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H. Lü,1,2 Yi Pang,3 C. N. Pope,3,4 and J. F. Vázquez-Poritz5,6

1China Economics and Management Academy, Central University of Finance and Economics, Beijing 100081, China
2Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China

3George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University,
College Station, Texas 77843, USA

4DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA, United Kingdom
5New York City College of Technology, The City University of New York, 300 Jay Street, Brooklyn, New York 11201, USA

6The Graduate School and University Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
(Received 23 May 2012; published 7 August 2012)

We study black hole solutions in extended gravities with higher-order curvature terms, including

conformal and Einstein-Weyl gravities. In addition to the usual anti-de Sitter (AdS) vacuum, the theories

admit Lifshitz and Schrödinger vacua. The AdS black hole in conformal gravity contains an additional

parameter over and above the mass, which may be interpreted as a massive spin-2 hair. By considering the

first law of thermodynamics, we find that it is necessary to introduce an associated additional intensive/

extensive pair of thermodynamic quantities. We also obtain new Lifshitz black holes in conformal gravity

and study their thermodynamics. We use a numerical approach to demonstrate that AdS black holes beyond

the Schwarzschild-AdS solution exist in Einstein-Weyl gravity. We also demonstrate the existence of

asymptotically Lifshitz black holes in Einstein-Weyl gravity. The Lifshitz black holes arise at the boundary

of the parameter ranges for the AdS black holes. Outside the range, the solutions develop naked singularities.

The asymptotically AdS and Lifshitz black holes provide an interesting phase transition, in the correspond-

ing boundary field theory, from a relativistic Lorentzian system to a nonrelativistic Lifshitz system.

DOI: 10.1103/PhysRevD.86.044011 PACS numbers: 04.50.Kd

I. INTRODUCTION

Theories of gravity extended by the addition of higher-
order curvature terms are of interest for a number of reasons.
One motivation is to investigate whether suitably extended
four-dimensional gravity can be quantized in its own right. It
has been shown that Einstein gravity extended by the in-
clusion of quadratic curvature terms is perturbatively renor-
malizable [1]. However, the price to be paid for achieving
renormalizability is that the theory then contains massive
spin-2 modes as well as the massless graviton and, further-
more, that the massive modes are ghostlike (i.e., their kinetic
term has the wrong sign). Three-dimensional models of
gravity, for which the UV divergence problems are inher-
ently less severe, have also been studied extensively. While
Einstein gravity itself is essentially trivial in three dimen-
sions, extensions to include higher-order derivative terms
lead to interesting toy models with dynamical content and
the possibility of well-controlled UV behavior. Such exten-
sions in three dimensions include topologically massive
gravity [2], and more recently, ‘‘new massive gravity’’ [3].
The theory can be rendered ghost free, and equivalent to a
theory with a standard Einstein-Hilbert action, after truncat-
ing out modes with logarithmic falloff by imposing an
appropriate boundary condition of AdS3. (See, for example,
Ref. [4].) Supersymmetric extensions were considered in
Refs. [5–9].

The situation is rather more subtle in four dimensions.
An analogous ‘‘critical gravity’’ in four dimensions was
considered in Ref. [10]. The Lagrangian consists of the

Einstein-Hilbert term with a cosmological constant � and an
additional higher-order term proportional to the square of the
Weyl tensor, with a coupling constant �. It was shown that
there is a critical relation between � and � for which the
generically present massive spin-2 modes disappear, and are
instead replaced by modes with a logarithmic falloff [11] (see
also Refs. [12,13]). These log modes are ghostlike in nature
[14,15], but since they fall off more slowly than do the mass-
less spin-2 modes, they can be truncated out by imposing an
appropriate anti-de Sitter (AdS) boundary condition. The re-
sulting theory is then somewhat trivial, in the sense that the
remaining massless graviton has zero on shell energy. Further-
more, the mass and the entropy of standard Schwarzschild-
AdS black holes are both zero in the critical theory. Analogous
critical theories exist also in higher-dimensional extended
gravities with curvature-squared terms [16].
In fact, it was observed in Ref. [17] that one can generalize

critical gravity to a wider class of Weyl-squared extensions
to cosmological Einstein gravity, where � does not take the
critical value. For a certain range of values for �, the mass
squared of the massive spin-2 mode in the AdS4 background
is negative, but not sufficiently negative to imply tachyonic
behavior. However, this mode, which is again ghostlike, has
a slower falloff than the massless graviton and so it can be
truncated by imposing appropriateAdS boundary conditions.
This extended class of models has been investigated further
in Refs. [18–34].
One possible approach would be to begin with the con-

formally invariant theory described by a pure Weyl-squared
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action. Being the local gauge theory of the conformal group,
this theory of ‘‘conformal gravity’’ has the virtue of yielding
a convergent Euclidean functional integral, and also of
renormalizability and asymptotic freedom [35]. One might
then argue [36,37] that quantum fluctuations would break
the scale invariance, and thereby generate an Einstein-
Hilbert term in the low-energy effective action. Thus, the
Einstein-Weyl extensions of critical gravity described above
effectively describe the emergence [38] of Einstein gravity
from conformal gravity. It then becomes of interest to
investigate the classical solutions of conformal gravity and
Einstein-Weyl gravity. Any solution of Einstein gravity with
a cosmological constant is also a solution of Einstein-
Weyl gravity. However, the Weyl-squared term gives rise to
fourth-order equations of motion, which are highly nonlin-
ear, and so it is in general rather difficult to find the further
new solutions that exist over and above the pure Einstein
solutions. One of the main purposes of the present paper is to
search for such new solutions under the simplifying
assumption of spherical symmetry (and certain generaliza-
tions of this).

The investigation of solutions in higher-derivative
extensions of Einstein gravity is also of interest from
the AdS/CFT viewpoint, not least because it is known
that such higher-order terms arise in string theory.
Furthermore, although originally the AdS/CFT correspon-
dence was conceived as a duality between a conformal field
theory and a string theory, the idea of holography has been
generalized to broader classes of gauge/gravity duality
outside the string theoretical context.

Recently, holographic techniques have been used to
study nonrelativistic systems, such as atomic gases at ultra-
low temperature. This entails two types of gravitational
backgrounds: those which correspond to Lifshitz-like fixed
points [39] and Schrödinger-like fixed points [40,41]. In
the context of condensed matter theory, various systems
exhibit a dynamical scaling near fixed points:

t ! �zt; xi ! �xi; z � 1: (1.1)

In other words, rather than obeying the conformal scale
invariance t ! �t, xi ! �xi, the temporal and the spatial
coordinates scale anisotropically.

Requiring also time and space translation invariance,
spatial rotational symmetry, spatial parity and time reversal
invariance, the authors of Ref. [39] were led to consider
D-dimensional geometries of the form

ds2 ¼ ‘2
�
�r2zdt2 þ r2dxidx

i þ dr2

r2

�
: (1.2)

This metric obeys the scaling relation (1.1) if one also
scales r ! ��1r. If z ¼ 1, the metric reduces to the usual
AdS metric in Poincaré coordinates with AdS radius ‘.
Metrics of the form (1.2) can be obtained as solutions in
general relativity with a negative cosmological constant if
appropriate matter is included. For example, solutions
were found by introducing 1-form and 2-form gauge fields
[39]; a massive vector field [42]; in an Abelian-Higgs

model [43]; and with a charged perfect fluid [44]. A class
of Lifshitz black hole solutions with nonplanar horizons
was found in Refs. [45,46]. String theory and supergravity
embeddings have been found in Refs. [47–55].
In a similar vein, D-dimensional geometries which ex-

hibit Schrödinger symmetry are described by a metric of
the form [40,41]

ds2 ¼ ‘2
�
�r2zdt2 þ r2ð�dtd�þ dxidx

iÞ þ dr2

r2

�
; (1.3)

which is conformally related to a pp-wave spacetime. This
metric obeys the scaling relation

t!�zt; xi !�xi; r!�r; �!�2�z�; z� 1:

(1.4)

If momentum along the � direction is interpreted as rest
mass, then this metric describes a system which exhibits
time and space translation invariance, spatial rotational
symmetry, and invariance under the combined operations
of time reversal and charge conjugation. These geometries
have been embedded in string theory [56,57].
The organization of this paper is as follows: Sec. II con-

tains a brief description of four-dimensional Einstein-Weyl
gravity, including the equations of motion. In Sec. III, we
summarize some salient features of the AdS4 solution of
Einstein-Weyl gravity and the nature of the linearized fluc-
tuations around the AdS4 background. We also discuss the
Lifshitz solutions of Einstein-Weyl gravity, deriving the
relation between the coupling strength � of the Weyl-
squared term and the value of the Lifshitz anisotropy
parameter z. We also find Schrödinger-type solutions. In
Sec. IV, we consider a black hole type ansatz for spherically
symmetric solutions of Einstein-Weyl gravity, and general-
izations where the spatial sections are flat or hyperbolic
instead of spherical. We show that the fourth-order equa-
tions of motion can be reduced to second-order equations for
the metric functions. In the special case of flat spatial
sections, we also derive a conserved Noether charge, which
for the standard black hole solution is related to the mass.
In Sec. V, we consider spherically symmetric black

holes in the specific case of pure conformal gravity. They
can have either AdS or Lifshitz asymptotic behavior. The
AdS black holes in conformal gravity have an additional
parameter over and above the mass, and this leads to
interesting consequences when one considers their thermo-
dynamics. We discuss how one may generalize the first law
of thermodynamics to include the additional parameter. We
also consider the asymptotically Lifshitz black holes in
conformal gravity, which can have either z ¼ 4 or z ¼ 0.
In Sec. VI, we extend this discussion to Einstein-Weyl
gravities. Now, it appears that the equations governing
the metric functions for the spherically symmetric ansatz
are too complicated to be solvable in general, and so we
have to resort to numerical methods in order to go beyond
the known Schwarzschild-AdS metrics. To do this, we first
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give a discussion of the forms of the solutions in the near-
horizon and the asymptotic regions. Then upon performing
numerical integrations outwards from the near-horizon re-
gion, we find indications that more general black hole solu-
tions do indeed exist, at least when the � coupling parameter
for the Weyl-squared term lies in an appropriate range.
Section VII contains our conclusions. We present further
solutions of conformal gravity and general extended gravities
with quadratic curvature-squared terms in Appendices A and
B, respectively. We summarize some results on the calcula-
tion of the mass for black holes in the critical theory and in
conformal gravity in Appendices C and D, respectively.

II. EXTENDED AND CRITICAL GRAVITY

We begin by considering the action

I¼ 1

2�2

Z ffiffiffiffiffiffiffi�g
p

d4xðR� 2�þ�R��R�� þ�R2 þ�EGBÞ;
(2.1)

where �2 ¼ 8	G and EGB is the Gauss–Bonnet term

EGB ¼ R2 � 4R��R�� þ R��
�R��
�: (2.2)

Although this term does not contribute to the equations
of motion in four dimensions, it can have nontrivial con-
sequences for thermodynamics in the higher-derivative
theory, and so we shall include it in our discussion.

