularity theorems only state some precise
physical conditions under which the appearance of

singularities is unavoidable, several approaches have
been carried out to find conditions that avoid or ameliorate
the formation of black hole singularities. A well-known
example is Bardeen’s black hole [6], in which exoticmatter
sources get rid of the singularity while keeping the hori-
zons and the asymptotically flat character. This singularity
avoidance is realized through the formation of a central
matter (de Sitter) core, such that the corresponding space-
time is interpreted as the gravitational field of a nonlinear
magnetic monopole and can be derived from a nonlinear
electrodynamics (NEDs) model [7]. That approach became
a prototype for most developments on regular black holes
within classical GR. In this sense, there has been much
activity aimed at finding alternative matter sources for the
interior region, such as introducing nonlinearities as in the
case of nonlinear theories of electrodynamics [8], imple-
menting a de Sitter core that matches the exterior field in
some ‘‘junction’’ region (see e.g., Refs. [9,11] and refer-
ences therein), or using new ideas inspired by noncommu-
tative geometry [12], in such a way that singularities are
removed. Also other regular magnetically charged solu-
tions within GR have been found [13].
A different approach comes from the idea that exten-

sions of GR with high-curvature corrections could be able
to capture some essential features useful or required to find
an effective description of the quantum gravity dynamics.
This point is supported by the study of quantum fields in
curved spacetimes [14] and by approaches to quantum
gravity based on string theory [15,16]. In this sense, gravity
theories containing higher-order curvature invariants natu-
rally appear as modifications of GR in these quantum
gravity approaches [14–16]. Such theories generically
lead to higher-order partial derivative equations, which is
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a manifestation of the fact that new high-energy degrees of
freedom are being taken into account. The resulting solu-
tions are thus expected to depend on a larger number of
parameters (integration constants), which should provide
more freedom and/or new mechanisms to avoid the singu-
larities. However, nonsingular black holes of this kind are
rather scarce (see e.g., Refs. [17,18]) and usually require
the addition of exotic sources of matter again. This sug-
gests that the addition of new degrees of freedom in the
problem is unable by itself to resolve the problem of
singularities. Moreover, these theories suffer from ghosts
and other perturbative instabilities [19]. These problems,
however, can be avoided if the curvature invariants appear
in appropriate combinations, because then the equations of
motion may remain second-order like in GR. These are
known as Lovelock gravities [20] (see, for instance,
Ref. [21] for a pedagogical introduction). For ex-
ample, the simplest extension of Einstein gravity via
higher-curvature terms in this context corresponds to
Gauss-Bonnet gravity and picks up three new terms,
R����R

���� � 4R��R
�� þ R2, which supplement the

Einstein-Hilbert Lagrangian. It should be noted that in
3þ 1 dimensions these new terms are topological invari-
ants not contributing to the equations of motion, which
means that Lovelock gravities only provide modified dy-
namics in the context of higher dimensions. Exact static
spherically symmetric solutions to Gauss-Bonnet theory in
vacuum [22] and with electrostatic fields [23] are known,
but they still contain singularities or are ill defined.

An alternative strategy to obtain modified gravitational
dynamics beyond GR is to assume that the metric and
affine structures of the theory are independent [21].
When the connection is not constrained a priori to be given
by the Christoffel symbols of the metric, one finds that
even fðRÞ extensions yield second-order field equations,
which contrasts with the usual (metric) formulation of
those theories [24] and the general belief that only
Lovelock gravities have second-order equations. This ap-
proach, known as Palatini formalism, has been recently
used to obtain a covariant action [25] for the effective
Hamiltonian dynamics of loop quantum cosmology [26],
an approach to quantum cosmology based on the nonper-
turbative quantization techniques of loop quantum gravity
[27]. In the Palatini approach [28], metric and connection
are regarded as independent entities and the field equations
are obtained by independent variation of the action with
respect to both of them. Though this does not affect the
dynamics of GR [2], it does have important consequences
for extensions of it [28]. In general, one finds that in
Palatini theories the matter plays an active role in the
construction of the independent connection, which ends
up producing modified dynamics. When there is no matter,
the field equations boil down to those of GR with an
effective cosmological constant, which depends on the
form of the particular Lagrangian chosen. This property

has made these theories very attractive for cosmological
applications.
The unusual role played by the matter in the construction

of the geometry in Palatini theories together with the
second-order character of their field equations makes
them especially interesting to explore the effects of new
gravitational physics on the structure of black holes. In this
sense, in Ref. [29] we considered Palatini fðRÞ modifica-
tions of GR in interaction with modified matter sources,
through NEDs. In Palatini fðRÞ theories, the modified
dynamics is due to a number of new terms on the right-
hand side of the equations that depend on the trace T of the
energy-momentum tensor of the matter. Unlike Maxwell’s
electrodynamics, the stress-energy tensor of NEDs pos-
sesses, in general, a nonvanishing trace, which makes
them specially suitable to excite the Palatini modified
dynamics in electrovacuum scenarios. In the particular
case of Born-Infeld NED coupled to the gravity theory
fðRÞ ¼ R� R2=RP, where RP is the Planck curvature, we
found that the degree of divergence of the Kretschmann
scalar near the singularity can be much weaker than in GR.
In this work we go beyond Ref. [29] and explore how

black hole structure is affected by new physics at the
Planck scale by considering a Palatini theory of the form
fðR;QÞ ¼ Rþ aR2=RP þ bQ=RP, where Q � R��R

��,

R�� is the (symmetric) Ricci tensor, and a and b are

constants. Terms of this kind have been considered in the
metric approach in an attempt to find ghost and singularity
free theories of gravity [30], and also in the study of black
holes coupled to NEDs [18]. In the Palatini framework,
fðR;QÞ theories yield second-order field equations that
exactly boil down to the usual Einstein-de Sitter equations
in vacuum (see details in Ref. [31] and below), which
guarantees the absence of ghosts and other dynamical
instabilities. The presence of a Ricci-squared term in the
action is very important because it leads to modified dy-
namics even for traceless matter sources, such as radiation
and the usual Maxwell electromagnetic field, which con-
trasts with fðRÞ theories. As a result, this quadratic fðR;QÞ
model provides the simplest extension beyond GR of the
usual (nonrotating) Reissner-Nordström black hole. The
quadratic fðR;QÞ Palatini model proposed here has already
been studied in cosmological scenarios, where it was found
that the big bang singularity is replaced by a cosmic
bounce in isotropic and anisotropic (Bianchi I) universes
filled with standard sources of matter and radiation [32].
In Refs. [33,34] we reported on several key aspects of

nonsingular black hole solutions found in this model. In
this paper we shall go further on this subject extending
those results and providing a comprehensive account of all
the derivations and technical details. The paper is organ-
ized as follows. In Sec. II we recall some basic aspects of
Palatini fðR;QÞ theories and write the associated field
equations. The particular actions for matter (Maxwell)
and gravity sectors of our theory are introduced in

GONZALO J. OLMO AND D. RUBIERA-GARCIA PHYSICAL REVIEW D 86, 044014 (2012)

044014-2



Sec. III, where we construct all the relevant geometric
objects. In Sec. IV we comment on the choice of ansatz
for the line element, and proceed to solve the metric field
equations. Section V is devoted to the analysis of the
interior region and to the characterization of the event
horizons. In particular we construct the Penrose diagrams
and their maximal analytical extensions associated with the
different black holes and naked cores found. The physical
aspects of these solutions, including singular and nonsin-
gular black holes, and microscopic naked cores, are dis-
cussed in Sec. VI. We conclude in Sec. VII with a summary
and some future perspectives.

