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We study the effect of charge on gravitational collapse of an inhomogeneous dust cloud in the Einstein,

Gauss-Bonnet and Lovelock gravity. Dynamics of the collapsing shell is analyzed. The conditions for the

occurrence of bounce during collapse are given. We also show that shell crossing occurs inevitably if the

shell near the center is weakly charged.
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I. INTRODUCTION

The final fate of gravitational collapse is one of the
important unsolved problems in classical general relativity
(GR). Both the possibilities, i.e., the formation of naked
singularity or black hole as an end state of collapse, may
present a crucial step in our understanding of nature. On
one hand, we have the singularity theorems which tell us
that singularities are inevitably formed through gravita-
tional collapse with physically reasonable and general
initial data [1]. These singularities lead to a loss of
predictability if visible to a distant observer, and hence a
break down of GR happens. On the other hand, the
formation of naked singularities can imply an access to
strong gravity regions. That is, they offer a possibility to
probe the laws of nature and a window to a quantum
gravity theory. However, one may wish that singularities
should be wrapped by event horizons. This idea is para-
phrased in the form of ‘‘cosmic censorship conjecture’’ [2].
If this conjecture is indeed true, we have black holes. A
proof or otherwise of the cosmic censorship conjecture
remains one of the unresolved issues in classical GR.

The first pioneering work in gravitational collapse was
carried out by Oppenheimer and Snyder [3]. They consid-
ered the spherical collapse of a homogeneous dust cloud.
They showed that black hole is formed, and the singularity is
enclosed by the event horizon. However, many solutions
which contain naked singularities have been found, for
example, in the collapse of an inhomogeneous dust cloud
[4–11]. We now understand that, in the Oppenheimer-Snyder
model, the homogeneity of the dust cloud and spherical
symmetry are important for the formation of black holes.
In order to examine the generality of the above results, it is
important to study the collapse with generic initial condi-
tions. Then, gravitational collapse has been studied in vari-
ous situations, e.g., collapse of a charged dust cloud, dust
with tangential pressure, perfect fluid and so on [12–16].

In the late stages of collapse with the strong gravity, GR
does not provide us with an accurate description of the
final fate of gravitational collapse. Motivated by this and

the fact that the best candidate fundamental theory such as
superstring/M theory lives naturally in more than four di-
mensions, considerable efforts have been made on studies of
gravitational collapse in higher-dimensional gravitational
theories. Gravitational collapse in the simple extensions of
GR to higher dimension is studied as well [17–19]. It has
been found that the singularity formed through the spherical
collapse of an inhomogeneous dust cloud cannot be naked
in dimensions higher than five with smooth initial data.
However, spacetime around the singularity is extremely
curved, and the reliability of the pure GR is doubtful. The
physical motivation to go beyond GR comes from the fact
that quantum gravitational effects/string corrections play a
significant role in the region near singularity. Actually,
superstring theory predicts certain higher-order curvature
corrections to GR. From this fact, it is important to study
the gravitational collapse in theories with higher curvature
corrections.
In this paper, we focus on a special type of gravitational

theory with higher curvature corrections, which is the
Lovelock theory [20]. The Lovelock theory is the most
general gravitational theory in which: (a) Lagrangian is
covariant, and (b) field equations contain up to second
order derivatives of metric tensor. The Lovelock gravity
is a widely studied higher-dimensional gravitational the-
ory. The black hole solutions were found in Refs. [21–24].
Some authors have studied the collapse in a special case of
the Lovelock theory [25–30]. In our previous paper [31],
we studied the spherical collapse of a dust cloud in the full
Lovelock theory with any spacetime dimension. We
showed that the singularities are always formed and can
be naked for some initial data. In addition, we showed that
the nature of singularity depends on the dimensionality of
spacetime, that is, whether it is even or odd.
As mentioned before, it is important to investigate the

collapse in more general situations from the cosmic censor-
ship conjecture point of view. To this end, we will consider
the spherical collapse of a dust cloud coupled with the
Maxwell field, i.e., a charged dust cloud, in the Einstein,
Gauss-Bonnet and Lovelock gravity. The collapse of a
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charged dust cloud can be regarded as a toy model for
understanding rotating spacetimes. We will also compare
the dynamics of a charged dust cloud with a neutral dust
cloud. In the charged dust case, using a kinematical argu-
ment, we see that the shell near the center inevitably
bounces if the charge is sufficiently small. We also show
that the shell-crossing singularities occur before the shell
bounces. This feature is quite different from the neutral
dust cloud cases [31]. Although we have included higher-
order curvature corrections, our result is the same as in the
case of the Einstein gravity (see Refs. [32,33]). This is
quite impressive because the higher curvature corrections
do affect the dynamics in the case of a neutral dust cloud.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the Lovelock theory. In Sec. III, we derive
the basic equations and solve these partially to discuss the
shell motion kinematically. Looking at the key equations, in
Sec. IV, we show that the shell bounce will occur kinemati-
cally. We investigate the Einstein, Gauss-Bonnet and
full Lovelock gravity case in turn. In Sec. V, we show that
shell crossings inevitably occur before the occurrence of the
shell bounce. In Sec. VI, we briefly summarize and discuss
our result. In the appendices, we consider the matching
condition of the inner collapsing with the outer electrovac-
uum region and a detail of the calculation in the text. We use
the geometrized units, G ¼ c ¼ 1.

