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Within the framework of the scalar-tensor theory, its second post-Newtonian (2PN) approximation is

obtained with Chandrasekhar’s approach. By focusing on an N-point mass system as the first step, we

reduce the metric to its 2PN form for light propagation. Unlike previous works, at 2PN order, we abandon

the hierarchized hypothesis and do not assume two parametrized post-Newtonian parameters � and � to

be unity. We find that although there exist � and � in the 2PN metric, only � appears in the 2PN equations

of light. As a simple example for applications, a gauge-invariant angle between the directions of two

incoming photons for a differential measurement is investigated after the light trajectory is solved in a

static and spherically symmetric spacetime. It shows the deviation from the general relativity ��STT does

not depend on � even at 2PN level in this circumstance, which is consistent with previous results. A more

complicated application is light deflection in a 2-point mass system. We consider a case that the light

propagation time is much less than the time scale of its orbital motion and thus treat it as a static system.

The 2-body effect at 2PN level originating from relaxing the hierarchized hypothesis is calculated.

Our analysis shows the 2PN 2-body effect in the Solar System is one order of magnitude less than

future �1 nano-arcsecond experiments, while this effect could be comparable with first post-Newtonian

component of ��STT in a binary system with two Sun-like stars and separation by �0:1 AU if an

experiment would be able to measure �� 1 down to �10�6.

DOI: 10.1103/PhysRevD.86.044007 PACS numbers: 04.50.�h, 04.25.Nx, 04.80.Cc

I. INTRODUCTION

Some future space missions, such as the laser astrometric
test of relativity (LATOR) [1,2], phobos laser ranging [3],
the beyond Einstein advanced coherent optical network
(BEACON) [4], the Télémétrie InterPlanétaire Optique
(TIPO) [5], the astrodynamical space test of relativity using
optical devices [6] and the search for anomalous gravitation
using atomic sensors [7], will measure distances of laser
links and angles among these links with unprecedented
precision. As a sensitive and useful tool in gravitational
physics, especially for some high-order effects, the propa-
gation of light carries lots of information about the nature of
spacetime and plays an important role in high-precision
experiments and measurements.

Thus, from the practical and theoretical aspects, it motivates
us to investigate a second post-Newtonian (2PN) light propa-
gation model at the c�4 level in the framework of the scalar-
tensor theory (STT) for a gravitational N-point mass system.

A. The necessity of 2PN c�4 terms

For the precision of distance measurements, TIPO could
achieve millimeter level [5] and BEACON could be even
higher, reaching 0.1 nm [4]. As explained in Ref. [8] (in
Sec. V), a complete metric of the Solar System up to c�4

level is demanded for modeling the light propagation in

those experiments. For the angle measurements, the preci-
sion of LATOR could achieve nano-arcsecond (nas) level
or higher [1,2]. It would require c�4 terms in the metric to
calculate the deflection of light ray, because when light
grazes solar limb the 2PN deflection contributed by the
Sun is G2m2�=ðc4R2�Þ � 10�12 �micro-arcsecond (�as),
which is much larger than the threshold of LATOR. The
corrections of alternative theories of gravity to this effect at
2PN order would be at least several orders of magnitude
less than ��as. However, these corrections perhaps still
need to be considered for future experiments.
Several authors have obtained the 2PN metric for the

general relativity (GR) and alternative theories of gravity.
Chandrasekhar and Nutku first calculated the 2PN metric
and equations of hydrodynamics in GR [9]. A field theory
approach is also employed to derive the 2PN Lagrangian
for the equations of motion of N bodies in the multi-scalar-
tensor theory without solving the metric [10]. With intro-
ducing an intermediate-range gravity term, the 2PN
approximation of the scalar-tensor theory was obtained
[11] in which the energy-momentum tensor was expressed
by using the invariant density [12]. The 2PN approxima-
tion of Einstein-aether (ae-theory) theory [13] was deduced
in the form of both superpotentials and an N-point mass.
More recently, the IAU2000 resolutions are extended to
include all the c�4 terms for the requirements from some
space missions [8]. Most of such works express the 2PN
metric in terms of superpotentials without definition of the
masses and multipole moments of the bodies which is not
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trivial in the post-Newtonian order especially for the self-
gravitating bodies in an N-massive bodies system.

An explicit application of them is to model light
propagation in the near zone of a gravitational system
into the level of the next leading order. The 2PN light
deflection for one body in the standard parametrized
post-Newtonian (PPN) formalism [14,15] was studied
[16,17] by introducing another parameter (� or �) at c�4

of gij, the space-space component of metric, under the

isotropic gauge. The 2PN light propagation in the
Schwarzschild spacetime was researched in three gauges
(standard, harmonic and isotropic) through introducing
two coordinate parameters [18]. Reference [19] discussed
the significance of some experiments to observe 2PN light
effects for one body in the isotropic gauge. A practical
relativistic model for the 2PN light propagation was
developed in the harmonic gauge of general relativity
[20], in which the first post-Newtonian (1PN) contributions
from the rectilinear and uniform N-body and the 2PN
contributions only from the Sun were considered. The light
propagation in 2PN framework of a stationary gravitational
field for the Schwarzschild metric (one body) was formu-
lated in the harmonic gauge with introducing one parame-
ter � at spatial isotropic and anisotropic terms of c�4 for gij
[21]. The 2PN deflection of light in a spherically symmet-
ric body was discussed in GR in three gauges (standard,
harmonic and isotropic) [22]. All of above works
mentioned are only considering one body in the 2PN order.
The 2PN gravitational redshift in GR was derived [23] by
superpotentials. Under the fðRÞ theory, the 2PN weak
lensing was explored in the isotropic gauge [24].

B. The reason for a scalar-tensor theory

Although Einstein’s general relativity has passed nearly
all the tests in the Solar System, alternative theories of
gravity are still required for deeper understanding of the
nature of spacetime and for testing possible violations of
the Einstein equivalence principle (EEP) in the forthcoming
more precision level [25]. In order to test and distinguish
alternative gravitational theories, the PPN formalism intro-
duces ten parameters in a post-Newtonian metric to include
various gravity theories [14,15]. However, the PPN formal-
ism is only restricted to the 1PN approximation. Some
authors (e.g. [26–28]) discussed how to parametrize the
2PN metric. To extend the PPN formalism, one possible
way might be to derive 2PN metric for various gravity
theories and then find the independent superpotentials in
the 2PN level. After that, parameters in the 2PN order could
be introduced and endowed with some meanings. However,
in this paper, we only focus on one gravitational theory and
discuss its parameters.

Among these alternative theories, the most eminent case
is a STT because it is the simplest and most natural way to
modify GR. Many modern theories, such as the extra-
dimensional theory, the string theory, the braneworld and

the noncommutative geometry theories, which try to unify
gravity and microscopic physics or to explain the dark
energy in cosmology, demand a scalar field besides the
metric tensor (see [29] for a review). Especially, Damour
and Nordtvedt proposed [30] that the deviation of the PPN
parameter � from 1, presenting the discrepancy between
STT and GR, might range from �10�7 to �10�5.
The contribution of this deviation in light deflection at
2PN order could be as large as ð�� 1ÞG2m2�=ðc4R2�Þ �
10�16 � 0:02 nas, which might be important for future
detection as well. Therefore, we shall work in this paper
with the scalar-tensor theory of gravity.
Motivated by forthcoming space experiments involving

propagation of light in the Solar System, some researchers
had studied 2PN light propagation in STT. In the case of a
one-body system, 2PN light deflection and light propaga-
tion were reported in Refs. [31,32]. As a more comprehen-
sive work, the scalar-tensor propagation of light was
investigated in Ref. [33], in which it neglected the differ-
ences of PPN parameters � and � from 1 at c�4 level
according to present experiment results and used the hier-
archized hypothesis so that only the Sun’s contribution
remained at c�4 level while influences from Sun and the
planets were all included at c�2 and c�3 terms.
To make our results fully based on STT, we will keep �

and� at c�4 level which requires a PPN definition of mass,
such as Eq. (33).

C. The extension to an N-point mass system

As mentioned in Ref. [33], the hierarchized hypothesis
has its own limitation. In the practical point of view, by
abandoning this hypothesis which means extending to an
N-body system, the solution of light equations might
improve the accuracy which could be achieved [33]. As a
rude estimation, one coupling term in 2PN metricP

a

P
b�a G

2mamb=ðc4rarbÞ, where ra ¼ jx� yaj, rb ¼
jx� ybj and the trajectories of the a-th and b-th masses
are respectively represented by yaðtÞ and ybðtÞ, could reach
�10�16 (equivalent to �0:1 nas), if we consider the Solar
System (a hierarchic system) that a-th mass is the Sun and
the b-th mass is Jupiter when the light grazes Jupiter’s
limb. If the influence to the background light sources by a
binary system with comparable masses are considered, the
coupling term in 2PN might raise larger contributions.
Extension to an N-body system would also be helpful to
determine which terms have to be included for a specific
mission and could be a good test bed to evaluate the
accuracy of the hierarchized model [33].
In the theoretical point of view, it is a natural develop-

ment to build a 2PN theory of a gravitational N-body
system for its dynamics and light propagation within it
which might show some subtle but interesting effects due
to the nonlinearity in the 2PN order. In principle, the 2PN
light propagation under the STT should include relativistic
multipolar moments of each body in the N-body system.
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1PN global and local metrics with the definitions of the
multipolar moments and spins in STT have been given in
Refs. [34,35].

