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We investigate the importance of choosing good tetrads for the study of the field equations of fðTÞ
gravity. It is well known that this theory is not invariant under local Lorentz transformations, and therefore

the choice of tetrad plays a crucial role in such models. Different tetrads will lead to different field

equations which in turn have different solutions. We suggest to speak of a good tetrad if it imposes no

restrictions on the form of fðTÞ. Employing local rotations, we construct good tetrads in the context of

homogeneity and isotropy, and spherical symmetry, where we show how to find Schwarzschild–de Sitter

solutions in vacuum. Our principal approach should be applicable to other symmetries as well.

DOI: 10.1103/PhysRevD.86.044009 PACS numbers: 04.50.�h, 04.20.Jb, 04.50.Kd

I. INTRODUCTION

When formulating theories of gravity, the metric tensor
is of paramount importance. It contains the information
needed to locally measure distances and thus to make
theoretical predictions about experimental findings.
However, as an alternative dynamical variable, one can
use the tetrad ea� which is a set of four vectors defining

a local frame at every point. The metric and the tetrad are
related by

g�� ¼ ea�e
b
��ab; (1.1)

where �ab ¼ diagðþ1;�1;�1;�1Þ is the Minkowski
metric of the tangent space. The order of the indices in
the tetrad is not irrelevant whenever one considers non-
diagonal tetrads. In general we have ea� � e�

a one being

the transposed (matrix) of the other. One immediately
notices that g�� is a scalar under local Lorentz transfor-

mations in the tangent space, while ea� transforms as

ea� � �a
be

b
�; (1.2)

where�a
b is a local Lorentz transformation which satisfies

�ac�
a
b�

c
d ¼ �bd: (1.3)

Taking the geodesic equation as our starting point, we
can realize that gravitational potentials should be encoded
in the metric or the tetrad and forces should be contained in
their respective derivatives. In the metric approach to
gravity one relates the forces to the Christoffel symbols
which do not transform as tensors under coordinate trans-
formations. Being guided by the Poisson equation, one
arrives rather naturally at the Riemann and Ricci tensors
as the basic quantities in the field equations. Following this
route one can also construct the Einstein-Hilbert action.
When working on a manifold where the connection is not

necessarily symmetric, one can easily construct a tensor
quantity by considering the skew-symmetric part of the
connection. The resulting tensor is the so-called torsion
tensor T�

��, which can be used to construct a theory

known as the teleparallel equivalent of general relativity
(TEGR) (see Refs. [1,2]). The Lagrangian of this formu-
lation differs from general relativity only by a surface term.
Gravitational theories built from the metric and quanti-

ties derived from it will always be Lorentz scalars and such
theories will, by definition, be invariant under local
Lorentz transformations. On the other hand, when building
theories with torsion, those would not in general be invari-
ant under local Lorentz transformations since

T�
�� ¼ ��

�� � ��
�� ¼ ei

�ð@�ei� � @�e
i
�Þ; (1.4)

and therefore

T�
�� � T�

�� þ�a
beb

�ðec�@��a
c � ec�@��

a
cÞ; (1.5)

under local Lorentz transformations in the tangent space.
When considering an action based on quadratic combina-
tions of T�

��, local Lorentz invariance may be achieved by

fine tuning the model. In general, theories like fðTÞ gravity
are not invariant under local Lorentz transformations [3,4],
unless of course fðTÞ ¼ c1 þ c2T, where c1 and c2 are
constants. Conversely, this means that a noninvariant the-
ory will be sensitive to the choice of the tetrad and different
tetrads might give rise to different solutions. As such, the
choice of the tetrad is a crucial and rather subtle point when
studying such theories.
In other words, although local Lorentz transformations

do not change the metric, they do change the fðTÞ field
equations. This happens precisely because the fðTÞ
Lagrangian is not invariant under such kind of transforma-
tions. Every different choice of a tetrad giving back the
same metric will then represent a different physical theory,
describing different modifications of TEGR. However, if
we require that for physically viable models TEGR is
recovered in some limit, all these possible theories must
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coincide in such a limit since the TEGR action is invariant
under local Lorentz transformations.

In the present paper we study the issue of choosing
suitable tetrads within the framework of fðTÞ gravity. We
state that good tetrads do not imply restrictions on the
functional form of fðTÞ. The corresponding modified
gravitational theories will share solutions with general
relativity (GR) and will in turn be considered as better,
more viable modifications of GR.

In Sec. II we analyze spherically symmetric spacetimes.
We prove Birkhoff’s theorem and show how, employing
local rotations, we can find a good tetrad leading to
Schwarzschild–de Sitter (SdS) solutions. In Sec. III we
use the same method to build good tetrads for
Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmol-
ogy in spherical coordinates, first in the flat case and then
in the curved ones. Finally, we recap the major results and
draw conclusions in Sec. IV.

II. ROTATED TETRADS IN SPHERICAL
SYMMETRY

Spherically symmetric spacetimes within fðTÞ gravity
have recently received substantial attention [5–17]. Several
vacuum and nonvacuum solutions have been built but the
Schwarzschild solution has only been found in isotropic
coordinates with the aid of a boosted tetrad [16]. Birkhoff’s
theorem has been proved using a diagonal tetrad [12]
which constrains the torsion scalar to be constant and
does not admit the Schwarzschild solution [15]. In what
follows we show how employing nondiagonal (rotated)
tetrads permits us to recover SdS solutions in vacuum
and to prove Birkhoff’s theorem in analogy with [13].

Consider the general (nonstatic) spherically symmetric
metric

ds2 ¼ eAðt;rÞdt2 � eBðt;rÞdr2 � r2d�2; (2.1)

where d�2 ¼ d�2 þ sin2�d�2. The simplest possible tet-
rad giving this metric is the diagonal one

e�
ajdiag ¼

eAðt;rÞ=2 0 0 0

0 eBðt;rÞ=2 0 0

0 0 r 0

0 0 0 r sin�

0
BBBBB@

1
CCCCCA: (2.2)

Using this tetrad it has been shown that every spacetime
described by metric (2.1) has to be static in fðTÞ gravity
[12]. However, the Schwarzschild solution is not a solution
of the fðTÞ field equations derived from tetrad (2.2) [15]
implying that even if Birkhoff’s theorem holds, vacuum
solutions of the theory do not reduce to GR vacuum
solutions as one would expect.