The equations of motion that follow from the action
(2.1) are

G �� þ E�� ¼ 0; (2.3)

where

G �� ¼ R�� � 1

2
R�� þ�g��; (2.4)

E��¼2�

�
R�
R�


�1

4
R
�R
�g��

�
þ2�R

�
R���1

4
Rg��

�
þ�ðhR��þr
r�R


�g���2r
rð�ÞRð�Þ

Þ

þ2�ðg��hR�r�r�RÞ: (2.5)

When � ¼ � 1
3� and � ¼ 1

2�, the theory describes

what we shall call Einstein-Weyl gravity, with the action

I ¼ 1

2�2

Z ffiffiffiffiffiffiffi�g
p

d4x

�
R� 2�þ 1

2
�jWeylj2

�
; (2.6)

where

jWeylj2 ¼ R��
�R��
� � 2R��R�� þ 1

3
R2: (2.7)

Note that the equations of motion following from this
action can be written as1

R�� � 1

2
Rg�� þ�g�� � �ð2r
r� þ R
�ÞC�
�� ¼ 0:

(2.8)

We shall also sometimes consider the limit of conformal
gravity, where only the Weyl-squared term in the action is
retained. This can be described as the � ! 1 limit of
the Einstein-Weyl action (2.6). The action of conformal
gravity is conformally invariant, which implies that the
equations of motion determine the metric only up to an
arbitrary conformal factor.
A special feature of four-dimensional Einstein gravity

with curvature-squared terms is that any solution of the
pure Einstein theory continues to be a solution of the
theory with the quadratic modifications. Thus, in particu-
lar, the Schwarzschild-AdS black hole solution

ds2 ¼ �
�
k� 2m

r
� 1

3
�r2

�
dt2

þ
�
k� 2m

r
� 1

3
�r2

��1
dr2 þ r2d�2

2;k (2.9)

of Einstein gravity is also a solution in the higher-
derivative theory. Here d�2

2;k denotes the metric on a

unit 2-sphere (k ¼ 1), unit hyperbolic plane (k ¼ �1) or
2-torus (k ¼ 0), and may be written as

d�2
2;k ¼

dx2

1� kx2
þ ð1� kx2Þdy2: (2.10)

III. ADS, LIFSHITZ AND SCHRÖDINGER VACUA

Unlike the D ¼ 3 or D � 5 cases, for D ¼ 4 the cos-
mological constant of the (A)dS vacuum is not modified by
the quadratic curvature terms, and hence we have only one
such vacuum with cosmological constant �. In this paper
we shall consider only negative �, and furthermore, with-
out loss of generality, we shall from now on set � ¼ �3.
The linearized fluctuations around the AdS4 vacuum in

Einstein-Weyl gravity were analyzed in Ref. [10]. It turns
out that the scalar trace mode decouples from the spectrum,
which then contains just massless and massive spin-2
modes, satisfying

�ðhþ 2Þðhþ 2�m2Þh�� ¼ 0; (3.1)

where h�� is transverse traceless and

m2 ¼ �2� 1

�
: (3.2)

The characteristics of the linearized theory depend
upon the value of the parameter �, and are summarized
in Table I.
Owing to the fact that the background is AdS rather than

Minkowski spacetime, there is an allowed range of nega-
tive mass-squared values for the massive mode, � 9

4 �
m2 < 0, for which it is still nontachyonic. In this range,
the massive mode actually falls off less rapidly at infinity

1In deriving this result it is helpful to note that, in four
dimensions, the Weyl tensor satisfies the identity C�
��C�


�� ¼
1
4C
���C


���g��. This can be seen easily by employing
2-component spinor notation.
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than the massless mode, and so it can be truncated from the
theory by imposing a suitable boundary condition at infin-
ity. In the critical theory, which occurs when � ¼ � 1

2 , the

massive mode becomes massless and in fact a new type of
mode with logarithmic falloff arises. The usual massless
mode has zero norm in the critical theory, and the loga-
rithmic mode is ghostlike. The logarithmic mode could be
truncated by imposing appropriate boundary conditions,
but this would leave only the zero-norm massless graviton
[14,15]. The case � ¼ 0 corresponds to ordinary Einstein
gravity, in which case there is of course no massive mode.
Not depicted in the table is the case � ¼ �1, which
corresponds to the pure Weyl-squared conformal theory.
In the conformal theory the massive mode has m2 ¼ �2,
and so although negative, it is not tachyonic.

In addition to the AdS vacuum, the theory (2.1) also
admits Lifshitz solutions, for which the metric is given by

ds2 ¼ dr2

�r2
� r2zdt2 þ r2ðdx2 þ dy2Þ; (3.3)

where

ðz2 þ 2Þ�þ 2ðz2 þ 2zþ 3Þ� ¼ 1

12
ðz2 þ 2zþ 3Þ;

� ¼ 6

z2 þ 2zþ 3
:

(3.4)

For the special case of Einstein-Weyl gravity, where
� ¼ ��=3, we have

� ¼ z2 þ 2zþ 3

4zðz� 4Þ : (3.5)

For conformal gravity, corresponding to � ¼ 1, Eq. (3.5)
implies that the Lifshitz scaling parameter z can take the
values z ¼ 4 or z ¼ 0. At the critical point, on the other
hand, where � ¼ � 1

2 , both roots of (3.5) give z ¼ 1. For

general values of � we have

z ¼ 8�þ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2�Þð16�� 1Þp
4�� 1

: (3.6)

Thus, the reality of z requires that � � 1
16 or � � 1

2 .

For conformal gravity, we find that there are also
Lifshitz-like solutions with S2 or H2 spatial topologies as
well as T2. The metrics for all three cases can be written as

ds2¼�r2z
�
1þ k

r2

�
dt2þ 4dr2

r2ð1þ k
r2
Þþr2d�2

2;k; (3.7)

with z ¼ 0 and 4.
Finally, we consider Schrödinger vacua, whose metric

takes the form

ds2 ¼ �r2zdt2 þ dr2

r2
þ r2ð�2dtdxþ dy2Þ: (3.8)

For z¼1 and z¼�1
2 , the metrics are Einstein with�¼�3,

and hence they are solutions for all � and �. In particular,
the z ¼ 1 case is simply the AdS metric, while if z ¼ � 1

2 it

is the Kaigorodov metric describing a pp-wave propagating
in AdS [58,59]. In general, z satisfies Ref. [12]

1� 24�þ �ð4z2 � 2z� 8Þ ¼ 0: (3.9)

In Einstein-Weyl gravity, we have

� ¼ 1

2zð1� 2zÞ : (3.10)

In conformal gravity, z can take values 1, 1
2 , 0 or � 1

2 .

Some asymptotic Schrödinger solutions are presented in
Appendix A 1.

IV. BLACK HOLE ANSATZ AND
EQUATIONS OF MOTION

A. General equations for k¼ 1, 0 or � 1

In this paper, we focus on the construction of static,
spherically symmetric (or H2 or T2 symmetric) black hole
solutions that are asymptotic to either the AdS or the
Lifshitz vacua discussed in the previous section. We may
therefore, without loss of generality, consider the ansatz

ds2 ¼ �aðrÞdt2 þ dr2

fðrÞ þ r2d�2
2;k: (4.1)

The equations of motion for a and f may be derived
from the Lagrangian obtained by substituting this ansatz
into the action (2.1). Since we are interested specifically in
the case of Einstein-Weyl gravity, where � ¼ � 1

3�, and

since the equations of motion are greatly simplified in this
case,2 we shall present the results under this specialization.

TABLE I. The characteristics of the massive and massless spin-2 modes in Einstein-Weyl
gravity for finite values of the parameter �. When not indicated to the contrary, the modes are
nonghostlike.

�1<�<� 1
2 � ¼ � 1

2 � 1
2 <�< 0 � ¼ 0 0<�< 4 4 � �<1

� 9
4 � m2 < 0 m2 ¼ 0 m2 > 0 � � � m2 <� 9

4 � 9
4 � m2 < 0

Massive Ghost Ghost � � � Ghost Ghost

Log � � � Tachyon

Truncated Truncated Nontruncated � � � Truncated

Massless Ghost Null
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We then find that the equations can be reduced to the
second-order system

a00 ¼ r2fa02 þ 4a2ðkþ 6r2 � f� rf0Þ � raa0ð4fþ rf0Þ
2r2af

;

(4.2)

and

f00 ¼ 1

2r2a2fðra0 �2aÞ
�
4r2a2

�
ðaðkþ3r2�fÞ�rfa0Þ

þr3f2a03þ2r2a2fa0ð8r�f0Þ�r2afa02ð3fþrf0Þ
�a3ð48r4�16r2fþ8f2�24r3f0

þ4rff0 þ3r2f02Þ�4ka3ð4r2�2f�rf0Þ
�
: (4.3)

B. Conserved Noether charge for k ¼ 0 case

In the case of a toroidal spatial geometry (i.e., k ¼ 0),
the system of equations has an additional global symmetry,

and hence there is an associated conserved Noether
charge. In order to discuss this, it is helpful temporarily
to choose a different parameterization of the metric
ansatz (4.1), using a new radial coordinate 
 such that
r2 ¼ bð
Þ and dr2=f ¼ ab2hd
2, so that the metric is
now written as

ds2 ¼ �að
Þdt2 þ að
Þbð
Þ2hð
Þd
2 þ bð
Þdxidxi:
(4.4)

Since the additional global symmetry arises regardless of
whether or not we choose the Weyl-squared combination
� ¼ � 1

3�, we shall keep these two parameters arbitrary

in the following discussion. Substituting into the action
(2.1) yields an effective Lagrangian for a, b and h. The
function hð
Þ can be viewed as parameterizing general
coordinate transformations of the radial variable, and
its equation of motion yields the Hamiltonian constraint
H ¼ 0. Having obtained this equation, we can impose
hð
Þ ¼ 1 as a coordinate gauge condition. In this case H,
which must vanish, is given by

H ¼ a0b0

ab
þ b02

2b2
� 6ab2 � 2kab� �

4a5b6
ð10a4a04 þ 20ab3a03b0 þ 22a2b2a02b02 þ 36a3ba0b03 þ 47a4b04Þ

þ �

a4b5
ðbðba0 þ ab0Þð3ba0 þ 2abÞa00 þ aðba0 þ 3ab0Þðba0 þ 4ab0Þb00Þ þ �

a3b4
ðb2a002 þ 2aba00b00 þ 3a2b002Þ

� 2�kðkab3 þ b02Þ
b3

�

4a5b6
ð20b4a04 þ 64ab3a03b0 þ 72a2b2a02b02 þ 124a3ba0b03 þ 125a4b04Þ

þ 2�

a4b5
ð3bðb2a02 þ 3aba0b0 þ a2b02Þa00 þ aðb2a02 þ 13aba0b0 þ 16a2b02Þb00Þ þ �ðba00 þ 2ab00Þ2

a3b4

� 2�ðba0 þ 2ab0Þðba000 þ 2ab000Þ
a3b4

� 2�kð2kab3 þ 3b02Þ
b3

; (4.5)

where a prime here denotes a derivative with respect to 
. We may then also set h ¼ 1 in the effective Lagrangian, so that
the remaining equations, for a and b, can be obtained from

L ¼ a0b0

ab
þ b02

2b2
þ 6ab2 þ 2kabþ �

4a5b6
ð2b4a04 þ 5ab3a03b0 þ 10a2b2a02b02 þ 12ab3a0b03

þ 11a4b04� 2abð2b3a02a00 þ 2ab2a0b0a00 þ 3a2bb02a00 þ 2ab2a02b00 þ 4a2ba0b0b00 þ 8a3b02b00Þ
þ 2a2b2ðb2a002 þ 2aba00b00 þ 3a2b002ÞÞ þ 2k�

b3
ðkab3 þ b02 � bb00Þ

þ �

4a5b6
ð4ka3b3 þ 2b2a02 þ 2aba0b0 þ 5a2b02 � 2abðba00 þ 2ab00ÞÞ2: (4.6)

For the k ¼ 0 case, corresponding to a black brane solution, the Lagrangian (4.6) and Hamiltonian (4.5) have a global
scaling symmetry with

a ! �2a; b ! ��1b: (4.7)

This enables us to derive a conserved Noether charge, �. Having done this, it is more convenient now to revert to the
original radial coordinate r and the metric functions a and f in (4.1). The Noether charge is then given by

2The reason for the simplification is that the trace of the Weyl-squared contribution to the equations of motion vanishes [see Eq. (2.8)],
and so this projection is identical in Einstein gravity and Einstein-Weyl gravity.
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� ¼
ffiffiffi
f

p
ra5=2

½2r2a2ðra0 � 2aÞ � �ð8a3f� 2ra2fa0 � 4r2afa02 þ 3r3fa03 þ 6ra3f0 � 3r3aa02f0

þ 3r2að2af� 2rfa0 þ raf0Þa00 þ r2a2ðra0 � 2aÞ þ 2r3a2ff000Þ
þ 2�ðra0 � 2aÞð4a2fþ 4rafa0 � r2fa02 þ 4ra2f0 þ r2aa0f0 þ 2r2afa00Þ�: (4.8)

It should be emphasized that this quantity is conserved
only for the case k ¼ 0. The analogous Noether charge was
studied in Ref. [60] for Lifshitz black holes (with T2

horizon topology) in Einstein gravity coupled to a massive
vector field. It was shown [61] that it is related to the
energy of the black branes:

E ¼ � �!2

16	ðzþ 2Þ ¼
2

ðzþ 2ÞTS; (4.9)

where T and S are the temperature and the entropy of the
black brane, and !2 is its area.

