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In this paper we study perturbatively an extension of the Stelle higher derivative gravity involving an

infinite number of derivative terms. We know that the usual quadratic action is renormalizable but suffers

from the unitarity problem because of the presence of a ghost (state of negative norm) in the theory. In this

paper, we reconsider the theory first introduced by Tomboulis in 1997, but we expand and extensively

study it at both the classical and quantum level. This theory is ghost-free, since the introduction of (in

general) two entire functions in the model with the property does not introduce new poles in the

propagator. The local high derivative theory is recovered expanding the entire functions to the lowest

order in the mass scale of the theory. Any truncation of the entire functions gives rise to the unitarity

violation, but if we keep all the infinite series, we do not fall into these troubles. The theory is

renormalizable at one loop and finite from two loops on. Since only one-loop Feynman diagrams are

divergent, then the theory is super-renormalizable. We analyze the fractal properties of the theory at high

energy showing a reduction of the spacetime dimension at short scales. Black hole spherical symmetric

solutions are also studied omitting the high curvature corrections in the equation of motions. The solutions

are regular and the classical singularity is replaced by a ‘‘de Sitter-like core’’ in r ¼ 0. Black holes may

show a ‘‘multihorizon’’ structure depending on the value of the mass. We conclude the paper with a

generalization of the Tomboulis theory to a multidimensional spacetime.

DOI: 10.1103/PhysRevD.86.044005 PACS numbers: 04.60.�m

I. INTRODUCTION TO THE THEORY

One of the biggest problems in theoretical physics is to
find a theory that is able to reconcile general relativity and
quantum mechanics. There are many reasons to believe
that gravity has to be quantum, some of which are the
quantum nature of matter in the right-hand side of the
Einstein equations, the singularities appearing in classical
solutions of general relativity, etc.

The action principle for gravity we are going to intro-
duce in this paper is the result of a synthesis of minimal
requirements: (i) classical solutions must be singularity-
free, (ii) the Einstein-Hilbert action should be a good
approximation of the theory at an energy scale much
smaller than the Planck mass, (iii) the spacetime dimension
has to decrease with the energy in order to have a complete
quantum gravity theory in the ultraviolet regime, (iv) the
theory has to be perturbatively renormalizable at quantum
level (this hypothesis is strongly related to the previous
one), (v) the theory has to be unitary, with no other degree
of freedom than the graviton in the propagator, (vi) the
spacetime is a single continuum of space and time and, in
particular, the Lorentz invariance is not broken. The last
requirement is supported by recent observations.

Now let us introduce the theory, step by step, starting
from the perturbative non-renormalizable Einstein gravity,
through high derivatives gravity theories (the Stelle theory
of gravity will be our first example) onto the action which
defines a complete quantum gravity theory. The impatient
reader can skip to the end of the introduction for the
candidate complete quantum gravity bare Lagrangian.

Perturbative quantum gravity is the quantum theory of
a spin two particle on a fixed (usually for simplicity is
assumed to be flat) background. Starting from the Einstein-
Hilbert Lagrangian

L ¼ � ffiffiffiffiffiffiffi�g
p

��2R (1)

(�2 ¼ 16�GN), we introduce a splitting of the metric in a
background part plus a fluctuationffiffiffiffiffiffiffi�g

p
g�� ¼ go�� þ �h��; (2)

thenwe expand the action in power of the graviton fluctuation
h�� around the fixed background g��. Unlikely, the quantum
theory is divergent at two loops, producing a counterterm
proportional to the Ricci tensor at the third powerffiffiffiffiffiffiffi�g

p
R��
��R

��
	
R

	

��: (3)

In general, in d dimensions the superficial degree of diver-
gence of a Feynman diagram is D ¼ Ldþ 2V � 2I, where
L is the number of loops, V is the number of vertices, and I
the number of internal lines in the graph. Using the topologi-
cal relation between V, I and L, L ¼ 1þ I � V, we obtain
D ¼ 2þ ðd� 2ÞL. In d ¼ 4 the superficial degree of diver-
gence D ¼ 2þ 2L increases with the number of loops,
and thus we are forced to introduce an infinite number of
higher derivative counterterms and then an infinite number of
coupling constants, therefore making the theory not predic-
tive. Schematically, we can relate the loop divergences in
perturbative quantum gravity to the counterterms we have to
introduce to regularize the theory. In short

PHYSICAL REVIEW D 86, 044005 (2012)

1550-7998=2012=86(4)=044005(20) 044005-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.044005


S ¼ �
Z

ddx
ffiffiffi
g

p �
��2Rþ Xþ1

m;n

�nm

�
rnRm

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
nþ2m¼2þðd�2ÞL

�
; (4)

with ‘‘n’’ and ‘‘m’’ integer numbers, �mn coupling constants,
and 1=� the cutoff in dimensional regularization.

A first revolution in quantum gravity was introduced by
Stelle [1] with the higher derivative theory

S ¼ �
Z

d4x
ffiffiffi
g

p ½�R��R
�� � �R2 þ ��2R�: (5)

This theory is renormalizable but unfortunately contains a
physical ghost (state of negative norm), implying a viola-
tion of unitarity in the theory: probability, described by the
scattering S matrix, is no more conserved. The classical
theory is unstable, since the dynamics can drive the system
to become arbitrarily excited, and the Hamiltonian con-
straint is unbounded from below.

In this paper we generalize the Stelle theory to restore
unitarity. This work is inspired by papers about a nonlocal
extension of gauge theories introduced by Moffat, Cornish,
and their collaborators in the 1990s [2]. The authors further
extended the idea to gravity, having in mind the following
logic [3]. They considered a modification of the Feynman
rules where the coupling constants (gi for electroweak
interactions and GN for gravity) are no longer constant but
a function of the momentum p. They checked the gauge
invariance at all orders in gauge theory but only up to the
second order in gravity. For particular choices of giðpÞ or
GNðpÞ, the propagators do not show any other pole above
the standard particle content of the theory; therefore, the
theory is unitary. On the other hand, the theory is also finite
if the coupling constants go sufficiently fast to zero in the
ultraviolet limit. The problem with gravity is to find a
covariant action that self-contains the properties mentioned
before: finiteness and/or renormalizability, and unitarity.

In the second and third sections of this work, we expand
on the Tomboulis paper [4], with particular emphasis on the
unitarity and renormalizability of the theory. Afterward, we
will study the fractal properties of the spacetime at short
distance, as well as modifications of the Newtonian gravita-
tional potential and spherically symmetric/black hole solu-
tions (Secs. IV, V, and VII). In Sec. VIII we extend the
Tomboulis theory to a multidimensional spacetime. In the
last Sec. IX we suggest a possible interpretation of the non-
local nature of gravity.

The theory developed in [4] is very interesting, of great
generality, and mainly concentrated on gauge theories.
Nevertheless, in [4] Tomboulis also concludes with an
extension of the idea to gravity, which we reanalyze
through a different perspective.

The action we are going to consider is a generalization
of Stelle’s theory

S ¼ �
Z ffiffiffiffiffiffiffi�g

p fR���ðh�ÞR�� � R�ðh�ÞRþ ���2Rg;
(6)

where �ðh�Þ and �ðh�Þ are now fixed functionals of the
covariant D’Alembertian operatorh� ¼ h=�2 and � is a
mass scale in the theory.
In the remainder of this section we will summarize the

steps and motivations that led us to the generalization (6)
and will conclude with an extended version (6).
The covariant action (6) is a collection of terms, but the

initial motivation when we started this project was the
nonlocal Barvinsky action [5]

S ¼ � 1

�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

G�� 1

h
R��; (7)

where G�� ¼ R�� � Rg��=2 is the Einstein tensor. The

action (7) looks like a nonlocal action, but indeed repro-
duces the Einstein gravity at the lower order in the curva-
ture. Barvinsky has shown that the variation of (7), with
respect to the metric, gives the following equations of
motion (see later in this section for details):

R�� � 1

2
g��RþOðR2

��Þ ¼ 0: (8)

The next step is to modify (7) by introducing an extra
operator in the action between the Einstein tensor and the
Ricci tensor in order to have a well-defined theory at the
quantum level without loss of covariance.
We consider as guideline the value of the spectral di-

mension in the definition of a finite and/or renormalizable
theory of quantum gravity which, of course, is compatible
with the Einstein gravity at low energy but also manifests a
natural dimensional reduction at high energy. The dimen-
sional reduction is of primary importance in order to
have a quantum theory free of divergences in the ultra
violet regime. The Stelle theory is characterized by a
two-dimensional behavior at high energy, but this is not
sufficient to have a well-defined theory at the quantum
level because of the presence of ghosts in the propagator.
A first easy generalization of (7) is the following action:

S ¼ � 1

�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

G��Fðh=�2ÞR��; (9)

where Fðh=�2Þ is a generic function of the covariant
d’Alambertian operator which satisfies the already men-
tioned properties that we are going to summarize below.
(I) Classical limit:

lim
�!þ1

Fðh=�2Þ ¼ 1

h
; (10)

if the limit is satisfied, the equations of motion are
the Einstein equations plus corrections in R2

�� (we

will explain this in more detail later in the paper).
(II) Finiteness and/or renormalizability of the quantized

theory. Our guiding principle is to find a well-defined
quantum theory and the dimensional reduction of the
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spacetime at high energy. The Stelle theory, the
Crane-Smolin theory [6], ‘‘asimptotically safe quan-
tum gravity’’ [7], ‘‘causal dynamical triangulation’’
[8],‘‘loop quantum gravity’’ [9], and ‘‘string theory’’
already manifest this property with a high energy
spectral dimension ds ¼ 2 [10–21]. However, such
reduction is insufficient if we want a unitary theory
free from negative norm states. We can anticipate
that, for the model that we are going to introduce in
this paper, the spectral dimension is smaller than one
in the ultraviolet regime.