As mentioned in the previous section, we can always
change tetrad (2.2) without affecting metric (2.1) by a local
Lorentz transformation in the tangent space

e�
ajdiag � e�

a ¼ �b
ae�

bjdiag: (2.3)

In the forthcoming analysis we reduce the local Lorentz
transformation matrix to a general three-dimensional rota-
tionR parametrized by its three Euler angles ’, #, c such
that we can write

�a
b ¼ 1 0

0 Rð’;#; c Þ

 !
; (2.4)

where

Rð’;#; c Þ ¼ Rzðc ÞRyð#ÞRxð’Þ; (2.5)

where the Rx, Ry, Rz are the rotation matrices about the

Cartesian coordinate axis with angles ’, #, c , respec-
tively. These well-known matrices are given by

Rxð’Þ ¼
1 0 0
0 cos’ � sin’
0 sin’ cos’

0
@

1
A;

Ryð#Þ ¼
cos# 0 � sin#
0 1 0

sin# 0 cos#

0
@

1
A;

Rzðc Þ ¼
cosc � sinc 0
sinc cosc 0
0 0 1

0
@

1
A:

(2.6)

In general, even if ’, #, c , are taken to be arbitrary
functions of the spherical coordinates t, r, �, �, the trans-
formed tetrad (2.3) returns metric (2.1). Of course, this
happens because the rotation matrix (2.4) is a local
Lorentz transformation satisfying condition (1.3). Note
that the spherical symmetry of the spacetime is not affected
by transformation (2.4) since it operates within the tangent
space. This process is similar to the one used in Ref. [16]
where the diagonal tetrad (in isotropic coordinates) is
boosted, instead of rotated, by a local Lorentz
transformation.
For our purposes, we will consider the following values

for the three Euler angles:

’ ¼ �ðrÞ; # ¼ �� �=2; c ¼ �: (2.7)

where � is taken to be a general function of r. With these
values the local rotation (2.4) becomes

�a
b ¼

1 0

0 Rð�ðrÞ; �� �=2; �Þ

 !
; (2.8)

where we have

Rð�ðrÞ; �� �=2; �Þ ¼ Rzð�ÞRyð�� �=2ÞRxð�ðrÞÞ;
(2.9)

and the rotated tetrad reads
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e�
a ¼

eA=2 0 0 0

0 eB=2 sin� cos� eB=2 sin� sin� eB=2 cos�

0 �rðcos� cos� sin�þ sin� cos�Þ rðcos� cos�� cos� sin� sin�Þ r sin� sin�

0 r sin�ðsin� sin�� cos� cos� cos�Þ �r sin�ðcos� sin� cos�þ cos� sin�Þ rsin2� cos�

0
BBBBB@

1
CCCCCA: (2.10)

We notice that setting �ðrÞ ¼ ��=2 this tetrad reduces to
the rotated tetrad considered in Refs. [13,15]. This particu-
lar choice will turn out useful later when we will prove the
staticity of metric (2.1) without having any constraint on
the torsion scalar T (see Sec. II A 3).

The torsion scalar obtained from tetrad (2.10) is

T ¼ 2e�B

r2
½1þ eB þ 2eB=2 sin�þ 2eB=2r�0 cos�

þ rA0ð1þ eB=2 sin�Þ�; (2.11)

where a prime denotes derivative with respect to r. The
torsion scalar does not explicitly depend on time, however;
it does so implicitly via A and B. The fðTÞ field equations
result in six independent relations

4�	 ¼ f

4
� fTe

�B

4r2
ð2� 2eB þ r2eBT � 2rB0Þ

� fTTT
0e�B

r
ð1þ eB=2 sin�Þ; (2.12)

4�p ¼ � f

4
þ fTe

�B

4r2
ð2� 2eB þ r2eBT þ 2rA0Þ; (2.13)

fTTT
0 cos� ¼ 0; (2.14)

fT _B ¼ 0; (2.15)

_B½eBr2fTþ2fTTð1þeB=2 sin�Þð2�2eBþr2eBTþ2rA0Þ�
�4rfTT _A0ð1þeB=2 sin�Þ2¼0; (2.16)

fTT½ � 4eArT0 � _B2ð2� 2eB þ r2eBTÞ
� 2rA0ðeArT0 þ _B2Þ þ 4r _B _A0ð1þ eB=2 sin�Þ�
þ fT½4eA � 4eAeB � eAr2A02 þ 2eArB0

þ eArA0ð2þ rB0Þ � 2r2eAA00 � eBr2 _A _B

þ eBr2 _B2 þ 2eBr2 €B� ¼ 0; (2.17)

where fT and fTT are the first and second derivatives of
fðTÞ and overdots denote differentiation with respect to t.

A. Birkhoff’s theorem

In this section we will use the field equations derived
above to prove Birkhoff’s theorem in fðTÞ gravity. We
stress the issue that different tetrads lead to different physi-
cal theories in fðTÞ gravity. This means that all the results
we will derive in this and the following sections, and in
particular Birkhoff’s theorem, hold only when tetrad (2.10)
is considered. Note however that the family of tetrads

(2.10) appears to be quite general since it contains both
the tetrads considered in Refs. [12,13].
A complete proof of Birkhoff’s theorem for fðTÞ gravity

would require the following analysis for all the physically
equivalent tetrads admitted by the theory. It is self-evident
that a similar analysis cannot be performed in full general-
ity. However, it is possible to start with the most general
spherically symmetric tetrad found a long time ago in
Ref. [18]. Unfortunately, this tetrad is very difficult to
handle due to the large number of independent functions.
To the best of our knowledge, there are no works in fðTÞ
gravity considering this general case.