We can test this formula with the k ¼ 0 Schwarzschild-
AdS black holes, corresponding to a ¼ f ¼ r2 � r3þ=r in
the metric ansatz (4.1). This solution exists for all values of
the � and � parameters. The temperature and the entropy
are given by

T ¼ 3rþ
4	

; S ¼ 1

4
!2r

2þ½1� 6ð�þ 4�Þ�: (4.10)

Note that the Gauss–Bonnet term does not contribute to
the entropy in this case. The energy is given by

E ¼ 1

8	
½1� 6ð�þ 4�Þ�r3þ ¼ 2

3
TS: (4.11)

The Noether charge � in this case is given by

� ¼ �6½1� 6ð�þ 4�Þ�r3þ: (4.12)

Thus, we find that the relation (4.9) holds for this z ¼ 1
case. In general we find that the second equality in (4.9)
always holds, while the definition of energy in terms of the
Noether charge does not apply for solutions of higher-
derivative gravity when massive spin-2 modes are excited.

For the case of Einstein-Weyl gravity, i.e., when
�¼�1

3�, tthe Noether charge (4.8) simplifies considerably,

and becomes

�¼ 1ffiffiffiffiffiffiffiffi
a3f

p ðra0�2aÞ
ð2rað18ra2�10a2f�2rafa0�r2fa02Þ

��ð4ra�fa0�af0Þð36r2a2�8a2f

�rafa0�2r2fa02�9ra2f0ÞÞ: (4.13)

V. ADS AND LIFSHITZ BLACK HOLES IN
CONFORMAL GRAVITY

In this section, we focus on the special case of conformal
gravity, i.e., the limiting case of Einstein-Weyl gravity when
� goes to infinity. The equations of motion are given by

ð2r
r� þ R
�ÞC�
�� ¼ 0: (5.1)

Note that for the metric ansatz (4.1), the �-independent
trace equation (4.2) does not apply in conformal gravity.
Thus, the equation of motion is not simply (4.3) with �
sent to 1.

A. AdS black holes

The most general spherically symmetric solution in
conformal gravity was found in Refs. [62–64]. (See also,
Refs. [31,65].) The solution can easily be generalized to
the other horizon topologies T2 andH2. The solution for all
three cases is given by

ds2 ¼ �fdt2 þ dr2

f
þ r2d�2

2;k;

f ¼ br2 þ c2 � k2

3d
rþ cþ d

r
;

(5.2)

where b, c and d are arbitrary constants. The coefficients of
r2 and 1=r are related to the excitations of the massless
graviton, while the coefficient of r and the constant c are
related to the massive spin-2 mode. If c is chosen so that
c ¼ k, the solution reduces to the usual AdS black hole for
each of the cases k ¼ 1, k ¼ �1 and k ¼ 0. Of course,
since the equations of motion for conformal gravity leave
an overall conformal factor undetermined, it follows that
d~s2 ¼ �2ds2 is also a spherically symmetric static solu-
tion, where ds2 is given by (5.2) and � is an arbitrary
function of r.
In fact, the solution (5.2) can easily be derived by start-

ing from the Schwarzschild-AdS solution

d~s2 ¼ �
�
k� 1

3
�
2 � 2M




�
dt2

þ
�
k� 1

3
�
2 � 2M




��1
d
2 þ 
2d�2

2;k; (5.3)

noting that not only this, but also ds2 ¼ �ð
Þ�2d~s2, is
therefore a solution of conformal gravity, and then defining
a new radial coordinate via r ¼ 
�ð
Þ�1. Requiring that
the resulting metric have the form ds2 ¼ �hdt2 þ
h�1dr2 þ r2d�2

2;k implies that � ¼ 1þ q
 where q is

an arbitrary constant, and hence r ¼ 
=ð1þ q
Þ. The
function h is therefore given by

h ¼
�
2Mq3 þ kq2 � 1

3
�

�
r2 � 2qðkþ 3MqÞr

þ ðkþ 6MqÞ � 2M

r
; (5.4)
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which precisely reproduces the function f in (5.2) with

b ¼ 2Mq3 þ kq2 � 1

3
�; c ¼ kþ 6Mq;

d ¼ �2M:
(5.5)

The fact that the solution (5.2) is related to the usual
Schwarzschild-AdS black hole does not imply that these
solutions are completely equivalent. The scaling of the
Schwarzschild-AdS metric leaves the thermodynamic proper-
ties of the black hole unchanged only if the conformal factor is
finite and nonvanishing in the regions between the horizon
and asymptotic infinity. However, the conformal factor
� ¼ 1þ q
 that relates (5.2) to the usual Schwarzschild-
AdS black hole metric is in fact singular at 
 ¼ 1, and so it
alters the global structure. In turn, this affects the thermody-
namic properties, as we shall discuss below.

1. Thermodynamics of AdS black holes
in conformal gravity

We begin by reviewing the thermodynamic properties of
the standard Schwarzschild-AdS black hole (5.3) in the
context of conformal gravity. Letting 
þ denote the radius
of the outer horizon, we can solve for M to get

M ¼ 1

6

þð3k��
2þÞ: (5.6)

The Hawking temperature can be obtained from a calcu-
lation of the surface gravity in the standard way. The
entropy can be derived from the Wald formula [66],
giving

S ¼ ��

8

Z
C��
���
�d�: (5.7)

Thus we have

T ¼ k��
2þ
4	
þ

; S ¼ 1

6
�ð3k��
2þÞ!2; (5.8)

where !2 denotes the volume of d�2
2;k.

It is worth remarking that at first sight the entropy of the
black hole in conformal gravity is not simply proportional
to the area of the horizon, but now it is given by

S ¼ 1

2
�

�
k!2 þ 1

3
ð��ÞA

�
; (5.9)

where A ¼ 
2þ!2
2 is the area of the horizon. However the

first term in the above is a pure constant, independent of the
parameters in the solution, and can be removed by intro-
ducing a Gauss–Bonnet term in the Lagrangian. In fact if
we use the action (2.1) with � ¼ � 1

3� and � ¼ 0, the first

term in (5.9) vanishes and hence the entropy is then pro-
portional to the area of the horizon.

The free energy F can be obtained from the Euclidean
action IE of conformal gravity, using the relation F ¼ IET.
The action converges for the black hole solution, leading to

F ¼ ��!2

32	

Z 1

rþ
r2drjWeylj2 ¼ ��ð3k��
2þÞ2!2

72	
þ
:

(5.10)

The energy can be determined by integrating the first
law, dE ¼ TdS, assuming that � is held fixed, giving

E ¼ ��
þð�3kþ�
2þÞ!2

36	
¼ �ð��Þ!2

6	
M: (5.11)

This expression for the energy can also be confirmed
independently by using either the Deser-Tekin [67] or the
Ashtekar-Magnon-Das (AMD) method [68–71].
In conformal gravity the cosmological constant � is a

parameter of the solution, rather than of the theory, and
hence we may treat� as a further thermodynamic variable,
leading to the more general thermodynamic relations

dE ¼ TdSþ�d�; F ¼ E� TS;

� ¼ ��
þð3k��
2þÞ!2

72	
:

(5.12)

Thus, treating the cosmological constant as a thermody-
namic variable does not affect the relationship between F
and E. We can simply start by assuming that � is constant
and obtain the first law of thermodynamics. The first law
can then be straightforwardly modified by treating � as a
variable, thus determining the corresponding conjugate
variable �, while the other thermodynamic quantities re-
main unchanged. Treating the cosmological constant as a
thermodynamic variable has been considered previously.
See, for example, Refs. [72–74]. In Einstein gravity, where
the entropy is simply one quarter of the horizon area,
without explicit dependence on the cosmological constant
�, the quantity �� 
3þ is proportional to the volume
conjugate to the cosmological constant, which can then
be interpreted as a pressure [74]. In conformal gravity, on
the other hand, the entropy has a manifest dependence on
�, and hence the quantity � given in (5.12) is not simply
proportional to the volume, but has a linear 
þ dependence
as well, for nonvanishing k. It is also worth remarking that
the Smarr formula E ¼ 2TS� 2�� in Einstein gravity
[74] now becomes E ¼ 2�� in conformal gravity. We
shall discuss this further in Sec. VA5.
We are now in a position to discuss the more general

AdS black holes in conformal gravity. We shall begin by
taking the cosmological constant to be fixed,3 by setting
b ¼ 1 in (5.2), corresponding to setting the cosmological
constant of the asymptotic AdS space to be � ¼ �3.
Letting rþ be the radius of the outer horizon and writing

d ¼ �rþ ~d, we find that

3When we refer to the ‘‘cosmological constant’’ in the context
of conformal gravity, where of course there is no cosmological
term in the action; we always mean the cosmological constant of
the asymptotic AdS space.
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r2þ ¼ �cþ c2 � k2

3~d
þ ~d > 0: (5.13)

The temperature and entropy can then be straightfor-
wardly calculated; they are given by

T¼ð3~d�cÞ2�k2

12	rþ ~d
; S¼ 1

6
�ðkþ3~d�cÞ!2: (5.14)

The free energy F can also be obtained from the
Euclidean action, giving

F ¼ ��!2ððc� kÞ2 � 3ðc� kÞ~dþ 3~d2Þ
24	rþ

: (5.15)

When c ¼ k, the system reduces to the previous
Schwarzschild-AdS black hole with cosmological con-
stant fixed at � ¼ �3. Thus, the general solution with
c � k contains an additional independent parameter.

As we have remarked in the previous subsection, the
general solution can be obtained by performing a confor-
mal transformation of the Schwarzschild-AdS black hole,
whose cosmological constant� can be promoted to being a
parameter of the solution. In the new solution, we have
chosen to set b ¼ 1. Thus as a local solution, our new
variables ðc; dÞ are related to the ðM;�Þ variables in the
Schwarzschild-AdS solution (5.3). It is natural to ask
whether the thermodynamics of the new solution are sim-
ply the same as (5.12), but expressed in terms of new
variables. In order to address this issue, we note that the
transformation described in Sec. VA amounts to

q ¼ c� k

6M
; M ¼ 1

6

þð3k��
2þÞ; (5.16)

with


þ ¼ 3rþ ~d

k� cþ 3~d
;

� ¼ ð2kþ cÞrþ � 3k
þ
ðrþ � 
þÞ
2þ

¼ ðc� k� 3~dÞ2ðcþ 2k� 3~dÞ
9r2þ ~d2

: (5.17)

It is easy to see that when c ¼ k, we have 
þ ¼ rþ and
� ¼ �3, as we should have expected.