The general theory (9) was for the first time derived by
Barvinsky [5] in the brane-world scenery and can be
written in the following equivalent way:

S ¼ � 1

�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

G�� O
�1ðh�Þ
h

R��: (11)

In [5] the author was interested in the infrared modifications
to Einstein gravity. In the present paper, however, we are
interested to ultraviolet modifications to gravity, as stressed
in (10). The form (11) of the action is particularly useful to
highlight the classical limit and in the expression of the
equations of motion. In analogy to the properties satisfied by
the operator Fðh=�2Þ, the operator O has to satisfy the
following limit in order to reproduce the classical theory
[see the discussion related to formulas (7) and (8)]:

lim
�!þ1

Oðh=�2Þ ¼ 1: (12)

We now add some details about the Barvinsky derivation of
the equation of motion. Taking the variation of (11) with
respect to the metric, we find [5]

�2��2
Z
d4x

ffiffiffiffiffiffiffi�g
p

G��O
�1ðh�Þ
h

�gR��þOðR2
��Þ: (13)

Since the Ricci tensor variation

�gR�� ¼ 1

2
h�g�� �r��� �r���;

[5], integration by parts cancels the h operator at the
denominator and the contribution of the gauge parameters
�� vanishes in view of the Bianchi identities, r�G�� ¼ 0.

All the commutators of covariant derivatives with the
h operator in O�1ðh�Þ=h give rise to curvature square
operators. Also, the direct variation of the metric gives rise
to curvature square terms. Then the equations of motion are
very simple, if we omit the squared curvature terms:

O�1ðh�Þ
�
R���1

2
g��R

�
þOðR2

��Þ¼8�GNT��: (14)

If we truncate the theory to the linear part in the Ricci
curvature, the equations of motions simplify to

R�� � 1

2
g��R ¼ 8�GNOðh�ÞT��;

r�ðOðh�ÞT��Þ ¼ 0;
(15)

where the second relation is a consequence of the Bianchi
identities that we impose on the solution. In particular,
such relation implies that the conserved quantity has to be
S�� ¼ Oðh=�2ÞT�� in the truncation of the theory. These

equations of motion are very interesting because black hole
solutions, at least for a particular choice of the operator O,
are not singular anymore, as recently shown in [22].
At the classical level, Eq. (14) can be derived from the

action (9) or (11), but at the quantum level, the Einstein-
Hilbert action and the high derivative terms introduced by
Stelle are generated. At the quantum as well as classical
levels, it is our interest to consider here the consistent theory
mainly introduced by Tomboulis in 1997 [4]. Thus, the
complete Lagrangian we are going to carefully study is

L ¼ � ffiffiffiffiffiffiffi�g
p �

�

�2
R� �2

�
R��R

�� � 1

3
R2

�
þ �0R

2

þ
�
R��h2ð�h�ÞR�� � 1

3
Rh2ð�h�ÞR

�

� Rh0ð�h�ÞR
�
� 1

2�
F�!ð�h


�ÞF�

þ �C�M��C
�: (16)

The operatorh

� encapsulates the D’Alembertian of the flat

fixed background; whereas, F� is the gauge fixing function

with the weight functional ! and �C�, C� are the ghosts
fields (M�� will be defined in the next section). In general,

we introduce two different functions h2 and h0. Those
functions have not to be polynomial but entire functions
without poles or essential singularities. While nonlocal
kernels can lead to unitary problems, the functions h2 and
h0 do introduce an effective nonlocality. However, since h2
and h0 are transcendental entire functions, their behavior is
quite similar to polynomial functions and unitary problems
do not occur.
Let us assume for a moment that hiðxÞ ¼ pnðxÞ,

where pnðxÞ is a polynomial of degree n. In this case, as
it will be evident in the next section, the propagator takes
the following form:

1

k2ð1þ pnðk2ÞÞ
¼ c0

k2
þX

i

ci
k2 �M2

i

; (17)

where we used the factorization theorem for polynomial
and the partial fraction decomposition [4]. When multi-
plying by k2 the left and right side of (17) and considering
the ultraviolet limit, we find that at least one of the coef-
ficients ci is negative; therefore. the theory contains a ghost
in the spectrum. The conclusion is that h2 and h0 cannot be
polynomial. In this paper we will reconsider and expand
the analysis of the entire functions introduced for the first
time by Tomboulis [4], but we will also consider another
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choice of entire functions inspired by an effective approach
to the noncommutative spacetime [23–26].

We can also add to the action the Kretschmann
scalar R��	
R

��	
 but, for spacetimes topologically

equivalent to the flat space, we can use the Gauss-Bonnet
topological invariant

Z
d4x

ffiffiffiffiffiffiffi�g
p ½R��	
R

��	
 � 4R��R
�� þ R2� (18)

to rephrase the Kretschmann invariant in terms of R2 and
R��R

�� already present in the action.

II. GRAVITON PROPAGATOR

We start by considering the quadratic expansion of the
Lagrangian (16) in the graviton field fluctuation without
specifying the explicit form of the functionals h2 and h0 (if
not necessary). Following the Stelle paper, we expand
around the Minkowski background �� in power of the
graviton field h�� defined in the following way:ffiffiffiffiffiffiffi�g

p
g�� ¼ �� þ �h��: (19)

The form of the propagator depends not only on the gauge
choice but also on the definition of the gravitational fluc-
tuation [27]. In the quantum theory the gauge choice is the
familiar harmonic gauge @�h

�� ¼ 0 and the Green’s func-
tions are defined by the generating functional

ZðT��Þ ¼ N
Z Y

�<�

dh��½dC
�½d �C	�½de���ðF� � e�ÞeiðSg�ð1=2�Þ
R

d4xe�!ð�h


�
Þe�þ

R
d4x �C�F

�
��D

��
� C�þ�

R
d4xT��h

��Þ; (20)

where Sg is the gravitational action defined in (16) sub-
tracted of the gauge and ghost terms and F� ¼ F�

��h
��

with F�
�� ¼ ��

�@�. D
��
� is the operator which generates

the gauge transformations in the graviton fluctuation
h��. Given the infinitesimal coordinates transformation
x�0 ¼ x� þ ���, the graviton field transforms as follows:

�h�� ¼ D
��
� ��

¼ @��� þ @��� � ��@��
� þ �ð@���h��

þ @��
�h�� � ��@�h

�� � @��
�h��Þ: (21)

We have also introduced a weighting gauge functional [to
be precise the second term in (21)], which depends on a
weight function !ð�h�Þ with the property to fall off at
least like the entire functions h2ðk2=�2Þ, h0ðk2=�2Þ for
large momenta [1].

When the gauge symmetry is broken by the addition of
the gauge-fixing term, a residual transformation survives
for the effective action which involves the gravitational,
gauge-fixing, and ghost actions terms. This is the Becchi,
Rouet, Stora, and Tyutin (BRST) symmetry defined by the
following transformation, which is appropriate for the
gauge-fixing term,

�BRSTh
�� ¼ �D

��
� C���;

�BRSTC
� ¼ ��2@�C

�C���;

�BRST
�C� ¼ ����1!ð�h


�ÞF���;

(22)

where �� is a constant infinitesimal anticommuting pa-
rameter. The first transformation in (22) is nothing but a
gauge transformation generated by �C���, so the func-
tional Sg is BRST invariant since it is a function of h��

alone. The other two BRST invariant quantities are

�2
BRSTC

� � �BRSTð@�C
C�Þ ¼ 0;

�2
BRSTh

�� � �BRSTðD��
� C�Þ ¼ 0:

(23)

The above transformation follows from the anticommuting
nature of C�, �� and the following commutation relation
of two gauge transformations generated by �� and �,

�D��
�

�h	

D	
ð��� � ���Þ ¼ �D

��
� ð@���� � @�

���Þ:
(24)

Given the second of (23), only the antighost �C� transforms
under the BRST transformation to cancel the variation
of the gauge-fixing term. The entire effective action is
BRST invariant

�BRST

�
Sg � 1

2�

Z
d4xF�!ð�h


�ÞF�

þ
Z

d4x �C�F
�
��D

��
� C�

�
¼ 0: (25)

Let us list the mass dimension of the fields in the
gauge-fixed Lagrangian: ½h��� ¼ mass, ½C�� ¼ mass,
½ �C�� ¼ mass, ½�� ¼ mass�1.
Now we Taylor-expand the gravitational part of the

action (11) to the second order in the gravitational pertur-
bation h��ðxÞ to obtain the graviton propagator. In the
momentum space the Lagrangian, which is purely qua-
dratic in the gravitational field, reads

L ð2Þ ¼ 1

4
h��ð�kÞK��	
h

	
ðkÞ þLGF; (26)

where LGF is the gauge fixing Lagrangian at the second
order in the graviton field

L GF ¼ 1

4�
h��ð�kÞð!ðk2=�2Þk2Pð1Þ

��	
ðkÞ

þ 2!ðk2=�2Þk2gPð0�!Þ
��	
 ðkÞÞh	
ðkÞ: (27)
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The kinetic operator K��	
 is defined by

K��	
 :¼ � �h2ðzÞk2Pð2Þ
��	
ðkÞ þ 3

2
k2 �h0ðzÞPð0�!Þ

��	
 ðkÞ

þ k2

2
�h0ðzÞfPð0�sÞ

��	
ðkÞ þ
ffiffiffi
3

p ½Pð0�!sÞ
��	
 ðkÞ

þ Pð0�s!Þ
��	
 ðkÞ�g;

where the quantities are thus explained

�h2ðzÞ :¼ �� �2�
2�2zþ �2�2zh2ðzÞ;