II. ACTION AND FIELD EQUATIONS

We define Palatini fðR;QÞ theories as follows:

S½g;�;c m�¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðR;QÞþSm½g;c m�; (1)

where �2 � 8�G, Sm½g; c m� represents the matter
action, g�� is the spacetime metric, R ¼ g��R��, Q ¼
g��g��R��R��, R�� ¼ R�

���, and

R�
���¼@��

�
���@��

�
��þ��

�	�
	
�����

�	�
	
��: (2)

Variation of (1) with respect to metric and connection
leads to the following equations [35]:

fRR�� � f

2
g�� þ 2fQR��R

�
� ¼ �2T��; (3)

r�½ ffiffiffiffiffiffiffi�g
p ðfRg�� þ 2fQR

��Þ� ¼ 0; (4)

were we have used the short-hand notation fX � @Xf. In
the above derivation we have assumed a symmetric Ricci
tensor, R�� ¼ R��, and vanishing torsion. The condition

on the Ricci tensor, R½��� ¼ 0, forces the connection com-

ponents ��
�� to be the gradient of a scalar function, ��

�� ¼
@�
. In the usual formulation of GR, where the connection
is given by the Christoffel symbols of the metric, one finds
that ��

�� ¼ @� ln
ffiffiffiffiffiffiffi�g

p
. In our theory (1), the condition

R½��� ¼ 0 is equivalent to assuming that ��
�� can be solved

as the Levi-Civita connection of an auxiliary metric h��,

which leads to ��
�� ¼ @� ln

ffiffiffiffiffiffiffi�h
p

. The explicit relation

between h�� and g�� follows from the field equations

and will be discussed later. A reason to set R½��� ¼ 0 is

that then the field equations of (1) in vacuum boil down
exactly to those of GR [with possibly a cosmological
constant, depending on the function fðR;QÞ chosen].
This guarantees that there are no new propagating degrees
of freedom and, therefore, the resulting theory is not af-
fected by ghosts or other dynamical instabilities. In regions
containing sources, the equations of (1) differ from those of
GR due to the presence of new matter/energy-dependent
terms induced by the mismatch between h�� and g��,

which leads to modified gravitational dynamics without
introducing new dynamical degrees of freedom or

higher-order derivatives of the metric. If the condition
R½��� ¼ 0 is relaxed, then ��

�� must also have a purely

vectorial component, ��
�� ¼ @�
ðxÞ þ B�, which adds

new dynamical degrees of freedom to the theory. In that
case, the dynamics of (1) differs from that of GR even in
the absence of matter/energy sources (see Ref. [36] for
related results in this direction).
We now focus on working out a solution for (4). At first

sight, since R and R�� are functions of the connection

and its first derivatives, (4) can be seen as a nonlinear,
second-order partial differential equation for the unknown
connection. However, there exist algebraic relations be-
tween R, R��, and the energy-momentum tensor of the

matter that make the problem easier to handle. To pro-

ceed, we first define the matrix P̂, whose components are
P�

� � R��g
��, which allows us to express (3) as

fRP�
� � f

2
��

� þ 2fQP�
�P�

� ¼ �2T�
�: (5)

In matrix notation, this equation reads

2fQP̂
2 þ fRP̂� f

2
Î ¼ �2T̂; (6)

where T̂ is the matrix representation of T�
�. Note that

R and Q are the trace of P̂ and P̂2, respectively. The

solution of (6) implies that P̂ can be expressed as a
function of the components of the energy-momentum

tensor, i.e., P̂ ¼ P̂ðT̂Þ. Assuming that for a given
fðR;QÞ theory such a solution exists, Eq. (4) can now
be seen as an algebraic equation for the connection in
which, besides the metric g��, there is an explicit depen-

dence on the energy-momentum tensor of the matter. To

solve it, we look for a metric ĥ such that (4) becomes

r�½
ffiffiffiffiffiffiffi�h

p
h��� ¼ 0. This guarantees that the independent

connection can be expressed as the Levi-Civita connec-

tion of ĥ. Using matrix notation, we haveffiffiffiffiffiffiffi�h
p

ĥ�1 ¼ ffiffiffiffiffiffiffi�g
p

ĝ�1�̂; (7)

where we have defined �̂ ¼ ðfRÎ þ 2fQP̂Þ. Computing

the determinant of this expression, we find h ¼ g det�̂.
With this result, we have

ĥ�1 ¼ ĝ�1�̂ffiffiffiffiffiffiffiffiffiffi
det�̂

q ; ĥ ¼ ð
ffiffiffiffiffiffiffiffiffiffi
det�̂

q
Þ�̂�1

ĝ: (8)

This shows that the connection of fðR;QÞ theories can be
explicitly solved in terms of the physical metric g�� and

the matter sources.
With the above results, the metric field equations can

be rewritten in a more compact and transparent form.
Expressing (6) as

P̂ �̂ ¼ f

2
Îþ �2T̂; (9)
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and using (8), we can rewrite P�
���

� as R��h
��

ffiffiffiffiffiffiffiffiffiffi
det�̂

q
.

This allows us to express (9) as

R�
�ðhÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

det�̂

q �
f

2
��

� þ �2T�
�

�
; (10)

where T�
� ¼ T��g

��.

III. ELECTRICALLY CHARGED
fðR;QÞ BLACK HOLES

A. Matter Lagrangian

The Schwarzschild black hole is the most general
spherically symmetric, nonrotating vacuum solution of
GR and also of (3). However, that solution assumes that
all the matter is concentrated on a point of infinite density,
which is not consistent with the dynamics of (3). In fact, if
one considers the collapsing object as described by a
perfect fluid that behaves as radiation during the last
stages of the collapse, explicit computation of the scalar
Q ¼ R��R

�� shows that the energy density � is bounded

from above by �max ¼ �P=32, where �P � 3c5=4�ℏG2 �
1094 g=cm3 is Planck’s density [32,35]. Therefore, one
should study the complicated process of collapse of a
spherical nonrotating object to determine how the
Schwarzschild metric is modified in our theory. For this
reason we study instead vacuum spacetimes with an elec-
tric field, which possess a nonzero stress-energy tensor able
to excite the Palatini dynamics even in static settings. The
resulting solutions should therefore be seen as Planck-scale
modifications of the usual Reissner-Nordström solution.
Let us thus consider as the matter source in action (1) the
Maxwell Lagrangian

Sm½g; c m� ¼ � 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

F��F
��; (11)

whose associated stress-energy tensor is written as

T�
� ¼ � 1

4�

�
F�

�F�
� � F�

�F�
�

4
��
�

�
; (12)

where F�� ¼ @�A� � @�A� is the field strength tensor

of the vector potential A�. For a purely electrostatic con-

figuration and taking a spherically symmetry line element
of the form ds2 ¼ gttdt

2 þ grrdr
2 þ r2d�2, with d�2 ¼

d
2 þ sin2
d’2, one finds that the only nonvanishing
component is Ftr. It is then easy to see that the (sourceless)
field equations r�F

�� ¼ 0 lead to

Ftr ¼ q

r2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttgrr

p ; (13)

where q is an integration constant that represents the
charge generating the electric field. With this result, the
product F�

�F�
� in (12) becomes

F�
�F�

� ¼ �gttgrrðFtrÞ2Î 0̂

0̂ 0̂

 !
¼

q2

r4
Î 0̂

0̂ 0̂

0
@

1
A; (14)

where Î and 0̂ represent the 2� 2 identity and zero matri-
ces, respectively. Using this, we find that

T�
� ¼ q2

8�r4
�Î 0̂

0̂ Î

 !
: (15)

In order to write the field equations in the form (10), we

first need to find the explicit form of P̂ for this matter

source, which will allow us to construct �̂ and compute its
determinant. To do this, we use (15) and write (6) as