It is straightforward to verify that the temperature and
entropy in (5.8) are indeed mapped into those in (5.14).
However, the free energy in (5.10) becomes

F ! ~F ¼ ��ð3~d� cþ kÞ3!2

216	rþ ~d
; (5.18)

which is different from the free energy given in (5.15). The
reason for this can be easily understood as follows. The r
and 
 coordinates are related to each other by

r ¼ 


1þ q

; 
 ¼ r

1� qr
: (5.19)

The temperature and entropy are, in a sense, ‘‘local’’
properties, evaluated on the horizon r ¼ rþ or 
 ¼ 
þ,
and related by the above equation. Since the theory is
conformal, the temperature and entropy are not modified
by the conformal transformation. On the other hand, the
free energy, and hence the energy, are evaluated by an
integration over the regions ½rþ;1Þ of the general black
hole or ½
þ;1Þ of the Schwarzschild-AdS black hole.
From the relationship (5.19), we find

rþ � r <1 !
�
�1< 
 � � 1

q

�
[ ð
þ � 
 <1Þ;


þ � 
 <1 ! rþ � r <
1

q
:

(5.20)

Thus, we see that the outer region 
 � 
þ of the
Schwarzschild-AdS black hole covers only part of the
outer region r � rþ of the general black hole (5.15).
The exterior of the general black hole maps into dis-
connected regions of the Schwarzschild-AdS solution.
Thus, we see that although the conformal transformation
does not affect the location of the horizon or the expression
for

ffiffiffiffiffiffiffi�g
p jWeylj2, the structure of the asymptotic region is

altered by the transformation. Therefore, the Euclidean
actions are different for the two solutions. Analogously,
the energy of the two solutions, which are typically eval-
uated at asymptotic infinity, are also different. The upshot
is that the two solutions cannot be viewed as equivalent.
Having established that the new solutions are globally

inequivalent to the Schwarzschild-AdS black hole with
ðM;�Þ parameters, we shall now proceed to investigate
the thermodynamics of the general black holes in confor-
mal gravity. We should not expect the usual first law
dE ¼ TdS still to be satisfied, since the general solutions
are now described by two independent parameters, c and d,
rather than just one. As we shall see, it is necessary now to
introduce an additional pair of intensive and extensive
thermodynamic variables, which we shall call � and �,
and the first law will be modified to dE ¼ TdSþ�d�.
Once the additional parameter of the AdS black holes in
conformal gravity is turned on, by taking c � k, we find
that neither the Deser-Tekin nor the AMD methods gives a
finite result for the mass. In Appendix D, we describe a new
procedure for calculating the mass in conformal gravity.
It is instructive first to look at the solution where the

parameter d is set to zero. In the parameterization in (5.2),
this can be done by first writing c2 � k2 ¼ 3�d, and then
sending d to zero, giving

f ¼ r2 þ�rþ k: (5.21)

This solution has a curvature singularity at r ¼ 0, which
can be shielded by an horizon at r ¼ r0 provided that � is
chosen so that �2 � 4k. The temperature is given by

T0 ¼ r20 � k

4	r0
: (5.22)
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However, we find that the entropy and free energy both
vanish, suggesting that the energy should vanish also. Thus
the solution can be viewed as a ‘‘thermalized vacuum.’’ (This
is analogous to the Schwarzschild black hole in critical
gravity, where all thermodynamic quantities except for tem-
perature vanish [10]). In a Deser-Tekin or AMD calculation,
this thermalized vacuum will generate a divergence in the
evaluation of the mass, and it should be subtracted.

In fact it is easy to verify that this thermalized vacuum is
locally conformal to a de Sitter background. To see this, we
define dŝ2 ¼ �2ds2, with

� ¼ 1

�rþ 2k
; (5.23)

and introduce the new radial coordinate 
 ¼ r�. We
then have

dŝ2 ¼ � f̂

4k
dt2 þ d
2

kf̂
þ 
2d�2

2;k; (5.24)

where

f̂ ¼ 1� 1

3
�
2; � ¼ 3ð�2 � 4kÞ: (5.25)

The condition for the solution (5.21) to have real roots
defining the horizons is �2 � 4k � 0, and so this means
the conformally related metric dŝ2 in (5.24) is de Sitter
spacetime, with positive cosmological constant. The hori-
zon in the metric with f given by (5.21) maps into the de
Sitter horizon in (5.24).

From Appendix D, if we take the conserved quantity Q
to furnish a definition of energy, we have

E ¼ �!2

4	
ð�dþmÞ; (5.26)

where

m � ðc� kÞðc2 � k2Þ
18d

: (5.27)

Note that when c ¼ k, it reproduces the energy for the
Schwarzschild-AdS black hole. When d ¼ 0, it is neces-
sary that c ! kwith� ¼ ðc2 � k2Þ=ð3dÞ held fixed. In this
limit, the quantity m vanishes, and hence we see that the
thermalized vacuum indeed has zero energy.

It turns out that with this definition of energy for the
general AdS black holes in conformal gravity we have

F ¼ E� TS: (5.28)

We find that, as mentioned earlier, the standard first law
dE ¼ TdS is not satisfied for the general AdS black holes,
since the solutions are characterized by two independent
parameters. If we first consider the situation where the
quantity � ¼ ðc2 � k2Þ=ð3dÞ is held fixed, then the first
law dE ¼ TdS does hold. This corresponds to allowing
only variations that keep the thermalized vacuum fixed. If
instead we allow general variations of the two parameters in

the solution, by allowing� to vary also, then we find that we
should add another term in the first law, which now becomes

dE ¼ TdSþ�d�; � ¼ �!2ðc� kÞ
24	

: (5.29)

The quantity � here is a new thermodynamic variable
conjugate to �, which is determined from the requirement
of integrability of the generalized first law.

2. The Noether charge of the k¼ 0 solution

As discussed in Sec. IVB, for k ¼ 0, the system has an
additional conserved Noether charge. For conformal grav-
ity, the Noether charge for the ansatz (4.1) is given by

� ¼ �

12ra2
ffiffiffiffiffiffi
af

p ðra0 � 2aÞ ð4a
2f� 10rafa0 þ 7r2fa02

þ 6ra2f0 � 3r2aa0f0 � 6r2afa00Þð4a2f� 2afra0

� fr2a02 � 2a2rf0 þ ar2a0f0 þ 2afr2a00Þ: (5.30)

Thus for the black hole (5.2) with k ¼ 0, we have

� ¼ 4�ð27d2 � c3Þ
9d

: (5.31)

For the Schwarzschild-AdS black hole (5.3), we have

� ¼ 8��M: (5.32)

Note that in both cases we have �!2 ¼ �32	TS. In other
words, the second equality of (4.9) always holds. Indeed,
these two Noether charges for the general and the
Schwarzschild-AdS solutions can map to each other by
the conformal transformation discussed in the previous
subsection. Let us define ~E as

~E ¼ ��!2

48	
: (5.33)

For the Schwarzschild-AdS black brane, ~E is precisely the
mass of the solution. It follows from the argument pre-
sented in the previous subsection that ~E cannot be the
energy of the more general solution that has an additional
parameter c. Thus now we have two conserved quantities;
one is the true energy E given in (5.26) and the other is ~E.
The difference is

E� ~E ¼ c3

216	d
¼ m

12	
; (5.34)

where m is given in (5.27).

3. Conformal boundary term

It is possible to write a conformally invariant boundary
term in four dimensions. Thus for completeness, this
boundary term should be included in conformal gravity.
The conformal boundary term is given by

Ic ¼ ��
Z

d3x
ffiffiffiffiffiffiffi�~g

p
C��
�n�n
r�n�; (5.35)
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where n� is the unit outward normal to the boundary, and�

is an arbitrary pure numerical constant. This boundary term
does not contribute to the equations of motion, and so it has
no effect on the local solutions, but it can contribute to
the thermodynamics. For example, it yields a nontrivial
contribution to the Euclidean action, implying that the
free energy is now modified, and is given by

F ¼ ��!2½ðc� kÞ2 � 3ðc� kÞ~dþ 3~d2�
24	rþ

� ��!2m

16	
;

(5.36)

where m is given by (5.27). It is of interest to note that the
contribution of the conformal boundary term to the free
energy is of the same form as the m term appearing in
the expression (5.26) for the energy in conformal gravity
without the boundary term.

4. Extremal limit

Since the general AdS black hole (5.2) has the parameter
c� k in addition to the usual d parameter of the
Schwarzschild-AdS black hole, it is possible to find an
extremal limit for which the temperature vanishes and the
near-horizon geometry has an AdS2 factor. For both
k ¼ �1, the extremal solution takes the same form, given by

f ¼ ðr� rþÞ2ðrrþ � r2þ þ 1Þ
rrþ

: (5.37)

For k ¼ 1, the near-horizon geometry is AdS2 	 S2, with
vanishing temperature and entropy. The energy, free energy
and � are given by

E¼F¼��ðr2þ�1Þ2!2

8	rþ
; �¼�!2ðr2þ�1Þ

8	
; (5.38)

which all vanish for rþ ¼ 1. Thus the rþ ¼ 1 solution may
also be stable vacuum of the theory. For k ¼ 0, it turns out
that there is no extremal limit, since fðrÞ has either a single
root or a triple root.

5. Thermodynamics with varying �

Finally we consider the thermodynamics of the general
AdS black holes in conformal gravity when �, the cosmo-
logical constant of the asymptotically AdS region, is treated
as a thermodynamic variable also. This is natural in confor-
mal gravity since the cosmological constant arises as a
parameter of the solution rather than as a fixed parameter
of the theory. The solution is given by

f ¼ � 1

3
�r2 þ�rþ cþ d

r
; with 3�d ¼ c2 � k2:

(5.39)

Letting rþ be the radius of the outer horizon, and defining

d ¼ �rþ ~d, we have

T ¼ ð3~d� cÞ2 � k2

12	rþ ~d
;

S ¼ 1

6
�!2ðkþ 3~d� cÞ;

� ¼ �!2ðc� kÞ
24	

;

� ¼ �!2d

24	
;

F ¼ ��!2ððc� kÞ2 � 3ðc� kÞ~dþ 3~d2Þ
24	rþ

;

E ¼ 2��þ��:

(5.40)

These thermodynamic quantities satisfy the relations

dE ¼ TdSþ�d�þ�d�; F ¼ E� TS: (5.41)

Note that the last equation in (5.40) is the Smarr formula for
the general black holes in conformal gravity. Its rather
unusual form can be understood by considering the following
scaling argument. Since the parameter � has dimensions
of length-squared, L2, and it is treated as a fixed parameter
of the theory (which may be set, without loss of generality,
to � ¼ 1), it follows that the effective scaling dimensions
for the thermodynamic quantities are given by

½E� ¼ 1

L
; ½T� ¼ 1

L
; ½S� ¼ 1; ½�� ¼ L;

½�� ¼ 1

L2
; ½�� ¼ 1; ½�� ¼ 1

L
:

(5.42)

Thus if E is viewed as a function of S, � and �,
namely E ¼ hðS;�;�Þ, then under scaling we shall have
E ¼ �hðS;��2�; ��1�Þ. Differentiating with respect to
�, setting � ¼ 1, and using the first law in (5.41) then
gives the Smarr relation E ¼ 2��þ�� we found in
(5.40).4

The entropy of the general black hole can be decom-
posed as

S ¼ 1

2
�w2kþ 1

6
�ð��ÞAþ 8	�þ 1

2
�!2�rþ; (5.43)

whereA ¼ r2þ!2 is the area of the horizon, and the first pure
numerical term is the contribution from the Gauss–Bonnet
term in the action (2.1) with � ¼ � 1

3� and � ¼ 1
2�.