Therefore, in this paper, we consider 2PN light propaga-
tion in an N-point mass system under STT as our first step.

In what follows, our conventions and notations generally
follow those of Ref. [36]. The metric signature is
ð�;þ;þ;þÞ. Greek indices take the values from 0 to 3,
while Latin indices take the values from 1 to 3. A comma
denotes a partial derivative, and dot over a quantity denotes
a derivative with respect to time. Bold letters denote spatial
vectors. The plot of this paper is as follows. In Sec. II, the
2PNmetric and equation of light in the scalar-tensor theory
are given. Subsequently, in Sec. III, we reduce the results
of Sec. II to a 2PN metric of an N-point mass system for
light propagation by following the method used in
Ref. [37]. And the 2PN light equation is obtained in this
condition. In Sec. IV, applications will be given. In
Sec. IVA, we derive the 2PN light ray trajectory and
deflection in a static, spherically symmetric spacetime
and study the parameters in 2PN terms by comparison
among the scalar-tensor theory and others. In Sec. IVB,
we calculate the light deflection angle caused by a 2-point
mass system and estimate the magnitudes of effects for
different cases. Finally, the conclusion and discussion are
outlined in Sec. V.

II. 2PN METRIC IN THE SCALAR-TENSOR
THEORYAND EQUATIONS OF LIGHT

A. 2PN metric in the scalar-tensor theory

The action for the scalar-tensor theory based on [34] reads

S ¼ c3

16�

Z �
�R� �ð�Þ

�
�;	�;	 � 16�

c4
LIðg�
;�Þ

�

� ffiffiffiffiffiffiffi�g
p

d4x; (1)

where c is the speed of light, �ð�Þ is an arbitrary coupling
function of the scalar field �. R and g ¼ detðg�
Þ denote,
respectively, the Ricci scalar and the determinant of the
metric tensor g�
. the matter field is denoted by �. From

Eq. (1), we can see the matter fields� only interact with the
metric field (namely, g�
). This means the trajectory of a

free fall test particle only depends on the spacetime geometry
so that it satisfies EEP. Although violations of EEP at galac-
tic and cosmological scales cannot be ruled out, we still
focus on the scalar-tensor theory satisfied EEP in this paper.

Variation of the action (1) with respect to g�� has

R�
 ¼ 8�

�c2

�
T�
 � 1

2
g�
T

�
þ �ð�Þ

�2
�;��;


þ 1

�

�
�;�
 þ 1

2
g�
hg�

�
; (2)

where hgð�Þ ¼ ð�Þ;�
g
�
, T�
 is the stress-energy-

momentum tensor of matter which is defined by

c2

2

ffiffiffiffiffiffiffi�g
p

T�
 � @ð ffiffiffiffiffiffiffi�g
p

LIÞ
@g�
 � @

@x�
@ð ffiffiffiffiffiffiffi�g
p

LIÞ
@g�


;�
; (3)

and T is the trace of T�
. Following Refs. [38,39], the
mass, current, and stress densities can be defined as

	 � T00 þ Tii; (4)

	i � cT0i; (5)

	ij � c2Tij: (6)

Variation of the action (1) with respect to � yields

hg� ¼ 1

3þ 2�ð�Þ
�
8�

c2
T ��;��

;� d�

d�

�
: (7)

Based on Ref. [34], the scalar field is expanded as its
background value �0 as follows:

� ¼ �0ð1þ �Þ; (8)

where � is a dimensionless perturbation of the background
value �0. Especially, decomposition of the coupling
function �ð�Þ reads

�ð�Þ ¼ !0 þ!1� þ 1

2
!2�

2 þ . . . ; (9)

where !0 � �ð�0Þ, !1 � ðd�=d�Þ�¼�0
; . . . , !n �

ðdn�=d�nÞ�¼�0
, which can lead to the gauge-invariant defi-

nitions of PPNparameters� and� [see Eqs. (A3) and (A10)
in Appendix A]

� � !0 þ 1

!0 þ 2
; � � 1þ !1

ð2!0 þ 3Þð2!0 þ 4Þ2 :

By using Chandrasekhar’s approach [9,40], we deal with
the theory in the form of a Taylor expansion in the
parameter " � 1=c. The expansions of the metric g�


and the scalar field to the second order have the forms of

g00 ¼ �1þ "2N þ "4Lþ "6QþOð7Þ; (10)

g0i ¼ "3Li þ "5Qi þOð6Þ; (11)

gij ¼ �ij þ "2Hij þ "4Qij þOð5Þ; (12)

� ¼ "2 �
ð2Þ

þ "4 �
ð4Þ

þ "6 �
ð6Þ

þOð7Þ; (13)

where OðnÞ means of the order "n.
According to Eqs. (8), (9), and (13), we derive

�ð�Þ¼!0þ"2!1 �
ð2Þ
þ"4

�
1

2
!2 �

ð2Þ2
þ!1 �

ð4Þ�
þOð5Þ; (14)

d�

d�
¼ 1

�0

ð!1 þ "2!2 �
ð2Þ

þOð4ÞÞ: (15)
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We use the gauge condition imposed on the component
of the metric tensor proposed by Kopeikin and Vlasov [34]
as follows: �

�

�0

ffiffiffiffiffiffiffi�g
p

g�


�
;

¼ 0: (16)

Based on fields equations of Eqs. (2) and (7), we obtain
the evolution equations of the metric coefficients at 2PN
order by using the gauge conditions Eq. (16) (see
Appendix A for detail).

B. 2PN equations of light

Generally, for a photon propagating in a spacetime in
which EEP is valid, the basic equations of light based on
Ref. [41] are

0 ¼ g�


dx�

dt

dx


dt
; (17)

d2xi

dt2
¼

�
"�0


	

dxi

dt
� �i


	

�
dx


dt

dx	

dt
; (18)

where we have replaced the affine parameter with coordi-
nate time t. Following Ref. [21], assuming _x ¼ cs� and
� �� ¼ 1, we find the expression for s from Eq. (17)

s ¼ 1� 1

2
"2ðN þHij�

i�jÞ � "3Lk�
k

þ 1

2
"4
�
�Qij�

i�j � Lþ 1

2
NHij�

i�j

� 1

4
N2 þ 3

4
Hij�

i�jHkl�
k�l

�
: (19)

Then, by substituting the metric Eqs. (10)–(12) into
Eq. (18), we obtain the equations of light propagation
based on Eq. (18) as follows:

€xi ¼ 1

2
N;i þ 1

2
Hjk;i

_xj

c

_xk

c
�Hij;k

_xj

c

_xk

c
� N;j

_xj

c

_xi

c

þ "

�
�Li;j

_xj

c
þ Lj;i

_xj

c
� 1

2
N;t

_xi

c
þ 1

2
Hjk;t

_xj

c

_xk

c

_xi

c
�Hij;t

_xj

c
� Lk;j

_xj

c

_xk

c

_xi

c

�

þ "2
�
� 1

2
HikN;k � NN;j

_xi

c

_xj

c
þHilHlj;k

_xj

c

_xk

c
� 1

2
HilHjk;l

_xj

c

_xk

c
� Li;t

þ 1

2
L;i � L;j

_xi

c

_xj

c
�Qij;k

_xj

c

_xk

c
þ 1

2
Qjk;i

_xj

c

_xk

c

�
þOð3Þ: (20)

From Eq. (20), we can see that the 2PN metric for light propagation could be cut off to

g00 ¼ �1þ "2N þ "4LþOð5Þ; (21)

g0i ¼ "3Li þOð5Þ; (22)

gij ¼ �ij þ "2Hij þ "4Qij þOð5Þ: (23)

Furthermore, with using the relationship Hij ¼ �ij�N based on Eqs. (A5) and (A6) in Appendix A and by substituting
_x � _x ¼ c2s2 and Eq. (19) into Eq. (20), the equation of light is simplified as

€xi ¼ 1

2
ð1þ �ÞN;i � ð1þ �ÞN;k

_xk

c

_xi

c

þ "

�
�Li;j

_xj

c
þ Lj;i

_xj

c
� 1

2
ð1þ �ÞN;t

_xi

c
� 1

2
Lj;k

_xj

c

_xk

c

_xi

c
� 1

2
Lk;j

_xj

c

_xk

c

_xi

c

�

þ "2
�
��ð1þ �ÞNN;i � Li;t þ 1

2
L;i þ ð�2 � 1ÞNN;k

_xk

c

_xi

c

� 1

2
Qij;k

_xj

c

_xk

c
� 1

2
Qik;j

_xj

c

_xk

c
þ 1

2
Qjk;i

_xj

c

_xk

c
� L;j

_xj

c

_xi

c

�
þOð3Þ:

III. 2PN LIGHT RAY PROPAGATION IN A SYSTEM
OF N-POINT MASSES

A. Solving the metric for 2PN light propagation

Considering an N-body system of nonspinning point
masses as our first move, we follow the notation adopted by
Ref. [37] and use the matter stress-energy tensor as follows:

c2T�
ðx; tÞ ¼ X
a

�aðtÞ
�
a 



a�ðx� yaðtÞÞ; (24)

where � denotes the three-dimensional Dirac distribution, the
trajectory of the a-th mass is represented by yaðtÞ, the coor-
dinate velocity of the a-th body is va ¼ dyaðtÞ=dt and 
�

a �
ðc;vaÞ, and �a denotes an effective time-dependent mass of
the a-th body defined by
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�aðtÞ ¼
�

maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gg�	



�
a


	
a

c2

q
�
a
; (25)

where subscript a denotes evaluation at the a-th body andma

is the constant Schwarzschild mass. Another useful notation is

~�aðtÞ ¼ �aðtÞ
�
1þ 
2

a

c2

�
; (26)

where 
2
a ¼ va � va. Both �a and ~�a reduce to the

Schwarzschild mass at Newtonian order: �a¼maþOð2Þ
and ~�a ¼ ma þOð2Þ. Then the mass, current, and stress
densities in Eqs. (4)–(6) for the N-point masses read

	 ¼ X
a

~�a�ðx� yaðtÞÞ; (27)

	i ¼
X
a

�a

i
a�ðx� yaðtÞÞ; (28)

	ij ¼
X
a

�a

i
a


j
a�ðx� yaðtÞÞ: (29)

The next step is to work out N, �
ð2Þ

and Hij in 1PN approxi-

mation as

N ¼ 2h�1f�4�G	g
¼ 2

X
a

G

�
~�a

ra
� "@tð ~�aÞ þ "2

1

2
@2t ð ~�araÞ

�
þOð3Þ

¼ 2
X
a

Gma

ra
þ "2

�X
a

Gma

ra
½4v2

a � ðnavaÞ2�

þ 2ð2� 3�ÞX
a

X
b�a

G2mamb

rarab

þX
a

X
b�a

G2mamb

r2ab
ðnanabÞ

�
þOð3Þ; (30)

�
ð2Þ
¼ ð1��ÞX

a

Gma

ra
þ"2

�
1

2
ð1��ÞX

a

Gma

ra
½4v2

a�ðnavaÞ2�

þð1��Þð2�3�ÞX
a

X
b�a

G2mamb

rarab

þ1

2
ð1��ÞX

a

X
b�a

G2mamb

r2ab
ðnanabÞ

�
þOð3Þ; (31)

Hij ¼ 2�ij�
X
a

Gma

ra
þ "2�ij�

�X
a

Gma

ra
½4v2

a � ðnavaÞ2�

þ 2ð2� 3�ÞX
a

X
b�a

G2mamb

rarab

þX
a

X
b�a

G2mamb

r2ab
ðnanabÞ

�
þOð3Þ; (32)

by the relation of ~�a that

~�a ¼ ma

�
1þ "2

��
N � 1

2
�ijHij

�
a
þ 3

2
v2
a

�
þOð4Þ

�

¼ ma

�
1þ "2

�
ð2� 3�ÞX

b�a

Gmb

rab
þ 3

2
v2
a

�
þOð4Þ

�
;

(33)

where ra ¼ jx� yaj and rab ¼ jya � ybj. Scalar products
are denoted with parentheses such as ðnavaÞ ¼ na � va,
na ¼ ðx� yaÞ=ra and nab ¼ ðya � ybÞ=rab. For Li,

Li ¼ �2ð1þ �Þh�1f�4�G	ig

¼ X
a

Z Gmav
i
a�ðz� yaÞ
jx� zj d3z ¼ X

a

Gma

ra
vi
a þOð2Þ:

(34)

Based on Eq. (A8), L can be simplified as

L ¼ ð3�� 2�� 1Þh�1f�4�G	g þ 2ð�� 1Þh�1f�4�G	kkg � 1

2
�N2

¼ ð3�� 2�� 1ÞX
a

G

�
~�a

ra
ðNÞa

�
þ 2ð�� 1ÞX

a

G

�
�a

ra
v2
a

�
� 1

2
�N2

¼ 2ð�� 1ÞX
a

Gma

ra
v2
a � 2�

X
a

G2m2
a

r2a
þ 2ð3�� 2�� 1ÞX

a

X
b�a

G2mamb

rarab
� 2�

X
a

X
b�a

G2mamb

rarb
þOð1Þ; (35)

with the help of

X
a

G ~�a

ra
ðNÞa ¼ 2

X
a

X
b�a

G2mamb

rarab
þOð2Þ; (36)

X
a

G�a

ra
v2
a ¼

X
a

Gma

ra
v2
a þOð2Þ; (37)

� 1

2
�N2 ¼ �2�

X
a

G2m2
a

r2a
� 2�

X
a

X
b�a

G2mamb

rarb
þOð2Þ: (38)
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And

�
ð4Þ
¼ 2ð��1ÞX

a

Gma

ra
v2
a

þð1þ6��3�2�4�ÞX
a

X
b�a

G2mamb

rarab

þ
�
5

2
��þ1

2
�2�2�

�X
a

G2m2
a

r2a

þ
�
5

2
��þ1

2
�2�2�

�X
a

X
b�a

G2mamb

rarb
þOð1Þ (39)

It follows that we derive the metric Qij as follows:

hQij ¼ �8ð1þ �Þ�G	ij � 1

2
ð1þ �ÞN;iN;j

þ �ij

�
8�G	

�
3

2
�� 3

2
�2 � �þ 1

�
N

þ 16��G	kk þ 1

2
ð�2 þ �� 1Þr2ðN2Þ

�
; (40)

where the quadratic part of potentials inQij can be rewritten as

N;iN;j ¼ 4
X
a

G2m2
a

�
1

ra

�
;i

�
1

ra

�
;j

þ 4
X
a

X
b�a

G2mamb

�
1

ra

�
;i

�
1

rb

�
;j

¼ 1

2

X
a

G2m2
að@2ij þ �ij�Þ

�
1

r2a

�

þ 4
X
a

X
b�a

G2mamb@ai@bj

�
1

rarb

�
; (41)

where @ai denotes the partial derivativewith respect to ya. The
integral of the self terms can be readily deduced from
� lnra ¼ 1=r2a [37]. On the other hand, the interaction terms
are obtained by

� lnSab ¼ 1

rarb
; (42)

where Sab ¼ ra þ rb þ rab [12]. Consequently we solve

�1

2
ð1þ�Þh�1½N;iN;j�¼�1

4
ð1þ�ÞX

a

G2m2
a

�
@2ij lnraþ

�ij

r2a

�
�2ð1þ�ÞX

a

X
b�a

G2mamb@ai@bj lnSab

¼ 1

2
ð1þ�ÞX

a

G2m2
a

�
nian

j
b

r2a
��ij

r2a

�
�2ð1þ�ÞX

a

X
b�a

G2mamb

�
niabn

j
ab��ij

rabSab
þðniab�niaÞðnjabþnjbÞ

S2ab

�
;

(43)

where two relations that

@2ij lnra ¼ �ij � 2nian
j
a

r2a
; (44)

and

@ai@bj lnSab ¼
niabn

j
ab � �ij

rabSab
þ ðniab � niaÞðnjab þ njbÞ

S2ab
; (45)

are used. Then, Qij can be worked out as

Qij ¼ 2ð1þ �ÞX
a

Gma

ra
vi
av

j
a þ 1

2
ð1þ �ÞX

a

G2m2
a

r2a
nian

j
a � 2ð1þ �ÞX

a

X
b�a

G2mamb

rabSab
niabn

j
ab

� 2ð1þ �ÞX
a

X
b�a

G2mamb

S2ab
ðniab � niaÞðnjab þ njbÞ

þ �ij

�
�4�

X
a

Gma

ra
v2
a � 2ð3�� 3�2 � 2�þ 2ÞX

a

X
b�a

G2mamb

rarab

þ
�
2�2 � 1

2
�þ 2�� 5

2

�X
a

G2m2
a

r2a
þ 2ð1þ �ÞX

a

X
b�a

G2mamb

rabSab

þ 2ð�2 þ �� 1ÞX
a

X
b�a

G2mamb

rarb

�
þOð1Þ: (46)
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B. The 2PN metric of light ray propagation for an N-point mass case