2fQ

�
P̂þ fR

4fQ
Î

�
2 ¼ 	2�Î 0̂

0̂ 	2þÎ

 !
; (16)

where 	2� ¼ ðfþ f2R
4fQ

� ~�2q2

r4
Þ=2 and we have defined

~�2 ¼ �2=4� ¼ 2G. It is easy to see that there are 16 square
roots that satisfy this equation, namely,

ffiffiffiffiffiffiffiffiffi
2fQ

q �
P̂þ fR

4fQ
Î

�
¼

s1	� 0 0 0

0 s2	� 0 0

0 0 s3	þ 0

0 0 0 s4	þ

0
BBBBB@

1
CCCCCA;

(17)

where si ¼ �1. Agreement with GR in the low curvature
regime (where fR ! 1 and fQ ! 0) requires si ¼ þ1. For
this reason, we simplify the notation and take

ffiffiffiffiffiffiffiffiffi
2fQ

q �
P̂þ fR

4fQ
Î

�
¼ 	�Î 0̂

0̂ 	þÎ

 !
: (18)

From this it follows that the matrix �̂ is given by

�̂ ¼ fR
2
Î þ

ffiffiffiffiffiffiffiffiffi
2fQ

q 	�Î 0̂

0̂ 	þÎ

 !
¼ ��Î 0̂

0̂ �þÎ

 !
; (19)

where �� ¼ ðfR2 þ ffiffiffiffiffiffiffiffiffi
2fQ

p
	�Þ. From this expression it is

easy to see that

ffiffiffiffiffiffiffiffiffiffi
det�̂

q
¼ �þ�� and, therefore, the field

equations (10) become

R�
�ðhÞ ¼ 1

2�þ��

�
f� ~�2q2

r4

�
Î 0̂

0̂
�
fþ ~�2q2

r4

�
Î

0
B@

1
CA: (20)

B. Gravity Lagrangian

To work out the explicit form of the metric we must
specify an fðR;QÞ model. It is very useful to consider the

family fðR;QÞ ¼ ~fðRÞ þ l2PQ, where lP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p �
10�35 m is Planck’s length, because tracing (3) with the
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metric g�� leads to the well-known fðRÞ relation R~fR �
2~f ¼ �2T, which implies that R ¼ RðTÞ. Since for

Maxwell theory T ¼ 0, it follows that the ~fðRÞ part of
the fðR;QÞ theory does not play a very relevant role in

the dynamics. We will just assume that the ~fðRÞ part is
close to GR, ~fðRÞ ¼ Rþ a2R

2 þ a3R
3 þ . . . , and that

RðT ¼ 0Þ ¼ 0 for simplicity (and for consistency with
the choice si ¼ þ1 above). This is true, in particular, for
the model

fðR;QÞ ¼ Rþ l2PðaR2 þQÞ; (21)

whose cosmological dynamics has been carefully studied
in the literature [32] and that we set as the model to be
discussed from now on. For this model we have that when
T�

� is given by (15) then R ¼ 0, fR ¼ 1, and fðR;QÞ ¼
l2PQ. Using this in (18) and taking the trace we find

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ l4PQþ ~�2q2l2P

r4

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ l4PQ� ~�2q2l2P

r4

s
; (22)

from which we obtain

Q ¼ ~�4q4

r8
; (23)

which coincides with the expression of GR. From this result

it follows that 	� ¼ 1
lP
ffiffi
2

p ð12 � ~�2q2l2P
r4

Þ and �� ¼ 1� ~�2q2l2P
r4

.

Noting also that f� ~�2q2

r4
¼ � ~�2q2

r4
��, (20) becomes

R�
�ðhÞ ¼ ~�2q2

2r4

� 1
�þ

Î 0̂

0̂ 1
��

Î

0
@

1
A; (24)

which fully determines the dynamics of our fðR;QÞ theory
coupled to Maxwell electrodynamics. These equations ex-
actly recover GR in the limit lP ! 0.

IV. SOLVING THE FIELD EQUATIONS

In order to solve for the metric g��, it is more convenient

to solve first for h�� using (24) and then transform back to

g�� using the relation g�� ¼ ��
�h��=

ffiffiffiffiffiffiffiffiffiffi
det�̂

q
that follows

from (8). To do this, it is convenient to define a line element
associated with the metric h�� using a set of

Schwarzschild-like coordinates as follows:

d~s2 ¼ httdt
2 þ h~r ~rd~r

2 þ ~r2d�2: (25)

This line element is formally identical to that correspond-
ing to the physical metric g��,

ds2 ¼ gttdt
2 þ grrdr

2 þ r2d�2; (26)

but their relation is not trivial due to the nonconformal
relation between the two metrics and the different choice of
radial coordinate r � ~r. This can be seen from the relation

g�� ¼ ��
�h��=

ffiffiffiffiffiffiffiffiffiffi
det�̂

q
, which leads to

g�� ¼

gtt 0 0 0

0 grr 0 0

0 0 r2 0

0 0 0 r2sin2


0
BBBBB@

1
CCCCCA¼

htt
�þ

0 0 0

0 hrr
�þ

0 0

0 0 h


��

0

0 0 0
h



��

0
BBBBBBBB@

1
CCCCCCCCA
:

(27)

From the line element (25) it is easy to see that g

 ¼
h

=�� implies that ~r2 ¼ r2�� ¼ r2 � ~�2q2l2P

r2
. It is also

easy to see that grr ¼ hrr=�þ ¼ ðh~r ~r=�þÞðd~r=drÞ2. Since
the time coordinate is the same in the two line elements, for
the gtt component we just have gtt ¼ htt=�þ.
It should be noted that, in general, the line elements

can be written without using r and ~r as coordinates [37].
In that case, we would have d~s2 ¼ habðx0; x1Þdxadxb þ
~r2ðx0; x1Þd�2 and ds2¼gabðx0;x1Þdxadxbþr2ðx0;x1Þd�2,
with the relations gabðx0; x1Þ ¼ habðx0; x1Þ=�þ and ~r2 ¼
r2��, being the second relation clearly independent of
the choice of ðx0; x1Þ. At this point, it is important to note
that the radial function ~r2 vanishes when r4 ¼ ~�2q2l2P.
This means that the 2—spheres of the h—geometry (the
geometry associated with the independent connection)
can only be put into correspondence with the 2—spheres

of the g—geometry up to r=ð~�jqjlPÞ1=2 � 1. Since the
h—geometry deviates from the g—geometry by the ef-
fects of a matter-induced deformation (represented by the
matrix ��

�), the impossibility of mapping any portion of

the h—geometry into the r=ð~�jqjlPÞ1=2 < 1 sector of the
g—geometry suggests that the matter (the electromag-
netic field in this case) cannot penetrate in that region
of the physical spacetime. The description and analysis of

the properties of the hypersurface r=ð~�jqjlPÞ1=2 ¼ 1 will
be one of the main goals of this paper.
Working with the Schwarzschild (canonical) coordi-

nates above and introducing the ansatz htt ¼ �Að~rÞe2c ð~rÞ
and h~r ~r ¼ 1=Að~rÞ, the components of the tensor R�

�ðhÞ
become

Rt
t ¼ � 1

2h~r ~r

�
A~r ~r

A
�
�
A~r

A

�
2 þ 2c ~r ~r

þ
�
A~r

A
þ 2c ~r

��
A~r

A
þ c ~r þ 2

~r

��
; (28)

R~r
~r ¼ � 1

2h~r ~r

�
A~r ~r

A
�
�
A~r

A

�
2 þ 2c ~r ~r

þ
�
A~r

A
þ 2c ~r

��
A~r

A
þ c ~r

�
þ 2

~r

A~r

A

�
; (29)

R


 ¼ 1

~r2
½1� Að1þ ~rc ~rÞ � ~rA~r�: (30)

From (24) it is easy to see that the combination Rt
t �

R~r
~r ¼ 0. Using (28) and (29), this combination implies
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that c ~r ¼ 0 ! c ¼ constant, like in GR and fðRÞ theories.
As usual, this constant can be eliminated by a redefinition
of the time coordinate, leaving a single function [Að~rÞ] to
be determined. From (30) we find that Að~rÞ satisfies the
following equation:

1

~r2
½1� A� ~rA~r� ¼ ~�2q2

2r2
1

ðr2 � ~�2q2l2P
r2

Þ
: (31)