II. LOVELOCK GRAVITY: THE EXTERIOR
GEOMETRY

In this section, we briefly review the Lovelock theory of
gravity in D ¼ ðnþ 2Þ-dimensional spacetimes. The
Lagrangian of the theory is

L ¼ Xk
m¼1

am
m

Lm; (1)

where

Lm¼ 1

2m
��1�2...�2m�1�2m
�1�2...�2m�1�2mR�1�2

�1�2 . . .R�2m�1�2m

�2m�1�2m: (2)

Here, Rpq
sr is the Riemann curvature tensor of spacetime

and ��1�2...�2m�1�2m
�1�2...�2m�1�2m

is the generalized totally antisymmetric
Kronecker delta. am are arbitrary constants which cannot
be determined by the theory. The suffixes �1; . . . ; �2m

and �1; . . . ; �2m run from 1 to D, and k is given by
k ¼ ½ðD� 1Þ=2� (½x� is the integer part of x).

The field equations derived from this Lagrangian are of
the form

G�
� ¼ � Xk

m¼1

1

2mþ1

am
m

���1�2...�2m�1�2m
��1�2...�2m�1�2m

� R�1�2

�1�2 . . .R�2m�1�2m
�2m�1�2m

¼ 8�T�
�: (3)

Here, T�
� is the energy-momentum tensor of matter fields.

The static black hole solution with spherical symmetry
was found in Refs. [22–24] for vacuum and in Refs. [34,35]
for electro-vacuum cases. An electro-vacuum spacetime is
described by the metric of the form

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2�ijdx

idxj: (4)

Here, �ij is the line element of n-dimensional maximally

symmetric surfaces, and f is

fðrÞ ¼ �� r2c ðrÞ: (5)

The curvature constant � can take values�1, 0 and 1. The
function c ðrÞ is a solution of the algebraic equation

Xk
m¼2

�
am
m

� Y2m�2

p¼1

ðn�pÞ
�
c m

�
þc ¼ �

rnþ1
� q2

r2n
; (6)

where � and q are constants proportional to the Arnowitt-
Deser-Misner mass and charge, respectively. This solution
describes the spacetime exterior to a charged dust cloud
(See Appendix A for the details). In what follows, we
shall restrict ourselves to the case � ¼ 1 because we are
interested in asymptotically flat spacetimes here. The gen-
eralization of our study to other cases with � ¼ 0, �1 is
rather easy.

III. BASIC EQUATIONS: THE INTERIOR
GEOMETRY

In this section, we shall derive equations for the interior
of a collapsing charged dust cloud. The spacetime metric
under the spherical symmetry ansatz can be written as

ds2 ¼ �A2dt2 þ B2dr2 þ R2d�2
n; (7)

where the metric functions Aðt; rÞ, Bðt; rÞ and Rðt; rÞ
are arbitrary functions of coordinates t and r, and d�2

n is
the line element of a n-sphere. Using the gauge freedom,
we set Rð0; rÞ ¼ r on an initial data surface. We also
assume that the interior of the collapsing cloud is com-
posed of charged dust, i.e. the energy-momentum tensor
T�

� takes a form

T�
� ¼ TðDÞ�

� þ TðMÞ�
�: (8)

Here, TðDÞ�
� is the energy-momentum tensor for a dust

cloud

TðDÞ�
� ¼ "ðt; rÞu�u�; (9)

and TðMÞ�
� is that of the Maxwell field,

TðMÞ�
� ¼ 1

4�

�
F��F�� � 1

4
g��F

��F��

�
: (10)

"ðt; rÞ is the energy density of the dust cloud, u� is
its 4-velocity, and F�� is the field strength of the

Maxwell field. In addition, we have theMaxwell’s equations
given by
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r�F
�� ¼ �4�j� (11)

and

r½�F��� ¼ 0: (12)

Here, j� is the electric current, and r� is the covariant

derivative with respect to the spacetime metric. We assume
that the current j� has the form

j� ¼ 	u�; (13)

where 	 is the electric charge density.
In the case of a nonzero current, Maxwell’s equations

become

1

ABRn
@rðABRnFtrÞ ¼ 4�

A
	 (14)

and

1

ABRn
@tðABRnFtrÞ ¼ 0: (15)