Collecting all these results together, we have the 2PN metric for light propagation in the scalar-tensor
theory as

g00 ¼ �1þ "22
X
a

Gma

ra
þ "4

�
�2�

X
a

G2m2
a

r2a
þ 2ð1þ �ÞX

a

Gma

ra
v2
a

�X
a

Gma

ra
ðnavaÞ2 þ 2ð2� 2�� 1ÞX

a

X
b�a

G2mamb

rarab
þX

a

X
b�a

G2mamb

r2ab
ðnabnaÞ

� 2�
X
a

X
b�a

G2mamb

rarb

�
þOð5Þ; (47)

g0i ¼ �"32ð1þ �ÞX
a

Gma

ra
vi
a þOð5Þ; (48)

gij ¼ �ij þ "22�
X
a

Gma

ra
�ij þ "4�ij

��
2�2 � 1

2
�þ 2�� 5

2

�X
a

G2m2
a

r2a
� �

X
a

Gma

ra
ðnavaÞ2

þX
a

X
b�a

G2mamb

�
2ð�2 þ �� 1Þ 1

rarb
þ 2ð2�� �� 2Þ 1

rarab
þ �

ðnanabÞ
r2ab

þ 2ð1þ �Þ 1

rabSab

��

þ "4
�
1

2
ð1þ �ÞX

a

G2m2
a

r2a
nian

j
a þ 2ð1þ �ÞX

a

Gma

ra
vi
av

j
a

� 2ð1þ �ÞX
a

X
b�a

G2mamb

�
niabn

j
ab

rabSab
þ ðniab � niaÞðnjab þ njbÞ

S2ab

��
þOð5Þ: (49)

If the above result returns to GR (� ¼ � ¼ 1) and two-
body case, it coincides with the result of Ref. [37]. It is
worth noting that the parameters at the spatial isotropic

(�ij

P
a
G2m2

a

r2a
) and anisotropic (

P
a
G2m2

a

r4a
riar

j
a) parts of "4 for

gij are respectively (2�2 � 1
2�þ 2�� 5

2 ) and
1
2 ð1þ �Þ in

the STT. For the one-body case, different theories impose
different values on the above parameters (see Table I).
When we take Einstein’s GR, the parameters coming
from two parts are totally unity [20]. Reference [13] shows,
for a single body, the ae-theory has two unequal coeffi-
cients of the spatial isotropic and anisotropic part in the
2PN gij but only one parameter c14 presents in them.

Recently, Ref. [21] introduces only one parameter � to
parametrize these two parts. From our calculations, it
shows that the parametrization with single parameter � in
Ref. [21] is not valid for the STT. Parametrized 2PN issues

are more complicated and were researched to a certain
extent by the previous works [26–28], but it is beyond
the territory of this paper.

C. The light ray propagation equations

Substituting metric coefficients N for Eq. (30), Hij for

Eq. (32), Li for Eq. (34), L for Eq. (35) andQij for Eq. (46)

into Eq. (20), we have

€x i ¼ Fi
1PN þ Fi

2PN þ Fi
v; (50)

where the 1PN monopole component is

Fi
1PN ¼ �ð1þ �ÞX

a

Gma

r2a

�
nia � 2

ðna _xÞ _xi
c2

�
; (51)

the 2PN monopole component is

TABLE I. Parameters at the spatial isotropic and anisotropic parts of "4 for gij in different
theories.

Parameter at GR [20] ae-theory [13] Parameter in [21] STT (our work)

�ij
G2m2

r2
1 1þ 1

2 c14 � 2�2 � 1
2�þ 2�� 5

2

G2m2

r4
rirj 1 1� 1

2 c14 � 1
2 ð1þ �Þ
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Fi
2PN¼"2ð1þ�ÞX

a

G2m2
a

r3a

�
2ð1þ�Þniaþðna _xÞ2

c2
nia�ðna _xÞ _xi

c2

�
þ"2ð1þ�ÞX

a

X
b�a

G2mamb

ra

�
1

rarab
nia� 1

2r2ab
ðnanabÞnia

þð1��Þ 1

rarb
niaþð1þ3�Þ 1

r2b
nib�

3

2r2ab
niab�

2

rarab

ðna _xÞ _xi
c2

þðnanabÞ
r2ab

ðna _xÞ _xi
c2

� 1

r2ab

ðnab _xÞ _xi
c2

þ2ð1��Þ 1
r2b

ðnb _xÞ _xi
c2

�2ð1��Þ 1

rarb

ðna _xÞ _xi
c2

�
þ"2ð1þ�ÞX

a

X
b�a

G2mamb

S2ab

�
�2

1

rab

ðnab _xÞðna _xÞþðnab _xÞðnb _xÞ
c2

niab

�4
1

Sab

½ðnab _xÞþðnb _xÞ�½ðna _xÞþðnb _xÞ�
c2

ðniab�niaÞþ 1

ra

ðnab _xÞþðnb _xÞ
c

�ðna _xÞ
c

nia� _xi

c

�

�2
1

rb

�ðnb _xÞ2
c2

�1

�
ðniab�niaÞþ2

1

rab

�ðna _xÞ _xi
c2

þðnb _xÞ _xi
c2

�
þ 1

rab

ðnab _xÞ2
c2

½niaþnib�

þ2
1

Sab

½ðnab _xÞ�ðna _xÞ�½ðnab _xÞþðnb _xÞ�
c2

ðniaþnibÞþ
1

rb

ðnab _xÞ�ðna _xÞ
c

�ðnb _xÞ
c

nib�
_xi

c

�
� 1

rab
ðniaþnibÞ

�
; (52)

the influence of the bodies’ orbital motions is

Fi
v ¼�"2ð1þ�ÞX

a

Gma

r2a

�ðna _xÞ
c

vi
a

�ðva _xÞ
c

niaþ
�
1

2
ðnavaÞþðva _xÞðna _xÞ

c2

�
_xi

c

�

þ"2ð1þ�ÞX
a

Gma

r2a

�
�
�
v2
a�3

2
ðnavaÞ2þðva _xÞ2

c2

�
nia

þ
�
ðnavaÞþ2

ðva _xÞðna _xÞ
c2

�
vi
aþ

�
2v2

a

ðna _xÞ
c

�3ðnavaÞ2 ðna _xÞc
þ2ðnavaÞ ðva _xÞ

c

�
_xi

c

�
: (53)

In the case of a one-body system studied by many previous
works, we always can construct a reference framewithin which
the body is static so that the velocity-dependent terms vanish.

IV. APPLICATIONS IN AN N-POINT MASS
SYSTEM: N¼ 1 AND N¼ 2

After obtaining the light ray propagation equations, we
will apply them into a 1-point mass system (N ¼ 1) and a
2-point mass system (N ¼ 2) to calculate the deflection
angles for differential measurements.

A. Deflection angle by a 1-point mass system

For a 1-point mass system, it has a static and spherically
symmetric spacetime. The 2PN light deflection angle
caused by the central body has been computed in some
previous works, such as Ref. [16–22]. Here, we leave the
details of calculation in Appendix B and show the final
result of the deflection angle �� � �� #0 as

�� ¼
�
1þ �

2

�
4Gma

c2da

� ð1þ �Þ
�
2ð1þ �Þ � 1

8
ð7þ 8�Þ�

�
G2m2

a

c4d2a
: (54)

where da ¼ k� ðra � kÞ is an impact parameter to repre-
sent the closest distance between the unperturbed light ray
and body a, da ¼ jdaj. When � ¼ 1, Eq. (54) will reduce
to the result of GR [41]. And it is identical with the
deflection angle reported in Ref. [32], which considers
2PN light propagation in a one-body system under the
framework of STT.
Table II lists the summary of 2PN parameters appearing

in the metric, light ray trajectory and deflection angle
in (1) GR, (2) ae-theory, (3) Ref. [21], and (4) STT (our
work). In GR, there is not any parameter. For the ae-theory,
there is only one parameter c14. From Ref. [21], three
parameters, �, � and �, show up. It is very interesting
that only one parameter � appears in 2PN light ray trajec-
tory and light deflection for the scalar-tensor theory
although there are two parameters � and � in 2PN metric
for the theory. If we let �� � �� 1, Eq. (54) returns to

�� ¼ ��GR þ ��STT; (55)

where

��GR ¼ 4Gma

c2da
�

�
8� 15

4
�

�
G2m2

a

c4d2a

¼ 1:75

�
ma

M�

��
R�
da

�
arcsecond

þ 3:50

�
ma

M�

�
2
�
R�
da

�
2
�as; (56)

��STT ¼ ��
2Gma

c2da
� ��

�
8� 31

8
�

�
G2m2

a

c4d2a
þOð ��2Þ

¼ 18:3

�
��

2:1� 10�5

��
ma

M�

��
R�
da

�
�as

þ 81:1

�
��

2:1� 10�5

��
ma

M�

�
2
�
R�
da

�
2
pasþOð ��2Þ:

(57)

Here, ��GR is the light deflection equivalently caused by
GR and its 1PN and 2PN effects are �1:75 as and
�3:50 �as, respectively, both of which are much greater
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than the thresholds of future�1 nas space missions. ��STT
represents the discrepancy between STT and GR in the
deflection angle. For the effect of the deviation from GR in
STT in the deflection angle which would be measured by
experiments conducted in the solar system, the leading
effect is 18:3 �as at the 1PN level. As Damour and
Nordtvedt mentioned in Ref. [30], the deviation of �
from unity at the levels of �10�7 to �10�5 might be
detected by some new space projects (e.g. LATOR). The
2PN term in ��STT might also be important because it
could reach �0:1 nas, close to the thresholds of future
space-born experiments.