Using the ansatz Að~rÞ ¼ 1� 2Mð~rÞ=~r and the relation

~r2 ¼ r2 � ~�2q2l2P
r2

, (31) turns into

M~r ¼ ~�2q2

4r2
: (32)

Taking into account that d~r=dr ¼ �þ=�1=2� , the above
expression becomes

Mr ¼ ~�2q2�þ
4r2�1=2�

; (33)

which reduces the problem to solving a first-order differen-
tial equation in the variable r. The integration constant of
this equation can be identified with the Schwarzschild mass
M0 � rS=2 of the vacuum problem (q ¼ 0). We can thus
write 2MðrÞ ¼ rS þ �M to emphasize that it is the function
�M that encodes the electrostatic contribution to the mass
function. In order to obtain �M, it is useful to introduce
some definitions to work with dimensionless variables. We
thus define a length (squared) associated with the charge,

r2q � ~�2q2, and a dimensionless radial variable z �
r=

ffiffiffiffiffiffiffiffiffi
rqlP

p
. With this notation, the metric g�� can be

expressed as

gtt ¼�AðzÞ
�þ

; grr ¼ �þ
��AðzÞ ; AðzÞ ¼ 1� ½1þ�1GðzÞ�

�2z�
1=2�

;

(34)

where �� ¼ 1� 1=z4, we used the relation ~r ¼ r�1=2� and
defined �M=rS ¼ �1GðzÞ, together with

�1 ¼ 1

2rS

ffiffiffiffiffi
r3q
lP

s
; �2 ¼

ffiffiffiffiffiffiffiffiffi
rqlP

p
rS

: (35)

The (dimensionless) functionGðzÞ has a purely electrostatic
origin and satisfies the following equation:

dG

dz
¼ z4 þ 1

z4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 � 1

p : (36)

We stress that the two scales of the problem, namely, the
integration constants q and M0, have been replaced by the
dimensionless ratios �1 and �2 given in (35).

A. Finding GðzÞ
The integration of (36) to obtain the function GðzÞ can

be carried out straightforwardly using power series

expansions in two regions of interest. One is the far limit
z 	 1 and the other is z� 1.

1. Far limit z 	 1

To study this limit, it is useful to express dG=dz as
follows:

Gz ¼
�
1

z2
þ 1

z6

�
1

ð1� 1=z4Þ1=2 : (37)

Using the binomial expansion ð1þ xÞ� ¼ P1
k¼0

�
k

� �
xk,

the above expression becomes

Gz ¼
X1
k¼0

ð�1Þk �1=2
k

� �
ðz�2�4k þ z�6�4kÞ: (38)

The integration of this expression is immediate and gives

GðzÞ ¼ � 1

z

X1
k¼0

ð�1Þk
ð1þ 4kÞz4k

�1=2

k

 !�
1þ ð1þ 4kÞ

ð5þ 4kÞz4
�
:

(39)

From the first terms of this expansion, GðzÞ � �1=z�
3=10z5, one can verify that when r 	 lP the GR limit (i.e.,
the standard Reissner-Nordström solution) is recovered

gtt � �
�
1� rS

r
þ r2q

2r2

�
þ r2ql

2
P

r4
; (40)

grr �
�
1� rS

r
þ r2q

2r2
� 2

r2ql
2
P

r4

��1
; (41)

where the first-order corrections come from the �� func-
tions rather than from the expansion of GðzÞ. As it follows
from (40) and (41), as long as rS 	 lP, the location of the
external horizon in these black holes is essentially the same
as in GR. How this picture changes for microscopic black
holes will be discussed later on.

2. Near limit z! 1

To study this limit, we first consider the change of
variable z4 ¼ 1þ x, which leads to

Gx ¼ 1

4
½x�1=2ð1þ xÞ�3=4 þ x�1=2ð1þ xÞ�7=4�: (42)

Using again the binomial expansion, we find the following
solution:

GðzÞ¼1

4

X1
k¼0

ðz4�1Þkþ1=2

ðkþ1=2Þ
� �3=4

k

 !
þ �7=4

k

 !�

�2
ffiffiffiffiffiffiffiffiffiffiffi
z�1

p �11

6
ðz�1Þ3=2þO½z�1�5=2:

(43)

To have agreement with the solution (39) found before, we
need to add an integration constant� on the right-hand side
of this expansion, which leads to
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GðzÞ ¼ �þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 � 1

p
½f3=4ðzÞ þ f7=4ðzÞ�; (44)

where f	ðzÞ ¼ 2F1½12 ; 	; 32 ; 1� z4� is a hypergeometric

function, and � � �1:74804.
The mass function can then be written as

MðzÞ
M0

¼ 1þ �1

�
�þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 � 1

p
½f3=4ðzÞ þ f7=4ðzÞ�

�
: (45)

The series expansion provided here can be used to perform
analytical studies of the geometry near z ¼ 1. For that
purpose, the computer algebra Mathematica package
xAct [38] will be very useful.

V. INTERNAL GEOMETRYAND HORIZONS

To study the internal geometry of black holes, it is
convenient to use coordinates in which the metric is well
defined even at the event horizons. For line elements of the
form we are using, ds2 ¼ �BðrÞdt2 þ CðrÞdr2 þ r2d�2,
it is particularly useful to replace the ðt; rÞ coordinates by
the so-called Eddington-Finkelstein coordinates ðv; r
Þ
[39] that turn the line element into

ds2 ¼ �BðrÞdv2 þ 2dvdr
 þ r2ðr
Þd�2; (46)

where v ¼ tþ x with ðdx=drÞ2 ¼ CðrÞ=BðrÞ, and r ¼
rðr
Þ is such that ðdr
=drÞ2 ¼ BðrÞCðrÞ ¼ 1=��. From
our definitions in (34), we have BðrÞ ¼ AðzÞ

�þ
, CðrÞ ¼ �þ

��
�

1
AðzÞ , r ¼ rcz, where rc ¼

ffiffiffiffiffiffiffiffiffi
rqlP

p
, and we can also define

r
 ¼ rcz

 (for notational convenience, from now on we use

the dimensionless variables z and z
 instead of r and r
).
The line element (46) puts forward that the geometry

is fully characterized by the functions BðzÞ and zðz
Þ. The
relation between z and z
 can be found by direct integra-
tion and is given by z
 ¼ 2F1½� 1

4 ;
1
2 ;

3
4 ;

1
z4
�z. For z 	 1,

we have z
 � z� 1=6z3 þ . . . , whereas for z ! 1 we

find z
 � z
1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p þ 5
12 ðz� 1Þ3=2 þ . . . , where z
1 ¼ffiffiffiffi

�
p

�½34�=�½14� � 0:59907. The relation between z and z
 is
monotonic and invertible in the region z � 1. From (36)
we also see that BðzÞ is only defined for z � 1. As we
pointed out above, this is a dynamical consequence of the
theory, not a coordinate problem. To learn more about this
point, we need to study the properties of the geometry as
the region z ! 1 is approached.

A. Region z ! 1

The general expansion of the metric function BðzÞ of
(46) around z � 1 leads to

BðzÞ � � ð1þ ��1Þ
4�2

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

z� 1
p þ 9

4

ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p � . . .

�

þ 1

2

�
1� �1

�2

�
þ
�
1� 2�1

3�2

�
ðz� 1Þ þ . . . (47)

This expansion shows that the metric component gvv is in
general divergent as z ! 1. However, it also points out the
existence of a particular mass-to-charge ratio for which
the divergence disappears. In fact, if we take �1 ¼ �


1 ��1=�, we get

BðzÞ � 1

2

�
1� �


1

�2

�
þ
�
1� 2�


1

3�2

�
ðz� 1Þ

� 1

2

�
1� 8�


1

5�2

�
ðz� 1Þ2 þ . . . ; (48)

where, according to (35), �1=�2 ¼ rq=ð2lPÞ 	 1 for mac-

roscopic black holes. This result implies that when �1 ¼ �

1

the line element and the metric components are finite every-
where. It is worth noting that this feature is quite similar to
what is found in some NEDs in GR, for which a particular
combination between matter and black hole parameters
give rise to metrics that are finite everywhere [40]. In our
case, it is the nonlinearity in the gravitational action (1), as
opposed to the nonlinearity in the matter sector of NEDs,
which gives rise to this effect. It should be noted that even
though in GR with some NEDs the metric may be finite
everywhere, some of the curvature invariants always blow
up at the center of the solutions, according to a well-known
theorem holding for electrostatic fields with Maxwell weak
field limit [41]. To see what happens in our theory, we
consider next the behavior of the Ricci scalar, Ricci squared,
and Kretschmann scalar of the metric g�� in the regions

z ! 1 and also z 	 1.