1. The case T0 ¼ 0

Let us start looking at (2.14). If cos� ¼ 0 this is identi-
cally satisfied and we gain no constraints on the r depen-
dence ofT. This case is of particular interest and is analyzed
in Sec. II A 3. For the moment we require cos� � 0.
Moreover since we already know that Birkhoff’s theorem
holds in GR, or equivalently in TEGR [19], we can exclude
the case fTT ¼ 0 which would lead back to TEGR. With
these premises, condition (2.14) implies

T0 ¼ 0; (2.18)

meaning that the torsion scalar (2.11) can only be a function
of time, we write T0 ¼ TðtÞ. We then assume fT0

� 0 and

(2.15) directly yields

_B ¼ 0: (2.19)

Taking into account conditions (2.18) and (2.19), the field
equations reduce to

4�	 ¼ f0
4
� fT0

e�B

4r2
ð2� 2eB þ r2eBT0 � 2rB0Þ; (2.20)

4�p¼�f0
4
þfT0

e�B

4r2
ð2� 2eBþ r2eBT0þ 2rA0Þ; (2.21)

_A 0ð1þ eB=2 sin�Þ2 ¼ 0; (2.22)

4� 4eB � r2A02 þ 2rB0 þ rA0ð2þ rB0Þ � 2r2A00 ¼ 0:

(2.23)

Consider Eq. (2.22); this is satisfied either if _A0 ¼ 0 or

1þ eB=2 sin� ¼ 0. The second case will be analyzed
later in Sec. II A 2; for the moment let us assume

1þ eB=2 sin� � 0. The constraint _A0 ¼ 0 implies that
Aðt; rÞ can only be of the type
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Aðt; rÞ ¼ c ðrÞ þ 
ðtÞ; (2.24)

where c and 
 are general functions of r and t respec-
tively. Now note that in the field equations (2.20), (2.21),
and (2.23) the metric function A appears only through its
derivatives with respect to r, namely A0 and A00. This
means that this system of equations is invariant under
the transformation Aðt; rÞ ! Aðt; rÞ þ �ðtÞ, with � an ar-
bitrary function of t. We can then always choose �ðtÞ ¼
�
ðtÞ without affecting the field equations and thus the
physical properties of the system. This in turn leads to

Aðt; rÞ ¼ c ðrÞ � AðrÞ: (2.25)

Thus both the metric functions are independent of time
and the spacetime becomes static:

ds2 ¼ eAðrÞdt2 � eBðrÞdr2 � r2d�2: (2.26)

Alternatively we could get rid of the time dependence of
A through a rescaling of the time coordinate. In fact taking

dt ! e
ðtÞ=2dt would have given again the static metric
(2.26). With this last approach the physical meaning of
this operation is probably more evident. The result we just
derived is exactly the one found in Ref. [12] with a diago-
nal tetrad. We will see in Sec. II B that with a nondiagonal
(rotated) tetrad this analysis can be pushed further to prove
that the most general spherically symmetric solution has to
be of the SdS kind. Finally we note that in this case
Birkhoff’s theorem holds even in the presence of matter
since we did not assume the vacuum condition anywhere.
As we are going to see this is not true in the other cases.

2. The case eB=2 sin�þ 1¼ 0

As said above Eq. (2.22) is satisfied either if _A0 ¼ 0 or

1þ eB=2 sin� ¼ 0. We now consider the second case
where sin�ðrÞ takes the particular form

sin�ðrÞ ¼ �e�B=2: (2.27)

In the field equations (2.20), (2.21), and (2.23) we still have
the time dependency of Aðt; rÞ, whileB is a function of only
r because of (2.19). The torsion scalar (2.11) reduces to

T0 ¼ 2e�B

r2
ð�1þ eB þ rB0Þ; (2.28)

which can be easily integrated to give

e�BðrÞ ¼ 1� 2M

r
� T0

6
r2; (2.29)

with M being an integration constant. Note that this is
consistent with the above discussion as T0 now is a constant
and in this sense can be seen as a function of time only, as
required.

The field equations then reduce to

4�	 ¼ f0
4
; (2.30)

4�p¼�f0
4
� fT0

12r3
½rA0ð12Mþr3T0�6rÞþ12M�2r3T0�;

(2.31)

2½r2A00ð12Mþ r3T0 � 6rÞ � 36M�
þ r2ðA0Þ2ð12Mþ r3T0 � 6rÞ
þ 12rA0ðr� 3MÞ ¼ 0: (2.32)

We can immediately notice that in this case the energy
density has to be constant. This automatically excludes all
the solutions describing physical models where 	 �
const:. However, though this solution seems to be strongly
limited, we can still proceed with our analysis.
Equation (2.32) is satisfied if Aðt; rÞ ¼ �BðrÞ þ 
ðtÞ,

where 
 is again a general function of t. Note that this is
just one solution to Eq. (2.32) and in general there could be
other possible solutions. This means that in this particular
case Birkhoff’s theorem cannot be proved in full generality
[unless one shows that this is the unique solution of
Eq. (2.32)].
However, if we restrict our analysis to the case p ¼ �	

(which reduces to vacuumwhen 	 ¼ 0), adding Eqs. (2.20)
and (2.21) leads directly to A0 þ B0 ¼ 0, and thus to the
relation Aðt; rÞ ¼ �BðrÞ þ 
ðtÞ. Note also that in vacuum
we must have f0 ¼ 0 because of (2.30). Then, noting again
that Aðt; rÞ enters the field equations (2.30), (2.31), and
(2.32) only through its derivatives with respect to r, the
field equations are invariant under the transformation
Aðt; rÞ ! Aðt; rÞ þ �ðtÞ, for any arbitrary function � of t.
Choosing �ðtÞ ¼ �
ðtÞ we have

Aðt; rÞ ¼ AðrÞ ¼ �BðrÞ ¼ log

�
1� 2M

r
� T0

6
r2
�
; (2.33)

and the spacetime is again static with the metric

ds2 ¼ eAðrÞdt2 � e�AðrÞdr2 � r2d�2; (2.34)

where

eAðrÞ ¼ 1� 2M

r
� T0

6
r2: (2.35)

This is a SdS spacetime, where the cosmological constant
coincides with the value of T0=2. Again an alternative way
to get rid of the time dependency of A is through a rescaling
of time exactly as it happens in the general case.

