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The detection of gravitational waves from extreme-mass-ratio inspirals (EMRI) binaries, comprising a

stellar-mass compact object orbiting around a massive black hole, is one of the main targets for low-

frequency gravitational-wave detectors in space, like the Laser Interferometer Space Antenna (LISA) or

evolved LISA/New Gravitational Observatory (eLISA/NGO). The long-duration gravitational-waveforms

emitted by such systems encode the structure of the strong field region of the massive black hole, in which

the inspiral occurs. The detection and analysis of EMRIs will therefore allow us to study the geometry of

massive black holes and determine whether their nature is as predicted by general relativity and even to

test whether general relativity is the correct theory to describe the dynamics of these systems. To achieve

this, EMRI modeling in alternative theories of gravity is required to describe the generation of

gravitational waves. However, up to now, only a restricted class of theories has been investigated. In

this paper, we explore to what extent EMRI observations with a space-based gravitational-wave

observatory like LISA or eLISA/NGO might be able to distinguish between general relativity and a

particular modification of it, known as dynamical Chern-Simons modified gravity. Our analysis is based

on a parameter estimation study which uses approximate gravitational waveforms obtained via a radiative-

adiabatic method. In this framework, the trajectory of the stellar object is modeled as a sequence of

geodesics in the spacetime of the modified-gravity massive black hole. The evolution between geodesics is

determined by flux formulae based on general relativistic post-Newtonian and black hole perturbation

theory computations. Once the trajectory of the stellar compact object has been obtained, the waveforms

are computed using the standard multipole formulae for gravitational radiation applied to this trajectory.

Our analysis is restricted to a five-dimensional subspace of the EMRI configuration space, including a

Chern-Simons parameter which controls the strength of gravitational deviations from general relativity.

We find that, if dynamical Chern-Simons modified gravity is the correct theory, an observatory like LISA

or even eLISA/NGO should be able to measure the Chern-Simons parameter with fractional errors below

5%. If general relativity is the true theory, these observatories should put bounds on this parameter at the

level �1=4 < 104 km, which is four orders of magnitude better than current Solar System bounds.
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I. INTRODUCTION

There is strong observational evidence for the existence
of black holes in galactic x-ray binary systems, seen as
ultraluminous x-ray sources, and in the centers of galaxies,
seen as active galactic nuclei (see, e.g., Ref. [1]). Indeed,
observations carried out by space- and ground-based
telescopes suggest the presence of a dark compact object,
likely a massive black hole (MBH), at the center of most
observed galaxies (see Ref. [2] and references therein). In a
typical galaxy, the MBH is surrounded by around 107–108

stars forming a cusp or core (see, e.g., Ref. [3]). As a
consequence of relaxation, mass segregation and large
scattering encounters between the stars, stellar compact
objects (SCOs) may be perturbed onto orbits which pass
sufficiently close to the MBH and become gravitationally

bound forming a binary system. Therefore, the capture of a
SCO by a MBH is likely to be a frequent phenomenon in
the Universe.
Once the SCO has become bound to the MBH, it starts a

slow inspiral driven by the emission of gravitational waves
(GWs). During this process, the system loses energy and
angular momentum, and the orbit of the SCO circularizes
and shrinks adiabatically, i.e. on a time scale much longer
than the orbital period. The loss of energy and angular
momentum occurs initially in bursts, when the object
passes through the orbital pericenter, but eventually the
gravitational radiation is being emitted continuously until
the object reaches the innermost stable orbit and plunges
into the MBH. For EMRIs whose GW frequencies lie in the
sensitivity band of space-based GW detectors, like Laser
Interferometer Space Antenna (LISA) [4,5] or evolved
LISA/New Gravitational Observatory (eLISA/NGO) [6,7],
the central MBH must have mass in the range, M� �
104–107M�. The systems of interest must also have a
SCO compact enough to avoid tidal disruption, and so
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the SCO must be a stellar mass black hole (m? �
1–50M�), a neutron star (m? � 1:4M�) or a white dwarf
(m? � 0:6M�). The typical mass ratios, � ¼ m?=M�, of
EMRI systems are therefore in the range �10�6–10�4.

The strongest detectable EMRI signals are unlikely to
be any closer than a luminosity distance D� 1 Gpc [8],
at which distance, the instantaneous amplitude of the
measured EMRI signal is an order of magnitude below
the level of instrumental noise and the GW foreground
from galactic white-dwarf binaries. EMRI detection will
therefore rely on matched filtering of the detected data
stream with a bank of templates of the possible signals
which might be present in the data. During the last year
before plunge, an EMRI will generate �1=� gravita-
tional waveform cycles in the LISA band [9]. During
this time, the orbit of the SCO tracks the strong field
geometry in the vicinity of the MBH and maps out the
(multipolar) structure of the MBH spacetime [10] in the
emitted GWs.

GWs from EMRIs are generated in the strong field
region close to the MBH and therefore probe general
relativity (GR) in a regime which, up to now, has not
been reached observationally. If GR is the true theory of
gravity describing EMRI dynamics, their waveforms will
determine the parameters of the system with very high
precision. However, if the central MBH is not described
by the Kerr metric or GR does not properly describe
the binary dynamics in the strong field regime, and we
assume GR when constructing our detection templates, we
will obtain incorrect results from GW observations.
Therefore, there is a strong motivation for studying what
kind of modifications to the dynamics of EMRIs one could
expect from considering well-motivated theories of gravity
other than GR. To that end, we must understand how the
signals are modified in these alternative theories so that we
are able to detect and quantify deviations from GR.

The use of EMRI observations for such tests of funda-
mental physics has been explored by several authors (see
Ref. [11] and references therein), but the majority of that
work has focused on using the observations to constrain the
properties of ‘‘bumpy’’ black holes. These are solutions to
the field equations of general relativity which represent
spacetimes which differ from the Kerr solution by an
amount controlled by a tunable deviation parameter.
EMRI observations will be able to place bounds on the
size of deviations of the forms considered [12–16].
However, this is not necessarily a test of general relativity,
since the bumpy black holes are constructed within that
theory. It is rather a test of the ‘‘no-hair’’ property of black
holes (stationary astrophysical black holes are described by
the 2-parameter [mass and spin] family of spacetime ge-
ometries of Kerr [17]) and hence the auxiliary assumptions
which go into the no-hair conjecture. Hence, bumpy black
holes are actually a test of the Kerr geometry assuming GR
is the correct theory of gravity.

Due to the myriad of alternative theories of gravity
available, the questions which arise are: Which kind of
theory do we choose to compare against? What new fea-
tures might we expect to observe in the GW signals which
might allow us to distinguish this theory from GR? In this
paper, we address these different questions and explore the
capability of a space-based detector like LISA to discrimi-
nate between GR and an alternative theory of gravity. In
particular, we focus in a modification of GR constructed by
the addition of a Chern-Simons (CS) gravitational term
(also known as the Pontryagin invariant) to the action.
Interest in this theory was initiated with the work of
Jackiw and Pi [18] where gravitational parity violation
was investigated. Such a term appears in four-dimensional
compactifications of perturbative string theory due to the
Green-Schwarz anomaly-canceling mechanism [19] and
also in loop quantum gravity when the Barbero-Immirzi
parameter is promoted to a scalar field coupled to the Nieh-
Yan invariant [20–22]. Moreover, the Pontryagin term is
unavoidable in an effective field theory (see Ref. [23] in the
context of cosmological inflation). In the approach of
Jackiw and Pi, the Pontryagin term is introduced in the
action multiplied by a scalar function and, in this way, it
contributes to the field equations (in a four-dimensional
spacetime, the Pontryagin term is a topological invariant
and hence does not contribute to the field equations), but
this field is not dynamical. That is, it is a given function of
the spacetime coordinates. This version of CS modified
gravity has been extensively studied, and it has been shown
to be dynamically too restrictive, and, for instance, generic
oscillations of a nonrotating Schwarzschild black hole are
not allowed [24]. In addition, there are problems with the
uniqueness of solutions of the theory [25]. For these rea-
sons, we focus on the version of the theory in which the CS
scalar field is dynamical, i.e. dynamical Chern-Simons
modified gravity (DCSMG); see Ref. [26] for a review of
CS modified gravity.
The first study of EMRIs in DCSMG was done in

Ref. [27], where the main ingredients of the problem
were discussed, and a simple waveform model was put
forward. This model used the so-called semirelativistic
approximation, in which the trajectories are geodesics
and the waveforms are built by using a standard multipolar
expansion of the gravitational radiation. Then, differences
between the GR and DCSMG waveforms were studied,
and also some predictions for the relative dephasing of the
waves were made. However, this work relied on the as-
sumption that radiation reaction (RR) effects, i.e. the ef-
fects which arise from the interaction of the SCO with its
own gravitational field, would allow one to distinguish
between GR and DCSMG. Without RR, the harmonic
structure of the waveforms is going to be very similar,
and hence it is likely that it would be always possible to
match a signal with both GR and DCSMG template wave-
form models. On the other hand, in a recent study [28],
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corrections to the gravitational- and scalar-wave fluxes for
circular orbits around a nonrotating MBH in CS gravity
have been computed using perturbation theory. This type
of computations is very promising and can complement the
work we present in this paper.

In this paper, we go beyond the model of Ref. [27] by
including two important additional ingredients: (i) RR effects
based on a hybrid scheme [29] which combines post-
Newtonian (PN) approximations and fits to Teukolsky results
[30]; (ii) Fisher parameter estimation techniques to make
predictions on the capability of a space-based detector to
measure the EMRI parameters, in particular a CS parameter
which controls the deviations fromGR.We have built kludge
waveforms in the spirit of Ref. [31] and have used them to
estimate expected measurement errors for the main parame-
ters describing an EMRI system in DCSMG.We find that for
LISA, these error estimations have the following order of
magnitude: central black hole mass, � logM� � 5 � 10�3;
central black hole spin,�a� 5 � 10�6M�; orbital eccentric-
ity, �e0 � 3 � 10�7; luminosity distance of source,
� logðDL=�Þ � 2 � 10�2; and for the CS parameter, �, in
the combination � ¼ a�, we find � log� � 4 � 10�2.
Moreover, we also use this framework to put bounds on the
CS parameter, �, directly. Assuming that GR is the correct
theory to describe ERMIs, we find that LISA measurements

could put bounds of the order �1=4 < 104 km, which are
better by four orders of magnitude than those derived from
frame dragging observations around the Earth [32].

This paper is organized as follows. In Sec. II, we describe
all the components used for the construction of EMRI
gravitational waveforms in DCSMG and the response of
space-based GW detectors. This includes the basic aspects
of the theory, the deviations in the MBH geometry and its
impact in the orbital dynamics and the inclusion of RR
effects. In Sec. III, we summarize the basics elements of
signal analysis theory and parameter estimation based on
Fisher matrix techniques. In Sec. IV, we apply these tech-
niques to thewaveforms and responsemodels built in Sec. II,
providing parameter error estimates for both LISA and
eLISA/NGO and also bounds to the CS parameter. We finish
in Sec. VI with conclusions and a discussion. Appendix A
contains the form of the power spectral density of LISA and
eLISA/NGO, while Appendix B contains the formulae
needed for the construction of the RR effects.