B. Curvature scalars

Using the exact solution for the metric found above, we
can compute some relevant curvature invariants to extract
useful information about the geometry. The simplest such
objects are the Ricci scalar RðgÞ ¼ g��R��ðgÞ, the Ricci-
squared scalar QðgÞ � g��g��R��ðgÞR��ðgÞ, and the

Kretschmann scalar KðgÞ ¼ R�
���ðgÞR�

���ðgÞ, where

R�
���ðgÞ represents the Riemann tensor of the metric

g��. In GR, these objects have the following exact values

RGR ¼ 0; QGR ¼ r4q

r8
;

KGR ¼ 12r2S
r6

� 24rSr
2
q

r7
þ 14r4q

r8
:

(49)

Though the Ricci scalar in GR is zero, because the stress-
energy tensor of the electromagnetic field is traceless, the
other two scalars are nonzero and, in fact, diverge as r ! 0,
which signals the existence of a strong singularity at r ¼ 0.
Since the solution that we found for the metric in our

theory is given in terms of infinite series expansions, we
find it useful to compute the above scalars in the two
natural regimes in which those solutions were found,
namely, in the region z 	 1 and in the limit z ! 1.

When z 	 1, we find the following expansions (rc �ffiffiffiffiffiffiffiffiffi
rqlP

p
and z � r=rc):
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RðgÞ � � 48r8c
r10

þO

�
r9c
r11

�
; (50)

QðgÞ � r4q

r8

�
1� 16l2P

r2
þ . . .

�
; (51)

KðgÞ � KGR þ 144rSr
4
c

r9
þ . . . : (52)

It is clear that these results recover GR when r 	 rc (or,
equivalently, z 	 1). However, in the region z ! 1 the
behavior of those curvature scalars is completely different
from the z 	 1 expansions. When z ! 1, we find

r2cRðgÞ �
�
�4þ 16�


1

3�2

�
þOðz� 1Þ þ . . .

� 1

2�2

�
1� �


1

�1

��
1

ðz� 1Þ3=2 �O

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

z� 1
p

��
;

(53)

r4cQðgÞ �
�
10þ 86�2

1

9�2
2

� 52�1

3�2

�
þOðz� 1Þ þ . . .

þ
�
1� �


1

�1

��
6�2 � 5�1

3�2
2ðz� 1Þ3=2 þO

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

z� 1
p

��

þ
�
1� �


1

�1

�
2
�

1

8�2
2ðz� 1Þ3 �O

�
1

ðz� 1Þ2
��

;

(54)

r4cKðgÞ �
�
16þ 88�2

1

9�2
2

� 64�1

3�2

�
þOðz� 1Þ þ . . .

þ
�
1� �


1

�1

��
2ð2�1 � 3�2Þ
3�2

2ðz� 1Þ3=2 þO

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

z� 1
p

��

þ
�
1� �


1

�1

�
2
�

1

4�2
2ðz� 1Þ3 þO

�
1

ðz� 1Þ2
��

:

(55)

From these expansions we see that the curvature scalars
diverge at z ¼ 1 except for those configurations whose
charge-to-mass ratio satisfies the condition �1 ¼ �


1, since
in that case all of them become finite. This is an important
result whose physical consequences will be explored in
more detail later. For now, it should be noted that the
avoidance of the singularity is a local, nonperturbative
effect that has no impact on the structure of the black
hole at distances z 	 1, which quickly tends to that of
GR regardless of the particular value of �1, as can be seen
from the expansions in (50)–(52).

C. Properties of the hypersurface z¼ 1

Consider the normal to a hypersurface Sðv; r
; 
; 
Þ ¼
constant, namely, N ¼ g��@�S@�. If S ¼ r, then

N� ¼ dr
dr
 ð1; B; 0; 0Þ, N� ¼ dr

dr
 ð0; 1; 0; 0Þ, and N�N� ¼
ð drdr
Þ2B ¼ 1=CðrÞ ¼ ��BðzÞ. This result shows that the

vector N is spacelike outside the external horizon, null
at the horizon, and timelike inside the horizon except at
z ¼ 1, where it becomes null again (regardless of the value
of �1) due to the presence of ��. This implies that the
singularity found for �1 � �


1 lies on a null hypersurface,
which contrasts with the Schwarzschild (spacelike) and
Reissner-Nordström (timelike) singularities of GR. In the
context of GR, null singularities have been found in the
interior of Reissner-Nordström black holes perturbed by
neutral matter [42]. Further exploration of the connection
between these two results shall be done elsewhere.
To learn more about this null hypersurface, we compute

now its surface gravity using the Killing vector l ¼ @t. In
the coordinates (46), which are regular across the external
horizon, the components of this vector are l� ¼ ð1; 0; 0; 0Þ
and l� ¼ ð�B; 1; 0; 0Þ. Since the surface gravity � is

defined by r�ðl�l�Þ ¼ �2�l� (evaluated at z ¼ 1), it

follows that 2� ¼ @r
BðrÞ ¼ �1=2� Bz=rc, which leads to

� ¼
8><
>:

lim
r!rc

�

1
��1

8�

1�2

1
r�rc

if �1 � �

1

0 if �1 ¼ �

1

: (56)

Note that, strictly speaking, the surface gravity only makes
sense when evaluated on a horizon. Since in the cases �1 �
�

1 the null surface z ¼ 1 is singular, we believe that the

divergence of � in those cases is just a manifestation of the
breakdown of the geometric description on that surface. On
the contrary, the vanishing of � at the horizon z ¼ 1 when
�1 ¼ �


1 puts forward the smoothness of the geometry at
that location. We refrain ourselves from interpreting these
results in a thermodynamic context because this aspect of
Palatini theories of gravity has not been considered in the
literature with sufficient detail yet.

D. Horizons

Horizons are located at the points where the metric
function BðrÞ vanishes. From the definitions given above,
this happens when the curves f1ðzÞ ¼ 1þ �1GðzÞ and

f2ðzÞ ¼ �2z�
1=2� meet. We have already seen analytically

that for large black holes, rc=rS � 1, the external horizon
lies almost at the same location as in GR. However, since
the internal structure of our black holes is different from
that of GR the very existence of an inner horizon is not
guaranteed a priori. Moreover, the location of the external
horizon for microscopic black holes may also significantly
differ from the prediction of GR. For these reasons, in this
section we focus on these points to complete our analysis
of the internal structure of these black holes.
We note that due to the character of the solutions, given

as infinite power series, the best way to determine whether
inner horizons exist or not is by using a graphical repre-
sentation of the functions f1ðzÞ and f2ðzÞ. From these
representations, see Figs. 1–3, one realizes that the first
terms of the expansions may provide useful information to
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understand the main features of the various cases of inter-
est. In this sense, it is worth noting that both f1ðzÞ and f2ðzÞ
are monotonic functions whose asymptotes are f1ðzÞ �
1� �1=z and f2ðzÞ � �2z, respectively. This implies
that if for some z0 we have f2ðz0Þ< f1ðz0Þ then at some
zH > z0 we will have f2ðzHÞ ¼ f1ðzHÞ, which implies the
existence of an horizon (as can be verified graphically).
Following this reasoning, we expand f1ðzÞ and f2ðzÞ
around z ¼ 1 and identify f1ðzÞ=f2ðzÞ � 1 as the condition
for the existence of an inner horizon in that region. Using

the expansions f1ðzÞ � 1� �1

�

1
þ 2�1

ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
and f2ðzÞ �

2�2

ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
, we find the following cases:

(i) If �1 ¼ �

1 then

�1

�2
� 1—This relation translates into

the condition rq � 2lP. Expressing the charge as

q ¼ Nqe, where e is the electron charge and Nq

the number of charges, we can write rq ¼ffiffiffiffiffiffiffiffiffiffiffi
2�em

p
NqlP, where �em is the electromagnetic fine

structure constant. With this notation, the above

condition becomes Nq � Nc
q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=�em

p � 16:55.