We can solve these equations as

Ftr ¼ n

2

QðrÞ
ABRn ; (16)

where QðrÞ is the integration function, and it is the charge
contained in the ball of radius r, and it satisfies

Q0 ¼ 2

n
4�	BRn: (17)

The prime stands for the differentiation with respect to r.
The conservation equations of the energy-momentum

tensor, r�T
�
� ¼ 0, lead to

r�ð"u�Þ ¼ 0 (18)

and

"u�r�u
� ¼ 	F�

�u
�: (19)

Using Eqs. (7), (16), and (17), the conservation equations
become

@tð"BRnÞ ¼ 0 (20)

and

"

�
A0

A

�
¼

�
n

2

�
2 QQ0

4�R2n
: (21)

Equation (20) can be integrated as

N0ðrÞ ¼ 2

n
4�"BRn; (22)

where NðrÞ is an arbitrary function of r. Using Eq. (22), we
can reexpress Eq. (21) as

A0

A
¼ n

2

QQNB

Rn ; (23)

where

QN � Q0

N0 ¼
	

"
: (24)

Now, let us consider the field equations (3). They have
the following nontrivial components:

Xk
m¼1

am
Y2m�2

p¼0

ðn� pÞ
�� _R

AR

�
2

�
�
R0

BR

�
2 þ 1

R2

�
m�1

� €R

A2R
�

_A _R

A3R
� A0R0

AB2R

þ ðn� ð2m� 1ÞÞ
2m

�� _R

AR

�
2 �

�
R0

BR

�
2 þ 1

R2

��

¼
�
n

2

�
2 Q2

R2n
; (25)

Xk
m¼1

am
Y2m�2

p¼0

ðn� pÞ
�� _R

AR

�
2

�
�
R0

BR

�
2 þ 1

R2

�
m�1

�
� R00

B2R
þ B0R0

B3R
þ _B _R

A2BR

þ ðn� ð2m� 1ÞÞ
2m

�� _R

AR

�
2 �

�
R0

BR

�
2 þ 1

R2

��

¼ 8�"ðt; rÞ þ
�
n

2

�
2 Q2

R2n
; (26)

and

Xk
m¼1

am
Y2m�2

p¼0

ðn�pÞ
�� _R

AR

�
2

�
�
R0

BR

�
2þ 1

R2

�
m�1

� _R0

B2R
� A0 _R
AB2R

� _BR0

B3R

�
¼0: (27)

In the above, the dot stands for the differentiation with
respect to t.
First, we realize that, for a nontrivial solution, Eq. (27)

implies

_R0

B2R
� A0 _R

AB2R
� _BR0

B3R
¼ 0: (28)

Using Eq. (23), we can easily integrate Eq. (28) as

R0

B
¼ WðrÞ � nQQN

2ðn� 1ÞRn�1
; (29)

where WðrÞ is the integration function which corresponds
to the total energy, as we will show later.
Now, we introduce a useful function L defined as

L � Xk
m¼1

am
2m

Y2m�2

p¼0

ðn� pÞ
�� _R

A

�
2

þ 1�
�
W � nQQN

2ðn� 1ÞRn�1

�
2
�
m 1

R2m
: (30)

Using this definition of L, we can rewrite Eqs. (25) and (26)
in a simple form, i.e.,
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1
_RRn

@

@t
ðLRnþ1Þ ¼

�
n

2

�
2 Q2

R2n
(31)

and

1

R0Rn

@

@r
ðLRnþ1Þ ¼ 8�"þ

�
n

2

�
2 Q2

R2n
: (32)

The integration of Eq. (31) gives us

L ¼ �
�
n

2

�
2 Q2

ðn� 1ÞR2n
þ n

2

FðrÞ
Rnþ1

; (33)

where FðrÞ is the integration function which corresponds to
the mass, as shown later. Substituting this into Eq. (32), we
see that

8�" ¼ n

2

FðrÞ0
RnR0 �

n2QQ0

2ðn� 1ÞR2n�1R0 : (34)

From this expression, we see that the spacetime admits two
types of singularities in general. The shell-focusing singu-
larity at R ¼ 0 and the shell-crossing singularity at R0 ¼ 0.
Using Eq. (29), we can reexpress mass the function FðrÞ as

FðrÞ0 ¼ 2WNðrÞ0: (35)

Combining Eq. (30) with Eq. (33), we can obtain the
basic equation which determines R

Xk
m¼1

cm

�� _R

A

�
2 þ 1�

�
W � nQQN

2ðn� 1ÞRn�1

�
2
�
m 1

R2m

¼ �
�
n

2

�
Q2

ðn� 1ÞR2n
þ FðrÞ

Rnþ1
; (36)

where cl is defined by

cl ¼
8<
:
1 if l ¼ 1
al
l

Q
2l�2
p¼1 ðn� pÞ if 2 � l � k:

(37)

In order for the initial surface to be regular at the
center ðr ¼ 0Þ, the functions FðrÞ, QðrÞ and WðrÞ should
behave as

FðrÞ ¼ rnþ1MðrÞ; (38)

QðrÞ ¼ rnþ1qðrÞ; (39)

and

WðrÞ ¼ 1þ r2bðrÞ; (40)

where MðrÞ, qðrÞ and bðrÞ are regular functions on the
initial hypersurface, and it is supposed that qðrÞ and MðrÞ
behave as q0ðrÞ, M0ðrÞ ¼ OðrÞ near r ¼ 0.