4A Smarr formula with more conventional coefficients would
arise if we were to view the coupling constant � as another
thermodynamic variable, so that the thermodynamic quantities
would all have their standard ‘‘engineering’’ scaling dimensions.
We would then have a generalized first law dE ¼ TdSþ
�d�þ�d�þ �d�, where � is a new thermodynamic vari-
able conjugate to �. The Smarr formula would then be E ¼
2TS� 2�����þ 2��. However, since � is an overall
parameter in conformal gravity, including it as an additional
variable represents an overparametrization of the system. This
is reflected in the fact that there is then a 1-parameter family
of possible Smarr relations, with E ¼ �TSþ 2ð1� �Þ��þ
ð1� �Þ��þ ���, where � is an arbitrary constant.
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We see from the constraint (5.39) on the parameters that
in the limit c ! k, we can either set d ¼ 0 with� fixed, or
set� ¼ 0 with d fixed. The former leads to the thermalized
vacuum (5.21) and the latter leads to the Schwarzschild-AdS
black hole.

B. z¼ 4 Lifshitz black holes

We find that conformal gravity admits static asymptoti-
cally Lifshitz black hole solutions also, both for z ¼ 4
and z ¼ 0. We shall first discuss the case with z ¼ 4. The
solution is given by

ds2 ¼ �r8fdt2 þ 4dr2

r2f
þ r2d�2

2;k;

f ¼ 1þ c

r2
þ c2 � k2

3r4
þ d

r6
:

(5.44)

This solution for Lifshitz black holes is locally equivalent
to the AdS black hole solution (5.2) up to an overall
conformal factor. Specifically, it can be seen that the
metric dŝ2 ¼ �2ds2 with

� ¼ q

rðcþ 3r2 � kÞ ; (5.45)

becomes, after transforming to the new radial coordinate

 ¼ r�,

dŝ2 ¼ � 1

9
q2f̂dt2 þ f̂�1d
2 þ 
2d�2

2;k; (5.46)

where

f̂ ¼ kþ q

3

� 1

3
�
2;

� ¼ ðc3 � 27d� 3ck2 þ 2k3Þ
q2

:

(5.47)

The conformal factor (5.45) is nonsingular on the horizon
r ¼ rþ of the Lifshitz black hole (except, as we shall see
below, in the case of the k ¼ 1 extremal limit), and the
horizon is mapped to that of the conformally related (A)
dS black hole (5.46). However, since the conformal factor
becomes singular at r ¼ 1, the asymptotic regions, and
hence the global structure, are very different for the two
metrics.

The equation fðrÞ ¼ 0 determines the locations of the
horizons. This yields a cubic equation for r2, which will
have either three real roots or one real root, according to
whether the discriminant

�¼� 1

27
ðc3�27d�3ck2�2k3Þðc3�27d�3ck2þ2k3Þ

(5.48)

is positive or negative. In particular, in the case that �> 0,
the cosmological constant of the conformally related
metric (5.46) will be positive, and it describes a de Sitter
black hole.

Using rþ as usual to denote the radius of the outer
horizon of the Lifshitz black hole, we have

d ¼ � 1

3
r2þðc2 � k2 þ 3cr2þ þ 3r4þÞ: (5.49)

We find that the temperature and the entropy are given by

T ¼ ðcþ 3r2þ � kÞðcþ 3r2þ þ kÞ
12	

;

S ¼ � 1

6
�!2ðcþ 3r2þ � kÞ:

(5.50)

The above expressions suggest that the constant c might
be spurious, since it always arises in the combination
cþ 3r2þ. Indeed we can, locally, remove it by first making
the coordinate transformation r2 ¼ ~r2 � c=3, and then scal-
ing the metric by the factor ~r2=r2. However, if c is negative,
this transformation can be singular, if cþ 3r2þ < 0, and so
we cannot simply use the above transformation to set
c ¼ 0. Indeed, one can see from (5.50) that if c ¼ 0 then
T and S cannot both be positive (if �> 0). On the other
hand, if c is sufficiently negative then we can arrange the
parameters so that T and S are both positive.
There is no obvious way to calculate the energy of an

asymptotically Lifshitz black hole directly [for example, the
conserved charge given by (D8) diverges].We can, however,
integrate the first law, dE ¼ TdS, to obtain a thermody-
namic definition of the energy, up to an undetermined
additive constant. From (5.50) we find

E ¼ ��!2ðcþ 3r2þ � kÞ2ðcþ 3r2þ þ 2kÞ
216	

; (5.51)

where we have made a choice for the additive constant that
is convenient for the cases k ¼ 1 or k ¼ 0. The energy
definition for k ¼ �1 will be given presently. The
Euclidean action for the z ¼ 4 Lifshitz black hole diverges
for large r. We can instead define the free energy from the
thermodynamic relation F ¼ E� TS, yielding

F ¼ �!2ðcþ 3r2þ � kÞ2ð2cþ 6r2þ þ kÞ
216	

: (5.52)

We now examine the three cases k ¼ 0, 1 or �1 in
more detail. For k ¼ 0, there exists the Noether charge
(5.30), giving

� ¼ 4

9
�ðc3 � 27dÞ: (5.53)

Therefore, we see that (4.9) holds for this solution. In
particular, we have

E ¼ 1

3
TS: (5.54)

The k ¼ 0 solution has no extremal limit, since then
if the function f has a double real root then it necessarily
has a triple real root. For cþ 3r2þ > 0 we can set c ¼ 0
without loss of generality, since the conformal factor ~r2=r2
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is nonsingular, as discussed earlier. In this case, the pos-
itivity of both the entropy and energy would require that
�< 0. On the other hand, when we have cþ 3r2þ < 0, the
constant c cannot be set to zero, since now the conformal
factor ~r2=r2 runs from a negative value to 1 when
r goes from the horizon to infinity. The positivity of both
the entropy and energy now requires that �> 0. When
cþ 3r2þ ¼ 0, which would be the extremal limit for the
k ¼ 0 black holes, the solution instead has a naked singu-
larity at r ¼ rþ. Thus for a given �, only one of the two
branches (cþ 3r2þ > 0 or cþ 3r2þ < 0) is well-defined,
since the entropy of one branch is positive at the price
that in the other branch it is negative.

For k ¼ 1, then again if cþ 3r2þ > 0 we can set the
parameter c ¼ 0without loss of generality. In this case, the
solution has an extremal limit with r2þ ¼ 1=3, for which
both the entropy and energy vanish. For this branch of
solutions, r2þ � 1=3 and the non-negativeness of the en-
tropy and the energy defined by (5.51) is guaranteed as
long as � is negative. If cþ 3r2þ < 0, then the parameter c
becomes nontrivial. The range where �2< cþ 3r2þ < 0
in fact cannot arise, since then the function f actually has a
third positive root that is larger than the putative largest
root rþ, and so r ¼ rþ is not the outer horizon. If
cþ 3r2þ <�2, the entropy and energy are non-negative
provided that �> 0. There is an extremal limit at
cþ 3r2þ ¼ 1, but, since cþ 3r2þ > 0 we can reduce
this to the c ¼ 0, r2þ ¼ 1=3 extremal case discussed pre-
viously. Although the function f also has a double root,
at r ¼ r0 if cþ 3r20 ¼ �1, there is a larger positive root

at r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ 1

q
, so this does not describe an extremal

black hole. Note that for a given sign of �, only one of
the above two branches of solutions is well-defined,
and only the branch with cþ 3r2þ > 0 has an extremal
limit. The near-horizon geometry of the extremal limit
is AdS2 	 S2.

The behavior of the metric functions is the same for the
k ¼ �1 solution as for the k ¼ 1 solution. Thus for the
cþ 3r2þ � 0 branch we can again set c ¼ 0, and extrem-
ality occurs at r2þ ¼ 1=3. The near-horizon limit of the
extremal black hole is AdS2 	H2. For solutions to have
positive energy, we shift the previous energy (5.51) by a
different additive constant, and define

~E ¼ ��!2ðcþ 3r2þ � 1Þ2ðcþ 3r2þ þ 2Þ
216	

¼ E� �!2

54	
:

(5.55)

The solution has non-negative energy and entropy pro-
vided that �< 0. For the cþ 3r2þ <�2 branch, the en-
ergy and entropy are non-negative provided that �> 0.
The solution is extremal at cþ 3r2þ ¼ 1, but this reduces
to the c ¼ 0, r2þ ¼ 1=3 extremal case discussed above. For
a given �, only one of the two branches of solutions can be
well-defined.

C. z¼ 0 Lifshitz black holes

We now turn our attention to the z ¼ 0 Lifshitz black
hole, for which the solution is given by

ds2 ¼ �fdt2 þ 4dr2

r2f
þ r2d�2

2;k;

f ¼ 1þ c

r2
þ c2 � k2

3r4
:

(5.56)

The solution has a power-law curvature singularity at
r ¼ 0. For k ¼ 0, the singularity is naked. The Noether
charge is given by � ¼ �4�c=3. Since the k ¼ 0 solution
is not a black hole, we cannot use this example to test the
validity of (4.9).
For k ¼ �1, there is an horizon at the largest root of f,

given by

r2þ ¼ 1

6

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4� c2Þ

q
� 3c

�
: (5.57)

The requirement that r2þ > 0 implies that �2 � c < 1. It
follows that the temperature and entropy are given by

T ¼ 1

	
�
2� 2

ffiffi
3

p
cffiffiffiffiffiffiffiffi

4�c2
p

� ;
S ¼ 1

12
�!2

�
cþ 2kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4� c2Þ

q �
:

(5.58)

As in the case of the z ¼ 4 Lifshitz black hole, here too we
can define the energy, up to an undetermined additive
constant, by integrating the first law dE ¼ TdS. Here,
we find

E ¼ 1

24	
�!2ðcþ 2Þ; (5.59)

where we have chosen the (parameter-independent) addi-
tive constant so that the energy is positive for c >�2. Note
that when c ¼ �2, the solution becomes extremal, with f
given by

f ¼ ðr2 � 1Þ2
r4

; (5.60)

and the energy defined in (5.59) vanishes. The solution has
a double root at r ¼ 1, with the near-horizon geometry
being AdS2 	 S2 or AdS2 	H2. For k ¼ 1, the entropy
vanishes in the extremal limit.
The metric (5.56) is conformal to (A)dS. Defining

dŝ2 ¼ �2ds2 with

� ¼ qr

cþ kþ r2
; (5.61)

we find after defining a new radial coordinate 
 ¼ r� that

dŝ2 ¼ � q2

ðcþ kÞ2 f̂dt
2 þ f̂�1d
2 þ 
2d�2

2;k; (5.62)

where
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f̂ ¼ kþ ðc� kÞq
3


� 1

3
�
2; � ¼ cþ 2k

q2
: (5.63)

Thus the conformally related metric describes an AdS
black hole if cþ2k<0 and a dS black hole if cþ2k>0.
The condition for having real roots for r2 in the z ¼ 0
Lifshitz black hole is that 4k2 � c2 � 0. In particular, if
k ¼ þ1 then the conformally related metric will describe a
de Sitter black hole.

As with the z ¼ 4 Lifshitz black hole discussed previ-
ously, here too the conformal factor is nonsingular on the
horizon (except in the extremal limit), and so the horizon of
the nonextremal z ¼ 0 Lifshitz black hole maps to the
horizon of the (A)dS black hole. Once again, however,
the conformal factor becomes singular at infinity, and the
asymptotic regions of the two conformally related metrics
are very different.

VI. ADS AND LIFSHITZ BLACK HOLES IN
EINSTEIN-WEYL GRAVITY

The existence of asymptotically AdS black holes in con-
formal gravity over and above the standard Schwarzschild-
AdS black holes suggests that analogous more general
solutions should exist also in Einstein-Weyl gravity, possi-
bly including at the critical point. Furthermore, the existence
of Lifshitz vacua in these theories and their generalizations
to Lifshitz black holes in conformal gravity suggests that
such Lifshitz black holes may also exist in Einstein-Weyl
gravity. However, no exact solutions with either type of
asymptotic behavior have been found, beyond the usual
Schwarzschild-AdS black hole.5 In this section, we establish
their existence by using a numerical approach.