B. Deflection angle by a 2-point mass system

From a 1-point mass system to an N-point mass system,
the spacetime will no longer be spherical symmetric and
static. This complicates the problem significantly. We sup-
pose that there are three characteristic length scales: the
length scale of the N-point mass system L, the distance
between the light source and the system R� and the dis-
tance from the observer and the systemRobs. And there are
two characteristic time scales: the time scale of orbital
motions of the N-point mass system T and the time scale
of the light crossing the system Tcross. In general, L, R�

and Robs could be arbitrary, while T is determined by the
total mass of the systemM and L, as well asTcross 	 L=c.

In what follows, we will consider a specific case that the
gravitational system contains only two point masses with

body a and b (N ¼ 2) and L 
 maxðR�;RobsÞ, and then
calculate the resulting deflection angle.

1. Light equations

For this 2-point mass system with the configuration L 

maxðR�;RobsÞ, it indicates Tcross � T. However, this does
not mean that the impact of the orbital motion can be
neglected, if this effect firstly emerges at less than or equal
to 2PN level. Nevertheless, the calculation including this
motion demands a huge amount of work and, thus, wewould
leave it for our next steps. In this paper, we firstly consider a
case of this binary system that the effects of velocity-
dependent terms are smaller than those of 2PN static effects,
i.e. Fi

v ¼ 0 in Eq. (50), so that the light equations are

€x i ¼ Fi
1PN þ Fi

2PNj1BE þ Fi
2PNj2BE; (58)

where the contribution at 1PN is

Fi
1PN ¼ �ð1þ �ÞGma

r2a

�
nia � 2

ðna _xÞ _xi
c2

�
þ a $ b; (59)

the contribution of one-body effect at 2PN is

Fi
2PNj1BE ¼ "2ð1þ �ÞG

2m2
a

r3a

�
2ð1þ �Þnia

þ ðna _xÞ2
c2

nia � ðna _xÞ _xi
c2

�
þ a $ b; (60)

and the contribution of two-body effect at 2PN is

Fi
2PNj2BE ¼ "2ð1þ�ÞG

2mamb

ra

�
1

rarab
nia � 1

2r2ab
ðnanabÞnia þ ð1��Þ 1

rarb
nia þ ð1þ 3�Þ 1

r2b
nib �

3

2r2ab
niab

� 2

rarab

ðna _xÞ _xi
c2

þ ðnanabÞ
r2ab

ðna _xÞ _xi
c2

� 1

r2ab

ðnab _xÞ _xi
c2

þ 2ð1��Þ 1
r2b

ðnb _xÞ _xi
c2

� 2ð1��Þ 1

rarb

ðna _xÞ _xi
c2

�

þ "2ð1þ�ÞG
2mamb

S2ab

�
�2

1

rab

ðnab _xÞðna _xÞ þ ðnab _xÞðnb _xÞ
c2

niab � 4
1

Sab

½ðnab _xÞ þ ðnb _xÞ�½ðna _xÞ þ ðnb _xÞ�
c2

ðniab � niaÞ

þ 1

ra

ðnab _xÞ þ ðnb _xÞ
c

�ðna _xÞ
c

nia � _xi

c

�
� 2

1

rb

�ðnb _xÞ2
c2

� 1

�
ðniab � niaÞ þ 2

1

rab

�ðna _xÞ _xi
c2

þ ðnb _xÞ _xi
c2

�

þ 1

rab

ðnab _xÞ2
c2

½nia þ nib� þ 2
1

Sab

½ðnab _xÞ � ðna _xÞ�½ðnab _xÞ þ ðnb _xÞ�
c2

ðnia þ nibÞ

þ 1

rb

ðnab _xÞ � ðna _xÞ
c

�ðnb _xÞ
c

nib �
_xi

c

�
� 1

rab
ðnia þ nibÞ

�
þ a$ b; (61)

where the symbol a $ b means the same terms but with the labels a and b exchanged.

TABLE II. Summary of 2PN parameters in different theories.

Theories Parameters in metric Parameters in light ray trajectory Parameters in 2PN deflection

GR [22] None None �8þ 15
4 �

ae-theory [13] c14 c14 �8þ ð154 þ 1
8 c14Þ�

From Ref. [21] �, �, � �, �, � �2ð1þ �Þ2 þ ½2ð1þ �Þ � �þ 3
4 ���

STT (our work) �, � � �2ð1þ �Þ2 þ 1
8 ð1þ �Þð7þ 8�Þ�
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2. Light ray trajectory

Following the procedure mentioned in Appendix B, we could work out the time derivative of light ray trajectory 1
c � _xðtÞ

and compute the deflection angle caused by these two point masses. For Fi
1PN and Fi

2PNj1BE, we could have obtained the
corresponding trajectory of the light ray by adopting the iterative method used in Ref. [18]. However, in order to integrate
Fi
2PNj2BE, we assume that the light source, light ray trajectory and the observer are all closer to the body a than to the body

b, i.e. ra < rab along the light path from end to end. Thus, we could obtain

1

c
_xðtÞ ¼ kþ 1

c
� _x1PNðxNÞ þ 1

c
� _x2PNðxNÞj1BE þ 1

c
� _x2PNðxNÞj2BE; (62)

where
1

c
� _x1PNðxÞ ¼ �ð1þ �ÞGma

c2ra

�
k� ðra � kÞ
ra � k � ra þ k

�
� ð1þ �ÞGmb

c2rb

�
k� ðrb � kÞ
rb � k � rb þ k

�
; (63)

1

c
� _x2PNðxÞj1BE¼�1

4
ð1þ�ÞG

2m2
a

c4r4a
ðk�raÞra�1

4
ð1þ�ÞG

2m2
b

c4r4b
ðk�rbÞrb

þG2m2
a

c4
da

�
ð1þ�Þ2 1

raðra�k�raÞ
�
2

ra
þ 1

ra�k�ra
�
�1

8
ð1þ�Þð7þ8�Þ 1

d2a

�
k�ra
r2a

þ 1

da

�
�

2
þarctan

k�ra
da

���

þG2m2
a

c4ra
k

�
1

4
ð1þ�Þð5þ4�Þ 1

ra
�ð1þ�Þ2 1

ra�k�ra
�
þG2m2

b

c4
db

�
ð1þ�Þ2 1

rbðrb�k�rbÞ
�
2

rb
þ 1

rb�k�rb
�

�1

8
ð1þ�Þð7þ8�Þ 1

d2b

�
k�rb
r2b

þ 1

db

�
�

2
þarctan

k�rb
db

���
þG2m2

b

c4rb
k

�
1

4
ð1þ�Þð5þ4�Þ 1

rb
�ð1þ�Þ2 1

rb�k�rb
�
;

(64)

1

c
� _x2PNðxÞj2BE ¼ ð1þ �ÞG

2mamb

c4rarab
k

�
�ð1þ �Þ rab � da

ðra � k � raÞðrab � k � rabÞ þ ð2þ �Þ
�
þ ð1þ �ÞG

2mamb

c4r3ab

� k

�
�ð1þ �Þ rab � da

ra � k � ra �
ra � rab
2ra

� ðk � raÞðk � rabÞ
rab

þ 3
ðk � rabÞ2

r2ab
ra � 1

2
ð7þ 6�Þðk � rabÞ

� ln
ra þ k � ra
r0a þ k � r0a

�
þ ð1þ �ÞG

2mamb

c4rarab
da

�
ð1þ �Þ 1

ðra � k � raÞ2ðrab � k � rabÞ
�

�
ðrab � daÞ � ðk � raÞðk � rabÞ þ ðk � rabÞrab þ 1

2
ðk � rabÞra

�
þ ð3þ 2�Þ 1

ra � k � ra
� 1

2
ð1þ �Þ 1

ðra � k � raÞ2
ra � ð1þ �Þ 1

ðra � k � raÞðrab � k � rabÞ ra
�
þ ð1þ �ÞG

2mamb

c4r3ab

� da

�
� 1

2
ð3þ 4�Þ k � rab

ra � k � ra þ
1

3
ð1þ �Þ ðk � raÞ2

ðra � k � raÞðrab � k � rabÞ2
rab

þ 1

3
ð1þ �Þ ðk � raÞ2

ðra � k � raÞðrab � k � rabÞ �
1

2

ra � rab
raðra � k � raÞ þ

�
3
ðk � rabÞ2

r2ab
� 1

�
ln

ra þ k � ra
r0a þ k � r0a

�

þ ð1þ �Þ2 G
2mamb

c4rarab

1

rab � k � rab db

�
2� ra

ra � k � ra �
ra

rab � k � rab ln
ra þ k � ra
r0a þ k � r0a

�

þ ð1þ �Þ2 G
2mamb

c4r2ab

1

ðrab � k � rabÞ2
db

�
ra � rab

ra � k � ra �
3

2

ðk � raÞðk � rabÞ
ra � k � rab þ 1

3
ra

þ 1

2
ðk � rabÞ ln ra þ k � ra

r0a þ k � r0a
�
þ ð1þ �Þ2 G

2mamb

c4r3ab

1

rab � k � rab db

�
ra � rab

ra � k � ra �
3

2

ðk � raÞðk � rabÞ
ra � k � ra

þ 1

3
ra þ 1

2
ðk � rabÞ ln ra þ k � ra

r0a þ k � r0a
�
þ ð1þ �ÞG

2mamb

c4r3ab
rab

�
4
k � ra
rab

� k � ra
ra

� 3
k � rab
r2ab

ra

� 2
ðk � raÞðk � rabÞ2

r3ab
� da

rab

�
�

2
þ arctan

k � ra
da

�
þ 1

2
ð1þ 4�Þ ln ra þ k � ra

r0a þ k � r0a
�
þO

�
1

c4
ra
rab

�
; (65)
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where r0a¼raðt¼t0Þ and r0a ¼ jr0aj. For GR (�¼�¼1)
and the one-body case, Eq. (62) will reduce to the results of
Ref. [18].