Before closing this section, we would like to make a
remark. One might wonder whether

Xk
m¼1

am
Y2m�2

p¼0

ðn�pÞ
�� _R

RA

�
2�

�
R0

RB

�
2þ 1

R2

�
m�1 ¼ 0 (41)

is also a solution to Eq. (27). But, combining with Eq. (25),
we have

Xk
m¼1

am
Y2m�2

p¼0

ðn� pÞ ðn� ð2m� 1ÞÞ
2m

�� _R

RA

�
2

�
�
R0

RB

�
2 þ 1

R2

�
m ¼

�
n

2

�
2 Q2

R2n
: (42)

We can see that Eqs. (26) and (42) imply "ðt; rÞ ¼ 0.
Hence, the spacetime must be electrovacuum which is of
no interest to us here.

IV. ANALYSIS OF SHELL MOTION

In this section, we shall study a weakly charged shell in
the vicinity of the center (r ¼ 0) and show that its bounce
is inevitable. The analysis in this section is also used to
show the occurrence of shell-crossing singularity in the
next section. For a pedagogical reason, we shall start
with the Einstein gravity case and then discuss the
Gauss-Bonnet and full Lovelock gravity cases.

A. Einstein gravity case

Here, we investigate the spherical collapse of charged
dust in the Einstein gravity with arbitrary dimensions. In
this case, Eq. (36) becomes

� _R

A

�
2 ¼ �VE; (43)

where

VE � �EðrÞ �MðrÞ
Rn�1

�
�
n

2

�
2 Q2

ðn� 1Þ2
�
Q2

N � 2ðn� 1Þ
n

�
1

R2ðn�1Þ : (44)

In the above, EðrÞ � W2ðrÞ � 1 and MðrÞ � FðrÞ �
nWQQN=ðn� 1Þ.
Let us consider whether shell bounce (VE ¼ 0) occurs

or not. From the discriminant of VE ¼ 0 with respect to R,
we find that there is no solution of R for VE ¼ 0 if

M2ðrÞ< 4EðrÞQ2ðrÞ
ðn� 1Þ2

�
Q2

N � 2ðn� 1Þ
n

�
: (45)

Thus, if Eq. (45) is satisfied, (i) shell always collapses into
shell-focusing singularity (R ¼ 0) because VE stays nega-
tive definite throughout collapse in the E � 0 case, and
(ii) there is no solution for Eq. (43) in the E< 0 cases
because VE always has a positive value.
Similarly, we can analyze different cases for the

condition

M2ðrÞ � 4EðrÞQ2ðrÞ
ðn� 1Þ2

�
Q2

N � 2ðn� 1Þ
n

�
: (46)

In this case, there are various possible situations depending
on the sign of E,M andQ2

N � 2ð1� 1=nÞ. For example, in
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the case for E> 0, M> 0 and Q2
N � 2ð1� 1=nÞ> 0, VE

always has negative value. This implies that the shell can
hit the shell-focusing singularity. On the other hand, in the
case for E> 0,M> 0 and Q2

N � 2ð1� 1=nÞ< 0, VE can-
not have negative value for small R. This means the shell
inevitably bounces. In Table I, we summarize the result
satisfying the condition above.

In summary we could show that (i) every shell with
Q2

N < 2ð1� 1=nÞ bounces if the solution to Eq. (43) exists,
and (ii) every shell with Q2

N > 2ð1� 1=nÞ collapses into
shell-focusing singularity. In the Einstein gravity, the con-
ditionQ2

N < 2ð1� 1=nÞ seems to play a significant role for
occurrence of the bounce. From Eq. (22), we can express
this condition as

j	j<
�
2

�
1� 1

n

��
1=2

": (47)

This means that a weakly charged collapsing shell will
inevitably bounce in the case of the Einstein gravity.
The condition for the bounce depends on the ratio of the
charge to the dust density and the number of spacetime
dimensions. Note that this result is basically same as that
obtained for four dimensions [32,33].