In conclusion, even in the case eB=2 sin�þ 1 ¼ 0,
Birkhoff’s theorem can be enforced in vacuum and leads
directly to a SdS solution. Unfortunately, though the static
case is a solution also of the general field equations with
matter, Birkhoff’s theorem cannot be fully proved in the
presence of matter since other nonstatic solutions could be
found. However, the fact that the energy density is con-
strained to be constant raises many doubts on the physical
viability of this particular case.
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3. The case cos�¼ 0

We now go back to (2.14) and analyze the case cos� ¼ 0. In order to satisfy cos� ¼ 0we must have � ¼ ��=2þ 2n�
with n any integer number. However we will consider n ¼ 0 in the following since no physical differences arise when
n � 0. In this case (2.14) is satisfied and tetrad (2.10) reduces to

e�
a ¼

eð1=2ÞAðt;rÞ 0 0 0

0 eð1=2ÞBðt;rÞ sin� cos� eð1=2ÞBðt;rÞ sin� sin� eð1=2ÞBðt;rÞ cos�
0 �r cos� cos� �r cos� sin� �r sin�

0 �r sin� sin� �r sin� cos� rsin2� cosð�ðrÞÞ

0
BBBBB@

1
CCCCCA; (2.36)

where here, and in the following equations, the upper sign
has to be taken for � ¼ �=2 and the lower sign for � ¼
��=2. We stress that when � ¼ ��=2 tetrad (2.36) be-
comes the off-diagonal tetrad considered in Refs. [13,15].
The torsion scalar reduces to

Tðt; rÞ ¼ 2e�b

r2
ðeb=2 � 1Þðeb=2 � rar � 1Þ; (2.37)

and field equation (2.15) directly yields

_B ¼ 0; (2.38)

since we exclude the unphysical fT ¼ 0 model. Looking
then at (2.16) we find

fTT _A0ð1� eB=2Þ2 ¼ 0; (2.39)

which gives rise to three possibilities.
First, Eq. (2.39) is satisfied if fTT � 0 so that fðTÞ ¼

c1T þ c2 for c1 and c2 constants. This condition leads to
TEGR where Birkhoff’s theorem is already valid. Hence to
avoid such limitations we will assume fTT � 0 and look at
the remaining two cases, namely _A0 ¼ 0 and, only in the
� ¼ ��=2 eventuality, B ¼ 0.

If _A0 ¼ 0 the function A must assume the following
form: Aðt; rÞ ¼ �ðrÞ þ 
ðtÞ, where � and 
 are general
functions only of r and t respectively. Again if we now try
to substitute A into the field equations (2.12), (2.13), and
(2.17), we notice that the function 
ðtÞ completely
disappears since A enters these equations only through its
derivative with respect to r. This suggests that the field
equations are invariant under a (gauge) transformation
of the kind Aðt; rÞ ! Aðt; rÞ þ c ðtÞ, with c a general
function of t. In particular we can always make such a
transformation with c ðtÞ ¼ �
ðtÞ, all without modifying
the field equations. In this manner we remain with
Aðt; rÞ ¼ �ðrÞ � AðrÞ meaning that Birkhoff’s theorem
holds in this particular case with a general metric of the
kind

ds2 ¼ eAðrÞdt2 � eBðrÞdr2 � r2d�2: (2.40)

We have just proved that tetrad (2.36) permits us to validate
Birkhoff’s theorem without imposing any constraint on the
torsion scalar T. This result generalizes both the ones
found in Sec. II A 1 and Ref. [12] where T was constrained

to be constant. Moreover, it matches the result found in
Ref. [13] where Birkhoff’s theorem was proven in the
� ¼ ��=2 case.
Finally, in the eventuality where � ¼ ��=2 and B ¼ 0,

we can look back at the torsion scalar (2.37) and notice that
this gives T ¼ 0. The remaining field equations reduce to

4�	 ¼ fð0Þ
4

; (2.41)

4�p ¼ � fð0Þ
4

� fTð0Þ
2r

A0; (2.42)

0 ¼ 2A0 � rA02 � 2rA00: (2.43)

Equation (2.41) constrains the energy density to be con-
stant. This is analogous to what we saw in Sec. II A 2,
meaning that this case can be of interest only for particular
physical systems where 	 ¼ const:. The field equations
(2.41) and (2.43) have been solved in Ref. [15] for a static
spacetime (A ¼ AðrÞ). We have now also time dependency
and the solution found in Ref. [15] can be generalized as

Aðt; rÞ ¼ 2 log½r2 � 
ðtÞ� þ 2c ðtÞ; (2.44)

where 
 and c are arbitrary functions of t. We are not
stating that this is the general solution of (2.43), but only
one solution which we use to explain what follows. Note
that even if we can get rid of c with a time rescaling as
t � ec t, we cannot avoid the time dependency of A
through 
 in (2.44). Thus in this case Birkhoff’s theorem
is not satisfied in general. However in the case p ¼ �	we
can add (2.41) and (2.42) which immediately gives A0 ¼ 0,
meaning that Aðt; rÞ ¼ AðtÞ. Equation (2.43) is thus iden-
tically satisfied and we must have fð0Þ ¼ 0. We can now
rescale the time coordinate as t � eAt in the metric (which
corresponds to choosing the gauge such that A ¼ 0). This
leads to Minkowski spacetime g�� ¼ ��� and thus, it

being static, to the validity of Birkhoff’s theorem.
In conclusion, analyzing all the cases arising from field

equations (2.12), (2.13), (2.14), (2.15), (2.16), and (2.17),
we found that Birkhoff’s theorem is generally valid in fðTÞ
gravity when tetrad (2.10) is considered. In the case where
cos� ¼ 0 this has been proved without imposing any con-
straint either on the Lagrangian function fðTÞ or on the
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torsion scalar T. This is in agreement with Ref. [13] and
generalized the result found in Ref. [12] where Birkhoff’s
theorem was proved employing a diagonal tetrad which
leads to the T0 ¼ 0 constraint. Furthermore, using the
rotated tetrad (2.10), if T0 ¼ 0 not only is it possible to
prove Birkhoff’s theorem in the presence of matter, but it is
also possible to show that the most general vacuum solu-
tion has to be of the SdS kind. This is what we present in
the following section.

B. Schwarzschild–de sitter solutions

In this section we consider again the T0 ¼ 0 case for
which we proved that metric (2.1) has to be static and
reduce to (2.26). We will show that in vacuum the most
general solution to the field equations has to be a SdS
solution. We have already seen that in the case exposed
in Sec. II A 2 the vacuum solution is of this type. In what
follows we prove that even when the (unphysical) condi-
tion (2.27) is not satisfied this statement is true.