�h0ðzÞ :¼ �� 6�0�
2�2zþ 6�2�2zh0ðzÞ:

(28)

In (28) z has to be identified with the D’Alembertian
operator in flat spacetime �h


�. We also used the gauge

F� ¼ @�h
�� (29)

and we have introduced the projectors [28]

Pð2Þ
��	
ðkÞ ¼ 1

2
ð��	��
 þ ��
��	Þ � 1

3
����	
;

Pð1Þ
��	
ðkÞ ¼ 1

2
ð��	!�
 þ ��
!�	 þ ��	!�
 þ ��
!�	Þ;

Pð0�sÞ
��	
ðkÞ ¼ 1

3
����	
; Pð0�!Þ

��	
 ðkÞ ¼ !��!	
;

Pð0�s!Þ
��	
 ¼ 1ffiffiffi

3
p ���!	
; Pð0�!sÞ

��	
 ¼ 1ffiffiffi
3

p !���	
;

(30)

where we defined the transverse and longitudinal projectors for vector quantities

��� ¼ �� �
k�k�

k2
; !�� ¼ k�k�

k2
: (31)

Using the orthogonality properties of (30), we can now invert the kinetic matrix in (26) and obtain the graviton pro-
pagator. In the following expression the graviton propagator is expressed in the momentum space according to the
quadratic action (26),

D��	
ðkÞ ¼ �i

ð2�Þ4
1

k2 þ i�

�
2Pð2Þ

��	
ðkÞ
�� �2�

2k2 þ �2k2h2ðk2=�2Þ �
4Pð0�sÞ

��	
ðkÞ
�� 6�0�

2k2 þ 6�2k2h0ðk2=�2Þ

� 2�Pð1Þ
��	
ðkÞ

!ðk2=�2Þ � �
3Pð0�sÞ

��	
ðkÞ �
ffiffiffi
3

p ½Pð0�s!Þ
��	
 ðkÞ þ Pð0�!sÞ

��	
 ðkÞ� þ Pð0�!Þ
��	
 ðkÞ

!ðk2=�2Þ
�
: (32)

Let us consider the graviton propagator in the gauge � ¼ 0.
In this particular gauge, only the first two terms in (32)
survive. We will show in the next section that only the
physical massless spin-2 pole occurs in the propagator
when the theory is renormalized at a certain scale �0.
The renormalization group invariance preserves unitarity
in the dressed physical propagator at any energy scale and
no other physical pole emerges at any other scale.

III. RENORMALIZABILITYAND UNITARITY

In this section we want to find an upper bound to the
divergences in quantum gravity; before doing this, we
closely follow the Tomboulis paper [4] to construct explic-
itly the entire functions h2ðzÞ and h0ðzÞ on which the action
(16) depends. Looking at the first two gauge invariant
terms in (32), we introduce the following notation:

�h2ðzÞ ¼ �� �2�
2�2zþ �2�2zh2ðzÞ;

�h0ðzÞ ¼ �� 6�0�
2�2zþ 6�2�2zh0ðzÞ;

(33)

where z will be identified with �h�.

Considering [4], we require the following general prop-
erties for the transcendental entire functions hi (i ¼ 2, 0):
(i) �hiðzÞ is real and positive on the real axis, it has no

zeroes on the whole complex plane jzj<þ1. This
requirement implies that there are no gauge-invariant
poles other than the transverse massless physical
graviton pole.

(ii) jhiðzÞj has the same asymptotic behavior along the
real axis at �1.

(iii) There exists �> 0 such that

lim
jzj!þ1

jhiðzÞj ! jzj�; � > 2

for the argument of z in the cones

C ¼ fzj ��< argz <þ�; ���

< argz < �þ�g; for 0<�<�=2:

This condition is necessary in order to achieve the
(super-)renormalizability of the theory. The neces-
sary asymptotic behavior is imposed not only on the
real axis, (ii) but also in conic regions surrounding
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the real axis. In an Euclidean spacetime, the condi-
tion (ii) is not strictly necessary if (iii) applies.

Given the above properties, let us study the ultraviolet
behavior of the quantum theory. From the property
(iii) in the high energy regime, the propagator in momen-
tum space goes as 1=k2�þ4 [see (32)], but also the
n-graviton interaction has the same scaling, since it can
be written in the following schematic way:

LðnÞ � hnhhhið�h�Þhh

! hnhhðh þ hm@h@Þ�hh; (34)

where h is the graviton field and hi is the entire function
defined by the properties (i)–(iii). From (34), the superficial
degree of divergence (in four spacetime dimensions) is

D¼ 4L�ð2�þ4ÞIþð2�þ4ÞV¼ 4�2�ðL�1Þ: (35)

In (35) we used again the topological relation between
vertexes V, internal lines I, and number of loops L: I ¼
V þ L� 1. Thus, if � > 3, only 1-loop divergences exist
and the theory is super-renormalizable.1 In this theory the
quantities �, �2, �0 and eventually the cosmological con-
stant are renormalized,

LRen ¼L� ffiffiffiffiffiffiffi�g
p �

�ðZ�1Þ
�2

Rþ�ðZ��1Þ

��2ðZ2�1Þ
�
R��R

���1

3
R2

�
þ�0ðZ0�1ÞR2

�
;

(36)

where all the coupling must be understood as renormalized
at an energy scale �. On the other hand, the functions hi
are not renormalized. In order to better understand this
point we can write the generic entire functions as series,
hiðzÞ ¼ Pþ1

r¼0 arz
r. For r > 1 there are no counterterms

that renormalize ar because of the superficial degree of
divergence (35). Only the coefficient a0 is renormalized
but this is just a normalization convention. The nontrivial
dependence of the entire functions hi on their argument is
preserved at quantum level.

Imposing the conditions (i)–(iii) we have the freedom to
choose the following form for the entire functions hi,

h2ðzÞ ¼ �ðeHðzÞ � 1Þ þ �2z

�2�2z
;

h0ðzÞ ¼ �ðeHðzÞ � 1Þ þ �0z

6�2�2z
;

(37)

for three general parameters �, �2 , and �0. HðzÞ is an
entire function that exhibits logarithmic asymptotic behav-
ior in the conical region C. SinceHðzÞ is an entire function,

expHðzÞ has no zeros in all complex planes for jzj<þ1,
according to the property (iii). Furthermore, the nonlocal-
ity in the action is actually a ‘‘kind’’ nonlocality, because
expHðzÞ is an exponential function and a Taylor expansion
of hiðzÞ erases the denominator h� at any energy scale.
The entire function HðzÞ which is compatible with the

property (iii), can be defined as

HðzÞ ¼
Z p�þ1ðzÞ

0

1� �ð!Þ
!

d!; (38)

where the following requirements have to be satisfied:
(a) p�þ1ðzÞ is a real polynomial of degree �þ 1 with

p�þ1ð0Þ ¼ 0,

(b) �ðzÞ is an entire and real function on the real axis
with �ð0Þ ¼ 1,

(c) j�ðzÞj ! 0 for jzj ! 1 in the conical region C
defined in (iii).

Let us assume now that the theory is renormalized at
some scale �0. If we want that the bare propagator to
possess no other gauge-invariant pole than the transverse
physical graviton pole, we have to set

� ¼ �ð�0Þ; �2

�2�2
¼ �2ð�0Þ; �0

6�2�2
¼ �0ð�0Þ:

(39)

As pointed out in [4], the relations (39) can be used to
fix the introduced scale� in terms of the Planck scale ��2.
If we fix

�ð�0Þ ¼ �;
�2ð�0Þ
�2

¼ 6�0ð�0Þ
�0

; (40)

the two mass scales are linked by the following relation:

�2 ¼ �2

�2�2ð�0Þ
: (41)

If the energy scale �0 is taken as the renormalization
point we get �h2 ¼ �h0 ¼ �ð�0Þ expHðzÞ :¼ �hðzÞ and then
only the physical massless spin-2 graviton pole occurs in
the bare propagator. In the gauge � ¼ 0 the propagator in
(32) simplifies to

D��	
ðkÞ ¼ �i

ð2�Þ4
1

k2 þ i�

�
2Pð2Þ

��	
ðkÞ � 4Pð0�sÞ
��	
ðkÞ

� �hðk2=�2Þ
�

¼ �i

ð2�Þ4
e�Hðk2=�2Þ

�ðk2 þ i�Þ ð2P
ð2Þ
��	
ðkÞ � 4Pð0�sÞ

��	
ðkÞÞ:
(42)

If we choose another renormalization scale �, then the
bare propagator acquires poles; however, these poles can-
cel in the dressed physical propagator because the shift in
the bare part is cancelled with a corresponding shift in the
self-energy. This follows easily from the renormalization
group invariance. The same procedure is not applicable to
the case h2ðzÞ ¼ h0ðzÞ ¼ 0 [1], because the theory fails
to be renormalizable when the unitarity requirement

1A local super-renormalizable quantum gravity with a large
number of metric derivatives was for the first time introduced
in [29].
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�2 ¼ �0 ¼ 0 is imposed and an infinite tower of counter-
terms has to be added to the action.