B. Gauss-Bonnet/Lovelock gravity

Next, we shall consider the full Lovelock gravity cases
including the Gauss-Bonnet one. Eq. (36) becomes

Xk
m¼1

cm

�� _R

A

�
2 þ 1�

�
W � nQQN

2ðn� 1ÞRn�1

�
2
�
m 1

R2m

¼ �
�
n

2

�
Q2

ðn� 1ÞR2n
þ FðrÞ

Rnþ1
: (48)

Let us consider a certain epoch t ¼ t� when

Rn�1 ¼ nQ2

2ðn� 1ÞF (49)

holds. At this epoch, the right-hand side of Eq. (48) van-
ishes. To achieve this condition in collapsing situations, the

condition Rn�1 � nQ2

2ðn�1ÞF should be satisfied at the initial

surface. We can see that this is always satisfied near the
center (r ¼ 0) because the initial condition for R is R ¼ r,
and the regularity condition for FðrÞ and QðrÞ implies that
nQ2

2ðn�1ÞF goes as Oðrnþ1Þ near the center.

At t ¼ t� we can rewrite Eq. (48) as

Xk
m¼1

cm

�� _R

A

�
2 þ 1�

�
W � FQN

Q

�
2
�
m 1

R2m
¼ 0: (50)

Here, we focus on the weakly charged cases which satisfy
the condition

W � 1

2W

F0

F
� Q0

Q
� W þ 1

2W

F0

F
; (51)

and one can show
� _R

A

�
2 � 0: (52)

But this is impossible. Therefore, we may conclude that the
shells near the center will inevitably bounce at least before
t ¼ t�, if the artificial condition (51) is satisfied.
Next, let us briefly examine the physical interpretation

of the condition (51). In the vicinity of the center, WðrÞ
behaves asWðrÞ ¼ 1þ bðrÞr2, and then the condition (51)
can be written approximately as

0 &
Q0

Q
&

F0

F
: (53)

Roughly speaking, this is satisfied when the spatial scale of
the mass distribution is shorter than charge one. The in-
tegration of the above gives us

QðrÞ
FðrÞ &

Qð0Þ
Fð0Þ ¼

1

2

	

"

��������r¼0
: (54)

We see that, in order to show the occurrence of the shell
bounce, we needed a somewhat artificial condition of
Eq. (51) which is not required in the Einstein case. We
may conclude that the shell near the center bounces inevi-
tably for sufficiently small charge in the sense of the
condition (54).

V. SHELL CROSSING

In the previous section, using the kinematical argument,
we showed that the shell bounces if the conditions (47) and
(51) are satisfied for the Einstein, Gauss-Bonnet and
Lovelock gravity respectively. Hereafter, we assume these
conditions. In this section, we will show that the shell
crossing occurs near the center before the shell bounces
if the charge is relatively small. In order to show this, we
shall adopt a new coordinate system, called mass-area
coordinates. This helps us to study on the shell crossings

TABLE I. The cases satisfying condition Eq. (46).

E> 0 E ¼ 0 E< 0
M> 0 M< 0 M> 0 M< 0 M> 0 M< 0

Q2
N > 2ðn�1Þ

n Singular Singular and bounce Singular Singular Singular Singular

Q2
N < 2ðn�1Þ

n Bounce Bounce Bounce No solution Oscillations No solution
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as in the four-dimensional case of charged dust collapse
[32,33].

A. Mass-area coordinate

We first employ the coordinate transformation ðt; rÞ !
ðF; RÞ, where F is the mass function introduced in Eq. (33)
and R is the area radius. Then, under the above coordinate
transformation, the metric transforms as

ds2¼�A2dt2þB2dr2þR2d�n

¼
�
�A2f2Rþ

�
B

R0

�
2ð1� _RfRÞ2

�
dR2

þ
�
�A2f2Fþ

�
B

R0

�
2
_R2f2F

�
dF2

þ2

�
�A2fRfFþ

�
B

R0

�
2ð1� _RfRÞ _RfF

�
dRdFþR2d�2

n

¼gRRdR
2þ2gRFdRdFþgFFdF

2þR2d�2
n; (55)

where t ¼ fðR; FÞ, r ¼ rðR; FÞ, fR ¼ @Rf and fF ¼ @Ff.
The reversibility of the coordinate transformations gives us

fR _R ¼ 1; (56)

rR ¼ 0; (57)

F0rF ¼ 1; (58)

and

fFF
0 þ fRR

0 ¼ 0; (59)

where rR ¼ @Rr and rF ¼ @Fr. The metric components
can be written as

gFF ¼ �F 2ðu2 � ðuRÞ2Þ; (60)

gRF ¼ �F
u

uR
; (61)

and

gRR ¼ � 1

ðuRÞ2 ; (62)

where uR ¼ _R=A is the R component of the shell velocity,
and u and F are defined by

u ¼ R0

B
¼ W � nQQN

2ðn� 1ÞRn�1
; (63)

F ¼ AfF
u

: (64)

Using Eq. (19), we can show

F R ¼ � uRF
uðuRÞ2 ; (65)

where F R ¼ @RF . See Appendix B for the details of the
derivation.
Let us define c by

c ¼ ðuRÞ2 þ 1� u2

R2
: (66)