For k ¼ 0 AdS and Lifshitz black holes, by studying the
horizon expansion, we find the following general relation
between the Noether charge and the temperature and entropy:

�!2 ¼ �32	TS: (6.1)

By examining the asymptotic behavior at infinity, we find
examples for which the energy is given by E ¼ ��!2=
ð16	ðzþ 2ÞÞ, and hence the relation (4.9) appears to hold
in these cases. However, as we have seen in conformal gravity
discussed in the previous section, the first equality of (4.9)
obtained in Ref. [60] does not hold in general in higher-
derivative gravity, when massive spin-2 hair is involved.

A. Horizon expansion

The equations of motion for Einstein-Weyl gravity which
follow from (2.8) or from (2.5) with � ¼ ��=3, appear not
to be explicitly solvable for the most general static, spheri-
cally symmetric solutions. We shall again consider the
ansatz (5.2), and so the equations of motion for the metric
functions aðrÞ and fðrÞ are again given by (4.2) and (4.3). As
remarked previously, the Schwarzschild-AdS metrics (2.9)
are solutions of these equations, but now we shall have to
resort to numerical methods in order to investigate the most
general static, spherically symmetric solutions.
In order to do this, we first construct Taylor expansions for

the metric functions aðrÞ and fðrÞ in the vicinity of a black
hole horizon. These will then be used to set the initial con-
ditions for a, a0, f and f0 just outside the horizon, so that
Eqs. (4.2) and (4.3) for a00 and f00 can be numerically inte-
grated out to large distances. It is instructive first to look at the
near-horizon expansions of a and f for the Schwarzschild-
AdS black hole (2.9). If we set � ¼ �3 as usual, and define
the horizon radius r0 by k� 2m=r0 þ r20 ¼ 0, then we have

a ¼ f ¼ r2 þ k� r0ðkþ r20Þ
r

; (6.2)

and so the expansions are of the form

aðrÞ ¼ fðrÞ
¼

�
3r0 þ k

r0

�
ðr� r0Þ � k

r20
ðr� r0Þ2

þ
�
k

r30
þ 1

r0

�
ðr� r0Þ3 þ � � � : (6.3)

Since an overall constant factor in aðrÞ can be absorbed
into a rescaling of the time coordinate, for the general
solutions we can consider a near-horizon expansion of
the form

aðrÞ ¼ ðr� r0Þ þ a2ðr� r0Þ2 þ a3ðr� r0Þ3
þ a4ðr� r0Þ4 þ � � � ; (6.4)

fðrÞ ¼ f1ðr� r0Þ þ f2ðr� r0Þ2 þ f3ðr� r0Þ3
þ f4ðr� r0Þ4 þ � � � : (6.5)

(Note that these expansions are for nonextremal black
holes. The discussion for extremal black holes will be
given presently). Substituting these expansions into (4.2)
and (4.3), we may then solve order by order in powers of
(r�r0), thus obtaining expressions for an and fn with n�2
in terms of f1, r0, k and �. For example, we find

5There exists a degenerate case with � ¼ 0 and 8��þ 1 ¼ 0,
in which the Lagrangian is simply

ffiffiffiffiffiffiffi�g
p ðR� R0Þ2. This degen-

erate case allows any metric with constant scalar curvature R0 to
be a solution, including some Lifshitz black holes [75,76]. Since
the equations of motion in this case are reduced to a scalar rather
than a tensor equation, the system has no linear massive spin-2
excitations.
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a2 ¼ 3r30þ5f1r
2
0�2f21r0þkr0þkf1

f21r
2
0

�ð3r20�f1r0þkÞ
4�f21r0

;

f2 ¼ðf1�3r0Þð3r20�2f1r0þkÞ
f1r

2
0

þ3ð3r20�f1r0þkÞ
4�f1r0

:

(6.6)

The expressions for the coefficients with higher n become
rapidly quite complicated, and we shall not present them
here. They are easily found, up to any desired order, using
algebraic computing methods.

Since we have fixed the cosmological constant, by
setting � ¼ �3, we see that r0 and f1 are nontrivial
parameters characterizing the solutions for each choice of
k ¼ 0, 1 or �1. The case f1 ¼ 3r0 þ k=r0 corresponds to
the Schwarzschild-AdS solution, for which the series ex-
pansions can be found from (6.3).

The temperature and the entropy are given by

T ¼
ffiffiffiffiffiffiffiffiffiffi
a1f1

p
4	

; S ¼ 1

4
!2r0ðr0 þ 2�ðf1 � 2r0ÞÞ: (6.7)

The entropy is calculated with respect to the action of
Einstein-Weyl gravity. When k ¼ 0, the Noether charge
is given by

� ¼ �2
ffiffiffiffiffiffiffiffiffiffi
a1f1

p
r0ðr0 � 2�ð2r0 � f0ÞÞ: (6.8)

It follows that the relation (6.1) indeed holds in general.
In the above entropy calculation, we used the action (2.1)
with the Gauss–Bonnet term set to zero (� ¼ 0). The
Gauss–Bonnet term contributes SGB ¼ �k, which is a
purely numerical constant, independent of the metric
modulus parameters.

In the above consideration, the functions a and f have
the same single root r ¼ r0, giving rise to nonextremal
black holes. In the extremal limit, these functions have a
double root, so that the near-horizon geometry has anAdS2
factor. The Taylor expansion is given by

aðrÞ¼ ðr� r0Þ2þa3ðr� r0Þ3þa4ðr� r0Þ4þ��� ;
fðrÞ¼ f2ðr� r0Þ2þf3ðr� r0Þ3þf4ðr� r0Þ4þ��� :

(6.9)

We find that the leading-order expansion of the equations
of motion when r ! r0 implies that

ð4�� 1Þð3r20 þ kÞ ¼ 0: (6.10)

Thus we see that for k ¼ 0, 1, extremal black holes do not
exist except for � ¼ 1

4 , on which we shall focus. Taking

this � value, we find that

a3 ¼ � 2ð4kþ 15r20Þ
3r0ðkþ 6r20Þ

;

a4 ¼ 41k2 þ 358kr20 þ 759r40
9r20ðkþ 6r20Þ2

;

f2 ¼ kþ 6r20
r20

;

f3 ¼ � 2ð2kþ 9r20Þ
3r30

;

f4 ¼ 15k2 þ 148kr20 þ 363r40
9r40ðkþ 6r20Þ

:

(6.11)

As one would have expected, the Noether charge of the
k ¼ 0 solution vanishes in the extremal limit. Note that in
the extremal limit, there is only one nontrivial parameter
r0 > 0. As we shall discuss presently, these near-horizon
geometries can extend smoothly to the asymptotic AdS or
Lifshitz infinities. When k ¼ �1, the constraint (6.10) can
be solved with r20 ¼ 1=3 for arbitrary �. However, the
resulting solution is simply the Schwarzschild-AdS solu-
tion whose f can have a double zero for k ¼ �1.

B. Asymptotic expansion

1. Asymptotically AdS solutions

For asymptotically AdS solutions, the asymptotic regions
behave roughly as follows:

a� r2ð1þ c0Þ þ k� 2M

r
þ c1r

nþ1 þ c2
rn

;

f� r2ð1þ c0Þ þ k� 2M

r
� 1

3
c1ðn� 1Þrnþ1 þ c2ðnþ 2Þ

3rn
;

(6.12)

where we have parameterized � by

� ¼ � 1

nðnþ 1Þ ) n ¼ � 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

�

s
: (6.13)

Note that there are a total of four parameters in (6.12),
corresponding to four excitations. The coefficients ðc0;MÞ
correspond to the massless spin-2 modes, while the ðc1; c2Þ
correspond to the massive spin-2 modes. For 0<�< 4, the
constant n is complex, implying that the excitation takes the
form

ffiffiffi
r

p �
c1 cos

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=�� 1

p
logr

�
þ c2 sin

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=�� 1

p
logr

��
:

(6.14)

Let us present some explicit examples. The first is
n ¼ �1=2, corresponding to � ¼ 4. The functions a and
f at asymptotic infinity are given by
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a¼ r2þm
ffiffiffi
r

p þk�2M

r
þ 5km

16r3=2
�mðm2þ48MÞ

96r5=2
þ��� ;

f¼ r2þ1

2
m

ffiffiffi
r

p þk�32Mþ7m2

r
� 15km

32r3=2

�5mð16Mþm2Þ
64r5=2

þ��� : (6.15)

When k ¼ 0, we have the Noether charge � ¼
�27ð8Mþm2Þ=2. In this case, the usual Deser-Tekin
and AMD methods of energy calculation lead to divergent
results, and hence we do not have an independent method
of calculating E to verify whether the first equality of
(4.9) holds.

The second example is n ¼ 1=2, corresponding to
� ¼ �4=3. We have

a¼ r2þkþ m

r1=2
�2M

r
þ 11km

96r5=2
þ m2

12r3
� Mm

6r7=2
þ��� ;

f¼ r2þkþ 5m

6r1=2
�2M

r
þ 65km

192r5=2
þ 25m2

144r3
� Mm

4r7=2
þ��� :
(6.16)

For k ¼ 0, the Noether charge is � ¼ 20M, which is
independent of m. In principle, the asymptotic behavior

could have the r3=2 series as well, but it does not appear to
be the case.

The third example is n ¼ 2, corresponding to�¼�1=6,
for which we find

a ¼ r2 þ k� 2M

r
þ m

r2
� 5km

21r4
þMm

3r5
þ � � � ;

f ¼ r2 þ k� 2M

r
þ 4m

3r2
� 10km

21r4
þ 5Mm

9r5
þ � � � :

(6.17)

For k ¼ 0, the Noether charge is � ¼ �8M. The energy
density can be calculated using the Deser-Tekin or AMD
methods, giving E ¼ M=ð6	Þ. Thus for this case, the
first equality in (4.9) holds. However, the numerical
results indicate that only the m ¼ 0 case, i.e., the
Schwarzschild-AdS solution, describes a black hole
with an horizon.

The final example is the critical point, namely
� ¼ �1=2, corresponding to n ¼ 1. We find that

a ¼ r2 þ k� 2 ~M

r
� 7km

15r3
þ 2m ~M

3r4
þ � � � ;

f ¼ r2 þ k� 2 ~M� 2m=3

r
� km

r3
þ 9ð18 ~Mþ 7mÞ

18r4
þ � � � ;
(6.18)

where

~M ¼ m logrþM: (6.26)

For k ¼ 0, the Noether charge is � ¼ �18m. In
Appendix C, we derive the mass formula for this case,

and we find the energy density is E ¼ 3m=ð8	Þ. Thus, in
this case, the first equality of (4.9) holds.

2. Asymptotic Lifshitz behavior

In this case, we are primarily concerned with the k ¼ 0
case. We find that the large r expansion is given by

a� r2z
�
1þ ðz2 þ 2Þm

zðzþ 2Þrzþ2
þ ~cþr�1�ð1=2Þzþð1=2Þ�

þ ~c�r�1�ð1=2Þz�ð1=2Þ�
�
;

f� �r2
�
1þ m

rzþ2
þ cþr�1�ð1=2Þzþð1=2Þ�

þ c�r�1�ð1=2Þz�ð1=2Þ�
�
;

~cþ ¼ 4� 11zþ z2 � 3z3 þ ð1� 3z� z2Þ�
2ðz� 1Þ2ð3z� 1Þ cþ;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4� 4zþ 3z2Þ

q
;

~c� ¼ 4� 11zþ z2 � 3z3 � ð1� 3z� z2Þ�
2ðz� 1Þ2ð3z� 1Þ c�: (6.20)

The Noether charge is given by

� ¼ � 6
ffiffiffi
6

p ð2� 3zþ z3Þm
z2ðz� 4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 2zþ 3

p : (6.21)

Our numerical results suggest that there are Lifshitz-like
black holes with S2 and H2 topology that have the same
leading-order behavior as the above.