An explicit example of �hðzÞ ¼ �ð�0Þ expHðzÞ that sat-
isfies the properties (i)–(iii) can be easily constructed.
There are of course many ways to choose �ðzÞ, but we
focus here on the obvious exponential choice �ðzÞ ¼
expð�z2Þ, which satisfies property (c) in a conical region
C with � ¼ �=4. The entire function HðzÞ is the result of
the integral defined in (38):

HðzÞ ¼ 1

2
½�E þ �ð0; p2

�þ1ðzÞÞ� þ log½p�þ1ðzÞ�;
Reðp2

�þ1ðzÞÞ> 0;
(43)

where �E ¼ 0:577216 is the Euler’s constant and �ða; zÞ ¼Rþ1
z ta�1e�t dt is the incomplete gamma function. If we

choose p�þ1ðzÞ ¼ z�þ1, HðzÞ simplifies to

HðzÞ ¼ 1

2
½�E þ �ð0; z2�þ2Þ� þ logðz�þ1Þ;

Reðz2�þ2Þ> 0:
(44)

Another equivalent expression for the entire function HðzÞ
is given by the following series:

HðzÞ ¼ Xþ1

n¼1

ð�1Þn�1
p�þ1ðzÞ2n
2nn!

;

Reðp2
�þ1ðzÞÞ> 0:

(45)

For p�þ1ðzÞ ¼ z�þ1 the� angle, which defines the cone C,

is � ¼ �=ð4�þ 4Þ. According to the above expression
(45), we find the following behavior near z ¼ 0 for the
particular choice p�þ1ðzÞ ¼ z�þ1:

HðzÞ ¼ z2�þ2

2
� z4�þ4

8
þ z6�þ6

36
þOðz6�þ7Þ; (46)

where the Taylor expansion is the exact one only for
argðzÞ<�=ð2�þ 2Þ, but we already have a stronger
constraint on the cone C, argðzÞ<� ¼ �=ð4�þ 4Þ.

In particular, limz!0HðzÞ ¼ 0.2 A plot of the function
jh2ðzÞj2 is given in Fig. 1.

IV. SPECTRAL DIMENSION

In this section, we calculate the spectral dimension of the
spacetime at short distances, showing that the renormaliz-
ability, together with the unitarity of the theory, implies a
spectral dimension smaller than one. Let us summarize the
definition of spectral dimension in quantum gravity. The
definition of spectral dimension is borrowed from the theory
of diffusion processes on fractals [50] and easily adapted to
the quantum gravity context. Let us study the Brownian
motion of a test particle moving on a d-dimensional
Riemannian manifold M with a fixed smooth metric
g��ðxÞ. The probability density for the particle to diffuse

from x0 to x during the fictitious time T is the heat-kernel
Kgðx; x0;TÞ, which satisfies the heat equation

@TKgðx; x0;TÞ ¼ �eff
g Kgðx; x0;TÞ; (49)

where �eff
g denotes the effective covariant Laplacian. It is the

usual covariant Laplacian at low energy but it can undergo
strongmodification in the ultraviolet regime. In particular, we
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FIG. 1. Plot of jh2ðzÞj2 for z real and � ¼ �2 ¼ 1 (solid line). In the first plot z 2 ½�10; 10� and in the second one z 2 ½�2; 2�.
The dashed line represents the asymptotic limit for large real positive and negative values of z. The asymptotic behavior is
jh2ðzÞj2 � 1:8z6.

2We can do a simple choice of the entire function HðzÞ, which
gives rise to a condition stronger than (iii). If we takeHðzÞ ¼ z2, then

�h 2ðzÞ ¼ �h0ðzÞ ¼ �ez
2
; (47)

where again z ¼ �h=�2. Another possible choice we wish to
analyze is �h2 ¼ �h0 ¼ �ez, because of its connection with the
regular Nicolini-Spallucci black holes [30–49]. For the functions
given in (47), the upper bound in (35) can be derived as a
truncation of the exponentials and the result does not change:
we have divergences at one loop, but the theory is finite for L > 1.
The exponentials in (47) improve the convergence properties of
the theory and the propagator is

D��	
ðkÞ ¼ �i

ð2�Þ4
2e�k4=�4

�ðk2 þ i�Þ ðP
ð2Þ
��	
ðkÞ � 2Pð0Þ

��	
ðkÞÞ: (48)

For �hiðzÞ ¼ � expðzÞ, the exponential in the above propagator is
replaced with expð�k2=�2Þ.
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will be interested in the effective Laplacian at high energy
and in relation to the flat background. The heat-kernel is a
matrix element of the operator expðT�gÞ, acting on the real

Hilbert space L2ðM;
ffiffiffi
g

p
ddxÞ, between position eigenstates

Kgðx; x0;TÞ ¼ hx0j expðT�eff
g Þjxi: (50)

Its trace per unit volume,

PgðTÞ � V�1
Z

ddx
ffiffiffiffiffiffiffiffiffi
gðxÞ

q
Kgðx; x;TÞ

� V�1 Tr expðT�eff
g Þ

(51)

has the interpretation of an average return probability. Here
V � R

ddx
ffiffiffi
g

p
denotes the total volume. It is well-known that

PgðTÞ possesses an asymptotic expansion for T ! 0 of the

form PgðTÞ ¼ ð4�TÞ�d=2
P1

n¼0 AnT
n. The coefficients An

have a geometric meaning, i.e. A0 is the volume of the
manifold and, if d ¼ 2, A1 is then proportional to the Euler
characteristic. From the knowledge of the function PgðTÞ,
one can recover the dimensionality of the manifold as the
limit for small T of

ds � �2
d lnPgðTÞ
d lnT

: (52)

If we consider arbitrary fictitious times T, this quantity might
depend on the scale we are probing. Formula (52) is the
definition of fractal dimension we will use.

From the bare graviton propagator (42), we can easily
obtain the heat-kernel and then the spectral dimension. In
short, in the momentum space the graviton propagator,
omitting the tensorial structure that does not affect the
spectral dimension, reads

DðkÞ / 1

k2 �hðk2=�2Þ : (53)

We also know that the propagator (in the coordinate space)
and the heat-kernel are related by [51]

Gðx; x0Þ ¼
Z þ1

0
dTKgðx; x0;TÞ

/
Z

d4keikðx�x0Þ Z þ1

0
dTKgðk;TÞ; (54)

where Gðx; x0Þ / R
d4k exp½ikðx� x0Þ�DðkÞ is the Fourier

transform of (53). Given the propagator (53), it is easy to
invert (54) with the heat-kernel in the momentum space,

Kgðk;TÞ / exp½�k2 �hðk2=�2ÞT�; (55)

which is the solution of the heat-kernel equation (49) with
the effective operator

�eff
g ¼ �hð��g=�

2Þ�g; (56)

which goes like ð��gÞ�þ1�g at high energy. The neces-

sary trace to calculate the average return probability is
obtained from the Fourier transform of (55),

Kgðx; x0;TÞ /
Z

d4ke�k2 �hðk2=�2ÞTeikðx�x0Þ: (57)

Now we are ready to calculate the average return proba-
bility defined in (51):

PgðTÞ /
Z

d4ke�k2 �hðk2=�2ÞT: (58)

From the requirement (iii) we know that, at high energy,
hðkÞ � k2� and then �hðkÞ � k2�þ2; therefore, we can cal-
culate the integral (58), and then the spectral dimension
defined in (52) for small T will be

PgðTÞ / 1

T2=ð2þ�Þ ) ds ¼ 4

�þ 2
: (59)

The parameter � > 3 implies that the spectral dimension is
ds < 1, manifesting a fractal nature of the spacetime at
high energy.
We can calculate the spectral dimension at all energy scales

as a function of the fictitious time T using the explicit form of
the entire function Hðk2=�2Þ given in (45). Integrating nu-
merically (58), we can plot directly the spectral dimension
achieving the graphical result in Fig. 23 for � ¼ 3.
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0

1

2

3

4

5

T

d s

FIG. 2. Plot of the spectral dimension as a function of the
fictitious time T for the special case � ¼ 3 in (45). The lowest
value in the picture is ds ¼ 4=5 at high energy, but at low energy
the spectral dimension flows to ds ¼ 4.

3For the operators introduced in the previous section
expð�h=�2Þn (n ¼ 1, 2), the propagator scales as

DðkÞ / e�k2n=�2n

k2
: (60)

and the spectral dimension goes to zero at high energy. In
particular, for n ¼ 1 the heat-kernel can be calculated analytically,

Kðx; x0;TÞ ¼ e�ððx�x0Þ2=4ðTþ1=�2ÞÞ

½4�ðT þ 1=�2Þ�2 ; (61)

as it is easy to verify by going back to the propagator (60). Now,
employing Eq. (52), we find that the spectral dimension is

ds ¼ 4T

T þ 1=�2
; (62)

which clearly goes to zero for T ! 0 and approaches ds ¼ 4 for
T ! þ1.
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V. ANOTHER CLASS OF THEORIES

In this section we wish to include a more general class of
theories following Efimov’s study on nonlocal interactions
[52]. Let us consider the gauge invariant part of the propa-
gator in the following general form:

DðzÞ ¼ VðzÞ
z�2

(63)

[the notation is rather compatible with the graviton
propagator (42)].

As shown by Efimov [52], the nonlocal field theory is
‘‘unitary’’ and ‘‘microcausal’’ provided that the following
properties are satisfied by VðzÞ:

(I) VðzÞ is an entire analytic function in the complex
z plane and has a finite order of growth 1=2 < 	 <
þ1 i.e. 9b > 0, c > 0 so that

jVðzÞj < cebjzj	 : (64)

(II) When ReðzÞ ! þ1 (k2 ! þ1), VðzÞ decreases
with sufficient rapidity. We can encounter the fol-
lowing cases:
(a) VðzÞ ¼ Oð 1

jzjaÞ (a > 1),

(b) limReðzÞ!þ1jzjNjVðzÞj ¼ 0, 8N > 0.
(III) ½VðzÞ�� ¼ Vðz�Þ and Vð0Þ ¼ 1.
(IV) The function VðzÞ can be non-negative on the real

axis, i.e. VðxÞ > 0, x ¼ ReðzÞ.