Using metric (2.26) the field equations are given by
equations (2.20), (2.21), and (2.23), where now both A
and B are functions of r only. Note that in these equations
the function �ðrÞ completely drops out exactly as it hap-
pens in the field equations given by the boosted tetrad
considered in Ref. [16]. This function plays the role of an
auxiliary function whose value does not affect the physical
properties of the system. Once the metric functions A andB
are known, �ðrÞ is always determined by equation (2.11)
with TðrÞ ¼ T0 parametrizing all the possible solutions.
Thus we only have to find the expressions for AðrÞ and BðrÞ
since the function �ðrÞ will follow from (2.11).

Now consider the sum of (2.20) and (2.21) which
yields (note that this can also be done with A and B time
dependent)

4�ð	þ pÞ ¼ 2fT0
e�B

r
ðA0 þ B0Þ: (2.45)

At this point we reduce our analysis to vacuum in order to
find the most general vacuum solution of the fðTÞ field
equations (note that the following analysis can be equally
performed considering the equation of state p ¼ �	). We
thus consider

	 ¼ p ¼ 0; (2.46)

from now on. Equation (2.45) immediately implies A0 þ
B0 ¼ 0, which we can solve for B

BðrÞ ¼ �AðrÞ þ logk; (2.47)

where k is an integration constant. Substituting B back into
the field equations (2.20) [or equivalently (2.21)] and (2.23)
gives

kr2f0 � fT0
ð�2kþ 2eA þ kr2T0 þ 2eArA0Þ ¼ 0; (2.48)

2k� 2eA þ eAr2A02 þ eAr2A00 ¼ 0: (2.49)

The unique solution of these two differential equations is
given by

eAðrÞ ¼ k

�
1� 2M

r
��f

3
r2
�
; (2.50)

whereM and �f are two constants of clear physical mean-

ing. The value of �f depends in general from the fðTÞ
model as

�f � 1

2

�
f0
fT0

� T0

�
; (2.51)

which means that the cosmological constant is tuned by the
fðTÞ model under inspection. Note that this coincides with
the usual cosmological constant in the TEGR limit. In
other words if fðTÞ ! T þ 2�GR we have �GR ¼ �f.

Similarly it can be shown that taking the TEGR limit
with 	 ¼ �p ¼ 8��GR, the field equations lead to solu-
tion (2.50) with �f replaced by �GR. Note that we always

have to take the limit fðTÞ ! T þ 2�GR when we want to
reduce our results to TEGR since the proper case fðTÞ ¼
T þ 2�GR has been excluded from our analysis.
Whatever number the experiments will determine for

�f, it will not impose any constraint on the fðTÞ model

since any value of �f can be achieved fine tuning T0

through a specific choice of �ðrÞ. This is clear looking at
(2.11): since �ðrÞ is an auxiliary function we can always
choose it such that the value of T0 is the desired one. This
means that, when considering a constant torsion tensor, any
fðTÞ model can in principle admit all the solutions (2.50)
parametrized by M and �f.

Finally we can write down the most general vacuum
solution of a spherically symmetric spacetime,

ds2 ¼ eAðrÞdt2 � e�AðrÞdr2 � r2d�2; (2.52)

with

eAðrÞ ¼ 1� 2M

r
��f

3
r2: (2.53)

Note that the constant k has been adsorbed with a rescaling
of time, which can always be applied to static spacetimes.
Solution (2.53) is nothing but the well-known SdS solution
where M is the Schwarzschild mass and �f the cosmo-

logical constant. We can state that the general solutions to
the spherically symmetric fðTÞ vacuum field equations
[given by tetrad (2.10) when T ¼ T0 ¼ const, is repre-
sented by a SdS spacetime. At this point one may question
whether the rotated tetrad is in fact a good choice given that
it does constrain the torsion scalar. By looking at GR itself,
where the Ricci scalar identically vanishes for vacuum
solutions, we note that the field equations do not impose
additional constraints other than those expected. In this
sense we can still speak of a good tetrad.
We also notice that Eq. (2.23) is identical to the isotropy

condition of general relativity. This tells us that all the
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spherically symmetric solutions of GR will automatically
be solutions of the fðTÞ field equations (2.20), (2.21), and
(2.23). However, since in Eqs. (2.20) and (2.21) an explicit
dependence appears on the fðTÞmodel through f0 and fT0

,

the expressions for the energy density and the pressure will
differ from their general relativity counterparts.

Finally we can compare the results we found and draw a
parallel with the ones obtained within the more common
fðRÞ theories of gravity. In analogy with what we exposed
above, solutions to the Einstein field equations have been
extended to fðRÞ theories when the Ricci scalar is con-
strained to be constant [20]. Restricting to spherical sym-
metry, it has been shown that the SdS solution is a solution
of the fðRÞ field equations whenever R is constant [21–23].
Interestingly enough, in these solutions the cosmological
constant is related to the Ricci scalar in analogy to how�f

is connected to the torsion scalar through (2.51). This
shows that T and R play similar roles in the respective
theories underlining the fundamental difference between
GR and TEGR, namely the description of spacetime by
curvature or torsion.

Furthermore it is well known that within metric fðRÞ
gravity Birkhoff’s theorem holds only if some constraints
are imposed on the Ricci scalar R, such as requiring it to be
constant [24–26]. On the other hand, Palatini fðRÞ gravity
in vacuum reduces to GR plus a cosmological constant and
R becomes automatically constant. Birkhoff’s theorem is
thus valid and all the GR solutions are also solutions of the
modified field equations [27–30]. We can compare this
with our analysis on nondiagonal (rotated) tetrads in fðTÞ
gravity. When the torsion scalar is constrained to be con-
stant we managed to prove Birkhoff’s theorem and to
construct SdS solutions in strict analogy with both metric
and Palatini fðRÞ theories. In the particular case of
Sec. II A 3 we even prove the theorem without imposing
constraints on T, which seem to go beyond the results of
fðRÞ gravity. However in this case the Schwarzschild
solution is not a solution of the fðTÞ field equations
(see Ref. [15]) and the chances to find physical applica-
tions are small.