Throughout this paper, we use Einstein summation
convention for repeated indices and geometrized units in
which G ¼ c ¼ 1. Spacetime indices are denoted by
Greek letters; spatial indices are denoted with Latin
letters i; j; . . . ; r� denotes the canonical metric covariant

derivative operator and h � g��r�r� denotes the

d’Alambertian wave operator.

II. EMRIS IN DCSMG

In order to carry out parameter estimation studies to
assess the ability of a given GW detector to detect and

extract the physical information of an EMRI system, we
first need a theoretical model of the generated waveforms.
EMRIs are complex systems, and we do not have yet a
description accurate enough to produce waveforms in GR
which can be used for data analysis purposes. However, for
parameter estimation studies, it is enough to have a wave-
form model which contains all the features of the real
waveforms and which approximates the waveform phase
to within a few cycles over the whole inspiral.
Due to the large difference between the masses of the

two components in an EMRI, the GW signal can be
modeled accurately using perturbation theory (see e.g.
Ref. [33]), where the SCO is represented as a structureless
particle orbiting in the MBH spacetime background.
Although on short timescales, the orbit of the SCO is
approximately a geodesic of the MBH spacetime, its
parameters slowly change with time due to RR effects.
The best method we have to estimate these RR effects is
the so-called self-force approach. At present, the gravita-
tional self-force has been computed for the case of a non-
rotating MBH [34,35], and progress is being made toward
calculations for the more astrophysically relevant case of a
spinning MBH [36] (see Refs. [37–39] for reviews).
In parallel to the self-force program, some efforts to build

certain approximation schemes to model EMRIs have been
made. For the purposes of this work, we focus on the so-
called numerical kludgewaveformmodel [31]. In that frame-
work, the orbital motion is given by a sequence of geodesics
around a Kerr MBH, with the evolution of the geodesic
parameters dictated by a dissipative RR prescription. This
prescription is based on PN evolution equations for the
orbital elements (from 2PN expressions for the fluxes of
energy and angular momentum) calibrated to more accurate
Teukolsky fluxes with 45 fitting parameters [29]. The wave-
forms are then modeled using a multipolar expansion [40].
To accurately compute the GWemission from EMRIs in

an alternative theory of gravity, we need to understand both
how the orbital dynamics of the binary are altered and how
gravitational wave generation and propagation differs in
the alternative theory. In DCSMG, the GW emission
formulae are not modified at leading order [27], and so in
this paper, we will consider modifications to the underlying
orbital dynamics only. In what follows, we describe the
main components of our waveform model, summarizing
the procedure introduced in Ref. [27] and including the RR
effects just described.

A. Formulation of DCSMG

In DCSMG, the action functional depends on the space-
time metric g��, on the CS scalar field #, and on the matter

fields c mat, and it can be cast in the following form

S½g��;#;c mat�¼�NSEH½g���þ�

4
SCS½g��;#�

þ�

2
S#½g��;#�þSmat½g��;c mat�; (1)
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where �N is the gravitational constant, 1=ð16�Þ in
geometrized units, and � and � are universal coupling
constants which control the strength of the CS modifica-
tions. The different contributions to the action are the GR
Einstein-Hilbert action

SEH ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
R; (2)

where g is the metric determinant and R is the Ricci
curvature scalar; the CS gravitational correction

SCS ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
#	RR; (3)

where 	RR :¼ 	R�
�
	
R�

�	
 ¼ 1
2 �

	
��R�
���R

�
�	
 is

the Pontryagin density, R�
��� is the Riemann tensor,

����� is the Levi-Civita antisymmetric tensor and here
the asterisk denotes the dual operation; the CS scalar field
action term

S# ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p ½g��ðr�#Þðr�#Þ þ 2Vð#Þ�; (4)

where V is the scalar field potential, which is neglected in
this work (i.e. V ¼ 0); and finally, Smat½g��; c mat� is the
action of the different matter fields.

Varying the action with respect to the metric and the CS
scalar field, we obtain the field equations of DCSMG:

G�� þ �

�N

C�� ¼ 1

2�N

ðTmat
�� þ Tð#Þ

�� Þ; (5)

�h# ¼ ��

4
	RR; (6)

where G�� is the Einstein tensor and C�� is the so-called

C-tensor which has two parts, C�� ¼ C��
1 þ C��

2 with

C��
1 ¼ ðr�#Þ��
�ð�r�R

�Þ

 ;

C��
2 ¼ ðr�r
#Þ	R
ð��Þ�:

(7)

Finally, Tmat
�� is the matter stress-energy tensor, and Tð#Þ

�� is

the stress-energy of the CS scalar field, given by

Tð#Þ
�� ¼ �

�
ðr�#Þðr�#Þ � 1

2
g��ðr�#Þðr�#Þ

�
: (8)

One can see that taking the divergence of the field equa-
tions (5), using the Bianchi identities and the conservation
of the matter stress-energy tensor, one obtains the field
equation (6) for the CS scalar field.

There are several consequences of DCSMG which are
relevant for this work. The first one is that the number of
independent waveform polarizations which a detector far
away from a GW source will see are the same in DCSMG
as in GR [27], i.e., the plus and cross tensor GW polar-
izations. In addition to the plus and cross polarizations, in
DCSMG, there is an additional breathing mode; however,
it decays faster, typically like r�2, and is therefore unlikely

to be detected by an observer far away from the source.
Another important property of GWs in DCSMG is the
structure of the stress-energy (or mass) tensor which can
be associated with the GWs in the short-wave approxima-
tion (see, e.g., Ref. [41]), commonly known as the Isaacson
tensor [42,43]. In Ref. [27], it was shown that the GW
stress-energy tensor has the same form (in terms of the
gauge-invariant metric perturbation describing the GWs)
as the one of Isaacson for GR. This is due to the fact that
the averaging involved in the short-wave approximation
cancels out all the CS corrections giving rise, at leading
order, to essentially the same backreaction in DCSMG as
in GR.

B. The MBH geometry in DCSMG

The first ingredient we need to model the dynamics of an
EMRI system is the geometry of the MBH. In GR, we
know that, provided the no-hair conjecture is true, all
MBHs must be described by the Kerr metric. However,
this is no longer true in DCSMG. We do not have an exact
solution in DCSMG for spinning MBHs, but there is an
approximate solution [25,44] which has been found using a
small-coupling approximation (using �CS � �2=ðM���NÞ
as the expansion parameter, withM� being the MBHmass)
and a slow-rotation approximation (defined by a=M� 
 1,
with a � jS�j=M�, 0 � a=M� � 1, and S� is MBH spin).
Using a system of coordinates which in the GR limit
coincide with the well-known Boyer-Lindquist coordinates
ðt; r; ; �Þ [25], the nonvanishing metric components have
the form

g tt ¼ �
�
1� 2M�r

�2

�
; (9)

g rr ¼ �2

�
; (10)

g  ¼ �2; (11)

g �� ¼ �

�2
sin2; (12)

gt�¼
�
5

8

�

M4�

a

M�
M5�
r4

�
1þ12M�

7r
þ27M2�

10r2

�
�2M�ar

�2

�
sin2;

(13)

where we have introduced the following definitions: �2 ¼
r2 þ a2cos2, � ¼ r2fþ a2, f ¼ 1� 2M�=r and � ¼
ðr2 þ a2Þ2 � a2�sin2. The effects of the CS gravitational
modification are parametrized by a single universal con-
stant, �, given by

� :¼ �2

��N

: (14)
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Notice that the only metric component which gets modified
with respect to the general relativistic case is the compo-
nent gt� [Eq. (13)]. The term in this component which is

proportional to the CS parameter � falls off with distance
as r�4; that is, it decays much faster than the rest of the
metric components, and hence it becomes negligible at
large distances. Only gravitational systems like EMRIs
can probe this modification as they penetrate into the
strong field region of the MBH.

At the level of approximation at which the DCSMG
metric [Eq. (13)] was obtained, it is possible to show that
it has most of the properties of the Kerr metric [27]; in
particular, the DCSMG metric is stationary and axisym-
metric, and also has a Killing tensor, which is important for
an analysis of the orbital motion. Moreover, the DCSM
metric has the same algebraic structure as the Kerr one.
Regarding the multipolar structure of this DCSMG metric,
let us remember that the multipole moments of the Kerr
metric are fully determined by the MBH mass and spin (or
equivalently, by the mass monopole and current dipole)
according to the following simple relations: M‘ þ iS‘ ¼
MðiaÞ‘, where fM‘g‘¼0;...;1 and fS‘g‘¼0;...;1 are the mass

and current multipole moments, respectively. The multi-
pole moments associated with the CS metric deviate from
those of Kerr starting at the S4 multipole, as one can see by
employing the multipolar formalism of [40] (see also [45]).
Despite this deviation, the structure of these multipole
moments still preserves the philosophy of the no-hair
conjecture since they only depend on the mass and spin
of the MBH. There is also a dependence on the CS
parameter �, but this is a universal dependence which
would be the same for all MBHs, and hence it cannot be
considered to be hair of the MBH.

The equations for the metric and CS scalar field are
coupled, so they have to be solved simultaneously. The
solution for the CS scalar, at the same level of approxima-
tion as for the metric, is

# ¼ 5

8

�

�

a

M�
cos

r2

�
1þ 2M�

r
þ 18M2�

5r2

�
: (15)

This scalar field falls off as r�2, and therefore it has a finite
energy associated with it.

C. Orbital kinematics

It was argued in Ref. [27] that in DCSMG, massive
particles should follow geodesics of the spacetime metric.
At the lowest order of approximation, and for short periods
of time, the trajectory of the SCO can then be approxi-
mated by geodesics of the metric given in Eqs. (9)–(13).
Actually, we are going to approximate the orbital motion as
a sequence of geodesics, as in the GR case within the NK
waveform model. For this reason, it is important to analyze
in detail the structure of the geodesic motion around this
modified-Kerr metric.