Here we study the II.b. example of form factor already
hinted at in the footnote at the end of Sec. III,

VðzÞ ¼ e�zn for n 2 Nþ; 	 ¼ n <þ1: (65)

When omitting the tensorial structure, the high energy
propagator in the momentum space reads

DðkÞ ¼ e�ðk2=�2Þn=k2: (66)

The ‘-graviton interaction has the same scaling in the
momentum space, as we have similarly highlighted before,

L ðnÞ � h‘hh
expð�h

�2 Þn
h

hhþ . . . ; (67)

where ‘‘. . .’’ indicates other subleading interaction terms
coming from the covariant D’Alembertian. Setting an
upper bound to the L-loops amplitude, we find

AðLÞ <
Z
ðd4kÞL

�
e�k2n=�2n

k2

�
Iðek2n=�2n

k2ÞV

¼
Z
ðdkÞ4L

�
e�k2n=�2n

k2

�
I�V

¼
Z
ðdkÞ4L

�
e�k2n=�2n

k2

�
L�1

; (68)

where in the last step we used again the topological identity
I ¼ V þ L� 1. The L-loops amplitude is UV finite for
L > 1 and it diverges like ‘‘k4’’ for L ¼ 1. Only 1-loop
divergences survive in this theory. The theory is then super-
renormalizable, as well as unitary and microcausal [52,53].
Let us conclude by considering the modifications to the

gravitational potential due to the form factor VðzÞ. Here we
consider a static point particle source of energy tensor
T�
� ¼ diagð�	; 0; 0; 0Þ and 	 ¼ M�ð ~xÞ. Given the modi-

fied propagator DðkÞ ¼ Vðk2=�2Þ=k2 (63), the gravita-
tional potential reads

�ðxÞ ¼ ��2

8

Z
d4x0

Z d4k

ð2�Þ4 e
ikðx�x0Þ Vðk2=�2Þ

k2
M�ð ~x0Þ

¼ ��2M

8

Z d3k

ð2�Þ3 e
�i ~k� ~x Vð ~k2=�2Þ

~k2
: (69)

Defining the new variable p ¼ j ~kjr, (69) becomes an ex-
clusive function of the radial coordinate and reads

�ðrÞ ¼ �GNM

r

2

�

Z þ1

0
dpJ0ðpÞVðp2=r2�2Þ; (70)

which can be evaluated for the two classes of form factors
here examined.
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FIG. 3. Plot of the gravitational potential for � ¼ 3 andM ¼ 10 (� ¼ GN ¼ 1). In the first plot the radial coordinate is in the range
r 2 ½0; 8� (in Planck units) and in the second one it is in the range r 2 ½0; 2�.
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We first evaluate the integral (70) for the class of
theories (45) by which VðzÞ ¼ expð�HðzÞÞ. For small
values of the radial coordinate ‘‘r’’ (large values of
‘‘p’’), we get � � �2GNMðconstÞ�2�þ2r2�þ1 (where
const ¼ 3	 107� for � ¼ 1 and GN ¼ 1), which is regu-
lar for r ! 0. A plot of the exact potential for � ¼ 3 and
M ¼ 10 is given in Fig. 3.

For the second class of theories with the propagator
given in (66) and n ¼ 1, the result of the integral (69) is
particularly simple,

�ðrÞ ¼ �GNM

r
Er

�
r�

2

�
; (71)

which is regular in r ¼ 0 and �ð0Þ ¼ �GNM�=
ffiffiffiffi
�

p
. For

n > 1, the potential is again regular in r ¼ 0 and �ð0Þ /
�GNM�. We can infer that the gravitational potential is
regular in the modified renormalizable theories here
proposed.

VI. STRUCTURE OF THE INTERACTIONS

We have already shown that the theory is well-defined
and power-counting super-renormalizable. However, the
calculations are not easy beyond the second order in the
graviton expansion. In this section, we give a sketch of how
to proceed in the graviton expansion. The reason for the
plots in Fig. 4 is to give an operative definition of expHðzÞ.
One possible approximation in the interactions is the fol-
lowing replacement in the graviton expansion for the mini-
mal renormalizable theory with � ¼ 3:

eHðzÞ �
(
z4 for z * 1:3;

1þ z8

2 � z24

72 þ z32

288 for z & 1:3:
(72)

At tree level, or loop amplitudes at high energy, we can
just replace expHðzÞ with z4, at low energy with the
second expansion defined in (72) for z & 1:3 and proceed
in the calculation, gluing together the results in the two
different regimes.

Let us recall again the classical Lagrangian,

L ¼ � ffiffiffiffiffiffiffi�g
p �

�

�2
R�

�
�2 � �2

�2�2

��
R��R

�� � 1

3
R2

�

þ
�
�0 � �0

6�2�2

�
R2 � �G�� e

Hð�h�Þ � 1

�2h
R��

�
;

(73)

where expHðzÞ is defined in (72). This Lagrangian inter-
polates between the Einstein-Hilbert Lagrangian at low
energy and a high energy theory living in a spacetime of
spectral dimension ds ¼ 4=ð�þ 2Þ.
A first approximation (but also an operative way to

proceed) is to replace the interaction Lagrangian in the
UV with the following truncation:

Lint
UV � � �

�2�2

ffiffiffiffiffiffiffi�g
p

G��

��h

�2

�
�
R�� for k * �; (74)

(k is the energy scale) and the infrared Lagrangian with

Lint
IR ¼� ffiffiffiffiffiffiffi�g

p �
�

�2
R�

�
�2� �2

�2�2

��
R��R

���1

3
R2

�

þ
�
�0� �0

6�2�2

�
R2þ �

2�2�2
G��

��h

�2

�
2�þ1

R��

�
(75)

for k & �. In (74) and (75) we used the same expansion of
(72) but for a general value of �. On the other hand, the
propagator is the same in both regimes and is given in (32).
The three graviton interactions can be obtained performing
an h�� power expansion in (74) and (75). At tree level,
n-points functions will be obtain by an interpolation of the
amplitude calculated in the two different regimes k & � and
k * �, using, respectively, the Lint

IR and Lint
UV. In loop

amplitudes, we should integrate the interactions terms com-
ing fromLint

IR up to k & � and the interactions coming from
Lint

UV in the range � & k <þ1 in the same amplitude.
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FIG. 4. The first plot is the function expHðzÞ for p�þ1 ¼ p4 ¼ z4. The solid line represents the exact function; the large and small
dashed lines represent the same function for large and small value of z, respectively: z4 and expðz24=36� z16=8þ z8=2Þ. In the second
plot, the small dashed line represents a further simplification of the same function: expHðzÞ � 1þ z8=2� z24=72þ z32=288.
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VII. BLACK HOLES

In this section, we want to solve the equation of motion
coming from the renormalized theory in the case of a spheri-
cally symmetric spacetime. Let us start from the classical
Lagrangian that we rewrite rearranging the parameters in a
different way,

L ¼ � ffiffiffiffiffiffiffi�g
p �

�

�2
R�

�
�2 � �2

�2�2

��
R��R

�� � 1

3
R2

�

þ
�
�0 � �0

6�2�2

�
R2 � �G�� V

�1ð�h�Þ � 1

�2h
R��

�
;

(76)

where againVðzÞ :¼ exp�HðzÞ.4 From [5], the equations of
motion for the above theory up to square curvature terms are

G�� þOðR2
��Þ ¼ 8�GNVð�h�ÞT��: (77)

Since we are going to solve the Einstein equations neglect-
ing curvature square terms, we have to impose the conser-
vation r�ðVð�h�ÞT��Þ ¼ 0 in order for the theory to be

compatible with the Bianchi identities. For the exact equa-
tions of motion the Bianchi identities are of course satisfied
because of the diffeomorphism invariance. The condition
r�ðVð�h�ÞT��Þ ¼ 0 compensates the truncation in the

modified Einstein equations (77).
Our main purpose is to solve the field equations by

assuming a static source, which means that the four-
velocity field u� has only a non-vanishing timelike com-

ponent u� � ðu0; ~0Þ u0 ¼ ð�g00Þ�1=2. We consider the
component T0

0 of the energy-momentum tensor for a static

source of mass M in polar coordinates to be T0
0 ¼

�M�ðrÞ=4�r2 [55,56].5 The metric of our spacetime is
assumed to be given by the usual static, spherically sym-
metric Schwarzschild form

ds2 ¼ �FðrÞdt2 þ dr2

FðrÞ þ r2�2;

FðrÞ ¼ 1� 2mðrÞ
r

:
(78)

The effective energy density and pressures are defined by

Vð�h�ÞT�
� ¼ G�

�

8�GN

¼ Diagð�	e; Pe
r; P

e
?; P

e
?Þ: (79)

For later convenience, we temporarily adopt free falling
Cartesian-like coordinates [56], we calculate the effective
energy density assuming p�þ1ðzÞ ¼ z4 in HðzÞ,

	eð ~xÞ ¼ �Vð�h�ÞT0
0 ¼ MVð�h�Þ�ð ~xÞ

¼ M
Z d3k

ð2�Þ3 e
�Hðk2=�2Þei ~k� ~x

¼ 2M

ð2�Þ2r3
Z þ1

0
e�Hðp2=r2�2Þp sinðpÞdp;