3. Light deflection

With the definition of a gauge-invariant angle �
between the directions of two incoming photons (light
signals 1 and 2) and we use that the position of the photon
at the moment t of observation coincides with the position
of the observer so that

xobs ¼ x01 þ cðt� t01Þk1 þ �x1

¼ x02 þ cðt� t02Þk2 þ �x2;
(66)

where ðt01; x01Þ denotes the moment and position of the light
signal 1 of emission and ðt02; x02Þ for the light signal 2,
respectively.

By assuming that the initial unit vector of light ray 1 k1
is perpendicular to the line connecting the body a and the
b, rab, and light ray 2 moves along the line connecting the
body a and the observer, which lead to that geometrical
relationships that

k1 � ra
ra

� cos#0;
k2 � ra
ra

¼ 1;

k1 � rab
rab

¼ 0;
d1a
ra

� sin#0

(67)

d2a ¼ 0;
k2 � d1a

d1a
¼ sin#0;

k2 � rab
rab

¼ sin#0; k2 ¼ ra
ra

:
(68)

and letting d1a � da, we could obtain the deflection angle
for a static observer as

�� � �� #0

¼
�
1þ �

2

�
4Gma

c2da

�
1þ cos#0

2

�
þ ð1þ �Þ Gma

c2rab

�
1� cos#0

1� sin#0

�

� 2ð1þ �Þ2 G
2m2

a

c4d2a

�
1þ cos#0

2

�
þ ð1þ �Þ2 G

2m2
b

c4r2ab

sin#0ð1þ sin#0Þ
cos2#0

� 1

8
ð1þ �ÞG

2m2
a

c4d2a
sin#0 cos#0

� 1

8
ð1þ �ÞG

2m2
a

c4r2ab

sin#0

cos#0

þ 1

8
ð7þ 8�Þð1þ �ÞG

2m2
a

c4d2a
ð�� #0Þ

� 1

8
ð7þ 8�Þð1þ �ÞG

2m2
a

c4r2ab

�
1

cos2#0

�
�

2
þ #0

�
� �

2

�

� 2ð1þ �ÞG
2mamb

c4r2ab
sin#0 cos#0 � ð1þ �Þ2 G

2mamb

c4r2ab
sin#0

� 2ð1þ �Þ2 G
2mamb

c4rabda

�
1þ cos#0

2

��
1� cos#0

1� sin#0

�
cos#0

sin#0

� 2ð1þ �Þð2þ �ÞG
2mamb

c4rabda

�
1þ cos#0

2

�
þ ð1þ �Þ2 G

2mamb

c4rabda

sin#0 cos#0

1� sin#0

þO
�
1

c4
ra
rab

�
: (69)

Similar to the case of 1-point mass system, the 2PN light deflection in a 2-point mass system with static approximation
does not depend on PPN parameter � either. One possible reason for this is that � usually associates with motion of bodies
so that when the system could be treated as a static system due to Tcross � T, it would disappear in the deflection angle.
However, when Tcross �T, we suppose the time evolutions of the gravitational fields, the motion of bodies and PPN
parameter � would explicitly show up in the expression of deflection angle, and this more complicated issue will be the
next move of our investigation.

4. Quantitative examples

If the light ray just grazes the limb of the body a, the angle between light ray 1 and 2 at the observer #0 could be very
close to 0 and be neglected so that

�� ¼
�
1þ �

2

�
4Gma

c2da
� ð1þ �Þ

�
2ð1þ �Þ � 1

8
ð7þ 8�Þ�

�
G2m2

a

c4d2a
� 2ð1þ �Þð2þ �ÞG

2mamb

c4rabda
; (70)

and it could be written in a more practical form

�� ¼ ��GR þ ��STT; (71)

where
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��GR ¼ 4Gma

c2da
�

�
8� 15

4
�

�
G2m2

a

c4d2a
� 12

G2mamb

c4rabda

¼ 1:75

�
ma

M�

��
R�
da

�
arcsecondþ 3:50

�
ma

M�

�
2
�
R�
da

�
2
�as� 51:5

�
mb

ma

��
ma

M�

�
2
�
R�
da

��
1AU

rab

�
nas (72)

��STT ¼ ��
2Gma

c2da
� ��

�
8� 31

8
�

�
G2m2

a

c4d2a
� 10 ��

G2mamb

c4rabda
þOð ��2Þ

¼ 18:3

�
��

2:1� 10�5

��
ma

M�

��
R�
da

�
�asþ 81:1

�
��

2:1� 10�5

��
ma

M�

�
2
�
R�
da

�
2
pas

� 0:902

�
��

2:1� 10�5

��
mb

ma

��
ma

M�

�
2
�
R�
da

��
1 AU

rab

�
pasþOð ��2Þ: (73)

If we ignore the mass of body b, the results of Eqs. (72) and
(73) could return to the 1-point mass case Eqs. (56) and (57).

For experiments conducted in the Solar System, these
results could be applied to some cases where only the
Sun and Jupiter need to be considered. If we suppose a
light ray passing the limb of the Sun, letting the body a be
the Sun in Eqs. (72) and (73), then the 2PN deflection angle
of ��GR contains 3:50 �as caused by the Sun itself and
�9:46 pico-arcsecond (pas) due to the coupling term of the
Sun and Jupiter. For the effect of the deviation from GR at
the 2PN level in ��STT, it consists of 81.1 pas from the Sun
itself and �0:166 femto-arcsecond (fas) caused by the
coupling effect of the Sun and the Jupiter, both of which
are below the thresholds of future space missions.

In another case that a light ray just grazes the limb of
Jupiter, letting the body a be Jupiter in Eqs. (72) and (73),
the deflection angle at 2PN level of ��GR consists of
0.302 nas by Jupiter and �0:0921 nas by the coupling of
the Sun and Jupiter. The 2PN contributions in ��STT are
made of 7.00 fas by Jupiter and �1:61 fas by the coupling
of the Sun and Jupiter.

One of the major differences of this work from previous
works is abandoning the hierarchized hypothesis, which
leads to the 2-body effects in the light deflection at 2PN
level. Although these effects in the 2PN light deflection
is at least 1 order of magnitude lower than the thresholds
of future �nas experiments in the Solar System, their
contributions in ��GR and ��STT could reach �0:515�as
and�9:02 pas, respectively, for an imaginary observer in a
binary system with two �1M� Sun-like stars and separa-
tion by �0:1 AU, both of which increase 3 orders of
magnitude more than the system with mass ratio �10�3

(such as MJupiter=M�) and the same separation. Hence, if

this observer would be able to measure �� down to �10�6,
the 2-body effect in ��GR had to be considered, because the
third term in ��GR and the first term in ��STT are compa-
rable with the level of �1 �as.

An even more extreme case would be replacing one Sun-
like star in above hypothetical examplewith a neutron star with
radius�10 km, which could make the 2PN 2-body effects in
��GR and ��STT raise to �35:9 mas and �0:627 �as.

V. CONCLUSIONS AND DISCUSSION

In this paper, we mainly focus on the scalar-tensor
theory and obtain its 2PN metric. To investigate its next
to the leading order contributions in the light propagation
and related measurements in the near zone of a gravita-
tional system, we reduce the metric to its 2PN form for
light by supposing an N-point mass system. In doing so, at
the 2PN level, we abandon the hierarchized hypothesis and
do not assume two PPN parameters � and � to be in unity,
which makes our work differ from previous works. It is
found that although there exist � and � in the 2PN metric,
only � appears in the 2PN equations of light.
As one simple example of applications for future experi-

ments, a gauge-invariant angle between the directions of
two incoming photons for a differential measurement is
investigated after the light trajectory is obtained in a static
and spherically symmetric spacetime. It shows the deviation
from GR ��STT does not depend on � even at 2PN level in
this circumstance, which is consistent with previous results.
A more complicated application is light deflection in a

2-point mass system. We consider a case that the light
crossing time is much less than the time scale of its orbital
motion, Tcross � T, and thus treat it as a ‘‘static’’ system.
The 2-body effect at 2PN level originating from relaxing
the hierarchized hypothesis is calculated. Our analysis
shows the 2PN 2-body effect in the Solar System is 1 order
of magnitude less than future �1 nas experiments, while
this effect could be comparable with 1PN component of
��STT in a binary system with two Sun-like stars and
separation by �0:1 AU if an experiment would be able
to measure �� down to �10�6.
Our next move is to relax the static approximation for

the 2-point mass system with Tcross �T and investigate
the time evolution pattern of the 2PN light deflection. We
suppose the PPN parameter � would appear in the result.