In conclusion, all the results we found within fðTÞ
gravity have similar counterparts in fðRÞ gravity. This
suggests that all the achievements for spherically symmet-
ric spacetime already obtained in fðRÞ theories can be
similarly transposed to fðTÞ theories with much work left
for future studies.

III. COSMOLOGY IN SPHERICAL COORDINATES

Cosmological applications of fðTÞ gravity have a short
but productive history beginning with Refs. [31,32].
Models have been built to explain both early and late
time accelerated expansion [33–41] and several issues
have been recently analyzed [42–68].

In fðTÞ cosmology, considering the FLRW metric in
Cartesian coordinates the diagonal tetrad seems to be a

good gauge choice since it leads to field equations not
containing constraints on the fðTÞ function or on the
torsion scalar T. However when choosing the diagonal
tetrad in spherical coordinates, we get the unwanted con-
dition fTT ¼ 0, which is satisfied by TEGR only. We will
demonstrate using rotated tetrads that it becomes possible
to build a well-defined tetrad for FLRW cosmology in
spherical coordinates. This allows us to generalize fðTÞ
gravity to the non-spatially-flat FLRW cosmologies, which
cannot be done easily with Cartesian coordinates and has
only been considered using hyperspherical coordinates
[69,70].
Let us start with the spatially flat FLRW line element in

Cartesian coordinates

ds2 ¼ dt2 � aðtÞ2ðdx2 þ dy2 þ dz2Þ; (3.1)

where aðtÞ is the usual scale factor. It is well known and
easy to verify that the diagonal tetrad

ea� ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ; (3.2)

results in (3.1) and leads to the following field equations:

T ¼ �6H2; (3.3)

4�	 ¼ 3H2fT þ 1

4
f; (3.4)

4�ðpþ 	Þ ¼ _Hð12H2fTT � fTÞ; (3.5)

where HðtÞ � _a=a is the Hubble parameter. The diagonal
tetrad (3.2) seems to represent a good choice among all the
possible tetrads giving metric (3.1) since it yields to a
modification of the analogous GR field equations which
do not involve any constraint on either the function fðTÞ or
the torsion scalar T. As we are going to see, this is not the
case when using spherical coordinates.
Consider now the FLRW line element in spherical

coordinates

ds2¼dt2�aðtÞ2
�

dr2

1�kr2
þr2d�2þr2sin2�d�2

�
; (3.6)

where k ¼ 0,þ1,�1 correspond to the flat, closed or open
FLRW spacetime. We therefore expect that our tetrad
rotations may allow us to identify ‘‘good’’ tetrads in the
context of cosmology. Again, the simplest tetrad returning
metric (3.6) is the diagonal one

ea� ¼ diag

�
1;

aðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p ; aðtÞr; aðtÞr sin�
�
: (3.7)

However the (off-diagonal) fðTÞ field equations leads in
this case to the condition

fTT ¼ 0; (3.8)

which is satisfied if and only if fðTÞ ¼ c1T þ c2,
i.e., TEGR with a cosmological constant. This happens
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independently of the value of the spatial curvature parame-
ter k. It is then clear that tetrad (3.7) does not represent a
useful tetrad in fðTÞ cosmology since, although it correctly
gives the FLRW metric (3.6), it leads to an unwanted
constraint over all the possible fðTÞ models which set the
theory to be TEGR.

We now see how we can define a useful tetrad making a
local rotation. Let us focus on the spatially flat (k ¼ 0)
cosmology for the moment and look at tetrad (3.7). We
know that any local Lorentz transformation �a

b can be

applied to tetrad (3.7) without altering metric (3.1). That is,
the relation

�abe�
ae�

b ¼ g�� (3.9)

is unchanged by the transformation

e�
a ! �a

be�
b: (3.10)

As before, consider a general three-dimensional rotation
R in the tangent space parametrized by the three Euler
angles �, 
, �

�a
b ¼ 1 0

0 Rð�;
; �Þ

 !
: (3.11)

We reduce this transformation considering the following
values for the three Euler angles

� ¼ �� �

2
; 
 ¼ �; � ¼ �ðt; rÞ; (3.12)

where � is taken to be a general function of both t and r. In
this manner, applying the rotation matrix (3.11) to the
diagonal tetrad (3.6) with k ¼ 0 gives the following rotated
tetrad explicitly

e�
a ¼

1 0 0 0

0 a sin� cos� a sin� sin� a cos�

0 �arðcos� cos� sin�þ sin� cos�Þ arðcos� cos�� cos� sin� sin�Þ ar sin� sin�

0 ar sin�ðsin� sin�� cos� cos� cos�Þ �ar sin�ðcos� sin� cos�þ cos� sin�Þ ar sin2� cos�

0
BBBBB@

1
CCCCCA: (3.13)

With this tetrad the torsion scalar reads

Tðt; rÞ ¼ 4r�0 cos�þ 4 sin�� 6r2 _a2 þ 4

r2a2
: (3.14)

From the off-diagonal fðTÞ field equations we obtain the
constraints _TfTT ¼ T0fTT ¼ 0, which force the fðTÞ
model to be TEGR again unless we have a constant T.
The mathematical reason for this to happen is that the
torsion scalar depends on both t and r. We may try to
eliminate this dependency on one of the two coordinates
and see if a nonconstant T is allowed. However if T
depended only through r we would have a Lagrangian
not containing H and thus providing no dynamics for a.
We have then to choose �ðt; rÞ such that T will depend only
on t.