(80)

where r ¼ j ~xj is the radial coordinate. Here we introduced
the Fourier transform for the Dirac delta function and we
also introduced a new dimensionless variable in the mo-
mentum space, p ¼ kr, where k is the physical momentum.
The energy density distribution defined in (80) respects
spherical symmetry. We evaluated numerically the integral
in (80) and the resulting energy density is plotted in Fig. 5.
In the low energy limit we can expand HðzÞ for
z ¼ �h=�2 
 1 and we can integrate analytically (80)

	eðrÞ ¼ 2M

ð2�Þ2r3
Z þ1

0
e�p16=ð2r16�16Þp sinðpÞdp: (81)

The result is really involved and the plot is given in Fig. 5;
however, the Taylor expansion near r � 0 gives a constant
leading order

	eðrÞ � M�3

3227=16�ð11=16Þ�ð7=8Þ�ð5=4Þ þOðr2Þ: (82)

The covariant conservation and the additional condition,
g00 ¼ �g�1

rr , completely specify the form of the effective
energy tensor Vð�h�ÞT�

� and the Einstein’s equations read

dmðrÞ
dr

¼ 4�	er2;

1

F

dF

dr
¼ 2ðmðrÞ þ 4�Pe

rr
3Þ

rðr� 2mðrÞÞ ;

dPe
r

dr
¼ � 1

2F

dF

dr
ð	e þ Pe

rÞ þ 2

r
ðPe

? � Pe
rÞ:

(83)

Because of the complicated energy density profile, it is not
easy to integrate the first Einstein equation in (83),

mðrÞ ¼ 4�
Z r

0
dr0r02	eðr0Þ: (84)

However, the energy density goes to zero at infinity, repro-
ducing the asymptotic Schwarzschild spacetime with
mðrÞ � M (constant). On the other hand, it is easy to
calculate the energy density profile close to r � 0 since

4In general, a differential equation with an infinity number of
derivative does not have a well-defined initial value problem and
it needs an infinite number of initial conditions. It is shown in
[54] that in a general framework each pole of the propagator
contributes two initial data to the final solution. This is precisely
our case because the only pole in the bare propagator is the
massless graviton and the theory has a well-defined Cauchy
problem.

5Usually, in general relativity textbooks, the Schwarzschild
solution is introduced without mentioning the presence of a
pointlike source. Once the Einstein equations are solved in the
vacuum, the integration constant is determined by matching the
solution with the Newtonian field outside a spherically symmet-
ric mass distribution. Definitely, this is not the most straightfor-
ward way to expose students to one of the most fundamental
solutions of the Einstein equations. Moreover, the presence of a
curvature singularity in the origin, where from the very begin-
ning a Þnite mass energy is squeezed into a zero-volume point, is
introduced as a shocking, unexpected result. Against this back-
ground, we show that, once quantum delocalization of the source
is accounted, all these flaws disappear. From this, it follows that
for us there is only one physical vacuum solution and this is the
Minkowski metric. In other words, the Schwarzschild metric is a
vacuum solution with the free integration M equal to zero.

SUPER-RENORMALIZABLE QUANTUM GRAVITY PHYSICAL REVIEW D 86, 044005 (2012)

044005-11



HðzÞ ! logz4 for z ! þ1 [or r ! 0 in (80)]. In this
regime mðrÞ / M�8r8 and for a more general monomial
p�þ1ðzÞ ¼ z�þ1, mðrÞ / Mð�rÞ2�þ2. The function FðrÞ in
the metric, close to r � 0, is

FðrÞ � 1� cM�2�þ2r2�þ1; (85)

where c is a dimensionless constant.
We show now that the metric has at least two horizons,

an event horizon and a Cauchy horizon. The metric inter-
polates two asymptotic flat regions, one at infinity and the
other in r ¼ 0, so that we can write the g�1

rr ¼ F compo-
nent in the following way:

FðrÞ ¼ 1� 2mfðrÞ
r

; (86)

where fðrÞ ! 1 for r ! 1, fðrÞ / r2�þ2 for r ! 0 and
fðrÞ does not depend on the mass M. The function FðrÞ
goes to ‘‘1’’ in both limits (for r ! þ1 and r ! 0) and,
sinceM is a multiplicative constant, we can always choose
the massM for a fixed value of the radial coordinate r, such

that FðrÞ becomes negative. From this, it follows that the
function FðrÞ must change sign at least twice. The second
equation in (83) is solved by Pe

r ¼ �	e and the third one
defines the transversal pressure once known the energy
density 	e. Given the lapse function FðrÞ in (85), we can
calculate the Ricci scalar and the Kretschmann invariant

R ¼ cM�2�þ2ð2�þ 2Þð2�þ 3Þr2��1;

R��	
R
��	
 ¼ 4c2M2�4�þ4ð4�4 þ 4�3 þ 5�2

þ 4�þ 2Þr4��2: (87)

By evaluating the above curvature tensors at the origin one
finds that they are finite for � > 1=2 and, in particular, for
the minimal super-renormalizable theory with � > 3.
The entire function expHðzÞ is able to tame the curvature

singularity of the Schwarzschild solution at least for the
truncation of the theory here analyzed. We think that the
higher order corrections to the Einstein equation will
not change the remarkable feature of the solutions found
in this section.
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FIG. 5. Plot of the energy density for M ¼ 10 in Planck units assuming � ¼ mP. The solid line is a plot of (80) without any
approximation; the dashed line refers to the energy density profile (81) in the limit �h=�2 
 1.
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Besides the analysis exposed above, we can integrate
numerically the modified Einstein equation of motions (77)
for the two energy densities defined, respectively, in (80)
and (81). Using the integral form of the mass function (84),
we achieve the metric component FðrÞ defined in (78). The
numerical results are plotted in Figs. 6 and 7 for different
values of the Arnowitt, Deser, and Misner (ADM) massM.
The metric function FðrÞ can intersect zero times, twice or
more than twice the horizontal axis relative to the value of
the ADM mass M. This opens the possibility to have
‘‘multihorizon black holes’’ as an exact solution of the
equation of motions (15).

VIII. MULTIDIMENSIONAL THEORY

In this section we consider the multidimensional gener-
alization of the action (16). We start from the general-
ization of the Stelle theory to get to a d-dimensionl
renormalizable one.6 In short, the Lagrangian with at
most X derivatives of the metric is

Ld-Ren¼a1Rþa2R
2þb2R

2
��þ . . .þaXR

X=2

þbXR
X=2
�� þcX . . .R

X=2
��	
þdXRh

ððX=2Þ�2ÞR . . . :

(88)

In the second line, the dots on the left imply a finite number
of extra terms with fewer derivatives of the metric tensor,
and the dots on the right indicate a finite number of
operators with the same number of derivatives but higher

powers of the curvature (OðR2hððX=2Þ�2ÞRÞ). In (88), the
power counting tells us that the maximal superficial degree
of divergence of a Feynman graph is

D ¼ d� ðd� XÞðV � IÞ: (89)

For X ¼ d the theory is renormalizable since the maximal
divergence is D ¼ d and all the infinities can be absorbed
in the operators already present in the action (88).
The general action of ‘‘derivative order N’’ can be found

combining curvature tensors and covariant derivatives of the
curvature tensor. In short the action reads as follows [29]:

S ¼ XNþ2

n¼0

�2n�
d�2n

Z
ddx

ffiffiffiffiffiffi
jgj

q
O2nð@	g��Þ þ SNL (90)

where � is a mass scale in our fundamental theory,
O2nð@	g��Þ denotes the general covariant scalar term con-

taining ‘‘2n’’derivatives of themetricg��, whileSNL is a non-

local action term thatwearegoing to set later [4].Themaximal
number of derivatives in the local part of the action is 2N þ 4.
We can classify the local terms in the following way:

N ¼ 0: S0 ¼ �þ cð0Þ0 Rþ cð0Þ1 R2 þ cð0Þ2 R��R
�� þ cð0Þ3 R��	
R

��	
;

N ¼ 1: S1 ¼ S0 þ cð1Þ1 R3
... þ cð1Þ2 rR...rR...;

N ¼ 2: S2 ¼ S0 þ S1 þ cð2Þ1 R4
... þ cð2Þ2 R...rR...rR... þ cð3Þ3 r2R...r2R...;

� � �
� � �

N ¼ N: SN ¼ XN�1;N>0

i¼0

Si þ cðNÞ
1 RNþ2

... þ cðNÞ
2 RN�1

... rR...rR... þ . . .þ cðNÞ
M R . . .hNR . . .

(91)

6Here we use the signature ðþ � . . .�Þ. The curvature tensor is defined by R�
��� ¼ �@��

�
�� þ . . . , the Ricci tensor by R�� ¼ R�

���,
and the curvature scalar by R ¼ g��R�� and g�� is the metric tensor.
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In the local theory (88), renormalizability requires X ¼ d,
so that the relation between the spacetime dimension and
the derivative order is 2N þ 4 ¼ d. To avoid fractional
powers of the D’Alembertian operator, we take 2N þ 4 ¼
dodd þ 1 in odd dimensions and 2N þ 4 ¼ deven in even
dimensions. Given the general structure (90), for N > 0
and n > 2, contributions to the propagator come only from
the following operators:

R��h
n�2R��; Rhn�2R; R����h

n�2R����: (92)

However, using the Bianchi and Ricci identities one can
reduce the terms listed above from three to two (with total
2n derivatives),

R����h
n�2R����

¼ �r�R����h
n�3r�R���� þOðR3Þ þ r��

�

¼ 4R��h
n�2R�� � Rhn�2RþOðR3Þ þ r��

0�; (93)

where r��
� and r��

0� are total divergence terms.
Applying (93) to (92), for n > 2 we discard the third
term and we keep the first two.