ACKNOWLEDGMENTS

The authors are grateful to an anonymous referee whose
comments are very helpful to the final version of this
article. We are thankful to the International Space

XUE-MEI DENG AND YI XIE PHYSICAL REVIEW D 86, 044007 (2012)

044007-12



Science Institute for hospitality and accommodation. The
authors especially would like to thank Professor Tian-Yi
Huang of Nanjing University for his fruitful discussions. The
work of X.-M.D. is funded by the Natural Science Foundation
of China under Grant No. 11103085. The work of Y.X. is
supported by the China Scholarship Council Grant
No. 2008102243, the National Natural Science Foundation
of China Grant No. 10973009 and No. 11103010, the
Fundamental Research Program of Jiangsu Province of
China Grant No. BK2011553 and the Research Fund for
the Doctoral Program of Higher Education of China Grant
No. 20110091120003. This project/publication was made
possible through the support of a grant from the John
Templeton Foundation. The opinions expressed in this pub-
lication are those of the authors and do not necessarily
reflect the views of the John Templeton Foundation. The
funds from the John Templeton Foundation were provided
by a grant to The University of Chicagowhich also managed
the program in conjunction with National Astronomical
Observatories, Chinese Academy of Sciences. X.-M.D.
appreciates the support from the group of Almanac and
Astronomical Reference Systems in the Purple Mountain
Observatory of China.

APPENDIX A: EVOLUTION EQUATIONS OF
METRIC COEFFICIENTS OF SECOND ORDER

POST-NEWTONIAN APPROXIMATION

In this appendix, we will give the metric coefficients of
the scalar-tensor theory at the 2PN order as follows.

1. N and �
ð2Þ

The equations for N and �
ð2Þ

are

hN ¼ �8�G	; (A1)

h�
ð2Þ

¼ �4ð1� �Þ�G	; (A2)

where h is the D’Alembert operator in the Minkowski
spacetime and

� � !0 þ 1

!0 þ 2
; (A3)

G � 2

�0ð1þ �Þ : (A4)

And we can see G ¼ 1=�0 when � ¼ 1.

2. Hij

The equation for Hij yields

hHij ¼ �8��G	�ij; (A5)

which gives Hij � V�ij. Then, we obtain

hV ¼ �8��G	: (A6)

Furthermore, we have V ¼ �N by comparison with
Eqs. (A1) and (A6).

3. Li

The equation for Li is

hLi ¼ 8ð�þ 1Þ�G	i: (A7)

4. L and �
ð4Þ

The equations for L and �
ð4Þ

are

hL ¼ �8�G	

�
V � 2N þ 4�� �� 3

�� 1
�
ð2Þ�

� 8ð�� 1Þ�G	kk � 1

2
N;kN;k � 1

2
N;kV;k

� �
ð2Þ

;kN;k � 4ð�� 1Þ
ð�� 1Þ2 �

ð2Þ
;k �
ð2Þ

;k; (A8)

h�
ð4Þ

¼ �4�G	

�
ð�� 1ÞðN � VÞ þ 8ð�� 1Þ

�� 1
�
ð2Þ�

� 8ð�� 1Þ�G	kk þ 1

2
�
ð2Þ

;kN;k

� 1

2
�
ð2Þ

;kV;k þ 4ð1� �Þ
ð�� 1Þ2 �

ð2Þ
;k �
ð2Þ

;k; (A9)

where

� � 1þ !1

ð2!0 þ 3Þð2!0 þ 4Þ2 : (A10)

5. Qij

The equation for Qij reads as
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hQij ¼ �8ð1þ �Þ�G	ij � 1

2
N;iN;j þ VN;ij � VV;ij � 1

2
V;iV;j � �

ð2Þ
N;ij

� 1

2
�
ð2Þ

;iN;j � 1

2
�
ð2Þ

;jN;i þ 1

2
�
ð2Þ

;iV;j þ 1

2
�
ð2Þ

;jV;i � 2V �
ð2Þ

;ij þ �
ð2Þ
V;ij þ 2�

ð2Þ
�
ð2Þ

;ij

þ 2ð2�� 1Þ
�� 1

�
ð2Þ

;i �
ð2Þ

;j þ �ij

�
þ8�G	

�
þ�ðN � 2VÞ þ 4�� 4þ �2 � �

�� 1
�
ð2Þ�

þ 16��G	kk þ 1

2
N;kV;k þ 1

2
V;kV;k � �

ð2Þ
;kV;k þ 4ð�� 1Þ

ð�� 1Þ2 �
ð2Þ

;k �
ð2Þ

;k

�
: (A11)

6. Qi

The equation for Qi is

hQi ¼ þ8ð�þ 1Þ�G	ið2V � N � �
ð2Þ
Þ þ 8�G	Li þ 1

2
N;iN;t þ N;iV;t þ 1

2
V;iN;t þ 1

2
VN;it þ V;iV;t

� 1

2
VV;it � 1

2
N;kLi;k þ 1

2
N;ikLk � N;kLk;i þ 1

2
V;kLi;k � 1

2
V;ikLk � V;kLk;i � 1

2
�
ð2Þ

;tN;i

� 1

2
�
ð2Þ
N;it � �

ð2Þ
;itV þ 3

2
�
ð2Þ

;tV;i þ 1

2
�
ð2Þ
V;it � Li;k �

ð2Þ
;k � �

ð2Þ
;ikLk þ ð3�� 1Þ

�� 1
�
ð2Þ

;i �
ð2Þ

;t þ �
ð2Þ
�
ð2Þ

;it: (A12)

7. Q and �
ð6Þ

The equations for Q and �
ð6Þ

are

hQ ¼ �8�G	

�
þN2 � 2NV � 2L� 4�� �� 3

�� 1
ð2N � VÞ�

ð2Þ

þ
�
1� �

ð�� 1Þ2 �
4ð�� 1Þð�2 þ 8�� 2�� 7Þ

ð�� 1Þ3
�
�
ð2Þ2

þ 4�� �� 3

�� 1
�
ð4Þ�

� 8�G	kk

�
ð2�� 1ÞV þ ð2� �ÞN � �2 þ 8�� 2�� 7

�� 1
�
ð2Þ�

þ 16�G	kLk

� 1

2
NN;kN;k þ 1

2
VN;kV;k þ 3

2
N;tN;t þ 3

2
V;tV;t þ N;tV;t þ NN;tt þ VN;tt � N;kLk;t � LkN;kt � V;ktLk � N;kL;k

� 1

2
V;kL;k þ N;kQkl;l þ N;klQkl � 1

2
N;lQkk;l � Lk;lLl;k þ Ll;kLl;k þ 2�

ð2Þ
;tV;t � 2�

ð2Þ
;ktLk � �

ð2Þ
;kL;k

þ 2ð�2 � �þ 2�� 2Þ
ð�� 1Þ2 �

ð2Þ
;t �
ð2Þ

;t þ 4ð�� 1Þ
ð�� 1Þ2 N�

ð2Þ
;k �
ð2Þ

;k þ �
ð2Þ
�
ð2Þ

;kN;k þ 2�

ð�� 1Þ3 �
ð2Þ
�
ð2Þ

;k �
ð2Þ

;k

þ 4ð�� 1Þð�2 þ 8�� 2�� 7Þ
ð�� 1Þ4 �

ð2Þ
�
ð2Þ

;k �
ð2Þ

;k � �
ð4Þ

;kN;k � 8ð�� 1Þ
ð�� 1Þ2 �

ð2Þ
;k �
ð4Þ

;k; (A13)
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h�
ð6Þ

¼ �4�G	

�
þð�� 1ÞðNVþLÞ � 8ð�� 1Þ

�� 1
�
ð2Þ
ðN�VÞ � 2ð32�2 þ ��� 64�� �þ 32Þ

ð�� 1Þ3 �
ð2Þ2

þ 8ð�� 1Þ
�� 1

�
ð4Þ�

� 4�G	kk

�
ð�� 1Þð3V�NÞ � 16ð�� 1Þ

�� 1
�
ð2Þ�

� 8�Gð�� 1Þ	kLk þ 1

2
N�

ð2Þ
;kN;k þ 1

2
V �
ð2Þ

;kV;k � 2�
ð2Þ

;ktLk � �
ð2Þ

;kLk;t

þ 1

2
�
ð2Þ

;kL;k þ �
ð2Þ

;kQkl;l þ �
ð2Þ

;lkQlk � 1

2
�
ð2Þ

;lQkk;l þ ðNþVÞ�
ð2Þ

;tt þ 4�þ 2���2 � 5

ð�� 1Þ2 �
ð2Þ

;t �
ð2Þ

;t

þ 32ð�� 1Þ2 þ 2�ð�� 1Þ
ð�� 1Þ4 �

ð2Þ
�
ð2Þ

;k �
ð2Þ

;k � 8ð�� 1Þ
ð�� 1Þ2 �

ð2Þ
;k �
ð4Þ

;k þ 1

2
�
ð4Þ

;kN;k � 1

2
�
ð4Þ

;kV;k; (A14)

where

� � 1

2

ð�� 1Þ4
�þ 1

!2: (A15)

In general relativity, � ¼ 0 [13].