In the previous subsection, we mentioned that the modi-
fied MBH geometry has essentially the same physical and
geometrical properties as the Kerr metric. In particular, it
has the same number of symmetries. Therefore, we can
separate the geodesic equations as in the Kerr case, intro-
ducing certain constants of the motion. More specifically,
we have the energy per unit SCO mass, E, the angular
momentum component along the spin axis per unit SCO
mass, Lz, and finally the Carter constant per unit SCOmass
squared, C.
The geodesic equations have the following structure [27]:

_t ¼ _tK þ Lz
g
CS
� ðrÞ; (16)

_� ¼ _�K � E
gCS� ðrÞ; (17)

_r 2 ¼ _r2K þ 2ELzf
g
CS
� ðrÞ; (18)

_ 2 ¼ _2K; (19)

where the dots denote differentiation with respect to proper

time. The quantities ( _tK, _rK, _K, _�K) are the counterparts of
the geodesic equations in the Kerr metric, which are given
by (see, e.g., Ref. [46])

�2 _tK ¼ �aðaEsin2� LzÞ þ r2 þ a2

�
½ðr2 þ a2ÞE� aLz�;

(20)

�2 _�K ¼ a

�
½ðr2 þ a2ÞE� aLz� �

�
aE� Lz

sin2

�
; (21)

�4 _r2K ¼ ½ðr2 þ a2ÞE� aLz�2 ��½Qþ ðaE� LzÞ2 þ r2�;
(22)

�4 _2K ¼ Q� cot2L2
z � a2cos2ð1� E2Þ; (23)

where Q is an alternative definition of the Carter constant,
related to C by

Q ¼ C� ðLz � aEÞ2: (24)

It is clear from Eqs. (16)–(18) that the CS deviations are
determined by a single function of the radial coordinate r,

gCS� ðrÞ, which has the form


gCS� ¼ �a

112r6f

�
70þ 120

M�
r

þ 189
M2�
r2

�
: (25)

Only the equation for the polar coordinate  is unchanged.
Since we are dealing with bound orbits, both the radial and
the polar motion include turning points (extrema of motion)
at which the time derivatives, _r or _, vanish. This can create
numerical problems when integrating the set of ordinary
differential equations (ODEs) given by Eqs. (16)–(18).
To avoid this, we follow the same strategy as in the case
of Kerr geodesics and introduce two angle coordinates,
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c and �, associated with the radial and polar motion,
respectively:

r ¼ pM�
1þ e cosc

; cos2 ¼ cos2mincos
2�; (26)

where p and e are the dimensionless semilatus rectum and
the eccentricity of the orbit, respectively, and min is the
minimum of  in the orbit (the turning point in the polar
motion). The orbital parameters ðe; pÞ are related with the
radial turning points, the apocenter (rapo) and pericenter

(rperi), through the standard expressions:

rperi ¼ pM�
1þ e

; rapo ¼ pM�
1� e

: (27)

or, equivalently,

p ¼ 2rperirapo

M�ðrperi þ rapoÞ ; e ¼ rapo � rperi

rperi þ rapo
: (28)

The radial coordinate r oscillates in the interval ðrperi; rapoÞ.
Similarly, given the turning point of the polar motion,
min 2 ½0; �=2�,  performs a libration motion in the inter-
val ðmin; �� minÞ). We introduce the orbital inclination
angle (with respect to the spin direction) through the follow-
ing relation:

inc ¼ signðLzÞ
�
�

2
� min

�
; (29)

where signðLzÞ ¼ 1 corresponds to a prograde orbit and
signðLzÞ ¼ �1 corresponds to a retrograde orbit. A differ-
ent definition of the orbital inclination angle can be given in
terms of the constants of motion (E, Lz, C or Q)

cos� ¼ Lzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
z þQ

q : (30)

In general, both inclination angles, inc and �, are quite
similar [47] and coincide in the nonspinning limit, a ¼ 0.

We work with two geodesic parameterizations, one
based on the orbital parameters (e, p, inc or �) and one
based on the constants of motion (E, Lz,C orQ). Changing
from one parameterization to the other is a fundamental
step in our computations. In the GR case, there is a well-
known procedure (see, e.g., Refs. [47,48]) to do so. Here,
we have used the implementation described in the appen-
dices of Ref. [49]. However, these formulae are only valid
in GR and, in our case, the CS modification of the radial
equation of motion changes the location of the turning
points. In practice, this translates into a different relation
between the two sets of parameters (e, p, inc or �) and
(E, Lz, C or Q). Given that we are not dealing with large
deviations from the GR case, we have used a numerical
procedure based on the Newton-Raphson method for find-
ing roots (see, e.g., Ref. [50]), where the values obtained
from the GR method have been used as the starting point
for the iteration algorithm. We have seen that in practice

this works quite well, and the iteration converges rapidly to
the correct values.
Finally, due to the separability of the geodesic equations,

which is closely related to the spacetime symmetries, we
can distinguish in the motion three fundamental frequen-
cies (here with respect to coordinate time t) associated with
the radial motion, fr ¼ 1=Tr (Tr is the average time to go
from pericenter to apocenter and back to pericenter), with
the polar motion, f ¼ 1=T (T is the average time for a
full oscillation of the orbital plane, going from  ¼ min to
 ¼ �� min and back to  ¼ min) and f� ¼ 1=T� (T�

is the average time for the SCO’s azimuthal angular
coordinate � to cover 2� radians). It is important to
mention that these frequencies change when including
the CS modifications [27].

D. Orbital dynamics

So far, the orbital dynamics described have been for
geodesic orbits. In order to compute the SCO trajectory,
we gradually evolve the parameters of the instantaneous
geodesic orbit under RR. The RR effects not only drive the
SCO inspiral, but also break the degeneracy between orbits
in GR and others in DCSMG,1 since a given initial orbital
configuration will evolve differently in these theories.
Therefore, we need to implement RR effects in the
EMRI dynamics in the framework of DCSMG.
As we have mentioned above, in this paper, we adapt the

numerical kludge (NK) waveform model to the case of
DCSMG [31]. In the NK waveform model, the RR driven
evolution uses a ‘‘hybrid’’ scheme described in Ref. [29],
where formulae for the evolution of the constants of
motion (E, Lz, C or Q) are derived in terms of PN
approximations (at 2PN order) combined with fits to results
from the Teukolsky formalism (see Refs. [30,51]). In
principle, one should then derive the analogous formulae
for the case of DCSMG, but this involves a number of
major developments which are currently out of reach.
Instead, we will take into account one of the important
results about GWs in DCSMG discussed previously—the
realization that the stress-energy momentum tensor for
GWs, the Isaacson tensor, has the same form in terms of
the GW metric perturbation in both theories, GR and
DCSMG. This means that, to leading-order, the properties
of the GW emission in GR and DCSMG are the same.
Then, we approximate the fluxes of energy and angular
momentum in the GWs, and also the evolution of the
Carter constant under GW emission, by using the GR
expressions. In what follows, we describe the formulae

1Without RR effects, the phase evolution of an EMRI wave-
form, in both theories, will be a multiple Fourier series of the
three fundamental frequencies, i.e. it will contain harmonics of
the type expf2�ifm;n;ptg with fm;n;p ¼ mfr þ nf þ pf�. Then,
we would be able to associate physical parameters with a given
EMRI in both theories, and hence we would not be able to
discriminate between them.
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and procedures to update the geodesic orbits in our
NK-EMRI model.

The evolution equations for the constants of motion
(E, Lz, C or Q) have the following structure:

dE

dt
¼ �fEða; p; e; incÞ; (31)

dLz

dt
¼ �fLz

ða; p; e; incÞ; (32)

dQ

dt
¼ �fQða; p; e; incÞ: (33)

The evolution equation for C follows from these equations
and Eq. (24). The form of the right-hand sides fE, fLz

, and

fQ of Eqs. (31)–(33) and full details of their derivation can

be found in Ref. [29]. In Appendix B, we summarize the
main expressions needed to build these right-hand sides
and thus evaluate the evolution of the constants of motion.

In practice, there are two ways in which we can use the
evolution equations (31)–(33). The first one consists of
computing a phase-space trajectory for the orbital parame-
ters by integrating the set of ODEs for the evolution of the
energy, E, angular momentum component along the spin
axis, Lz, and Carter constant, Q. Once the phase space
trajectory (EðtÞ, LzðtÞ, QðtÞ) has been computed, these
time-dependent constants are used on the right-hand side
of the geodesic equations (20)–(23), to construct the in-
spiral trajectory of the SCO in the Boyer-Lindquist-like
coordinates of the MBH spacetime. The second option, the
one which we use in this paper, is to consider the extended
system of ODEs consisting of Eqs. (20)–(23) and (31)–(33)
and integrate them together in time. Although this system
of ODEs is coupled, there is a clear hierarchical structure,
since the subsystem of Eqs. (31)–(33) can in principle be
integrated independently of the subsystem of Eqs. (20)–(23),
which can be seen as a subsidiary system.

As mentioned before, Eqs. (31)–(33) are in principle only
valid in GR. If the true theory of gravity is DCSMG, these
evolution equations will contain corrections. At leading
order, GW emission in DCSMG takes the same form as in
GR [27], but corrections to the fluxes will still arise from the
DCSMG modifications to the orbital motion. These correc-
tions were computed for circular orbits in DCSMG in
Ref. [52], but enter at a high post-Newtonian order. For
this reason, we do not make any modifications to the GR
expressions but directly employ the fluxes described in Gair
and Glampedakis [29]. Although we therefore use the same
RR formulae to evolve the trajectory in DCSMG as in GR,
this still leads to a different SCO evolution, since the de-
pendence of the orbital elements (e, p, inc or �) on the
‘‘constants’’ of motion (E, Lz, C or Q) is different in the
two theories, which leads to correspondingly different gravi-
tational waveforms. That is, the mapping between the
orbital elements (e, p, inc or �) and the constants of motion

(E, Lz, C or Q) is different in DCSMG and GR. Therefore,
given some initial orbital parameters (e0, p0, inc;0 or �0),
after evolving the EMRI system for some time, the final
orbital parameters in GR will be in general different from
the orbital parameters in DCSMG.
Taking into account the previous considerations, the

inspiral is constructed in the following way: For a given
set of initial orbital parameters (e0, p0, inc;0 or �0), we find
the associated initial constants of the motion (E0, Lz;0, C0

or Q0), which are different from the ones which we would
obtain in GR for the same initial eccentricity, semilatus
rectum and inclination angle. Subsequently, we evolve the
constants of motion, ð _Ej0; _Lzj0; _Qj0Þ, under RR, using the
method described above. Then, from the current values of
the constant of motion, (E0, Lz;0, C0 or Q0), their rates of

change due to RR, ð _Ej0; _Lzj0; _Qj0Þ, and the value of the
radial period, Tr (the time to go from the apocenter to the
pericenter and back again to apocenter) [27], we obtain
the new constants of motion, ðE1; Lz;1; Q1Þ, using the

following equations:

E1 ¼ E0 þ _Ej0NrTr; (34)

Lz;1 ¼ Lz;0 þ _Lzj0NrTr; (35)

Q1 ¼ Q0 þ _Qj0NrTr; (36)

and Nr is a prespecified parameter which represents the
number of radial periods elapsed between each update of
the constants of the motion. The expression for C1 follows
from these formulae for ðE1; Lz;1; Q1Þ and Eq. (24). Finally,
from ðE1; Lz;1; C1=Q1Þ, we obtain the new values of the

orbital parameters ðe1; p1; inc;1=�1Þ. This algorithm is iter-

ated along the whole EMRI evolution to obtain the SCO
orbit. In Fig. 1, we illustrate a section of a generic orbit for

FIG. 1 (color online). Depiction of a section of the inspiral
orbit for an EMRI (system A in Table II) with parameters
M� ¼ 5 � 105M�, a ¼ 0:25M�, e0 ¼ 0:25 and � ¼ 5 � 10�2M5�.
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a typical system which we use later in our parameter
estimation analysis (see Table II).

E. Waveform modeling and detector responses

In the previous subsections, we have seen how the
trajectory of the SCO is obtained and, in the following,
we describe how we compute the gravitational waveforms
and the response of the LISA and eLISA/NGO detectors.
Following Refs. [27,31], we employ the multipolar expan-
sion of the metric perturbations describing the GWs emit-
ted by an isolated system, which assumes that the GWs
propagate in a flat background spacetime to reach the
observer/detector [40]. In this work, we consider only the
lowest-order term, the mass quadrupole. This term in-
volves second time derivatives of the trajectory, and these
are readily obtained from the geodesic equations (20)–(23).
Then, the transverse-traceless (TT) metric perturbation is
computed from the following expression

hTTij ðtÞ ¼
2

r
€Iij; (37)

where Iij denotes the mass quadrupole and r the luminosity

distance from the source to the observer. In terms of the
source stress-energy tensor, T��, the mass quadrupole

moment is:

Iij ¼
�Z

d3xxixjTttðt; xiÞ
�
STF

; (38)

where STF stands for symmetric and trace-free. Treating
the SCO in the point-mass approximation, the nonvanish-
ing components of the stress energy tensor have the follow-
ing form: Tttðt; xiÞ ¼ �ðt; xiÞ and Ttjðt; xiÞ ¼ �ðt; xiÞvjðtÞ,
where �ðt; xiÞ is the energy density of the SCO which, in
the point-mass limit, is given by

�ðt; xiÞ ¼ m?