Note that c satisfies the following equation which is same
as Eq. (36):

Xk
m¼1

cmc
m ¼ � nQ2

2ðn� 1ÞR2n
þ F

Rnþ1
: (67)

Differentiating Eq. (66) with respect to F, uRF can be
written as

uRF ¼ 1

uR

�
uuF þ 1

2
R2c F

�
: (68)

uF is computed from the definition of u [Eq. (63)] as

uF ¼ WF � nðQ2
N þQNNÞ

4ðn� 1ÞWRn�1
; (69)

where we have used @N=@F ¼ 1=2W, which is directly
derived from Eq. (35). Now, we can rewrite F R as

F R ¼ � 1

ðuRÞ3
�
WF � Q2

N þQQNN

4ðn� 1ÞWRn�1
þ R2c F

2u

�
: (70)

Then, the integration of Eq. (70) gives us

F ¼ �
Z R

r
dR

1

2ðuRÞ3
�
WF � nðQ2

N þQQNNÞ
4ðn� 1ÞWRn�1

þ R2c F

2u

�

þH ðFÞ; (71)

where H is the integration function of F.
From Eq. (59), we can see that F ¼ 0 corresponds to

R0 ¼ 0 i.e. shell-crossing singularity. In the remaining part,
we investigate whether the shell crossings occur or not for
each cases.
Note that the energy density in the current coordinates is

written as

" ¼ �n

4

1

4�WRnuRF
: (72)

We observe that F should be positive in collapsing situ-
ations because it is assumed that uR is negative and " is
positive. From now on, we consider the marginally bound
case (W ¼ 1) for simplicity.

B. Einstein case

In the Einstein gravity case, c is

c ¼ F

Rnþ1
� nQ2

2ðn� 1ÞR2n
; (73)

and c F becomes
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c F ¼ 1

Rnþ1
� nQQF

ðn� 1ÞR2n
¼ u

Rnþ1
; (74)

where we used the fact that QF ¼ QN=2 holds for W ¼ 1
[see Eq. (35)] and the definition of u [Eq. (63)].

Then, Eq. (71) can be rewritten as

F ¼ �
Z R

r

dR

2ðuRÞ3Rn�1

�
1� n

2ðn� 1Þ ðQ
2
N þQQNNÞ

�

þH ðFÞ: (75)

Here, we note that Q2
N ¼ Oðr0Þ and QQNN ¼ Oðr2Þ

because of Q ¼ Oðrnþ1Þ and N ¼ Oðrnþ1Þ [see
Eqs. (35), (38), and (39)]. Thus, if the condition

Q2
N ¼ 	2

"2
< 2ð1� 1=nÞ (76)

is satisfied, the integrand is positive near the center.

Since uR ¼ _R
A � 0 near the bounce, F diverges with the

negative sign. We see from Eq. (72) thatF is positive at the
initial surface, butF is negative near the shell bounce from
the above argument. This implies that the shell-crossing
singularity occurs near the center before the shell bounces
if the charged cloud is weakly charged, in the sense of

j 	" j � ð2� 2=nÞ1=2 [Eq. (47)].

C. Gauss-Bonnet case

In the Gauss-Bonnet case, c is

c ¼ � 1

2

	 1

2


�
1þ 4
F

Rnþ1
� 2
nQ2

ðn� 1ÞR2n

�
1=2

: (77)

From the condition (51), c is restricted to positive values
for the shell near the center.1 Thus, we only consider the
plus branch of Eq. (77).

From the direct computation, we can see that

c F ¼ 1

Rnþ1ð1þ 4
F
Rnþ1 � 2
nQ2

ðn�1ÞR2nÞ1=2
�
1� n

2ðn� 1Þ
QQN

Rn�1

�
;

(78)

and then Eq. (71) becomes

F ¼ �
Z R

r

dR

2ðuRÞ3Rn�1

�
1

ð1þ 4
F
Rnþ1 � 2
nQ2

ðn�1ÞR2nÞ1=2

� n

2ðn� 1Þ ðQ
2
N þQQNNÞ

�
þH ðFÞ: (79)

We observe that if the condition

Q2
N ¼ 	2

"2
<

n� 1

n

2

ð1þ 4
F
Rnþ1�

� 2
nQ2

ðn�1ÞR2n�
Þ1=2

¼ n

n� 1

2

ð1þ 2
ðn�1ÞF
nRn�1�

Þ1=2 (80)

is satisfied, the integrand of Eq. (79) will be positive near

the center. Here, R� is defined as Rn�1� ¼ n2

ðn�1Þðnþ1Þ
Q2

F

which maximizes the term 1þ 4
F
Rnþ1 � 2
nQ2

ðn�1ÞR2n for given F

and Q. This leads to the divergence of the integral in
Eq. (79) with the negative sign. We saw from Eq. (72)
that F is positive at the initial surface. On the other hand,
F will be negative near the shell bounce. Therefore, we
can conclude that the shell near the center hits the shell-
crossing singularity before the shell bounces if the con-
ditions (51) and (80) are satisfied.
Now, let us examine the meaning of the conditions (51)