A. T dependent on t only

Let us now see what happens if we eliminate the radial
dependence. Choosing

sin�ðt; rÞ � �1þ 
ðtÞ
r

þ r2�ðtÞ; (3.15)

with 
 and � general functions of t. We find

Tðt; rÞ ¼ TðtÞ ¼ 12
�

a2
� 6H2; (3.16)

which is indeed independent of r. The function �ðtÞ rep-
resents a modification with respect to the torsion scalar
found in Cartesian coordinates (3.3). Note that definition
(3.15) implies

��������� 1þ 
ðtÞ
r

þ r2�ðtÞ
��������� 1; (3.17)

which is identically satisfied if and only if 
 ¼ � ¼ 0.
However, given 
 and � positive and sufficiently small,
we can satisfy (3.17) everywhere but in the neighborhoods
of r ¼ 0 and r ! 1.
The independent fðTÞ field equations we obtain in this

case are

16�	 ¼ �ðT � 6H2ÞfT þ f; (3.18)

4�ðpþ 	Þ ¼ � _THfTT � _HfT; (3.19)

0 ¼ _TfTTðr3�þ 
Þ: (3.20)

The first two of these equations coincide with (3.4) and
(3.5) when the torsion scalar reduces to T ¼ �6H2, which
happens for�ðtÞ ¼ 0. The last equation generalizes the off-
diagonal constraint and it is satisfied if fTT ¼ 0, _T ¼ 0 or

 ¼ � ¼ 0. The first case leads us again back to TEGR and
is thus not of interest. The second case gives T ¼ T0 ¼
const: and reduces the remaining equations to

16�	 ¼ �ðT0 � 6H2ÞfT0
þ f0; (3.21)

4�ðpþ 	Þ ¼ � _HfT0
; (3.22)

where f0 ¼ fðT0Þ and fT0
¼ f0ðT0Þ are constants. We can

find conditions when the Universe is accelerating in this
case analyzing the acceleration condition €a > 0. This is
satisfied whenever
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	þ 3p

fT0

<� 3

4�

�
f0
fT0

� T0

�
� � 3

2�
�f; (3.23)

or, in terms of the equation of state parameter w,

w

fT0

<� �f

2�	
� 1

3fT0

: (3.24)

Notice that when we reduce to TEGR, for which fT0
¼ 1

and �f ¼ 0, we correctly get w<�1=3.

The last case requires 
 ¼ � ¼ 0 and thus sin� ¼ �1
which implies � ¼ ��=2þ 2n� with n an integer

number. Tetrad (3.13) becomes equivalent to the well-

known rotated tetrad used in Ref. [15]. More interestingly

in this case we do not gain any constraint on the fðTÞmodel

or on the torsion scalar T which takes the form (3.3).

Equations (3.18) and (3.19) reduce to Eqs. (3.4) and (3.5),

respectively, meaning that the theory becomes completely

equivalent to its Cartesian counterpart. We thus managed to

find a tetrad which allows a general [no constraints on fðTÞ
or T] description of the Universe which is physically

equivalent to the Cartesian coordinates analysis. This tet-

rad is given performing the same rotation considered in

Ref. [15] and reads

ea� ¼

1 0 0 0

0 aðtÞ sin� cos� aðtÞr cos� cos� �aðtÞr sin� sin�
0 aðtÞ sin� sin� aðtÞr cos� sin� aðtÞr sin� cos�
0 aðtÞ cos� �aðtÞr sin� 0

0
BBBBB@

1
CCCCCA: (3.25)

B. Spatially curved FLRW fðTÞ cosmology

Finally, we analyze the non-spatially-flat (k � 0) FLRW
universe described by metric (3.6). We can apply the
rotation matrix (3.11) to the diagonal tetrad (3.7) with the
Euler angles values (3.12). The torsion scalar now becomes

T ¼ 4

r2a2
ðr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
�0 cos�þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
sin�

� 6r2 _a2 � 2kr2 þ 4Þ; (3.26)

generalizing (3.14) which is recovered setting k ¼ 0.
Again we want to reduce T to become a function of only
t. In order to reduce (3.26) to be r independent we choose a
particular expression for �ðt; rÞ, namely

� sin� ¼ 1

4r

�
3 arcsinð ffiffiffi

k
p

rÞðk� 2�ðtÞÞ
k3=2

þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
ðkþ 6�ðtÞÞ
k

� 4
ðtÞ
�
; (3.27)

which in the limit k ! 0 becomes (3.15). Here � and 
 are
two general functions of t. Of course in order for (3.27) to
be consistent we must require that the right-hand side of
(3.26) is between �1 and 1. This in general poses con-
straints on the functions � and 
. We will see in what
follows that this issue will play a main role if the Universe
is open (k ¼ �1). The torsion scalar (3.26) is given by

T ¼ 12
�

a2
� 6H2; (3.28)

which depends only on t and coincides with (3.16).

The independent field equations are

16�	 ¼ fþ fT

�
6
k

a2
þ 6H2 � T

�
; (3.29)

4�ðpþ 	Þ ¼ fT

�
k

a2
� _H

�
� _THfTT; (3.30)

_TfTT

k3=2
½4k3=2
þ 3ðk� 2�Þ

� ð ffiffiffi
k

p
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
� arcsinð ffiffiffi

k
p

rÞÞ� ¼ 0; (3.31)

which reduce to (3.18), (3.19), and (3.20) in the limit
k ! 0. There are three ways to satisfy (3.31): fTT ¼ 0,
_T ¼ 0 or both


 ¼ 0 and � ¼ k=2: (3.32)

The first possibility takes us back to TEGR and thus is of
no interest. In the second case we have T ¼ const and the
remaining field equations become

16�	 ¼ f0 þ fT0

�
6
k

a2
þ 6H2 � T0

�
; (3.33)

4�ðpþ 	Þ ¼ fT0

�
k

a2
� _H

�
; (3.34)

which are the k � 0 counterparts of (3.21) and (3.22),
respectively.
Finally, in the last and more interesting case, the torsion

scalar becomes

T ¼ 6
k

a2
� 6H2; (3.35)

and the field equations reduce to
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4�	 ¼ f

4
þ 3H2fT; (3.36)

4�ð	þpÞ¼�fT

�
_H� k

a2

�
þ12H2fTT

�
_Hþ k

a2

�
; (3.37)

which clearly generalizes Eqs. (3.4) and (3.5). Note that
Eqs. (3.36) and (3.37) correctly reduce to the usual
Friedmann equations when fðTÞ ¼ T. It seems thus that
the choice (3.32) allows us to generalize FLRW cosmology
to its spatially curved cases without giving rise to
any constraint regarding T or the fðTÞ function.
Unfortunately this does not work for the open FLRW
universe as we are going to explain.