We now have to define the ‘‘non-locl’’ action term in (90).
As we are going to show, both super-renormalizability and
unitarity require the following two nonlocal operators:

R��h2ð�h�ÞR��; Rh0ð�h�ÞR: (94)

The full action, focusing mainly on the nonlocal terms and
the quadratic part in the curvature, reads

S ¼
Z

ddx
ffiffiffiffiffiffi
jgj

q �
2��2Rþ ��þ XN

n¼0

ðanRð�h�ÞnR

þ bnR��ð�h�ÞnR��Þ þ Rh0ð�h�ÞR
þ R��h2ð�h�ÞR��

þ . . . . . . . . .OðR3Þ . . . . . . . . .þ RNþ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
finite number of terms

�
: (95)

The last line is a collection of local terms that are
renormalized at quantum level. In the action, the couplings
and the nonlocal functions have the following dimensions:
½an� ¼ ½bn� ¼ Md�4, ½�2� ¼ M2�d, ½ ��� ¼ Md, ½h2� ¼
½h0� ¼ Md�4.

At this point, we are ready to expand the Lagrangian at
the second order in the graviton fluctuation. Splitting the
spacetime metric in the flat Minkowski background and the
fluctuation h�� defined by g�� ¼ �� þ �h��, we get [57]

Llin¼�1

2
½h��hh��þA2

�þðA���;�Þ2�

þ1

4

�
�2

2
hh���ðhÞhh����2

2
A�
;��ðhÞA�

;�

��2

2
F���ðhÞF��þ�2

2
ðA�

;��h�Þ�ðhÞðA�
;��h�Þ

þ2�2ðA�
;��h�Þ�ðhÞðA�

;��h�Þ
�
; (96)

where A� ¼ h��
;�, � ¼ h (the trace of h��), F�� ¼

A�;� � A�;� and the functionals of the D’Alembertian op-

erator �ðhÞ, �ðhÞ are defined by

�ðhÞ=2 :¼ XN
n¼0

anð�h�Þn þ h0ð�h�Þ;

�ðhÞ=2 :¼ XN
n¼0

bnð�h�Þn þ h2ð�h�Þ:
(97)

The d’Alembertian operator in (96) and (97) must be con-
ceived on the flat spacetime. The linearized Lagrangian (96)
is invariant under infinitesimal coordinate transformations
x� ! x� þ ���ðxÞ, where ��ðxÞ is an infinitesimal vector

field of dimensions ½�ðxÞ� ¼ Mðd�4Þ=2. Under this transfor-
mation, the graviton field turns into

h�� ! h�� � �ðxÞ�;� � �ðxÞ�;�: (98)

The presence of the local gauge simmetry (98) calls for the
addition of a gauge-fixing term to the linearized Lagrangian
(96). Hence, we choose the following fairly general gauge-
fixing operator:

LGF ¼ �1ðA� � ��;�Þ!1ð�h�ÞðA� � ��;�Þ

þ �2�
2

8
ðA�

;� � �h�Þ�ðhÞ!2ð�h�ÞðA�
;� � �h�Þ

þ �3�
2

8
F���ðhÞ!3ð�h�ÞF��; (99)

where !ið�h�Þ are three weight functionals [1]. In the
harmonic gauge � ¼ �2 ¼ �3 ¼ 0 and �1 ¼ 1=�. The lin-
earized gauge-fixed Lagrangian reads

L lin þLGF ¼ 1

2
h��O��;	
h

	
; (100)

where the operator O is made of two terms, one coming
from the linearized Lagrangian (96) and the other from
the gauge-fixing term (99). Inverting the operator O [57],
we find the two point function in the harmonic gauge
(@�h�� ¼ 0),
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O�1ðkÞ ¼ �ð2Pð1Þ þ �Pð0ÞÞ
2k2!1ðk2=�2Þ þ

Pð2Þ

k2
�
1þ k2�2�ðk2Þ

4

�

� Pð0Þ

2k2
�
d�2
2 � k2 d�ðk2Þ�2=4þðd�1Þ�ðk2Þ�2

2

� : (101)

The tensorial indexes for the operator O�1 and the projec-

tors Pð0Þ, Pð2Þ, Pð1Þ, �Pð0Þ have been omitted and the functions
�ðk2Þ and �ðk2Þ are achieved by replacing�h ! k2 in the
definitions (97). The projectors are defined by [28,57]

Pð2Þ
��	
ðkÞ¼1

2
ð��	��
þ��
��	Þ� 1

d�1
����	
;

Pð1Þ
��	
ðkÞ¼1

2
ð��	!�
þ��
!�	þ��	!�
þ��
!�	Þ;

Pð0Þ
��	
ðkÞ¼ 1

d�1
����	
;

�Pð0Þ
��	
ðkÞ¼!��!	
;

��Pð0Þ
��	
¼���!	
þ!���	
;

���¼���
k�k�

k2
;

!��¼
k�k�

k2
:

(102)

Looking at the last two gauge invariant terms in
(101), we deem it convenient to introduce the following
definitions:

�h2ðzÞ¼1þ�2�2

2
z
XN
n¼0

bnz
nþ�2�2

2
zh2ðzÞ;

�
d�2

2

�
�h0ðzÞ¼d�2

2
��2�2d

4
z

�XN
n¼0

bnz
nþh2ðzÞ

�

��2�2ðd�1Þz
�XN
n¼0

anz
nþh0ðzÞ

�
; (103)

where again z ¼ �h�. Through the above definitions
(103), the gauge invariant part of the propagator greatly
simplifies to

O�1ðkÞ�¼0 ¼ 1

k2

�
Pð2Þ
�h2

� Pð0Þ

ðd� 2Þ �h0
�
: (104)

As pointed out in Sec. III, we again demand that the
general properties (i) and (ii) be met for the transcendental
entire functions hiðzÞ (i ¼ 0, 2) and/or �hiðzÞ (i ¼ 0, 2),
while we replace the requirement (iii) with the following
generalization in d dimensions:

(iii) ! (iii) There exists �> 0 such that

lim
jzj!þ1

jhiðzÞj ! jzj�þN;

� > d=2 for d ¼ deven;

� > ðd� 1Þ=2 for d ¼ dodd; (105)

for the argument of z in the following conical regions:

C ¼ fzj ��< argz <þ�; ���< argz < �þ�g;
for 0<�<�=2:

Let us then examine the ultraviolet behavior of the quan-
tum theory. According the property (iii) in the high energy
regime, the propagator in the momentum space goes as

O�1ðkÞ � 1=k2�þ2Nþ4 for large k2

[see (95), (103), and (104)]. However, the n-graviton in-
teraction has the same leading scaling of the kinetic term,
since it can be written in the following schematic way:

LðnÞ � hnhhhið�h�Þhh

! hnhhðh þ hm@h@Þ�þNhh; (106)

where the indexes for the graviton fluctuation h�� are

omitted and hið�h�Þ is the entire function defined by
the properties (i)–(iii). From (106), the superficial degree
of divergence in a spacetime of ‘‘even’’ dimension is

Deven ¼ deven: (107)

On the other hand, in a spacetime of ‘‘odd’’ dimension the
upper limit to the degree of divergence is

Dodd ¼ dodd � ð2�þ 1ÞðL� 1Þ: (108)

In (107) and (108) we used again the topological relation
between vertexesV, internal lines I, and number of loopsL:
I ¼ V þ L� 1. Thus, if � > deven=2 or � > ðdodd � 1Þ=2,
only 1-loop divergences exist and the theory is super-
renormalizable. Only a finite number of constants are re-
normalized in the action (95), i.e. �, ��, an, bn and the finite
number of couplings that multiply the operators in the last
line. The renormalized action reads

S ¼
Z

ddx
ffiffiffiffiffiffi
jgj

q �
2Z��

�2Rþ Z ��
��

þ XN
n¼0

ðZananRð�h�ÞnRþ ZbnbnR��ð�h�ÞnR��Þ

þ Rh0ð�h�ÞRþ R��h2ð�h�ÞR��

þ Z
cð1Þ
1

cð1Þ1 R3 þ . . . . . . . . .þ Z
cðNÞ
1

cðNÞ
1 RNþ2

�
: (109)

All the couplings in (109) must be understood as renor-
malized at an energy scale �. Contrarily, the functions
hiðzÞ are not renormalized. Like in d ¼ 4, we can write
the entire functions as a series, i.e. hiðzÞ ¼ Pþ1

r¼0 arz
r.
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Because of the superficial degrees of divergence (107) and
(108), there are no counterterms that renormalize ar for
r > N. As a matter of fact, the couplings in the second line
of (109) already incorporate the renormalizations of the
coefficients ar for r < N. Therefore, the nontrivial depen-
dence of the entire functions hiðzÞ on their argument is
preserved at quantum level.

Imposing the conditions (i)–(iii) we have the freedom to
choose the following form for the functions hi:

h2ðzÞ ¼
VðzÞ�1 � 1� �2�2

2 z
P

N
n¼0

~bnz
n

�2�2

2 z
;

h0ðzÞ ¼ �VðzÞ�1 � 1þ �2�2z
P

N
n¼0 ~anz

n

�2�2z
;

(110)

for general parameters ~an and ~bn. Here VðzÞ�1 ¼ eHðzÞ and
HðzÞ is an entire function that exhibits logarithmic asymp-
totic behavior in the conical region C. The form factor
expHðzÞ has no zeros in the entire complex plane for
jzj<þ1. Furthermore, the nonlocality in the action is
actually a ‘‘soft’’ form of nonlocality, because a Taylor
expansion of hiðzÞ eliminates the denominator h� at any
energy scale.