and (80) again. First, the condition (80) corresponds to

Q2
N < 2ðn�1Þ

n in the Einstein gravity. This means that the

shell is weakly charged compared to mass [see Eq. (47)].
Next, under the condition (80), the condition (51) roughly
implies that the charge contained in the ball of radius r is
smaller than the mass. This can be seen from Eq. (54). As
explained in Sec. IV, we need this condition to show the
occurrence of shell-crossing singularity.
In summary, we can conclude that the shell near the

center (r ¼ 0) hits the shell-crossing singularity if the
conditions (51) and (80) are satisfied.

D. Lovelock gravity case

In the Lovelock gravity case, F is given by

F ¼ �
Z R

r

dR

2ðuRÞ3Rn�1

�
1

�k
m¼1mcmc

m�1

� n

2ðn� 1Þ ðQ
2
N þQQNNÞ

�
þH ðFÞ; (81)

and where

c F ¼ 1

Rnþ1�k
m¼1mcmc

m�1

�
1� n

2ðn� 1Þ
QQN

Rn�1

�
: (82)

This is obtained by differentiating Eq. (47) with respect to
F. Because of the condition (51), c is restricted to positive
values for the shell near the center [see the footnote around
Eq. (77)]. As in the Gauss-Bonnet case, if the condition

1First, we can see that QQN ’ rnþ1	2ð0Þ=�ð0Þ is positive near
the center (r ¼ 0). And it is easy to see that the function Z :¼
1� ð1� nQQN

2ðn�1ÞRn�1Þ2 has only one maximum value with respect

to R, and it tends to zero as R ! 1 and diverges with a negative
sign as R ! þ0. In addition, at t ¼ t�, Z has a positive value of

1� ð1� 2Q0F=QF0Þ2 because of the condition (51). Since c ¼
1
R2 ð _R2

A2 þ ZÞ, it turns out that c is positive from the beginning to

the epoch t ¼ t� near the center.
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Q2
N ¼ 	2

"2
< min

R��R�r

�
2ðn� 1Þ

n

1

�k
m¼1mcmc

m�1

�
(83)

is satisfied, the integrand of Eq. (81) will be positive near
the center. From Eq. (72), F is positive at the initial
surface, but we saw that F will be negative near the shell
bounce. Therefore, we can conclude that the shell near the
center hits the shell-crossing singularity if the conditions
(51) and (83) are satisfied.

The meaning of the conditions (51) and (83) is the same
as in the Gauss-Bonnet case. The condition (83) corre-
sponds to Q2

N < 2ðn� 1Þ=n in the Einstein case, which
means dust is weakly charged as compared to mass. Then,
the conditions (51) and (83) roughly imply that the charge
contained in the ball of radius r is smaller than the mass.

VI. SUMMARYAND DISCUSSION

In this paper, we considered the spherical collapse of a
charged dust cloud in the Einstein, Gauss-Bonnet and
Lovelock gravity. In the case of spherical collapse of a
dust cloud [31], all shells of the dust cloud cannot bounce
and will hit the singularity. But, in the case of collapse of a
charged dust cloud, we found that the weakly charged
shells near the center can bounce kinematically in each
of the theories of gravity. This is because of the existence
of a repulsive force exerted by the charge. We also found
that such shells inevitably hit the shell-focusing singularity
in the theories of gravity considered here.

In the higher-dimensional Einstein gravity case, we
found that the shells near the center satisfying the condition
Q2

N ¼ ð	"Þ2 < 2ðn� 1Þ=n, where 	 is the electric charge

density and " is the mass density, can bounce kinemati-
cally. We also found that such shells inevitably hit the
shell-crossing singularity. In the four-dimensional case, it
has been shown that the shells with sufficiently small
charge inevitably bounce [32,33]. We found that this fea-
ture remains to be correct even in the higher-dimensional
Einstein gravity.

Next, we considered the Gauss-Bonnet and Lovelock
gravity cases. In both of the theories, we found that the
shell near the center can bounce under the condition (51),
which is not imposed in the Einstein gravity. We also found
that the shell hits the shell-crossing singularity with the
condition (51) and (80) in the Gauss-Bonnet case, (51) and
(83) in the Lovelock gravity case, respectively. We exam-
ined the meaning of the conditions (51), (80), and (83), and
it turns out that these conditions can be interpreted as that
the shell is weakly charged compared to mass. Then, we
can conclude that the feature of the shell dynamics in four
dimensions is shared even in the Lovelock gravity case.