This result means that in order to have a horizon
when �1 ¼ �


1, the number of charges must be at

least equal or greater than Nc
q. For smaller values of

the charge one can verify graphically that there are
neither inner nor outer horizons, which represent
naked core solutions. When the charge is greater
than Nc

q then we have only an external horizon and

no inner horizon. All of these solutions are free of
curvature singularities, as results from the analysis of
Sec. VB.

(ii) If �1 < �

1 then

Nc
q

Nq
� 1þ �


1
��1

2�

1�1ðz�1Þ1=2—This condi-

tion indicates that once the charge-to-mass ratio
�1 < �


1 and the number of chargesNq are specified,

one can always find some z > 1 that verifies the
inequality, which implies the existence of a horizon.
Therefore, regardless of the value of Nq, when �1 <

�

1 we always have an (external) horizon (see Fig. 2).

(iii) If �1 > �

1 then

Nc
q

Nq
� 1� �1��


1

2�

1�1ðz�1Þ1=2—From this it

follows that for some combinations of �1 and Nq

there may or may not exist a z > 1 that satisfies the
inequality. This means that in some cases there is

Nq 1

Nq 100Nq 75

Nq 50
Nq 30

GR

f1 1 1 G

f2 2 z 1 2

2 4 6 8 10
z

0.2

0.4

0.6

0.8

1.0
f z

Horizon location as Nq changes when 1 1

FIG. 1 (color online). The location of the external horizon is
given by the intersection of the curve f1 (solid green) with f2
(solid red curves labeled by Nq). The dashed (orange) straight

lines that meet at the origin correspond to fGR2 ¼ �2z. The

dashed black curve is fGR1 ¼ 1� �1=z. Note that f1 and f2
quickly recover the GR behavior for z 	 1. As a result, the
location of the external horizon almost coincides with the GR
prediction for Nq � 30.

Horizon location as Nq changes when 1 1

Nq 3

Nq 100
Nq 75

Nq 50Nq 30

GR

f1 1 1 G f2 2 z 1 2

1 2 3 4
z

0.2

0.4

0.6

0.8

1.0
f z

FIG. 2 (color online). Same notation and labeling as in
Fig. 1. When �1 < �


1, we have Gðz ¼ 1Þ> 0, which forces

all the curves f2ðzÞ to cut f1ðzÞ in a single point. Except for
very small values of Nq, the location of the (external) horizon

almost coincides with the GR prediction. In this plot �1 ¼
�

1ð1� 5� 10�1Þ.

Nq 3

Nq 50

Nq 30

Nq Nq
c

Nq 75GR

f1 1 1 G f2 2 z 1 2

1 2 3 4
z

0.2

0.4

0.6

0.8

1.0
f z

Horizon location as Nq changes when 1 1

FIG. 3 (color online). Same notation and labeling as in Fig. 1.
When �1 > �


1, some configurations have two horizons (see the

curves with Nq ¼ 50, 75, 100) while others have no horizons

(like Nq ¼ 30). The limiting case Nq ¼ 35 (not shown here) has

only one (degenerate) horizon and represents an extreme black
hole. The set Nq < 35 represents naked singularities. In this plot

�1 ¼ �

1ð1þ 3� 10�1Þ.
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no horizon [f2ðzÞ> f1ðzÞ always], which implies a
naked singularity, while in other cases there may be
up to two horizons. This is verified graphically in
Fig. 3, where we can appreciate solutions without
horizon, solutions with two horizons, and solutions
with one (degenerate) horizon (extreme black
hole), a situation analogous to that of the standard
Reissner-Nordström solution of GR.

E. Penrose diagrams and analytical extensions

The previous discussion about horizons provides useful
information for the construction of the Penrose diagrams
corresponding to the solutions found. For instance, we
have seen that when �1 < �


1, all solutions represent black

holes with a single horizon. Behind the horizon we find a
singularity located at r ¼ rc. This configuration is essen-
tially the same as that found in GR for Schwarzschild black
holes, except for the fact that the singularity is now null
instead of spacelike. As a result, the corresponding Penrose
conformal diagram is that represented in Fig. 4.

When �1 > �

1, we may find the same subcases as in GR,

namely, solutions with two horizons, with one double
(degenerate) horizon, and naked singularities. Like in the
previous example, the main difference is that the singular-
ity is null rather than timelike. To illustrate how the
Penrose diagram is modified, we plot the case with two
horizons in Fig. 5.

The case �1 ¼ �

1 deserves special attention because the

null hypersurface r ¼ rc is nonsingular. Unlike in the other
cases with �1 � �


1, the absence of a singularity suggests

that the geometry may admit some analytical extension
beyond that point. This extension is naturally obtained
from the relation ðdr
=drÞ2 ¼ 1=�� that defines the

function r2ðr
Þ in (46). In our analysis following (46), we

implicitly assumed that dr
=dr ¼ 1=�1=2� , and omitted the
possibility of having a branch with the negative sign,

dr
=dr ¼ �1=�1=2� . In the singular cases �1 � �

1, the

omission of the branch with dr
=dr < 0 is justified be-
cause there is no natural way to extend the geometry
beyond the singularity at r ¼ rc. However, if there is no
singularity at r ¼ rc, the divergence of dr


=dr at this point
simply states that the function rðr
Þ has reached a mini-
mum at the point r
c ¼ 0:59907rc [see the discussion fol-
lowing Eq. (46) and Fig. 6]. For values of r
 < r
c, the
branch with dr
=dr < 0 describes a new region in which
the area of the 2-spheres grows as r
 ! �1. The relation
between r and r
 can thus be written explicitly as follows
(see Fig. 6):

r
 ¼

8>>>><
>>>>:
2F1

�
� 1

4 ;
1
2 ;

3
4 ;

r4c
r4

�
r if r
 � r
c

2r
c �2 F1

�
� 1

4 ;
1
2 ;

3
4 ;

r4c
r4

�
r if r
 � r
c

: (57)

In terms of r
, we also have dG=dz
 ¼ �þ=z2, which gives
continuity to the metric across the bounce. Using r1 and r2
to parameterize the 2-spheres when r
 > r
c and r
 < r
c,
respectively, the line element (46) can be written as

FIG. 4. Penrose diagram for the case �1 < �

1. Unlike in the

Schwarzschild black hole, where the r ¼ 0 singularity is space-
like, the singularity here is null and appears at r ¼ rc.

FIG. 5. Penrose diagram for the case �1 > �

1 with two hori-

zons (rþ and r�). The only difference with respect to the GR
diagram is that the singularity lies on a null surface at r ¼ rc.
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ds2 ¼
8<
:
�Bðr1Þdv2 þ 2

�1=2�
dvdr1 þ r21d�

2 if r
 > r
c

�Bðr2Þdv2 � 2

�1=2�
dvdr2 þ r22d�

2 if r
 < r
c
:

(58)

This representation is useful to understand that for future
directed (dv > 0) worldlines, drdv � 0 on timelike or null

worldlines if r
 > r
c, but drdv � 0 if r
 < r
c. From a
physical point of view, this means that a spherical shell
of matter that collapses and crosses the external horizon
will unavoidably shrink to a sphere of area 4�r2c before
bouncing off into an outgoing shell of increasing area. The
outgoing shell, obviously, cannot return to the region from
which it was sent initially because it crossed an event
horizon. As can be seen from the Penrose diagram of this
spacetime in Fig. 7, the outgoing shell can reach several
different final regions (different Iþ regions for light rays).