APPENDIX B: APPLICATION IN A STATIC,
SPHERICALLY SYMMETRIC SPACETIME

1. Light ray trajectory

In this appendix, we will consider the gravitational field
outside a static, spherically symmetric body and mainly
focus on the parameters in 2PN level in several gravity
theories. The trajectory of the light ray can be obtained
through integrating the following equation:

€x ¼ �ð1þ �ÞGma

r2a

�
na � 2

ðna _xÞ _x
c2

�
þ "2ð1þ �ÞG

2m2
a

r3a

�
��
2ð1þ �Þ þ ðna _xÞ2

c2

�
na � ðna _xÞ _x

c2

�
; (B1)

by adopting the iterative method used in Ref. [18]. We
assume the unperturbed light ray as follows:

x N ¼ x0 þ cðt� t0Þk; (B2)

where ki is a unit vector representing the light direction at
t ¼ �1, t0 is an instant on the light path and xi0 is the

position of photon at t0. The instant t0 can be arbitrarily

chosen, for example the emission or the observation
instant. The photon’s coordinates can be written as sum
of perturbations on xiN:

x ðtÞ ¼ xN þ �x � xN þ �x1PN þ �x2PN: (B3)

And we use the following assumption for motion of the
bodies:

r AðtÞ ¼ xðtÞ � ya ¼ xðtÞ � yaðtaÞ; (B4)

where ta is the moment of the closest approach between the
body a and the unperturbed light ray. yaðtaÞ means the
position of a-th body (ya) is evaluated at the time ta. After
these, we obtain the results with the method as [18]

1

c
_xðtÞ ¼ kþ 1

c
� _x1PNðxNÞ þ 1

c
� _x2PNðxNÞ; (B5)

xðtÞ ¼ xNðtÞ þ ½�x1PNðxNÞ � �x1PNðx0Þ�
þ ½�x2PNðxNÞ � �x2PNðx0Þ�: (B6)

It is worth noting that the 2PN terms in our solution
actually have two sources: direct and indirect. The direct
part comes from the 2PN order itself. The indirect part
comes from the 1PN terms when the 1PN solution is
iterated into itself in order to attain a 2PN accuracy,
namely, we substitute xN þ �x1PN into the trajectory of
the light ray in the 1PN approximation. And

1

c
� _x1PNðxÞ ¼ �ð1þ �ÞGma

c2ra

�
k� ðra � kÞ
ra � k � ra þ k

�
; (B7)

1

c
� _x2PNðxÞ ¼ � 1

4
ð1þ �ÞG

2m2
a

c4r4a
ðk � raÞra þG2m2

a

c4
da

�
ð1þ �Þ2 1

raðra � k � raÞ
�
2

ra
þ 1

ra � k � ra
�

� 1

8
ð1þ �Þð7þ 8�Þ 1

d2a

�
k � ra
r2a

þ 1

da

�
�

2
þ arctan

k � ra
da

���

þG2m2
a

c4ra
k

�
1

4
ð1þ �Þð5þ 4�Þ 1

ra
� ð1þ �Þ2 1

ra � k � ra
�
; (B8)
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�x1PNðxÞ ¼ �ð1þ �ÞGma

c2

�
k� ðra � kÞ
ra � k � ra þ k lnðra þ k � raÞ

�
; (B9)

�x2PNðxÞ ¼ 1

8
ð1þ �ÞG

2m2
a

c4r2a
ra þG2m2

a

c4
k

�
� 1

8
ð1þ �Þð7þ 8�Þ 1

da
arctan

k � ra
da

� ð1þ �Þ2 1

ra � k � ra
�

þG2m2
a

c4
da

�
ð1þ �Þ2 1

ðra � k � raÞ2
� 1

8
ð1þ �Þð7þ 8�Þ k � ra

d3a

�
�

2
þ arctan

k � ra
da

��
; (B10)

where da ¼ k� ðra � kÞ is an impact parameter to repre-
sent the closest distance between the unperturbed light ray
and body a, da ¼ jdaj. For GR (� ¼ � ¼ 1), Eqs. (B5)
and (B6) will reduce to the results of Ref. [18].

2. Light deflection

In some practical astronomical measurements, a differential
measurement is more powerful. This concept is employed by
LATORmission [1,2] through a skinny triangle formed by two
spacecrafts and the International Space Station. Thus, we con-
struct a gauge-invariant angle � between the directions of two
incoming photons based on [18,41]. It reads

cos� ¼ h��K
�
1K

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h��K
�
1K

�
1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h��K

�
2K

�
2

q ; (B11)

where the spatial projection operator is

h�� ¼ g�� þ u�u�; (B12)

which projects the two incoming photons onto the hyper-
surface orthogonal to the observer’s four-velocity u� �
dx�=cd� and K�

1 � dx�1 ðtÞ=dt, and K�
2 � dx�2 ðtÞ=dt are

the tangent vectors of the paths x�1 ðtÞ and x�2 ðtÞ of the two
incoming photons. Then, for a static observer, we obtain

� ¼ #0 þ ð1þ �Þ Gma

c2ra sin#0

�
k1 � ½k2 � ðra � k2Þ�

ra � k2 � ra þ k2 � ½k1 � ðra � k1Þ�
ra � k1 � ra

�

� ð1þ �Þ2 G2m2
a

c4 sin#0

�
k2 � d1a

d31a

�
1þ k1 � ra

ra

�
þ k1 � d2a

d32a

�
1þ k2 � ra

ra

��
� 1

8
ð1þ �ÞG

2m2
a

c4r2a

�
k1 � ra
d1a

þ k2 � ra
d2a

�

þ 1

8
ð7þ 8�Þð1þ �Þ G2m2

a

c4 sin#0

�
k1 � d2a

d32a

�
�

2
þ arctan

�
k2 � ra
d2a

��
þ k2 � d1a

d31a

�
�

2
þ arctan

�
k1 � ra
d1a

���
; (B13)

where

#0 ¼ arccosðk1 � k2Þ; (B14)

and we use that the position of the photon at the moment t of
observation coincides with the position of the observer so that

xobs ¼ x01 þ cðt� t01Þk1 þ �x1

¼ x02 þ cðt� t02Þk2 þ �x2;
(B15)

where ðt01; x01Þ denotes the moment and position of the light
signal 1 of emission and ðt02; x02Þ for the light signal 2,
respectively. In Eq. (B13), d1a ¼ k1 � ðra � k1Þ and is an

impact parameter to represent the closest distance between
the unperturbed light ray 1 and a-th body. Similarly, d2a ¼
k2 � ðra � k2Þ and is an impact parameter to represent the
closest distance between the unperturbed light ray 2 and a-th
body.
Furthermore, we assume that one of the two light rays

moves along the line connecting the body a and the observer,
namely source 2. Thismeans the impact parameter for source 2
is zero so that d2a ¼ jk2 � ðra � k2Þj ¼ 0, k2 � d1a=d1a ¼
sin#0, k1 �ra=ra’ cos#0, d21a¼ r2a�ðk1 �raÞ2, k1 �ra=
d1a��=2 and d1a=ra ¼ 0. Then, we obtain Eq. (54).
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Gravity 22, 5015 (2005).
[24] R. A. Vanderveld, R. R. Caldwell, and J. Rhodes, Phys.

Rev. D 84, 123510 (2011).

[25] S. G. Turyshev, Annu. Rev. Nucl. Part. Sci. 58, 207 (2008).
[26] M. Benacquista and K. Nordtvedt, Astrophys. J. 328, 588

(1988).
[27] M. J. Benacquista, Phys. Rev. D 45, 1163 (1992).
[28] K. Nordtvedt, Astrophys. J. 407, 758 (1993).
[29] Y. Fujii and K.-I. Maeda, The Scalar-Tensor Theory of

Gravitation (Cambridge University Press, Cambridge,
2003).

[30] T. Damour and K. Nordtvedt, Phys. Rev. Lett. 70, 2217
(1993).

[31] P. Dong and W.-T. Ni, arXiv:0711.0253.
[32] P. Dong and L. Li, Commun. Theor. Phys. 55, 457 (2011).
[33] O. Minazzoli and B. Chauvineau, Classical Quantum

Gravity 28, 085010 (2011).
[34] S. Kopeikin and I. Vlasov, Phys. Rep. 400, 209 (2004).
[35] Y. Xie and S. Kopeikin, Acta Phys. Slovaca 60, 393

(2010).
[36] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Freeman, San Francisco, 1973).
[37] L. Blanchet, G. Faye, and B. Ponsot, Phys. Rev. D 58,

124002 (1998).
[38] T. Damour and G. Esposito-Farèse, Classical Quantum
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