ð3Þ½xi � ziðtÞ�; (39)

where 
ð3Þ denotes the three-dimensional Dirac delta dis-
tribution, ziðtÞ are the spatial Cartesian coordinates (asso-
ciated with the flat spacetime background) of the SCO
trajectory and viðtÞ ¼ dziðtÞ=dt are the components of
the corresponding spatial velocity. To evaluate this in our
model we make a ‘‘particle-on-a-string’’ approximation;
that is, we identify the Boyer-Lindquist-like coordinates
ðr; ; �Þ of the SCO’s orbit with flat-space spherical polar
coordinates, and introduce Cartesian coordinates in the
usual way:

x¼ rsincos�; y¼ rsinsin�; z¼ rcos: (40)

Although this description leads to inconsistencies, like the
nonconservation of the flat-space energy-momentum ten-
sor of the particle motion, it has been found to work well
when generating EMRI waveforms in GR [31], and so we
do not expect this to introduce large errors in the wave-
forms, in particular, in the phase. A possible alternative
could be to use coordinate systems more adapted to the

multipolar expansion of the gravitational radiation, like
harmonic or asymptotic-Cartesian mass-centered coordi-
nates [40] (see also Ref. [49]).
We now consider detection of these signals by a space-

based detector in a heliocentric orbit (like LISA or eLISA/
NGO). We describe the direction from the detector to the
EMRI system by a unit 3-vector n̂, which also gives the
propagation direction of the GWs from the EMRI to
the detector. The orthogonal plane to n̂ is the GW polar-
ization plane, and we can introduce there two unit and
orthogonal vectors p̂ and q̂ by using the spin direction,
S� ¼ aM�ẑ:

p̂ ¼ n̂� ẑ

jn̂� ẑj ; q̂ ¼ p̂� n̂: (41)

The vectors ðn̂; p̂; q̂Þ form a spatial orthonormal basis
which can be used to construct the GW polarization
tensors:

�ijþ ¼ pipj � qiqj; �ij� ¼ 2pðiqjÞ: (42)

The corresponding plus, hþ, and cross, h�, GW polar-
izations are given by

hþðtÞ ¼ 1

2
�ijþhijðtÞ; h�ðtÞ ¼ 1

2
�ij�hijðtÞ; (43)

and the complete GW metric perturbation is

hijðtÞ ¼ �þijhþðtÞ þ ��ijh�ðtÞ: (44)

Using Eqs. (37) and (39), we obtain the following simpli-
fied expressions for the GW polarizations in terms of the
SCO position ziðtÞ, velocity viðtÞ ¼ dzi=dt and accelera-
tion aiðtÞ ¼ d2zi=dt2:

hþ;�ðtÞ ¼ 2m?

r
�þ;�
ij ½aiðtÞzjðtÞ þ viðtÞvjðtÞ�: (45)

Once we have the GW waveforms, we compute the
response function of a space-based detector in heliocentric
motion. Due to the motion of the LISA and eLISA/NGO
constellations as they orbit (rotation and translation), it is
more convenient to rewrite the response functions in terms
of angles defined in a fixed Solar System barycenter (SSB)
coordinate system. The direction from the origin of the
SSB reference frame to the origin of the EMRI reference
frame is �n̂

� n̂ ¼ �ðsinS cos�S; sinS sin�S; cosSÞ; (46)

where ðS; �SÞ are spherical polar angles which determine
the sky location of the EMRI with respect to the SSB
frame. The relations between these angles and the angles
ððtÞ; �ðtÞÞ which determine the sky location with res-
pect to the detector reference frame are (see, e.g.,
Refs. [53,54]):

cosðtÞ ¼ 1

2
cosS �

ffiffiffi
3

p
2

sinS cosð2�t=T ��SÞ; (47)
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�ðtÞ ¼ 2�t=T þ�ðtÞ; (48)

where

�ðtÞ¼ tan�1

� ffiffiffi
3

p
cosSþsinS cosð2�t=T��SÞ
2sinS sinð2�t=T��SÞ

�
; (49)

and T ¼ 1 yr is the period of the Earth’s orbit around the
Sun. The polarization angle c describes the orientation of
the ‘‘apparent ellipse’’ given by the projection of the orbit
on the sky. It can be written in terms of ðS; �SÞ and the
angles describing the direction of the MBH spin with
respect to the SSB reference frame ðK; �KÞ:

tanc ¼ ½fcosK � ffiffiffi
3

p
sinK cosð2�t=T ��KÞg � 2 cosðtÞfcosK cosS þ sinK sinS cosð�K ��SÞg�=

½sinK sinS sinð�K ��SÞ �
ffiffiffi
3

p
cosð2�t=TÞfcosK sinS sin�S � cosS sinK sin�Kg

� ffiffiffi
3

p
sinð2�t=TÞfcosS sinK cos�K � cosK sinS cos�Sg�: (50)

In addition, the time of arrival of a gravitational wave front
at the SSB and at the detector will in general differ and are
related by

tSSB ¼ tD þ R sinS cosð2�tD=T ��SÞ � t0SSB; (51)

where R ¼ 1 AU, tD is the time of arrival as seen in the
detector reference frame and t0SSB is the initial time in the
SSB reference frame:

t0SSB ¼ t0D þ R sinS cosð2�t0D=T ��SÞ: (52)

This difference in arrival times gives rise to a Doppler
modulation in the GW phase measured by LISA. To com-
pute a waveform regularly sampled in time at the detector,
we need to generate a waveform unevenly sampled in the
source frame (in which the time sampling is the same as at
the SSB). This can be achieved employing the relations just
introduced.

The response of the detector to an incident GW can then
be written as

h�ðtÞ ¼
ffiffiffi
3

p
2

½Fþ
� ðtÞhþðtÞ þ F�

� ðtÞh�ðtÞ�; (53)

where � is an index for the different independent channels
of the detector. In the case of LISA, we have two indepen-
dent Michelson-like interferometer channels which can be
constructed from the LISA data stream and hence � ¼ I,
II. By contrast, eLISA/NGO will have only one indepen-
dent channel (see Appendix A for a brief comparison of the
detectors) and hence � ¼ I for eLISA/NGO. The antenna
pattern (response) functions, Fþ;�

� , are given by (see, e.g.,
Ref. [54])

Fþ
I ¼1

2
ð1þcos2Þcosð2�Þcosð2c Þ�cossinð2�Þsinð2c Þ;

(54)

F�
I ¼1

2
ð1þcos2Þcosð2�Þcosð2c Þþcossinð2�Þsinð2c Þ;

(55)

Fþ
II ¼

1

2
ð1þcos2Þsinð2�Þcosð2c Þþcoscosð2�Þsinð2c Þ;

(56)

F�
II ¼

1

2
ð1þcos2Þsinð2�Þsinð2c Þ�coscosð2�Þcosð2c Þ:

(57)

Here, ð;�; c Þ are as defined in Eqs. (47)–(50) and specify
the sky location and orientation of the source in a detector-
based coordinate system in terms of angles defined in a
fixed SSB coordinate system.

III. ELEMENTS OF SIGNAL ANALYSIS AND
MODEL PARAMETER ESTIMATION

The starting point for signal analysis is the detector data
stream(s), s�. We assume that s� contains an EMRI GW
signal, h�, and hence we can decompose it as

s�ðtÞ ¼ h�ðtÞ þ n�ðtÞ; (58)

where n�ðtÞ is the noise in the detector, which we assume
to be stationary, Gaussian and, in the case of LISA, that the
two data streams are uncorrelated and the noise power
spectral density is the same in each channel. Then, the
Fourier components of the noise, which we denote with a
tilde ~n�ðfÞ (see Refs. [53,54] for conventions on the
Fourier transform which we use), satisfy

h~n�ðfÞ~n	�ðf0Þi ¼
1

2

��
ðf� f0ÞSnðfÞ; (59)

where h�i denotes expectation value (ensemble average
over all possible realizations of the noise), the asterisk
now denotes complex conjugation and SnðfÞ is the (one-
sided) power spectral density of the noise, which is given in
Appendix A for both LISA and eLISA/NGO. The assump-
tion of Gaussian noise means that the probability of a
particular realization of the noise n0 is given by

pðn ¼ n0Þ / e�ðn0jn0Þ=2; (60)

where ð�j�Þ denotes the natural inner product in the vector
space of signals associated with the power spectral density
SnðfÞ and is defined as

TESTING CHERN-SIMONS MODIFIED GRAVITY WITH . . . PHYSICAL REVIEW D 86, 044010 (2012)

044010-9



ðajbÞ ¼ 2
X
�

Z 1

0
df

~a	�ðfÞ~b�ðfÞ þ ~a�ðfÞ~b	�ðfÞ
SnðfÞ ; (61)

for any two signals a and b. The probability that a given
GW signal h is present in a data stream s is thus

pðsjhÞ / e�ðs�hjs�hÞ=2: (62)

The ‘‘best-fit’’ waveform will be the one which maximizes
ðsjhÞ, and, thus, it provides the maximum likelihood
parameter estimate. The expected signal-to-noise ratio
(SNR), when filtering with the correct waveform, is

SNR ¼ ðhjhÞ
rmsðhjnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

q
; (63)

where ‘rms’ stands for root mean square and the second
inequality follows from the fact that the expectation value
of ðajnÞðbjnÞ is ðajbÞ [55]. In practice, one considers a
waveform template family which will depend on a set of
parameters �, fhðt;�Þg, and searches for the parameters
which maximize the probability of a certain noise realiza-
tion, i.e. the probability that a given waveform template is
present in the data stream. Different realizations of the
noise will lead to different values of the best-fit parameters.
For large SNR, the best-fit parameters will follow a
Gaussian distribution centered around the correct values.
Expanding expð�ðs� hjs� hÞ=2Þ around the best-fit
parameters, �0, by writing � ¼ �0 þ 
�, we obtain the
following form for the probability distribution function for
the errors 
�

pð
�Þ ¼ N exp

�
� 1

2
�jk
�

j
�k

�
; (64)

where N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð�=2�Þp

is the normalization factor and
�ij is the Fisher information matrix (FM) [56]

�jk ¼
�
@h

@�j

@h

@�k

�
: (65)

The variance-covariance matrix for the waveform parame-
ters is given by the inverse of the FM,

h
�j
�ki ¼ ð��1Þjk½1þOð1=SNRÞ�; (66)

and, hence, we can estimate the precision with which we
will be able to measure a particular parameter, �i, by
computing the component ��1

ii of this inverse matrix; that
is, (see Ref. [57] for a detailed discussion)

��i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð
�iÞ2i

q
’

ffiffiffiffiffiffiffiffiffi
��1
ii

q
: (67)