C. Numerical analysis

We have carried out a numerical analysis for a variety of
choices for the coefficient � that multiplies the Weyl-
squared term in the action. The choice of the horizon radius
r0 is a nontrivial parameter, given that we have fixed the
cosmological constant (� ¼ �3). The value of the expan-
sion coefficient f1 is also a nontrivial parameter in the
solutions. The deviation of f1 from the value 3r0 þ k=r0
determines the deviation of the black hole from the usual
Schwarzschild-AdS solution.
The Schwarzschild-AdS black hole can be thought of as

a solution where only the massless spin-2 modes are ex-
cited. Deviating from f1 ¼ 3r0 þ k=r0 corresponds to set-
ting initial conditions near the horizon that cause the
massive spin-2 modes to be excited also. Our numerical
investigations suggest that solutions of this type exist, in
the sense that the numerical routines give a reasonably
stable result with the metric functions showing no sign of
runaway behavior, provided that the linearized spin-2 mas-
sive mode falls off less rapidly than the spin-2 massless
mode. This falloff rate is governed by the mass m of the
linearized fluctuation, and in turn, this is related to the
value of the parameter � in the Lagrangian. Specifically,
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the condition of less rapid falloff is achieved if the massive
mode has negative mass-squared. Solutions with stable
behavior appear to exist regardless of whether the negative
m2 lies in the nontachyonic region � 9

4 � m2 < 0 or the

tachyonic regionm2 <� 9
4 . Of course in the latter case one

would expect the solutions to exhibit time-dependent run-
away behavior, but this will not show up with the static
metric ansatz that we are considering here.

In terms of the constant � that characterizes the coeffi-
cient of Weyl-squared in the action, the condition that
the massive linearized mode have m2 < 0 corresponds to
�<� 1

2 or �> 0.

We find that if � lies in the region�1<�<� 1
2 , then

defining

f1 ¼ 3r0 þ k=r0 þ �; (6.22)

there is a range for �, with �� < �< �þ, for which the
numerical solutions indicate the occurrence of asymptoti-
cally AdS black holes. The lower limit �� is negative,
while the upper limit �þ is positive. If the value of � is fine-
tuned to be equal to �� or �þ, then the asymptotic behav-
ior of the black hole changes from AdS to Lifshitz. The
value of z in the asymptotically Lifshitz case is given by the
larger root in (3.6). If the parameter � is chosen to lie
outside the range �� � � � �þ, then the numerical analy-
sis indicates that the solution becomes singular.

As an example, let us consider � ¼ � 11
16 , which from

(3.6) implies that there should exist asymptotically Lifshitz
solutions with z ¼ 2. Taking k ¼ 0 and choosing r0 ¼ 10,
we find that the limiting values for � in (6.22) are

�� 
�11:596956988; �þ 
 62:826397763: (6.23)

In our numerical routine, we set initial conditions just
outside the horizon at r ¼ r0 þ 0:0001, and run out to r ¼
100000. For the asymptotically Lifshitz black hole with
� ¼ ��, we obtained plots of aðrÞ, fðrÞ, given in Fig. 1,
and aðrÞ=r4 and fðrÞ=r2, given in Fig. 2. Note that although
we integrated out to r ¼ 100000, we only plot the func-
tions out to r ¼ 100 in order to be able to generate more
illustrative displays. The asymptotic value of the ratio
fðrÞ=r2 reaches about 0.545454545452 as r approaches
100000, which is indeed close to the expected ratio 6=11
[see Eq. (3.4)].
The solution with � ¼ �þ exhibits very similar Lifshitz

behavior. If we choose a value of � that lies in between the
two Lifshitz extremes, we obtain an asymptotically AdS
black hole. Figures 3 and 4 illustrate this, again for � ¼
� 11

16 , k ¼ 0 and r0 ¼ 10, in the case that � ¼ 20. Figure 3

shows the functions a and f, while Fig. 4 shows the
functions a=r2 and f=r2.
The story is very similar for solutions with k ¼ 1 or�1.

For example, if we consider k ¼ 1 solutions, again with
� ¼ � 11

16 and r0 ¼ 10, we find that the upper and lower

limits on the range of � in (6.22) is now

�� 
�11:596956988; �þ 
 62:826397763: (6.24)

We find solutions exhibiting asymptotically Lifshitz type
of behavior, again with z ¼ 2, if � is taken to be either of
the extreme values. If, on the other hand, � lies in between
the limiting values �� and �þ, then we find solutions with

FIG. 1. The metric functions aðrÞ and fðrÞ for the asymptotically Lifshitz black hole.

FIG. 2. The asymptotic forms for aðrÞ=r4 and fðrÞ=r2, illustrating the z ¼ 2 Lifshitz behavior.
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asymptotically AdS behavior. The forms of the metric
functions a and f are qualitatively similar to those illus-
trated in the k ¼ 0 examples above.

When � ¼ � 1
2 , corresponding to the case of critical

gravity, numerical analysis indicates that asymptotically
AdS black hole solutions again exist, within some range
of values for the � parameter in (6.22). However, � ¼ � 1

2

is on the borderline for stability of the solutions, with
� 1

2 <�< 0 seemingly being unstable, and so it is not

easy to extract meaningful quantitative results in the criti-
cal case.

We also perform the numerical analysis for the extremal
case with the parameter r0, whose horizon behavior is given
by (6.9). For S2 or T2 topology, such a solution exists only
for � ¼ 1=4. For k ¼ 1, the numerical results indicate that
the horizon can smoothly extend to the asymptotic AdS4
infinity for all parameters r0 > 0:251976578. When r0 ¼
0:251976578, the asymptotic behavior becomes Lifshitz-like
with exponent z ¼ �1=2. For r0 < 0:251976578, the solu-
tion becomes singular. For k ¼ 0, the horizon can extend
smoothly to AdS in the asymptotic region for any r0 > 0. For

k ¼ �1, we must have r0 > 1=
ffiffiffi
6

p
. When r0 ¼ 1=

ffiffiffi
3

p
, the

usual Schwarzschild-AdS solution emerges. There is no
indication of Lifshitz behavior for k ¼ �1.

VII. CONCLUSIONS

In this paper, we have considered four-dimensional
Einstein gravity extended by the addition of general
quadratic-curvature terms. In addition to the usual AdS

vacuum, the theory contains Lifshitz and Schrödinger vac-
uum solutions. Our primary purpose was to construct black
holes obeying asymptotically AdS or Lifshitz boundary
conditions, with spherical, 2-torus or hyperbolicH2 spatial
symmetry. We focused on conformal gravity, with a purely
Weyl-squared action, as well as Einstein-Weyl gravity, for
which the standard Einstein action with cosmological con-
stant is augmented with a Weyl-squared term. The general
spherically symmetric local solution in conformal gravity
was known previously. It involves two nontrivial parame-
ters, one of which is associated with the mass of the black
hole while the other, which we call�, may be thought of as
characterizing massive spin-2 hair.
Owing to the presence of the second nontrivial parame-

ter in the general AdS black hole solutions, one can expect
that the usual first law of thermodynamics, dE ¼ TdS, will
need to be augmented by an additional term involving a
new pair of intensive and extensive thermodynamic varia-
bles. We studied this in detail in the case of AdS black
holes in conformal gravity, showing how the first law
becomes dE ¼ TdSþ�d�, where the variable �, con-
jugate to �, is determined by requiring the integrability of
the equation. We also needed to find a satisfactory defini-
tion of energy for the black holes in conformal gravity. Its
derivation, as a conserved charge evaluated at infinity, is
described in Appendix D.
In conformal gravity, the cosmological constant � of the

AdS black holes is a parameter of the solution rather than a
parameter in the action; it characterizes the ‘‘AdS radius’’ of
the asymptotically AdS region. It is therefore natural to

FIG. 3. The metric functions aðrÞ and fðrÞ for the asymptotically AdS black hole.

FIG. 4. The asymptotic forms for aðrÞ=r2 and fðrÞ=r2, illustrating the AdS behavior.
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promote � to being another thermodynamic quantity that can
be varied in the first law. We showed that this indeed gives a
consistent extension of the thermodynamic phase space.

We then constructed Lifshitz black holes in conformal
gravity, with a temporal/spatial anisotropic scaling pa-
rameter z ¼ 4. These solutions involve only a single non-
trivial parameter, and hence the thermodynamic quantities
can be easily evaluated. We showed that, since the Lifshitz
black hole has T2 spatial sections, there exists a conserved
Noether charge �. Moreover, � is related to the energy of
the black hole, and to the product of temperature and
entropy (4.9), in the same way as has previously been
observed in Ref. [60] for certain two-derivative theories.
However, for the more general AdS black holes (with T2

spatial sections) involving massive spin-2 hair, character-
ized by�, the Noether charge no longer seems to provide a
natural definition for the energy, although the second
equality of (4.9) always holds. By contrast, in the case of
Schwarzschild-AdS black holes with T2 spatial sections,
the relation (4.9) always holds. We also obtained Lifshitz-
like black holes with S2 and H2 spatial sections, with
Lifshitz exponent z ¼ 4 and 0, and we found that the
thermodynamic relations are obeyed in these cases.

The existence of well-defined AdS and Lifshitz black
holes in conformal gravity with additional massive spin-2
hair prompted us to seek similar solutions in Einstein-Weyl
gravities. It does not appear to be possible to obtain closed-
form expressions for such solutions, and so we resorted to
numerical integration of the equations of motion. The
procedure is to first obtain both the horizon and asymptotic
expansions, and then use the horizon expansion as the
initial boundary conditions for numerical analysis and
compare the resulting solution for large radial values
with the asymptotic expansions. We find that the horizon
geometry involves an extra parameter over and above that
of the usual Schwarzschild-AdS solution which is an
Einstein metric. The numerical analysis suggests that
asymptotically AdS black holes exist within a continuous
range of values for the additional parameter. At the bound-
ary of this parameter region, the asymptotic behavior
changes to that of Lifshitz solutions, giving rise to corre-
sponding asymptotically Lifshitz black holes. Beyond
these parameter boundaries, the solutions develop naked
curvature singularities. For a black brane with k ¼ 0, for
which there is an additional Noether charge, we find that
the second equality in (4.9) always holds, whereas the
first equality does not. These solutions provide an inter-
esting phase transition of the corresponding boundary
field theory from a relativistic Lorentzian system to a
nonrelativistic Lifshitz system. We further examine the
existence of extremal solutions whose near-horizon ge-
ometry has an AdS2 factor. It turns out that nontrivial
AdS extremal solutions arise only for � ¼ 1

4 . In the case

of k ¼ 1, there exists an extremal Lifshitz-like black hole
with exponent z ¼ � 1

2 .