We note that the reason why we imposed the additional
condition (51) in the Gauss-Bonnet and Lovelock gravity
cases is purely technical. Therefore, our results should be
true for more general initial data. The condition should be
relaxed if we choose the epoch more sophisticated than

t ¼ t� which we chose in this paper, or if we perform a
numerical analysis. The above remaining issue will be
addressed in the near future. Since our initial data are
specific, it would be interesting to see if there exists initial
data sets which avoid shell-crossing singularities in the
Gauss Bonnet and Lovelock gravity theories analogous to
the four-dimensional results [16].
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APPENDIX A: JUNCTION BETWEEN INNER
AND OUTER SOLUTIONS

In this appendix, we will address the junction between
the inner and outer solutions. We assume that the inner
solution is the collapsing dust cloud presented here and the
outer solution is the static vacuum black hole. We follow
the argument in Refs. [27,36] where the junction condi-
tions in the Gauss-Bonnet theory and Einstein theory are
discussed.
Let � to be the boundary of the two regions. The metric

of the inner solution is

ds2 ¼ �A2dt2 þ B2dr2 þ R2d�n; (A1)

and that of the outside region is

ds2 ¼ �fðRÞdT2 þ 1

fðRÞdR
2 þ R2d�n: (A2)

We suppose that� is described by the parametric equations
R ¼ R�ðtÞ and T ¼ T�ðtÞ. In addition, it is natural to think
that the boundary is comoving, that is, r ¼ r0 ¼ constant.
The induced metric q on � from the metric of the inner
region is written as

q ¼ �A2dt2 þ R2
�d�n: (A3)

On the other hand, using the metric of the outer region, it
can also be rewritten as

q ¼ �
�
fðR�Þ _T2

� �
_R�

2

fðR�Þ
�
dt2 þ R2

�d�n: (A4)

Since these should be identical, we see that
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A2 ¼
�
fðR�Þ _T2

� �
_R�

2

fðR�Þ
�

(A5)

holds.
The extrinsic curvatures of � evaluated from the inner

metric are

� Kt
t ¼ � A0

AB
(A6)

and

� Ki
j ¼ �i

j

R0
�

R�B
: (A7)

In terms of the metric of the outer region, the extrinsic
curvatures also have another expression

þKt
t ¼ 1

ðfðR�Þ _T2 � _R2
�

fðR�ÞÞ3=2

�
�
_R €T� _T €Rþ 3f0

2f
_R2 _T þ _T3

2
ff0

�
(A8)

and

þ Ki
j ¼ �i

j

_TfðR�Þ
R�ðfðR�Þ _T2 � _R�

fðR�ÞÞ1=2
: (A9)

The continuity of the extrinsic curvature implies

_R 0 ¼ A0

A
_Rþ _B

B
R0 (A10)

and

f ¼ �
� _R

A

�
2 þ

�
R0

B

�
2
; (A11)

where

fðR�Þ ¼ 1� R2
�c ðR�Þ: (A12)

Then, from Eq. (A11), we see

� _R

RA

�
2 þ 1

R2
�

�
R0

RB

�
2 ¼ c ðR�Þ: (A13)

We recall that c satisfies Eq. (67)

Xk
m¼1

cmc
m ¼ �

Rnþ1
�

� q2

R2n
�

; (A14)

and _R is the solution to Eq. (36)

Xk
m¼1

cm

�� _R

RA

�
2þ 1

R2
�
�
R0

RB

�
2
�
2m ¼Fðr0Þ

Rnþ1
�

�Qðr0Þ2
R2n
�

:

(A15)

It can be easily checked that Eq. (A13) holds only if

� ¼ Fðr0Þ; (A16)

q ¼ Qðr0Þ: (A17)

This shows that the inner region can be naturally joined to
the outer region if � ¼ Fðr0Þ and q ¼ Qðr0Þ is satisfied.

APPENDIX B: EQUATION OF MOTION OF
CHARGED SHELL IN THE MASS-AREA

COORDINATE

In this section, writing down Eq. (19) in the mass-area
coordinate ðM;RÞ, we derive Eq. (65). We first note that
uR ¼ _R=A and the other components of u� vanish. The
nontrivial component of Eq. (19) is

�u�r�u
R ¼ 	FR

Ru
R: (B1)

Now, since

FR
R ¼ _RrRF

t
r þ R0fRFr

t ¼ n

2

uQ

uRRn (B2)

and

�R
RR ¼ � uR;R

uR
þ u

F uR

�
uR;F
ðuRÞ3 þ

ðF RuþF u;RÞ
uR

�
; (B3)

Eq. (B1) gives us

�u

F

�
uR;F
ðuRÞ2 þ ðF ;RuþF u;RÞ

�
¼ 	

n

2

uQ

Rn : (B4)

Using u;R ¼ nQQN=2R
n [see Eq. (63)] and QN ¼ 	=�

[see Eq. (24)], we obtain Eq. (65).
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