A. The maximum-mismatch criterion

Vallisneri [57] provided a consistency criterion to deter-
mine whether the SNR is high enough for the FM results to
be trustworthy, called the maximum-mismatch criterion
(MMC). The MMC criterion was suggested to assess
when an estimation of the parameter errors based on a

FM analysis would be reliable or not. Since the FM, �ij,

is built from the partial derivatives of the waveform tem-
plate with respect to the parameters of the model, it can
only represent the true GW signal, hGW, correctly if hðt;�Þ
is linear in all the parameters, �, across a parameter space
region of size comparable to the expected parameter errors.
This is the regime in which the linearized-signal approxi-
mation (LSA) is valid. As we increase the SNR, the errors
become smaller, and consequently the LSA is expected to
work better. In the regime of validity of the LSA, we can
expand the waveform template hðt;�Þ around the true
source parameters, �tr, i.e. �

i ¼ �i
tr þ 
�i with 
�i being

a small deviation in the parameters comparable with the
parameter estimation error:

hðt;�Þ¼htrþ
�ið@ihÞj�k
tr
þ
�i
�j

2
ð@2ijhÞj�k

tr
þ . . . (68)

Then, the likelihood [Eq. (62)] can be approximated as

pðsj�Þ / exp

�
�ðnjnÞ

2
þ 
�i
�j

ð@ihj@jhÞ
2

þ 
�jð@jhjnÞ
�
;

(69)

where the waveform template derivatives are evaluated at
� ¼ �tr. The applicability of the FM for parameter esti-
mation is limited by the high-SNR requirement, in the
sense that it can be a poor predictor of the amount of
information obtained from waveforms depending on sev-
eral parameters and detected with relatively low SNR. The
MMC is given in terms of the ratio, r, of the LSA like-
lihood [Eq. (69)] to the exact likelihood [Eq. (60)]:

2j logrj ¼ ð��ið@ihÞ�k
tr
�Dhj��jð@jhÞ�k

tr
�DhÞ; (70)

where Dh ¼ hð�k
tr þ��kÞ � hð�k

trÞ and ��i is the esti-
mated error from the diagonal components of the inverse of
the FM. The MMC is obtained by taking the maximum
value of r over all parameters.
The idea behind the MMC is to choose an iso-

probability surface as predicted by the FM, and explore it
to verify that the difference between the LSA and exact
likelihoods is sufficiently small. Ratios, r, below some
fiducial value are considered acceptable. If this condition
is satisfied, we can believe that the FM is providing a
reliable estimate of the parameter estimation errors.

IV. PARAMETER ESTIMATION STUDIES:
METHODS AND RESULTS

In this section, we describe the different techniques
employed in our parameter estimation analysis and present
the main results. We begin by characterizing the EMRI
parameter space in our studies in DCSMG, f�igi¼1;...;N .

There are 15 parameters (the 14 of GR plus the DCSMG
coupling parameter; see Table I for a brief description):
�¼fM�;a;�;e0;p0;inc;0;�;S;�S;K;�K;DL;c 0;�0;�0g,
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where the subscript 0 refers to the values of the correspond-
ing quantities at the inspiral initial time.

In order to simplify the computations involved in this
study, we have restricted ourselves to a five-dimensional
subset of the parameter space, given by � ¼
fM�; a; e0; �; DL=�g (see Table I for their definition). In
this subset, we have included those parameters which we
have found to have the greatest correlation with the pa-
rameter � ¼ a � � (see Table I), which controls the strength
of the CS modifications (notice that in the MBH metric of
Eqs. (9)–(13), the CS parameter � always appears multi-
plied by the spin parameter a, and this has motivated the
introduction of the combined parameter �) in a full pa-
rameter space investigation. We have also checked that the
results we obtain do not change significantly when more
parameters are added to the FM study. For the parameter
estimation studies, we consider two different EMRI sys-
tems, A and B, whose parameters are given in Table II.
These two types of systems differ in the values for the
MBHmass,M�¼5�105M� for system A andM�¼106M�
for system B. We fix the luminosity distance to DL ¼
1 Gpc, which roughly corresponds to the distance where
we might expect the closest detectable sources to lie (see,
e.g., Ref. [58]). Due to the fact that the inspiral time scales
as��with the mass ratio, the system A evolves faster than
system B, which allows us to use smaller evolution times to
obtain reliable results in that case.

For these systems, we evolve the trajectory using the
geodesic equations given in Sec. II C and the RR equations
given in Sec. II D. This is done using the algorithm outlined
in Sec. II D. The ODEs which describe geodesic motion are

integrated for the angle variables ½c ðtÞ; �ðtÞ; �ðtÞ� using
the Bulirsch-Stoer extrapolation method [59] (see
Refs. [50,60] for details). The numerical code also contains
routines which convert back and forth between the dif-
ferent parameterizations of the orbit in DCSMG; which
compute the Cartesian orbital coordinates, velocities,
accelerations and the multiple moments; etc. The equations
which evolve the constants of motion, E, Lz and Q, are
integrated using simple finite difference rules. Then, we
use the formulae of Sec. II D to compute the gravitational
waveforms and the detector responses.
In order to study how different the waveforms in

DCSMG are from GR, we have evolved our EMRI system
during 0.5 yr employing different values of the CS parame-
ter � and the MBH spin a, and we have computed the
following overlap function between a DCSMG and a GR
waveform template:

O ½hGR;hCS� � ðhGRjhCSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhGRjhGRÞðhCSjhCSÞ
p ; (71)

which is symmetric, O½hGR;hCS� ¼ O½hCS;hGR�, and has
the obvious property O½hGR;hGR� ¼ O½hCS;hCS� ¼ 1.
We also assume that the two waveforms used for this
overlap correspond to EMRIs with the same parameters,
except for the CS parameter � which vanishes for GR
waveforms. The standard overlap defined in Eq. (61)
has been computed using the FFTW library [61] for the
Fourier transforms and simple integration rules. We have
computed this normalized overlap for a total of 121 EMRI
systems which have 13 fixed parameters: M� ¼
5 � 105M�, m? ¼ 10M�, e0 ¼ 0:25, p0 ¼ 11, inc;0 ¼
0:569, S ¼ 1:57, �S ¼ 1:57, K ¼ 0:329, �K ¼ 0:78,
DL=� ¼ 5 � 104 Gpc, c 0 ¼ 0:78, �0 ¼ 0:78, �0 ¼ 0:78,
while the spin a=M� and the CS parameter �=M4� are
varied in the interval ½0; 0:5�. The results are shown in
Fig. 2, where we can see how the projection of hCS onto
hGR changes by modifying the values of the MBH spin
a=M� and the CS parameter �=M4�. In particular, for higher
values of a=M� and �=M4�, the overlap O½hGR;hCS� de-
creases, since the difference in the evolution of the SCO in
GR and CS, produced by the dephasing introduced by the
RR, increases [see Eqs. (16)–(18)] and, consequently, the
deviations of hCS from hGR are enhanced.

TABLE I. Summary of the parameters that characterize an
EMRI system in DCSMG. The angles ðS; �SÞ and ðK; �KÞ
are spherical polar coordinates with respect to the ecliptic and
the subindex 0 stands for values of parameters computed at the
initial time. The parameters with physical dimensions are in-
dicated in square brackets. We set the luminosity distance to
DL ¼ 1 Gpc.

Parameter Description

M� MBH mass [M�].
a ¼ jSj=M� MBH spin [M�].
� ¼ m?=M� EMRI mass ratio.

e0 Eccentricity of the particle orbit at t0.
p0 Dimensionless semilatus rectum at t0.
inc;0 Inclination of the orbit at t0.
� � � a [M5�].
S EMRI polar angle.

�S EMRI azimuthal angle.

K MBH spin polar angle.

�K MBH spin azimuthal angle.

DL Distance from the SSB to the EMRI [Gpc].

c 0 Angle variable for the radial motion.

�0 Angle variable for the polar motion.

�0 Boyer-Lindquist azimuthal angle.

TABLE II. EMRI systems considered in the parameter estima-
tion analysis. The table shows the values for the parameters
which are considered in the FM computation (see Table I for the
whole list of parameters). The rest of EMRI parameters em-
ployed in our parameter estimation analysis are the same for
both systems and their values are m? ¼ 10M�, inc;0 ¼ 0:569,
S ¼ �S ¼ 1:57, K ¼ �K ¼ 0:78, c 0 ¼ �0 ¼ �0 ¼ 0:78.

System M� a=M� e0 �=M5� DL=� [Gpc]

A 5� 105 0.25 0.25 5� 10�2 5� 104

B 106 0.25 0.25 5� 10�2 105
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We have also obtained the SNR in the frequency domain
using Eq. (63). The computation of the FM requires the
evaluation of the derivatives of the waveform templates,
@ih ¼ @h=@�i (actually, of the response functions of the
detector). Since the waveform templates/responses are
generated numerically, the corresponding derivatives
must also be evaluated numerically. For inner points in
the EMRI parameter space (i.e. not near boundaries so that
we do not need points outside the proper domains of
definition of the parameters), we use the following five-
point finite-difference rule:

@ih¼ 1

12
�i fhð�iþ2
�iÞ�hð�i�2
�iÞ
þ8½hð�iþ
�iÞ�hð�i�
�iÞ�gþO½ð
�iÞ4�; (72)

where 
�i is the numerical offset in the parameter �i. For
computations near the boundary or at the boundary of the
parameter space, we use instead noncentered finite-
differences rules. Either the following three-point rule

@ih ¼ 1

2
�i f4hð�i þ 
�iÞ � hð�i þ 2
�iÞ � 3hð�iÞg
þO½ð
�iÞ2�; (73)

or the following four-point rule

@ih ¼ 1

4
�i fhð�i þ 2
�iÞ � hð�i þ 3
�iÞ
þ 5½hð�i þ 
�iÞ � hð�iÞ�g þO½ð
�iÞ3�: (74)

It is known that computing numerical derivatives is a
delicate task (see, e.g., Ref. [50]). In the case of finite

difference formulas like Eq. (72), the choice of the offset

�i is crucial. An offset too small will produce high-order
cancellations in the numerator beyond machine precision.
In contrast, an offset too big may mean higher-order terms
in the Taylor series expansion of the waveform become
important. In both cases, we will be far from a reasonable
approximation. Therefore, we have done investigations
which survey wide ranges for 
�i in order to find intervals
where the derivatives have good convergence properties.
Once we have obtained a FM, �ij, which converges in a

certain range of offsets 
�i, we estimate the expected
measurement error in the parameters by using Eq. (67).
Since FMs for EMRI waveforms have very large condition
numbers (the ratio of the largest to the smallest eigenval-
ues), we use an LU decomposition to invert them, writing
the matrix as the product of a lower triangular matrix and
an upper triangular matrix [62]. In addition, to assess
whether the error estimates obtained are reliable or not,
we use the MMC defined in Eq. (70). We have evaluated
the MMC criterion for all the results presented in this
paper, and, unless otherwise specified, they satisfy this
criterion with values of j logrj ranging from 10�4 to 0.5.
We have stated before that RR effects change the relative

phase between waveforms in DCSMG with respect to GR.
Now, we are going to study their impact on parameter
estimation. First, we will compare the parameter estima-
tion errors for systems evolved under RR and systems
which do not radiate, preserving the constants of motion,
i.e. always have the same orbital parameters. These results
have been obtained assuming that the detector is LISA. At
the end of this section, we present some results for eLISA/
NGO. The results for system A with and without RR and
for different evolution times, Tevol ¼ 0:1, 0.3, 0.5, 1 yr, are
shown in Table III. The upper part of the table contains the
results for the evolutions with RR, and the lower part of the
table shows the results without RR. In both cases, we also
show the value of the MMC test, i.e. the quantity j logrj
defined in Eq. (70). We do not show results for Tevol ¼
0:1 yr without RR in Table III since we did not obtain
reliable results (according to the MMC criterion). From
these results and others we have obtained for other similar
EMRI systems, we can say that the typical measurement
accuracies for the five most important parameters are
� logM� � 10�3, �a� 10�6M�, �e0 � 10�7, � log� �
10�2 and � logðDL=�Þ � 10�2. Comparing the results in
Table III, we see that the inclusion of the RR improves the
SNR of the signals. It also improves the parameter esti-
mates, in particular, those of the spin, a, and of the CS
parameter, � . This is partially due to the increase of the
overall SNR due to RR, but even after rescaling to a fixed
reference SNR, we see an improvement in the parameter
measurement accuracies when RR is included. As one
could expect due to the adiabatic nature of the RR (see
e.g., Ref. [63]), the improvement with the inclusion of RR
is more significant for longer evolution times.