VI. PHYSICAL ASPECTS

We now discuss several points useful to understand
some physical aspects of the solutions described in pre-
vious sections.

A. Quantum nature of the nonsingular solutions

We first note that using rq ¼
ffiffiffiffiffiffiffiffiffiffiffi
2�em

p
NqlP we find that

the area of the r ¼ rc surface is given by Acore ¼
Nq

ffiffiffiffiffiffiffiffiffiffiffi
2�em

p
AP, where AP ¼ 4�l2P is Planck’s area. This

admits a nice physical interpretation since it suggests that
each charge sourcing the electric field has an associated an
elementary quantum of area of magnitude

ffiffiffiffiffiffiffiffiffiffiffi
2�em

p
AP.

From this it follows that the ratio of the total charge q by

the area of this surface gives a universal constant, �q ¼
q=ð4�r2cÞ ¼ ð4� ffiffiffi

2
p Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c7=ðℏG2Þp

, which up to a factor
ffiffiffi
2

p
coincides with the Planck surface charge density. This
result is independent of the mass of the black hole and,
therefore, applies both to singular as well as to regular
solutions.
If we focus now on the regular solutions only, we find

that the regularity condition �1 ¼ �

1 sets the following

mass-to-charge relation:

rS ¼ 1

2�

1

ffiffiffiffiffi
r3q
lP

s
$ M0

ðrqlPÞ3=2
¼ 1

4�

1

mP

l3P
; (59)

which can be interpreted in the sense that the matter

density inside a sphere of radius rc ¼ ðrqlPÞ1=2 becomes

another universal constant

�

core ¼ M0

Vcore

¼ �P

4�

1

: (60)

From the definition of �1 and �core, comparing any two
configurations one can verify that

�ðaÞ
1

�ðbÞ
1

¼ �ðbÞ
core

�ðaÞ
core

: (61)

This relation is very useful to classify the different black
hole configurations, because the relation ð1þ ��1Þ that
appears in (47) can be written as ð1� �1=�



1Þ ¼ð1� �


core=�coreÞ, where �

core is the density of the regular

core. This representation allows for a more physical

FIG. 6 (color online). Representation of the curves z ¼ zðz
Þ,
dz=dz
, and dG=dz
. The minimum of zðz
Þ occurs at z
c �
0:599, where dz=dz
 vanishes and dG=dz
 reaches its maximum
value. Recall that r
 ¼ rcz


.

FIG. 7. Penrose diagram for the nonsingular case �1 ¼ �

1.

The null surfaces labeled as rc represent the region where the
area of the 2-spheres reaches its minimum (nonzero) value. An
incoming null geodesic (light ray) propagating from I�1R towards

the horizon rþ will reach rc and bounce off as an outgoing null
geodesic into another region, eventually reaching Iþ1L (if no

scattering takes place). The surface rc, therefore, plays the
role of (attractive) black hole and (repulsive) white hole at the
same time.
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interpretation and classification of the solutions given in
Sec. V. In particular, the nonsingular configuration �core ¼
�

core is the only case in which the core density is a

magnitude independent of M0 and q and, in fact, turns
out to be given in terms of fundamental constants only.
This fact puts forward the special quantum gravitational
nature of the nonsingular solutions. In this sense, we
believe that the regularity condition �core ¼ �


core, rather
than as a fine-tuning issue, should be interpreted in the
spirit of a quantum constraint relating the mass and charge
(or charges, in general) of the solutions to avoid the singu-
larity. It should also be noted that adiabatic changes of the
charge and mass of the black hole [43] do not allow
transitions between nonsingular configurations, which in-
dicates that such configurations have different quantum
numbers (different q and M0 but the same �


core). This
must have important consequences for Hawking radiation,
because if the emission of quanta is to be compatible with
the regularity of the core, then the spectrum must neces-
sarily have a discrete structure. We shall leave the explo-
ration of this issue for future works.

B. Physical and analytical extensions
of the electrostatic solution

The above results picture a black hole interior with an
ultracompact core of radius rc which contains all the mass
in its interior and all the charge on its surface. This view is
physically very appealing but should be compatible with
the mathematical solution represented in Fig. 7. In fact,
Fig. 7 represents an exact mathematical solution of a
physically incomplete problem, because it does not take
into account the necessary existence of the massive
charged particles that generate the electrostatic field. The
fact that the surface r ¼ rc is null suggests that if massive
charged particles were explicitly included in the problem,
then the Killing vector field @t could become again time-
like in the region hidden by the r ¼ rc horizon, where the
sources should be located, thus allowing for the existence
of static interior solutions of the type suggested by the
constraint (59). Therefore, for the description of the ge-
ometry behind the r ¼ rc horizon, one should specify the
T�

� of the sources that carry the mass of the core and the

charge that generates the external electric field, which

would allow one to define a new auxiliary metric ~h��

able to parameterize the internal geometry of the core
(assuming that suitable matching conditions can be found
at r ¼ rc). Since the regularity condition (59) supports that
the core matter density is bounded, we expect the existence
of completely regular solutions in agreement with the
results found for this same theory of gravity in cosmologi-
cal scenarios [32].

It is worth pointing out that if the r ¼ rc null surface
could be smoothly matched to an interior region filled with
matter, where @t were timelike, then the analytical exten-
sion of the exterior spacetime beyond r ¼ rc would admit

two possible and different branches, which would appear
on different sheets of a larger conformal diagram. One
sheet would contain the matter-filled region and another
the analytical extension shown in Fig. 7, where the radial
coordinate bounces. This could give complete physical
reality to the spacetime of Fig. 7 in such a way that
particles approaching r ¼ rc would be scattered into the
white hole region instead of falling into the matter-filled
sector. This and related phenomenological issues will be
explored elsewhere.

C. Astrophysical black holes

From the large z expansion in (40) and (41), we saw that

the GR solution BGRðrÞ ¼ 1� rS
r þ r2q

2r2
is an excellent ap-

proximation for any r 	 lP. This implies that the location
of the external horizon of these charged black holes is
essentially the same as in GR. We thus find

rþ ¼ rS
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r2q=r

2
S

q
Þ

¼ rS
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�


1=ðNq

ffiffiffiffiffiffiffiffiffiffiffi
2�em

p Þ
q

Þ; (62)

where (59) has been used. For a solar mass black hole,
where the number of protons is around Np;
 � 1057,

Eq. (59) implies that the number of charges needed

to avoid the z ¼ 1 singularity is just Nq;
 ¼
ð2rS�


1=lPÞ2=3=
ffiffiffiffiffiffiffiffiffiffiffi
2�em

p � 2:91� 1026 (or �484 moles),
which is a very tiny amount on astrophysical terms. In
fact, this amount of charge is comparatively so small,
Nq;
=Np;
 � 10�31, that it seems reasonable to expect

that a quantum gravitational violation of electric charge
conservation could naturally act to avoid black hole singu-

larities in stellar collapse processes. In general, Nq ¼
Nq;
ðM=M
Þ2=3 implies that in astrophysical scenarios

rþ � rS (see Figs. 1–3).

D. Microscopic black holes

We have already seen that as Nq drops below the critical

value Nc
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=�em

p � 16:55, the external horizon disap-

pears and the core undresses becoming directly observable
(see Fig. 1). The Penrose diagram corresponding to the
maximal analytical extension of these naked regular cores,
Nq < Nc

q, is depicted in Fig. 8.