It would be interesting to explore the possibility of embed-
ding extended gravity within string theory, given that string
theory contains higher derivative corrections due to stringy or
quantum effects. In fact, other than some special cases for which
there is maximal supersymmetry, not much is known regarding
the forms of these higher derivative corrections. In light of the
vast string landscape, one expects that there are generic
corrections, which include the higher-order curvature terms
discussed in this paper. One might then invoke holographic
techniques, in which case the black hole solutions discussed
in this paper could be used to describe three-dimensional field
theories or condensed matter systems. For the AdS black
holes, the extra parameter of the AdS black hole solution
would be mapped to a parameter in the dual field theory
associated with finite coupling corrections. The additional
global symmetry exhibited by the AdS black brane solutions
would then be associated with a particular scaling symmetry
in which space and time are rescaled differently, which is
present at the conformal fixed point as well as away from it.
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APPENDIX A: FURTHER SOLUTIONS IN
CONFORMAL GRAVITY

1. Asymptotically Schrödinger solutions

Here we construct solutions that are asymptotic to the
Schrödinger solutions discussed in Ref. [41]. We consider
the metric ansatz

ds2 ¼ �r2zfdt2 þ dr2

r2f
þ r2ð�2dtdxþ dy2Þ; (A1)

for z ¼ ð1; 12 ; 0;� 1
2Þ. We find that the equations are re-

duced to the fourth-order differential equation

0 ¼ f0000 þ ð6fþ 18zfþ 7rf0Þf000
2rf

þ f00

2r2f2
ð4r2ff00

þ 2r2f02 þ ð53zþ 5Þrff0 þ 4ð16z2 þ 3z� 1Þf2Þ

þ f0

2r3f2
ð2ð3z� 1Þr2f02 þ ð78z2 � 11z� 9Þrff0

þ 4ð28z2 � 10z2 � 7zþ 1Þf2Þ

þ 4zðz� 1Þð2z� 1Þð2zþ 1Þf
r4

: (A2)
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For z ¼ 1, we find a solution f ¼ 1�M=r, giving

ds2 ¼ �r2fdt2 þ dr2

r2f
þ r2ð�2dtdxþ dy2Þ;

f ¼ 1�M

r
:

(A3)

2. Generalized Plebanski metric

Using the Plebanski metric ansatz [77], we find solutions
in conformal gravity given by

ds2 ¼ � �x

x2 þ y2
ðdtþ y2dc Þ2 þ �y

x2 þ y2
ðdt� x2dc Þ2

þ x2 þ y2

�x

dx2 þ x2 þ y2

�y

dy2; (A4)

where

�x ¼ c0 þ c1xþ c2x
2 þ c3x

3 þ c4x
4;

�y ¼ c0 þ d1y� c2y
2 þ c1c3

d1
y3 þ c4y

4:
(A5)

This metric is conformal to the Plebanski-Demianski
[78] metric. Namely, the metric dŝ2 ¼ �2ds2 with � ¼
ð1þ c3xy=d1Þ�1 is Einstein and satisfies R̂��¼�ĝ�� with

� ¼ � 3ðc0c23 þ c4d
2
1Þ

d21
: (A6)

APPENDIX B: FURTHER SOLUTIONS IN
EXTENDED GRAVITY

1. Time-dependent metrics

For the general quadratic action (2.1) with arbitrary �
and �, we will consider time-dependent and spatially flat
isotropic solutions described by the metric

ds2 ¼ �dt2 þ fðtÞ2 X3
i¼1

dx2i : (B1)

Applying the trace condition reduces the equations to the
single third-order equation

3f2f02��f4�6ð�þ3�Þð3f04�2ff02f00

þf2f002�2f2f0f000Þ ¼ 0: (B2)

For Einstein-Weyl gravity, �þ 3� ¼ 0 and, for a positive
cosmological constant, the only solution is de Sitter
spacetime.

We will now consider nonisotropic time-dependent
solutions for extended gravity with zero cosmological
constant, described by the Kasner metric

ds2 ¼ �dt2 þX3
i¼1

t2pidx2i : (B3)

It can be shown that a metric of this form must satisfy the
conditions

X3
i¼1

pi ¼
X3
i¼1

p2
i ¼ 1: (B4)

In other words, the quadratic terms in the action (2.1) do
not modify the Kasner conditions that arise in Einstein
gravity. This disallows isotropic expansion and, in particu-
lar, one exponent must be negative. However, in conformal
gravity the exponents need only satisfy the condition

2
X3
i¼1

pi þ 2
X3
i¼1

p2
i �

�X3
i¼1

pi

�
2 ¼ 3: (B5)

This solution includes the Kasner metric for which both
conditions in (B4) are obeyed.

2. pp-wave metrics

A general class of pp-wave solutions for the general
quadratic action (2.1) with arbitrary � and � has the metric

ds2 ¼ Hdx2 þ dr2

r2
þ r2ð�2dtdxþ dy2Þ; (B6)

where

H ¼ f1r
2 þ f2

r
þ f3r

2zþ þ f4r
2z� þ g1ð1þ y2r2Þ; (B7)

the fi and gi are functions of x only and z ¼ z� satisfy
the equation

1� 24�þ �ð4z2� � 2z� � 8Þ ¼ 0: (B8)

For conformal gravity and critical gravity, the H func-
tion can have additional terms. Namely, for conformal
gravity H has the form

H ¼ f1r
2 þ f2

r
þ f3rþ f4 þ g1y

2r2 þ g2y
3r2; (B9)

while for critical gravity it is given by

H ¼ f1r
2 þ f2

r
þ f3r

2 logrþ f4
logr

r
þ g1ð1þ y2r2Þ:

(B10)

For gi ¼ 0 these metrics all reduce to ones presented in
Refs. [12,13], for which H is a function only of x and r.
Metrics for which the H function involves sinusoidal
dependence on the y coordinate are also discussed in
Ref. [13]. For f1 ¼ f3 ¼ f4 ¼ gi ¼ 0 all of these metrics
reduce to the Kaigorodov [58] metric.

APPENDIX C: ENERGY OF LOGARITHMIC
BLACK HOLE IN CRITICAL GRAVITY

In this appendix, we derive the mass of the logarithmic
black hole using the Abbott-Deser-Tekin (ADT) and the
AMD procedures.
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The main idea of the ADT method is to write the asymp-
totic AdS black hole metric in the form g�� ¼ �g�� þ h��,

where �g�� is the metric on AdS, and then interpret the

linearized variation of the field equation, given in our case
by (2.3), as an effective gravitational energy-momentum
tensor T�� for the black hole field. One then writes the

conserved current J� ¼ T����, where �� is a Killing

vector that is timelike at infinity, as the divergence of a
2-form F ��; i.e., J

� ¼ r�F ��. From this, one obtains the

ADT mass for the Lagrangian corresponding to (2.1):

8	GE ¼ ð1þ 8��þ 2��Þ
Z
S1

dSiF 0i
ð0Þ

þ ð2�þ �Þ
Z
S1

dSiF 0i
ð1Þ þ �

Z
S1

dS��F 0i
ð2Þ;

(C1)

where dSi is the area of the sphere at infinity. The definition
ofF �� associated with the various terms in the equations of
motion have been calculated in Ref. [67]. One may verify
that upon defining

F ��
ð0Þ ¼ ��r½�h��� þ �½�r��hþ h�½�r����

� �½�r�h
��� þ 1

2
hr���;

F ��
ð1Þ ¼ 2�½�r��RL þRLr���;

F ��
ð2Þ ¼ �2��r½�G���

L � 2G�½�
L r����; (C2)

it follows that

r�F
��
ð0Þ ¼ G��

L ��;

r�F
��
ð1Þ ¼ ½ð�r�r� þ g��hþ�g��ÞRL���;

r�F
��
ð2Þ ¼

��
h� 2�

3

�
G��

L � 2�

3
RLg��

�
��:

(C3)

At the critical point �� ¼ �3�� ¼ 3
2 , the first term in

(C1) vanishes, and the contributions to the mass of the
logarithmic black hole from the two remaining terms is

EADT
log ¼ 3m

8	G
: (C4)

Since the logarithmic black hole is asymptotically AdS,
one can also try to apply the AMD method to this case. The
derivation of AMD conserved quantities relies on a detailed
analysis of the falloff rate of the curvature near the bound-
ary, which is weighted by a smooth function� (the confor-
mal boundary is defined at � ¼ 0). For details on the
requirement for �, the reader is referred to Refs. [68,69].
For n-dimensional asymptotic AdS spacetime, for generic
cases in which the leading falloff of the Weyl tensor goes as
�n�5, the AMD formula for conserved quantities in qua-
dratic curvature theories were explored in Refs. [70,71].
However, in the case of AdS logarithmic black holes, the
leading falloff of the Weyl tensor near the boundary is
modified to be

Cabcd ! �n�5Kabcd þ�n�5 logð�ÞLabcd: (C5)

Here a and b are indices related to a new coordinate system
which adopts � as the radial coordinate. It is found that, at
critical points where a logarithmic term can appear, the
falloff behavior of the energy-momentum tensor is still at
the order of �n�3. Thus, the flux across the boundary is
finite. This implies that the AMD conserved quantities for
the logarithmic black hole may bewell-defined. In Ref. [71],
the AMD conserved quantities corresponding to the loga-
rithmic black hole are found to be given by

Q�½C� ¼ �R0

8	GðnÞnðn� 3Þ
Z
C
dxn�2

ffiffiffiffî
�

p
L̂ab�

aN̂b; (C6)

with

R0 ¼ �nðn� 1Þ; (C7)

where the AdS radius has been set to 1 and L̂ab �
‘2Leafbn̂

en̂f. Specifically for the four-dimensional AdS-

logarithmic black hole solutions with the asymptotic
expansion given by (6.18), one finds that

EAMD
log ¼ 3m

8	G
: (C8)

APPENDIX D: ENERGY OFADS BLACK HOLES
IN CONFORMAL GRAVITY

In this appendix, we present details of the proposal for
calculating the mass of AdS black holes in conformal
gravity that we discussed in Sec. VA. The Lagrangian
for conformal gravity is given by

e�1L ¼ �

2
C��
�C��
�: (D1)

The solutions of conformal gravity discussed in Sec. V can
be written as

ds2 ¼�fdt2þdr2

f
þ r2d�2

2;k; f¼ r2þbrþcþd

r
;

3bd�c2þk2 ¼ 0: (D2)

To apply the ADT method to this solution, a background
subtraction is necessary. It turns out that if we simply
choose the static AdS metric as the background, the energy
calculated is divergent. On the other hand, the background-
independent AMD method will also give a infinite result
since the leading falloff of the Weyl tensor of the solution
(D2) is slower than that of the usual AdS black hole.
Motivated by finding a proper definition of energy for

black hole solutions (D2) in conformal gravity, we adapt
the standard Noether method to the Lagrangian of confor-
mal gravity. In the following, we briefly review the Noether
procedure for deriving a conserved current associated with
symmetry generated by the Killing vector �.
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The first variation of the Lagrangian 4-form generated
by the vector � can always be expressed as

L �L ¼ EL��þ d�ð�;L��Þ; (D3)

where � represents a collection of tensorial fields, E
denotes their equations of motion, and L� denotes the

Lie derivative. Using the identity

L � ¼ di� þ i�d; (D4)

for the Lie derivative of a differential form, we find a
conserved current defined by

J ¼ �� i�L: (D5)

On shell, we have

dJ ¼ 0 ) J ¼ dQ; (D6)

where Q is the conserved charge density associated with
the symmetry generated by �. Applying this procedure to
conformal gravity, we find that

Q ¼ 1

4
��
�Q


�dx� ^ dx�; (D7)

with

Q
� ¼ � �

8	G
ðC
���r��� � 2��r�C


���Þ: (D8)

It is well-known that the conserved charge Q derived from
the Einstein-Hilbert action only accounts for one half of the
true ADM mass. (The other half can be understood as
coming from a total derivative term added to the
Einstein-Hilbert action [79]). The validity of the proposal
to take (D8) as the definition of energy for black holes in
conformal gravity can be tested by applying it to the known
examples of the Schwarzschild-AdS and Kerr-AdS black
holes. We find that the results using (D8) coincide with
those obtained from the AMDmethod and in particular, by
setting � ¼ 1

2 , we recover the result presented in

Refs. [72,80], thus confirming the tree level equivalence
between Einstein gravity and Weyl gravity that was pro-
posed in Ref. [38].
Finally, we calculate the conserved charge for the metric

(D2) associated with the timelike Killing vector @=@t. It is
given by

Z
Q ¼ � �!2

16	G

�
4d� 2

3
bðc� kÞ

�
: (D9)

As we discuss in Sec. V, we can use this conserved quantity
to provide a definition of energy, which turns out to be
consistent with the first law of thermodynamics for the
general AdS black holes in conformal gravity.
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