FIG. 2 (color online). This 2-dimensional plot shows the sym-
metric normalized overlap of Eq. (71) for EMRI systems with the
following parameters: M�¼5 �105M�, m?¼10M�, e0¼0:25,
p0 ¼ 11, inc;0 ¼ 0:569, S ¼ 1:57, �S ¼ 1:57, K ¼ 0:329,
�K ¼ 0:78, DL=� ¼ 5 � 104 Gpc, c 0 ¼ 0:78, �0 ¼ 0:78,
�0 ¼ 0:78. The parameters �=M4� and a=M� take values in the
interval [0,0.5] with a step of 0.05 for a total of 121 points.
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We can also explore how the error estimates change
with the spin parameter a. To that end, we did simulations
of systems A and B using the following values of the
spin: a=M� ¼ 0:1 (A1; B1), a=M� ¼ 0:25 (A2; B2) and
a=M� ¼ 0:5 (A3; B3). The initial semilatus rectum was
set to p0 ¼ 11M�, which means that after evolving sys-
tems A1 � A3 for a total time of Tevol ¼ 0:5 yr and systems
B1 � B3 for a total time Tevol ¼ 1:5 yr, the final semilatus
rectum, pf, is approximately 8M� for all systems. The

parameter estimation errors are shown in Table IV (the
upper part corresponds to simulations of system Awhereas
the lower part corresponds to simulations of system B).
The first thing which we notice is that the smaller the spin

parameter a=M� becomes, the better the parameter
estimate for the CS parameter � . In particular,
�� � 2:8 � 10�2 for system A1 and �� � 1:4 � 10�2 for
system B1. The reason for this is quite simple. The CS
modifications affect a single MBH metric component, gt�
[Eq. (13)], which contains the CS parameter �=M4�, multi-
plied by the spin parameter a. The unperturbed Kerr metric
component is proportional to a, and so the relative change
in this metric coefficient due to the addition of the DCSMG
correction is proportional to �. Since we keep � ¼ a� fixed
as we vary a, the value of � increases as a decreases, and so
the CS correction to the MBH metric is larger relative to
the leading-order Kerr metric term.

TABLE III. Error estimates for LISA and the EMRI system A (see Table II) using RR (upper part of the table) and without using RR
(lower part of the table). Each column contains the estimations for a given evolution time (Tevol ¼ 0:1, 0.3, 0.5, 1 yr) and shows the
corresponding SNR of the EMRI signal.

With RR Tevol ¼ 0:1 yr SNR ¼ 14:5 Tevol ¼ 0:3 yr SNR ¼ 43:2 Tevol ¼ 0:5 yr SNR ¼ 55:4 Tevol ¼ 1 yr SNR ¼ 73:5

�i ��i j logrj ��i j logrj ��i j logrj ��i j logrj
logM� 1:4� 10�1 1:5� 10�1 9:2� 10�3 1:1� 10�1 4:5� 10�3 1:5� 10�1 9:3� 10�4 2:4� 10�1

a=M� 1:2� 10�4 3:4� 10�1 1:5� 10�5 2:0� 10�1 4:9� 10�6 5:3� 10�2 1:5� 10�6 2:3� 10�1

e0 5:2� 10�6 5:2� 10�2 9:6� 10�7 3:0� 10�2 5:0� 10�7 9:7� 10�3 2:8� 10�7 6:0� 10�3

log� 1:1 9:3� 10�1 1:5� 10�1 3:1� 10�1 4:9� 10�2 3:1� 10�2 2:0� 10�2 1:5� 10�1

logðDL=�Þ 2:0� 10�1 2:0� 10�1 1:5� 10�1 4:1� 10�4 1:8� 10�2 1:6� 10�4 1:3� 10�2 2:6� 10�4

With no RR Tevol ¼ 0:3 yr SNR ¼ 38:4 Tevol ¼ 0:5 yr SNR ¼ 46:8 Tevol ¼ 1 yr SNR ¼ 54:6

�i ��i j logrj ��i j logrj ��i j logrj
logM� 8:3� 10�3 4:3� 10�2 3:9� 10�3 3:7� 10�2 6:6� 10�4 2:3� 10�4

a=M� 2:3� 10�5 3:3� 10�1 1:4� 10�5 2:4� 10�1 7:4� 10�6 1:6� 10�1

e0 1:0� 10�6 5:0� 10�2 6:7� 10�7 3:6� 10�2 1:4� 10�6 1:6� 10�3

log� 2:5� 10�1 6:1� 10�1 1:5� 10�1 3:6� 10�1 1:1� 10�1 3:2� 10�1

logðDL=�Þ 2:8� 10�2 4:8� 10�4 2:1� 10�2 4:8� 10�4 1:8� 10�2 3:8� 10�4

TABLE IV. Error estimates for LISA and the EMRI systems A and B. The results shown have been obtained for different values of
the initial eccentricity, e0, and MBH spin, a. The evolution time for these systems is: Tevol ¼ 0:5 yr (system A) and Tevol ¼ 1:5 yr
(system B). The superscript ‘‘y’’ on a given result indicates that the corresponding Fisher matrix did not satisfy the MMC criterion;
nevertheless, we include the results for the sake of completeness.

System A e0 ¼ 0:1 e0 ¼ 0:25 e0 ¼ 0:5
a=M� 0.1 0.25 0:5y 0.1 0.25 0.5 0.1 0.25 0.5

logM� 4:2� 10�3 4:1� 10�3 3:0� 10�3 3:7� 10�3 4:3� 10�3 4:4� 10�3 1:4� 10�3 5:0� 10�3 4:9� 10�3

a=M� 5:0� 10�5 6:0� 10�6 8:0� 10�6 3:2� 10�6 5:2� 10�6 7:2� 10�6 4:0� 10�6 4:6� 10�6 6:0� 10�6

e 2:3� 10�6 2:4� 10�6 1:4� 10�6 4:9� 10�7 8:6� 10�7 9:2� 10�7 2:0� 10�7 3:3� 10�7 3:3� 10�7

log� 7:5� 10�2 9:9� 10�2 9:0� 10�2 2:8� 10�2 4:9� 10�2 6:6� 10�2 5:1� 10�2 3:5� 10�2 4:3� 10�2

logðDL=�Þ 1:9� 10�2 2:0� 10�2 2:1� 10�2 1:7� 10�2 2:0� 10�2 2:1� 10�2 1:9� 10�2 2:3� 10�2 2:4� 10�2

System B e0 ¼ 0:1 e0 ¼ 0:25 e0 ¼ 0:5
a=M� 0.1 0.25 0:5y 0.1 0.25 0.5 0.1 0.25 0.5

logM� 1:1� 10�3 1:1� 10�3 5:3� 10�4 8:7� 10�4 9:0� 10�4 9:9� 10�4 6:1� 10�4 6:4� 10�4 6:8� 10�4

a=M� 4:8� 10�6 7:7� 10�6 5:1� 10�6 3:2� 10�6 4:3� 10�6 5:2� 10�6 1:7� 10�6 2:1� 10�6 2:7� 10�6

e 1:5� 10�6 1:9� 10�6 6:0� 10�7 4:1� 10�7 4:3� 10�7 4:5� 10�7 9:6� 10�8 1:0� 10�7 1:1� 10�7

log� 6:4� 10�2 8:5� 10�2 7:0� 10�2 3:7� 10�2 4:3� 10�2 5:3� 10�2 1:3� 10�2 1:6� 10�2 2:1� 10�2

logðDL=�Þ 2:6� 10�2 2:7� 10�2 2:0� 10�2 2:3� 10�2 2:4� 10�2 2:6� 10�2 2:0� 10�2 2:1� 10�2 2:2� 10�2
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The values of the SNR which we obtain for systems A1,
A2 and A3 are, 48.1, 46.5 and 44.7 respectively. In the case
of systems B1, B2 and B3, the values of the SNR are 50, 46
and 49. Notice that the SNR varies by modifying the value
of the spin parameter a, albeit not very much. This depen-
dence of the SNR on the system parameters is expected in
the region of the parameter space where the FM can be
linearized (see, e.g., Refs. [64,65]).

Overall, the parameter estimation errors for system A
have the magnitudes

� logM� � 5 � 10�3; �a� 5 � 10�6M�; (75)

�e0 � 3 � 10�7; � log� � 4 � 10�2; (76)

� logðDL=�Þ � 2 � 10�2: (77)

In the case of system B, they are:

� logM� � 6 � 10�4; �a� 3 � 10�6M�; (78)

�e0 � 10�7; � log� � 2 � 10�2; (79)

� logðDL=�Þ � 2 � 10�2: (80)

The order of magnitude is roughly the same for both
systems, but in general, the estimations for system B are
better than those for system A, since the MBH mass for
system B is larger than the one for system A, and the
integration time is longer, so there are more observed
waveform cycles.

The parameter error estimates presented are for a fixed
value of the parameter � ¼ � � a. Since the spin parameter
a=M� is fixed and is the same for both systems A and B in
Table II, this means that in the previous results, the CS
parameter �=M4� was fixed. Now, we present results for the
EMRI system A for different values of the CS parameter
�=M4�. We have considered the following particular values:
� ¼ 0:05M4�, � ¼ 0:1M4� and � ¼ 0:2M4�. The results
obtained for the estimation of the parameter errors of
� ¼ fM�; a=M�; e0; p0; �; DL=�g are shown in Table V.
Due to the fact that the dependence on �=M4� and on
a=M� are different in the MBH metric components and
in the evolution equations (see Sec. II), one would expect a
different dependence of the error estimates when varying

both parameters independently. By comparing the results of
Tables IV and V, we can see that modifying the value of the
CS parameter �=M4� only affects significantly the error esti-
mate of the CS parameter itself, whereas modifying a=M�
has a significant effect on the error estimates of all the
parameters employed in our study, and in particular on � .
Up to now, all the parameter estimation results presented

refer to the LISA detector. We now present some results for
eLISA/NGO [6]. In order to more easily compare with the
results obtained for LISA, we normalize to a fixed SNR,
since the SNR for eLISA/NGO is around two times
smaller. We considered system A with three different val-
ues of the spin parameter a=M�, namely, a=M� ¼ 0:1,
0.25 and 0.5. The results obtained are quoted in Table VI.
Comparing them with the ones quoted in Table IV for
LISA, we can see that the parameter estimation accuracy
does not change appreciably when the noise curve of LISA
is changed for the one of eLISA/NGO, and so, all previous
results can be considered to apply to eLISA/NGO as well,
with the corresponding SNR corrections.