From (59), it follows that the mass of these objects is

M ¼ N3=2
q ð2�emÞ3=4mP

4�

1

� N3=2
q mP

55
: (63)

For the particular case Nq ¼ Nc
q, we find Mc ¼

mP=ð
ffiffiffi
2

p
�

1Þ ¼ mP�

3=2=ð3�½3=4�2Þ � 1:23605mP. It is
worth mentioning that this very particular number also
appears in the computation of the total energy associated
with the electric field in Born-Infeld NEDs, which indeed
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is found to be "ðqÞ ¼ �3=2=ð3�½3=4�2Þ�1=2q1=2 with � the
Born-Infeld parameter [40]. Its presence here puts forward
the regularizing role played by gravitation. Moreover, as
the electromagnetic field itself is expected to receive cor-
rections at high energies (see Ref. [44] for some string
theory results in this regard), it also points out that an
improved description of the electromagnetic field through
NEDs in these scenarios could provide interesting new
insights on the interaction between the nonlinearities of
matter and gravitation. All these facts suggest that
the theory (1) may shed new light on the problem of
sources in electrodynamics coupled to gravitation
[33,34], which already arises in the Reissner-Nordström
and Schwarzschild solutions of GR [15].

Finally it is worth noting that if Nq is seen as an integer

number, besides the core area, the mass of these nonsin-
gular naked cores and black holes is quantized, as has been
recently claimed in Ref. [45] on very general grounds. As
pointed out before, one thus expects a discrete spectrum of
Hawking radiation, because physically allowed transitions
should occur only between regular configurations. This
illustrates how Planck-scale physics may affect the pertur-
bative predictions of the semiclassical approach. New in-
vestigations on all these issues are currently underway and
shall be published elsewhere.

E. Our model as a deformation of GR

From the analysis of the geometry in the z ! 1 region,
we have found that the solutions of our theory can be
classified into three types according to the value of �1 or,
equivalently, according to the value of the core density
�core. When �core >�


core, then the conformal diagram of

Fig. 4 shows a structure very similar to that found for the
Schwarzschild black holes of GR. This admits a nice
physical interpretation because when the core contains
more mass than in the nonsingular case, the black
hole looks more like an uncharged object, such as a
Schwarzschild black hole. On the other hand, when the
mass-to-charge ratio is smaller than the expected value of a
regular configuration, �core <�


core, then the resulting
structure is closer to a typical Reissner-Nordström black
hole of GR (see Fig. 5). Our black holes, therefore, are
somehow smoothly interpolating between the abrupt struc-
tures found in GR. The nonsingular solutions, �core ¼
�

core, lie in the middle of these two disconnected branches

(Schwarzschild vs Reissner-Nordström) and represent a
kind of object not found in GR but that emerges when
Planck-scale effects are incorporated in the problem.
The smooth interpolation found here between the

Schwarzschild and Reissner-Nordström solutions of GR
shares some resemblance with the behavior of the con-
tracting and expanding branches of the nonsingular cos-
mological solutions found in this Palatini fðR;QÞ model
[32]. In GR, one can classify cosmological solutions in
two groups, one corresponding to an expanding branch
that starts in a (big bang) singularity, and its time reversal,
which corresponds to a contracting branch that ends in
that (big crunch) singularity. In the quadratic Palatini
model studied here, the two singular branches of GR
are smoothly connected through a bouncing solution
that avoids the singularity.

VII. SUMMARYAND CONCLUSIONS

In this work we have studied the structure of electrically
charged black holes in a Palatini extension of GR charac-
terized by a Ricci-squared term. Theories of this type could
be naturally motivated by quantum effects in curved space-
times. These theories provide modified dynamics without
introducing new dynamical degrees of freedom. This im-
plies, in particular, that the resulting solutions can be
completely classified using the same parameters as one
finds in GR, namely, the total charge q and total mass
M0. The absence of new dynamical degrees of freedom
also guarantees that these theories are free from ghosts and
other potential dynamical instabilities.
We have obtained exact analytical solutions expressed as

infinite power series expansions. These solutions show that
the structure of these black holes coincides with that of the
well-known Reissner-Nordström black holes of GR for

values of r 	 rc, where rc ¼ lP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nq=N

c
q

q
, with Nq repre-

senting the number of charges and Nc
q � 16:55. Important

modifications arise as we approach the minimum of the
radial coordinate, the region r ! rc. At this radius, the
gauge invariant quantity X � � 1

2F��F
�� that represents

the energy density of the electromagnetic field reaches its
maximum value Xmax ¼ �Pc

2=2, and other quantities of

FIG. 8. Penrose diagram for the nonsingular case �1 ¼ �

1

without event horizon, Nq < Nc
q. If the asymptotic region Iþ1L

is identified with Iþ1R, then the surface rc should behave as a

perfectly reflecting boundary. In the general case, however, light
rays reaching rc would go through into a new universe.
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interest such as T�
� also take (finite) Planck-scale values.

This means that the modified dynamics of our Palatini
fðR;QÞ model has the effect of setting upper bounds at
the Planck scale on the energy density of the matter fields
involved, a property already observed in cosmological
settings.

We have found that r ¼ rc is a singular null hypersur-
face if �1 � �


1 [see (35) for the definition of �1]. When the

mass-to-charge ratio �1 is set to the particular value �

1 ¼

3�½3=4�2=
ffiffiffiffiffiffiffiffiffi
2�3

p
� 0:572, then this null surface becomes

nonsingular and the geometry can be analytically extended
by means of a bounce of the radial coordinate (see Fig. 6).
We pointed out that the area of the null hypersurface r ¼ rc
grows linearly with the number of charges, Acore ¼
Nq

ffiffiffiffiffiffiffiffiffiffiffi
2�em

p
AP. As already mentioned, this behavior suggests

that each charge sourcing the electric field has associated
an elementary quantum of area of magnitude

ffiffiffiffiffiffiffiffiffiffiffi
2�em

p
AP.

Using this result, direct computation of the surface charge

density, �q ¼ q=ð4�r2cÞ, gives �q ¼ ð4� ffiffiffi
2

p Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c7=ðℏG2Þp

,

which up to a factor
ffiffiffi
2

p
coincides with the Planck surface

charge density. For the nonsingular solution, the condition
�1 ¼ �


1 can be seen as indicating that the mass density of

the core is �

core ¼ �P=4�



1, i.e., it is of order the Planck

mass density. It must be noted that �q and �


core are given in

terms of the fundamental constants ℏ, G, and the speed of
light c, and are independent of q and M0 (in the singular
cases, �core does depend on q andM0). In our opinion, this
is a clear manifestation of the quantum gravitational nature
of the nonsingular solutions. Rather than as a fine-tuning
problem, this constraint on the core density should be seen
as a quantization condition that selects a discrete set among
all the classically allowed solutions. In a sense, this is
analogous to Bohr’s atomic model, where the stability of
hydrogen under electromagnetic emission of radiation was
postulated assuming the existence of certain privileged
orbits that had to satisfy specific quantization conditions.

On the other hand, we have found the mass spectrum
given in (63), which is valid for all (positive) values of Nq.

This mass spectrum has important implications for the

emission of Hawking quanta. This is so because if physi-
cally allowed transitions occur between nonsingular con-
figurations only, then the resulting spectrum must be
discrete. Our analysis also puts forward the existence of
a new kind of nonsingular objects that are not hidden by an
external horizon. These naked cores exist for values of the
charge comprised within the interval 0<Nq < Nc

q.

An important lesson that follows from our analysis is
that the boundedness of the energy density does not nec-
essarily imply that the spacetime is nonsingular. In order to
find nonsingular solutions, it is necessary that charge and
mass satisfy a particular relation. In this sense, it seems fair
to say that the mass spectrum and sizes of the nonsingular
objects described here need not be in correspondence with
actual physical particles. From the discussion of Sec. IVon
the relation between r2 and ~r2, it follows that including
new scales in the problem (such as the masses and different
gauge charges of the particles making up the system)
should have an impact on the resulting value of rc, defined
as the value of r at which the energy density reaches its
maximum. The analogy of the regularity condition �1¼�


1

could also set more complicated constraints between the
total mass and total charges of the system, thus providing a
richer structure to the set of nonsingular solutions. These
aspects, together with the process of formation and the
stability under perturbations of the nonsingular solutions
(with and without external horizon) studied here is cur-
rently underway.
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