For the values (3.32) the function �ðt; rÞ as given by
(3.27) reduces to

� ¼ � arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
: (3.38)

In order for this to be mathematically consistent we must
require

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
j � 1: (3.39)

Since r2 � 0, when k ¼ �1 this condition is never satis-
fied, meaning that the open FLRW universe cannot be
described by a tetrad containing (3.38). The mathematical
reason for this issue is that (3.26) has no (real) solutions
reducing to (3.38) when k ¼ �1. It seems tempting to
replace the trigonometric function by a hyperbolic func-
tion; however, this is not allowed since the resulting trans-
formation would no longer be a local Lorentz
transformation. On the other hand, in the closed FLRW

universe condition (3.39) is always satisfied because r � 1
when k ¼ 1.
The entire issue can be easily understood switching to

hyperspherical coordinates which transforms the radial
coordinate r to c as

r �
sinð ffiffiffi

k
p

c Þffiffiffi
k

p ¼

8>><
>>:
sinc ifk ¼ 1

c ifk ! 0

sinhc ifk ¼ �1

: (3.40)

The FLRW line element now reads

ds2 ¼ dt2 � a2
�
dc 2 þ sin2ðc ffiffiffi

k
p Þ

k
d�2

�
; (3.41)

while condition (3.39) becomes

j cosðc ffiffiffi
k

p Þj � 1; (3.42)

which is always satisfied when k ¼ 1 since clearly
cosc � 1. In the k¼�1 case instead we find coshc �1
which is never satisfied unless c ¼ 0.
In conclusion, we firstly stress that the diagonal tetrad

(3.7) cannot be used in fðTÞ cosmology since it forces the
fðTÞ model to be TEGR. We can state that in the closed
FLRW universe the rotated tetrad containing (3.38), repre-
sents a good choice among all the possible tetrads giving
back metric (3.6). It does not imply any constraint on either
the functional form of fðTÞ or on the torsion scalar T itself.
It does lead to a simple generalization of Eqs. (3.4) and
(3.5) which reduce to the correct Friedmann equations in
the limit fðTÞ ! T. The good tetrad for k¼1 cosmology
thus reads

e�
a ¼

1 0 0 0

0 a cos� sin�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
a sin� sin�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
a cos�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p

0 rað ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
cos� cos�� r sin�Þ raðr cos�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

cos� sin�Þ �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
a sin�

0 ra sin�ð�r cos� cos�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sin�Þ ra sin�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

cos�� r cos� sin�Þ r2a sin2�

0
BBBBB@

1
CCCCCA;

(3.43)

or in hyperspherical coordinates

e�
a¼

1 0 0 0

0 acos�sin� asin�sin� acos�

0 asinc ðcosc cos�cos��sinc sin�Þ asinc ð�sinc cos�þcosc cos�sin�Þ �acosc sinc sin�

0 �asinc sin�ð�cos�sinc cos�þcosc sin�Þ asinc sin�ðcosc cos��cos�sinc sin�Þ �asinc sinc sin2�

0
BBBBB@

1
CCCCCA;

(3.44)

where the � signs come from the square root terms.
On the other hand, when the FLRW universe is open

it seems impossible, using the methods explored in this
paper, to find a tetrad having all the properties above.
The best we can do is to leave the functions 
ðtÞ
and �ðtÞ in (3.27) undetermined and deal with field

equations (3.33) and (3.34). However, in this case the
torsion scalar is constrained to be constant and we can
only achieve theoretically limited descriptions of the
Universe.
Condition (3.39) seems to suggest that a complex rota-

tion might work. This idea has been successfully used in
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Refs. [69,70] where the authors were able to construct a
good tetrad for the hyperbolic FLRWuniverse by introduc-
ing complex tetrads. Another possibility which might
avoid the use of complex tetrads could be the use of local
Lorentz boosts, instead of rotations (see Ref. [16] where
boosts have been used to construct very useful tetrads in
the context of spherical symmetry).

IV. CONCLUSIONS

This paper emphasized the importance of choosing ap-
propriate tetrads when analyzing the field equations of fðTÞ
gravity. This issue arises since the theory is not invariant
under local Lorentz transformations and thus different tet-
rads will yield different field equations which in turn might
have different solutions. Some of these solutions do not
have a valid GR counterpart, while others tend to their GR
counterparts in the appropriate limit. Therefore, special
attention has to be given to the choice of tetrad.

We thus introduce the notion of a good tetrad. By a good
tetrad we mean a tetrad which gives rise to field equations
which do not constrain the functional form of fðTÞ. In such
cases one can always consider the limit fðTÞ ! T where
the correct general relativistic limit is recovered. Otherwise
we will talk of a bad tetrad. It is well known that the
diagonal tetrad is bad when working in spherical symme-
try. Our rotated tetrads and also the boosted tetrad of
Ref. [16] are good tetrads according to our notion.

We were able to construct good tetrads in spherical
symmetry by simply rotating the diagonal tetrad. The power

of this simple method to generate potentially good tetrads
was shown by proving Birkhoff’s theorem in fðTÞ gravity
and thereby showing that the SdS class of solutions is the
unique vacuum solution of the vacuum field equations. We
suggest revisiting static and spherically symmetric perfect
fluid solutions along the lines of Ref. [15] as it should be
straightforward to generate a large number of new exact
solutions of the field equations with perfect fluid source.
We extended our program of rotating tetrads to the study

of homogeneous and isotropic spacetimes, i.e., cosmology.
We were able to construct good tetrads not only for the
spatially flat metric but also for the close universe. In both
cases there are no constraints on the functional form of fðTÞ
and it is possible to study a very general class of fðTÞ
cosmologies.
In principle, our approach of rotating tetrads in the

tangent space might be applicable to situations with other
symmetries. Recall that the Lorentz transformations form a
six-dimensional group, with three boosts and three rota-
tions. Therefore, one can introduce six auxiliary fields into
the field equations, simply by performing a general Lorentz
transformation on the tetrad. Then the aim is to eliminate
those field equations which yield constraints on fðTÞ. We
achieved this by considering rotations in spherical symme-
try. However, we are confident to say that there are enough
degrees of freedom in these transformations to always find
a good tetrad according to our definition. Of course, there
may be situations where one wishes to enforce other prop-
erties by fixing the Lorentz transformations accordingly.
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