V. PLACING A BOUND ON THE CS PARAMETER

One application of the framework we have developed
to perform parameter error studies in DCSMG is to try to
put bounds on the CS parameter �, which is the combination
of CS coupling constants and the gravitational constant which
controls deviations from GR in the dynamics of EMRIs. This
question has already been investigated in the literature, but
using astrophysical systems different from EMRIs.
In the case of nondynamical CS gravity, although the

scalar field # has no evolution equation, it can be pre-
scribed a certain time evolution which has an associated

time-derivative _# and time scale, �CS ¼ 1= _#. Bounds are
normally written in terms of constraints on ‘2=�CS, where
‘2 is the characteristic length scale and equals the coupling
constant � introduced earlier. Strong bounds on this com-
bination were first obtained by Yunes and Spergel [66], but
refinements introduced by Ali-Haimoud [67] set the bound
to 0.2 km, which is three orders of magnitude better than
the Solar System bound [68], obtained from data from the
LAGEOS satellites orbiting the Earth [69].
For dynamical Chern-Simons gravity, which we con-

sider here, the bound is normally expressed as a bound

on �1=4. The first bound was quoted by Yunes and Pretorius

TABLE V. Error estimates for LISA and the EMRI system A in
Table II obtained by changing the value of the CS parameter �.
As we can see, by increasing the value of the CS parameter, �, its
error estimate, � log� , improves, whereas the rest of the error
estimates remain roughly constant.

�=M4� ¼ 0:05 �=M4� ¼ 0:1 �=M4� ¼ 0:2

logM� 4:4� 10�3 4:2� 10�3 4:5� 10�3

a=M� 4:9� 10�6 4:7� 10�6 4:9� 10�6

e0 4:9� 10�7 4:9� 10�7 5:0� 10�7

log� 1:9� 10�1 9:5� 10�2 4:9� 10�2

logðDL=�Þ 1:8� 10�2 1:8� 10�2 1:8� 10�2

TABLE VI. Parameter estimation results for eLISA/NGO and
the EMRI System A evolved for Tevol ¼ 2 yr. The corresponding
SNR is ’ 15. The value of the initial eccentricity is e0 ¼ 0:25.

a=M� ¼ 0:1 a=M� ¼ 0:25 a=M� ¼ 0:5

logM� 9:0� 10�4 9:8� 10�4 1:3� 10�3

a=M� 3:2� 10�6 2:8� 10�6 3:9� 10�6

e0 5:1� 10�7 5:2� 10�7 5:7� 10�7

log� 6:0� 10�2 7:3� 10�2 9:6� 10�2

logðDL=�Þ 6:4� 10�2 7:0� 10�2 7:5� 10�2
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[25] and was �1=4 < 104 km. However, in a recent paper by
Ali-Haimoud and Chen [32] they took into account the fact
that the CS solution for the spacetime outside a rotating
star is not the same as that outside a rotating black hole, and
also that the CS correction can only lead to a decrease in
frame-dragging effects and thus cannot be constrained by
an upper bound on the precession, but only by a positive
lower bound that lies below the GR value. The CS-induced
precession which gives the bound quoted in Yunes and
Pretorius is two orders of magnitude larger than the GR
precession, which means that bound can probably not be
trusted. Ali-Haimoud and Chen [32] argue that the best
constraints at present are therefore those which come
from Solar System measurements, based on data from the
Gravity Probe B satellite [70] and also from the LAGEOS
satellites [69], which are much weaker. The bound which

they get is then �1=4 < 108 km. In this paper, we compare
our results with this weaker but more robust bound.

The basis for the computation of our bound is the
following. We assume that GR is the correct theory to
describe EMRI dynamics and hence assume that measure-
ments made by LISA are compatible with � ¼ 0. Then, by
estimating the error on the measurements of �, �� [ob-
tained using Eq. (67)], we can set a bound of the following
type: � <��. Different EMRI systems will provide differ-
ent constraints. But since � is a universal quantity, in
particular, the same for all EMRIs, we just need to look
for the EMRI system which provides the best constraint.
We have performed several computations with EMRI
systems whose common parameters are M� ¼ 5 � 105M�,
� ¼ 2 � 10�5, S ¼ �S ¼ 1:57 rad, K ¼ 0:392 rad,
�K ¼ 0:78 rad, DL=� ¼ 5 � 104 Gpc and c 0 ¼ �0 ¼
�0 ¼ 0:78 rad. We show some relevant results in
Table VII for EMRIs with spin parameter a=M� � 0:5
(the rest of parameters can be found in the caption of
the table). Since we are differentiating about zero, the
numerical evaluation of the � derivatives must be per-
formed using a one-sided derivative. In particular, we
have double-checked some of these results using both the
3-point and 4-point rules given by Eqs. (73) and (74)
respectively. We note that, even though we are using
system A (M� ¼ 5 � 105M�) for this study, the values
obtained for theMMCwith Tevol ¼ 0:5were slightly above
the reference threshold of 0.5 that we used elsewhere in our
study. This fact could be connected to using the one-sided
derivative in our calculations.

From the error estimates for the � parameter shown in
Table VII, we find

��=M4� < 10�7; (81)

which, in suitable units, becomes

�1=4 < 1:4 � 104 km: (82)

This result, a prediction for LISA measurements, is
almost four orders of magnitude better than the bound

�1=4&108 km given in Ref. [32]. The corresponding esti-
mate for eLISA/NGO can be found be rescaling the �
constraint by the SNR, but since the bound scales only as
the one-fourth power, the bound for eLISA/NGO is essen-
tially the same.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have examined how well a space-based
GW detector like LISA or eLISA/NGO can discriminate
between an EMRI system in GR and one occurring in a
modified gravity theory like DCSMG. To do this, we have
extended previous work in Ref. [27] by introducing two
key components. The first is the inclusion of RR effects
driving the inspiral. We have constructed a waveform
template model using an adiabatic-radiative approximation
following the NK waveform model [31]. In this approxi-
mation, the inspiral trajectory is modeled as a sequence of
geodesics whose constants of motion are updated using
formulae for the fluxes of energy, z-component of the
angular momentum and Carter constant, which were de-
rived for general relativistic inspirals in Ref. [29] using a
combination of PN approximations and fits to results from
the Teukolsky formalism.
The second key improvement made in this paper is

the use of the Fisher matrix formalism to estimate errors
in parameter measurements. We have explored a five-
dimensional subspace of the fifteen-dimensional parameter
space of EMRIs in DCSMG (see Table I). The parameters
which span this subspace are fM�; a=M�; e0; �; DL=�g. We
have focused our studies on two types of systems (see
Table II), with masses 10M� þ 5 � 105M� and 10M� þ
106M�. The parameter error estimates are summarized in
Eqs. (77) and (80). For both systems, and assuming a LISA
detector, we estimated the measurement error on the loga-
rithm of the CS parameter � as � log� � 10�2. Therefore,
a space-based GW detector like LISA should be able to
discriminate between GR and DCSMG. In the case that
DCSMG is the correct theory describing the strong
gravitational regimes involved in EMRI dynamics, such a

TABLE VII. Parameter estimation errors for EMRI systems in
GR (i.e. on the �-parameter surface determined by � ¼ � ¼ 0).
The parameters common to all these systems are M� ¼ 5�
105M�, � ¼ 2� 10�5, S ¼ �S ¼ 1:57 rad, K ¼ 0:392 rad,
�K ¼ 0:78 rad, DL=� ¼ 5� 104 Gpc and c 0 ¼ �0 ¼ �0 ¼
0:78 rad. The last two columns contain the error estimate for
the CS parameter � and the MMC criterium figure of merit
associated with the CS parameter � .

a=M� e0 p0 inc;0 Tevol (yrs) ��=M4� j logrj
0.5 0.7 10.0 0.15 0.5 5:76� 10�8 0.91

0.45 0.7 10.0 0.15 0.5 1:86� 10�7 0.84

0.5 0.7 10.0 0.15 0.5 6:23� 10�8 0.89

0.5 0.85 11.0 0.15 0.5 6:20� 10�8 0.7

0.5 0.85 11.0 0.15 1.0 6:10� 10�8 0.57
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detector should be able to provide a good estimation of the
CS parameter which controls the deviations from GR. We
have also explored how these parameter error estimates
change with the spin parameter a=M� (see Table IV). We
have found that by decreasing a=M� the parameter mea-
surement precision of the CS parameter improves, while
modifying the value of � (see Table V) does not affect
significantly the precision of parameter estimates for the
range of other system parameters included in our analysis.

For the case of eLISA/NGO, we have presented
some parameter error estimation results for system A in
Table II. In order to compare with LISA results, we
have normalized these results to a fixed SNR (the eLISA/
NGO SNR is approximately a factor of two smaller than
the LISA one). Results for three values of the spin
parameter (a=M� ¼ 0:1, 0.25 and 0.5) are given in
Table VI. The conclusion is that the parameter estimation
accuracy at fixed SNR does not change significantly
relative to the LISA results. The LISA results can therefore
be applied to eLISA/NGO by applying the appropriate
SNR correction.

Finally, we have used our parameter estimation frame-
work to put bounds on the CS parameter �. By assuming
that GR is the correct theory of gravity, we have found that

LISA could place a bound �1=4 < 1:4 � 104 km, which is
almost four orders of magnitude better than the bound
obtained in Ref. [32] using Solar System data.

The results presented in this paper can be extended in a
number of ways by adding more elements to the waveform
model which we employ. For example, it can be done by
(i) using a higher-order approximation for the MBH ge-
ometry in DCSMG; (ii) including CS corrections to the RR
formulae, in particular, to introduce the effects of the CS
scalar field in the RR mechanism; (iii) adding more multi-
pole moments to the gravitational-wave expansion formu-
lae; etc. In addition, we have focused our study on a few
EMRI systems, so it would be useful to carry out a more
exhaustive study of the parameter space, although this
would be a costly task in terms of computational resources.
Such extensions to the present work would allow us to
consider systems which might be of greater interest from
the point of view of improving the parameter estimation
results. The approximations underlying our model prevent
us from considering systems with spins higher than
a=M� ¼ 0:5 and strong CS couplings. However, a better
search of the parameter space would allow us to identify
systems which provide the best parameter estimates and
the strongest bounds on the CS parameter �.

There are other extensions of this work which are also
interesting. In particular, it would be useful to assess the
systematic errors which would arise if GR waveform tem-
plates were used to detect EMRIs which are actually
described by DCSMG. This could be done using the for-
malism developed by Cutler and Vallisneri [71] to estimate
systematic errors which arise from model uncertainties.

Finally, we could apply some of the tools and techniques
used in the present work to study other modifications of
gravity, different from the CS correction and in this way to
exploit the potential of the connection between gravita-
tional wave astronomy and high-energy physics [72].
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APPENDIX A: LISA AND ELISA POWER
SPECTRAL DENSITIES

In this paper, we assume that the GW detector is either
LISA [4,5] or eLISA/NGO [6]. LISA is a space-based GW
detector concept which consists of a quasiequilateral tri-
angular constellation of three identical spacecrafts with an
interspacecraft distance of L ¼ 5 � 109 m. Each spacecraft
follows a heliocentric orbit which trails behind the Earth at
a distance of 5 � 1010 m (equivalent to 20 degrees) in such a
way that the LISA constellation faces the Sun, slanting at
60 degrees to the ecliptic plane. These particular helio-
centric orbits were chosen such that the triangular forma-
tion is maintained throughout the year, with the triangle
appearing to rotate about the center of the formation once
per year. Each spacecraft contains two free falling test
masses whose distance is monitored by 6 laser links. In
contrast, the eLISA/NGO constellation has an interspace-
craft distance of L ¼ 109 m. Moreover, only one of the
spacecrafts will contain two free falling masses and service
two arms of the constellation, while the other two will have
only one proof mass and service one arm. This effectively
reduces the detector response from having two indepen-
dent Michelson channels to just one.
An essential ingredient required in the detector res-

ponse is a model for the noise affecting the observations.
This may be described in terms of the one-sided noise
power spectral density, SnðfÞ. For LISA, this has three
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contributions: instrumental noise, Sinstn ðfÞ, confusion noise

from short-period galactic binaries, S
gal
n ðfÞ, and confusion

noise from extragalactic binaries, S
exgal
n ðfÞ [54]:

Sn ¼ minfSinstn þ S
exgal
n ; Sinstn þ S

gal
n þ S

exgal
n g; (A1)

where the different noise contributions are given by

Sinstn ðfÞ¼ exp

�
�T�1

mission

dN

df

�
ð9:18�10�52f�4

þ1:59�10�41þ9:18�10�38f2ÞHz�1; (A2)

S
gal
n ðfÞ ¼ 2:1� 10�45

�
f

1 Hz

��7=3
Hz�1; (A3)

S
exgal
n ðfÞ ¼ 4:2� 10�47

�
f

1 Hz

��7=3
Hz�1; (A4)

with dN=df the number density of galactic white dwarf
binaries per unit frequency, Tmission, the lifetime of the
LISA mission and � the average number of frequency
bins which are lost when each galactic binary is fitted
out. The particular values which we use correspond to
(see, e.g., Ref. [54]) � � 4:5 and

dN

df
¼ 2� 10�3

�
1 Hz

f

�
11=3

: (A5)

The noise curve for eLISA/NGO is given by [6]

SnðfÞ ¼ 4Sacc þ Ssn þ Somn

L2

�
1þ

�
fL

0:205c

�
2
�
; (A6)

where Sacc, Ssn and Somn are, respectively, the power spec-
tral density of the residual acceleration of the test masses,
of the shot noise and of other measurement noises. These
are given by

SaccðfÞ¼1:37 �10�32

�
1þ10�4 Hz

f

�
Hz

f4
m2Hz�1; (A7)

SsnðfÞ ¼ 5:25 � 10�23 m2 Hz�1; (A8)

Somn ¼ 6:28 � 10�23 m2 Hz�1: (A9)

APPENDIX B: EVOLUTION OF THE
CONSTANTS OF MOTION

In Refs. [29,31], to compute EMRIs in general relativity,
the fluxes on the right-hand sides of Eqs. (31)–(33) were
specified by approximate, weak-field formulae, augmented
with corrections to ensure the behavior was not pathologi-
cal for near-circular or near-polar orbits and augmented by
fits to numerical solutions of the Teukolsky equation.
These formulae look as follows (note that in this paper,
we are using a dimensionless semilatus rectum instead of
the semilatus rectum of [29], which has units of M�):

dE

dt
¼ ð1� e2Þ3=2

�
ð1� e2Þ�3=2ð _EÞ2PNðp; �; e; aÞ

� ð _EÞ2PNðp; �; 0; aÞ � N4ðp; �Þ
N1ðp; �Þ ð

_LzÞ2PNðp; �; 0; aÞ

� N5ðp; �Þ
N1ðp; �Þ ð

_QÞ2PNðp; �; 0; aÞ
�
; (B1)

dLz

dt
¼ ð1� e2Þ3=2½ð1� e2Þ�3=2ð _LzÞ2PNðp; �; e; aÞ

� ð _LzÞ2PNðp; �; 0; aÞ þ ð _LzÞfit�; (B2)

dQ

dt
¼ ð1� e2Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðp; �; e; aÞ

q �
ð1� e2Þ�3=2

�
� _Qffiffiffiffi

Q
p

�
2PN

ðp; �; e; aÞ �
� _Qffiffiffiffi

Q
p

�
2PN

ðp; �; 0; aÞ

þ 2 tan�

�
ð _LzÞfit þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðp; �; 0; aÞp

sin2�
ð _�Þfit

��
: (B3)

where the coefficients Ni’s are

N1ðp; �Þ ¼ pM4�
�
pEðp2 þ q2Þ � 2q

�
Lz

M�
� qE

����������circ
;

(B4)

N4ðp; �Þ ¼ pM3�
�
ð2� pÞ Lz

M�
� 2qE

���������circ
; (B5)

N5ðp; �Þ ¼ M2�
2

½pð2� pÞ � q2�jcirc; (B6)

where the subscript ‘‘circ’’ indicated that these coefficients
are evaluated for a circular orbit defined by the arguments
p and �. In these expressions, q denotes the dimensionless
spin parameter of the MBH

q ¼ a

M�
; 0 � q � 1: (B7)

In Eqs. (B1)–(B3), the fluxes ð _EÞ2PN, ð _LzÞ2PN and ð _QÞ2PN
are the 2PN approximations to the averaged evolution of
the energy, angular momentum in the spin direction and
Carter constant. They are modifications of the original
expressions given in Ref. [73] but corrected to avoid un-
physical features which they exhibit for nearly circular
(e � 0) and for nearly polar (� � �=2) inspirals. The
corrected 2PN fluxes have the following form:

ð _EÞ2PN ¼ � 32

5

m2
?

M2�

ð1� e2Þ3=2
p5

�
g1ðeÞ � q

p3=2
g2ðeÞ cos�

� 1

p
g3ðeÞ þ �

p3=2
g4ðeÞ � 1

p2
g5ðeÞ þ q2

p2
g6ðeÞ

�
�
527

96
þ 6533

192
e2
�
q2

p2
sin2�

�
; (B8)
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ð _LzÞ2PN ¼ � 32

5

m2
?

M�
ð1� e2Þ3=2

p7=2

�
g9ðeÞ cos�þ q

p3=2

� fga10ðeÞ � gb10ðeÞcos2�g �
1

p
g11ðeÞ cos�

þ �

p3=2
g12ðeÞ cos�� 1

p2
g13ðeÞ cos�þ q2

p2

� cos�

�
g14ðeÞ �

�
45

8
þ 37

2
e2
�
sin2�

��
; (B9)

ð _QÞ2PN ¼ � 64

5

m2
?

M�
ð1� e2Þ3=2

p7=2

ffiffiffiffi
Q

p
sin�

�
g9ðeÞ

� q

p3=2
gb10ðeÞ cos��

1

p
g11ðeÞ þ �

p3=2
g12ðeÞ

� 1

p2
g13ðeÞ þ q2

p2

�
g14ðeÞ � 45

8
sin2�

��
; (B10)

where the various e-dependent coefficients are

g1ðeÞ¼1þ73

24
e2þ37

96
e4; g2ðeÞ¼73

12
þ823

24
e2þ949

32
e4þ491

192
e6; g3ðeÞ¼1247

336
þ9181

672
e2; g4ðeÞ¼4þ1375

48
e2;

g5ðeÞ¼44711

9072
þ172157

2592
e2; g6ðeÞ¼33

16
þ359

32
e2; g7ðeÞ¼8191

672
þ44531

336
e2; g8ðeÞ¼3749

336
�5143

168
e2;

g9ðeÞ¼1þ7

8
e2; ga10ðeÞ¼

61

24
þ63

8
e2þ95

64
e4; gb10ðeÞ¼

61

8
þ91

4
e2þ461

64
e4; g11ðeÞ¼1247

336
þ425

336
e2;

g12ðeÞ¼4þ97

8
e2; g13ðeÞ¼44711

9072
þ302893

6048
e2; g14ðeÞ¼33

16
þ95

16
e2:

(B11)

The equation for the evolution for the Carter constant has an additional improvement with respect to the one in Ref. [73],
where a simple but accurate prescription for the Carter constant was given by assuming that the inclination angle evolution
due to GWemission is negligible (see Refs. [30,51] for supporting evidence of this). That is, _� � 0 leads to _Q � 2ð _Lz=LzÞQ
via Eq. (30). The improvement introduced in Ref. [29] consists of adding the next-order spin-dependent PN correction.

The final ingredient comes by adding fitting functions to the results of Teukolsky-based computations for circular-
inclined orbits [30]. The expressions for the Teukolsky fitted fluxes (to data provided by Scott Hughes, see [30]) are

ð _LzÞfit ¼ � 32

5
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?

M�
p�7=2
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�
61
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cos�� 44711
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8
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cos�
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Similarly, a good fit to the evolution of � is given by

ð _�Þfit ¼ 32
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qsin2�ffiffiffiffi

Q
p p�5
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þ 1
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cos�
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; (B13)

where the values of the numerical fitting coefficients are
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da1 ¼ �10:7420; db1 ¼ 28:5942; dc1 ¼ �9:07738; da2 ¼ �1:42836; db2 ¼ 10:7003;

dc2 ¼ �33:7090; ca1 ¼ �28:1517; cb1 ¼ 60:9607; cc1 ¼ 40:9998; ca2 ¼ �0:348161;

cb2 ¼ 2:37258; cc2 ¼ �66:6584; ca3 ¼ �0:715392; cb3 ¼ 3:21593; cc3 ¼ 5:28888;

ca4 ¼ �7:61034; cb4 ¼ 128:878; cc4 ¼ �475:465; ca5 ¼ 12:2908; cb5 ¼ �113:125;

cc5 ¼ 306:119; ca6 ¼ 40:9259; cb6 ¼ �347:271; cc6 ¼ 886:503; ca7 ¼ �25:4831;

cb7 ¼ 224:227; cc7 ¼ �490:982; ca8 ¼ �9:00634; cb8 ¼ 91:1767; cc8 ¼ �297:002;

ca9 ¼ �0:645000; cb9 ¼ �5:13592; cc9 ¼ 47:1982; fa1 ¼ �283:955; fb1 ¼ 736:209;

fa2 ¼ 483:266; fb2 ¼ �1325:19; fa3 ¼ �219:224; fb3 ¼ 634:499; fa4 ¼ �25:8203;

fb4 ¼ 82:0780; fa5 ¼ 301:478; fb5 ¼ �904:161; fa6 ¼ �271:966; fb6 ¼ 827:319:

(B14)

ca10 ¼ �0:0309341; cb10 ¼ �22:2416; cc10 ¼ 7:55265; ca11 ¼ �3:33476; cb11 ¼ 22:7013;

cc11 ¼ �12:4700; fa7 ¼ �162:268; fb7 ¼ 247:168; fa8 ¼ 152:125; fb8 ¼ �182:165;

fa9 ¼ 184:465; fb9 ¼ �267:553; fa10 ¼ �188:132; fb10 ¼ 254:067:

(B15)
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