The entire function HðzÞ, which is compatible with the
property (iii), can be defined as

HðzÞ ¼
Z p�þNþ1ðzÞ

0

1� �ð!Þ
!

d!; (111)

where p�þNþ1ðzÞ is a real polynomial of degree �þ N þ 1

with p�þNþ1ð0Þ ¼ 0, and �ðzÞ must satisfy the require-

ments (b) and (c) of Sec. III.
Let us investigate the unitarity of the theory. We assume

that the theory is renormalized at some scale �0. If we set

~a n ¼ anð�0Þ; ~bn ¼ bnð�0Þ; (112)

the bare propagator does not possess other gauge-
invariant pole than the physical graviton one. Since the
energy scale �0 is taken as the renormalization point, we
get �h2 ¼ �h0 ¼ VðzÞ�1 ¼ expHðzÞ. Thus, only the physical
massless spin-2 graviton pole occurs in the bare propagator
and (104) reads

O�1ðkÞ�¼0 ¼ Vðk2=�2Þ
k2

�
Pð2Þ � Pð0Þ

d� 2

�
: (113)

The momentum or energy scale at which the relation
between the quantity computed and the quantity measured
is identified is called the subtraction point and is indicated
usually by ‘‘�’’ [58]. The subtraction point is arbitrary and
unphysical, so the final answers do not have to depend on
the subtraction scale�. Therefore, the derivative d=d�2 of
physical quantities has to be zero. In our case, if we choose
another renormalization scale �, then the bare propagator
acquires poles. However, these poles cancel in the dressed
physical propagator because the shift in the bare part is

cancelled by a corresponding shift in the self energy. The
renormalized action (109) will produce finite Green’s func-
tions to whatever order in the coupling constants we have
renormalized the theory to. For example, the 2-point
Green’s function at the first order in the couplings an, bn
can be schematically written as

G�1
2R ¼ Vðk2=�2Þðk2 � �Rðk2ÞÞ; (114)

where the renormalization prescription requires that �R

satisfies (on shell)

�Rð0Þ ¼ 0 and
@�R

@k2

								k2¼0
¼ 0: (115)

We did not consider the tensorial structure and the longi-
tudinal components because they project away when at-
tached to a conserved energy tensor.
The subtraction point is arbitrary and therefore we can

take the renormalization prescription off shell to k2 ¼ �2.
The couplings we wish to renormalize must be dependent
on the chosen subtraction point, anð�Þ and bnð�Þ, in such a
way that the experimentally measured couplings do not
vary on shell. The renormalized Green’s function G�1

2R at
�2 must produce the same Green function when expressed
in terms of bare quantities. Consequently, the scalings Zan

and Zbn must also depend on �2. The Green’s function

written in terms of bare quantities can not depend on �2,
but since�2 is arbitrary, the renormalized Green’s function
must not either. This fact, @�2ðG�1

2R Þ ¼ 0 is well known as

the renormalization group invariance.
An explicit example of HðzÞ can be achieved by replac-

ing p�þ1 with p�þNþ1 in (43) as we did in Sec. III. Another

possible choice is HðzÞ ¼ zn as in Sec. V.
The same results obtained in Secs. Vand VII concerning

the gravitational potential, spherically symmetric solu-
tions, and black holes also work in d dimensions.

IX. WHY NONLOCALITY?

In this section we suggest two possible interpretations of
the nonlocal nature of gravity at short distances: one is
linked to the non-ommutativity of the spacetime coodi-
nates, the other to the nonlocal nature of string field theory.

A. Noncommutativity

In [26] the authors find an elegant reason for the
nonlocal nature of the action in this article as well as a
way to fix uniquely the entire function HðzÞ. The
propagator of the theory, for a particular choice of the
entire function HðzÞ, has exactly the same form of
the propagator we obtain starting from a theory of gravity
endowed with �-Poincaré quantum groups of symmetry.
The right choice is much easier than we could think, i.e.
HðzÞ ¼ z. Any other entire function gives of course a
well-defined super-renormalizable theory of gravity, but
is not compatible with the requirement of having a
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nontrivial Hopf-algebralike symmetry regulating the
super-renormalizability of the theory. In particular, the
Hopf-algebra underlying the super-renormalizable model
discussed in [26] is a quantum group associated to an
associative noncommutative spacetime. More specifically,
this is the only quantum group of (spacetime) symmetry
that can be accounted within the model presented in this
paper, if we do not relax the associativity of the spacetime
coordinates. What emerges is therefore a new symmetric
structure underlying the theory.

Following the Smailagic and Spallucci work [25] we
calculate the two point function in the noncommutative
theory. Let us consider the noncommutative d-dimensional
Euclidean spacetime, in which the coordinates satisfied the
following algebra:

½x�;x�� ¼ i�̂��; �; � ¼ 1; . . . ; d: (116)

Assuming Lorentz covariance we can bring the antisym-
metric matrix ��� in a block-diagonal form by a suitable
rotation [25],

�̂ ¼ diagð�̂1; �̂2; . . . ; �̂d=2Þ; �̂i � �i�ij; i; j ¼ 1; 2:

(117)

Moreover, if we want to maintain Lorentz invariance, all
the �i must be equal: �i :¼ � :¼ 4=�2, 8i. The relation
(116) prompts us to consider the following ‘‘creation’’ and
‘‘annihilation’’ operators in even dimension,

zi � 1ffiffiffi
2

p ðx1i þ ix2iÞ; zyi � 1ffiffiffi
2

p ðx1i � ix2iÞ; (118)

satisfying the relation ½zi; zyj � ¼ �ij�, with i ¼ 1; . . . ; d=2,

while the d coordinates are represented by d=2 two-
vectors ~xi � ðx1i;x2iÞ. The advantage to use the coordi-
nates (118) instead of ~xi lies in the possibility to have
coherent eigenstates

j�i � Y
i

exp

�
�2

4
ð��

i zi � �iz
y
i Þ
�
j0i;

zij�i ¼ �ij�i; h�jzyi ¼ h�j��
i ;

(119)

where j0i is the vacuum state annihilated by the zi
operators, with �i as their eigenvalues. The mean coordi-
nates are

h�jx1ij�i ¼
ffiffiffi
2

p
Re�i; h�jx2ij�i ¼

ffiffiffi
2

p
Im�i: (120)

The quantum graviton field on the non commutative plane
is defined as follows:

h��ðxÞ¼
Z dd�1p

2p0

½aðpÞy��h�jei
P

d=2
1

~pi� ~xi j�iþH:c:�; (121)

where aðpÞ�� and aðpÞy�� are the lowering and rising

operators acting on the graviton Fock states. We now
proceed to evaluate the expectation value in (121),

h�jei
P

d=2
1

~pi� ~xi j�i ¼ e
�Pd=2

1

~p2
i

�2þi
P

d=2
1

~pi� ~xi ; (122)

where ~xi ¼ ðRe�i; Im�iÞ, i ¼ 1; . . . ; d=2. In (121) the
expectation value between coherent states achieves the
inverse Weyl map,7 also known as the Wigner map,

��1ð� � �Þ ¼ hzj � � � jzi: (124)

Given the field expansion (121), the four-dimensional
two point function turns out to be

h0jTðh��ðxÞh	
ðx0Þj0i
� h0jTðh�jh��ðxÞj�ih�0jh	
ðxÞj�0iÞj0i

/
Z

d4p
e�

P
d
1
ðp2

i =�
2Þei

P
d
1
ðxi�x0iÞpi

p2
	 TS; (125)

where TS means tensorial structure. This propagator co-
incides exactly with (66) of section V for n ¼ 1.
Above we have proved the coincidence of the two point

functions in the noncommutative theory and in the super-
renormalizable gravity. However, we can only validate
such coincidence if applicable to all the n-point functions.
This is something we will try to develop in the next future.

B. String field theory

Another possible interpretation could be the following.
We can identify some similarities between the class of
super-renormalizable theories with HðzÞ ¼ z and ‘‘string
field theory.’’ Using the results found at the end of the
1980s [59–66] and several more recent ideas [67,68], the
string field theory has the following schematic structure for
the spacetime bosonic as well as fermionic fields:

S ¼
Z

ddx

�
1

2
�iKijðhÞ�j � vijk

~�i
~�j

~�k

�
;

where: ~�i � e�
0ððlnð3

ffiffi
3

p
4 ÞÞ=2Þh�i :¼ e~�0h�i:

(126)

The kinetic operator is KijðhÞ � h�ij for open, as well as

closed, bosonic strings, and�0 is the inverse mass square in
string theory. By a field redefinition [67], the action (126)
simplifies to

SSFT ¼
Z

ddx

�
1

2
�ihe�~�0h�i � vijk�i�j�k

�
: (127)

We can immediately observe that the kinetic term
in (127) has the same scaling of the linearized theory
studied in this paper for the exponential form factor

7Let us briefly recall here that the Weyl map � associates an
auxiliary commutative function fðcÞðxÞ to any function of the
operators x, fðxÞ. The easiest way of implementing this map is to
consider the Fourier transform ~fðpÞ of fðxÞ and then apply the
Weyl map on the Fourier modes, namely,

fðxÞ ¼ �ðfðcÞðxÞÞ � �

�Z
ddp~fðpÞeipx

�
: (123)
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V2ðzÞ ¼ expð�zÞ (n ¼ 1). If we expand (95) in powers of
the graviton field neglecting the exponential factor in the
interaction, the three-graviton vertex is quite similar to the
one in (127).However, thegeneral covariance in (95) implies
the same leading scaling in the kinetic term as well as in the
interactionvertexes andwe are unable to get a finite theory at
any order in the loop expansion. As we already pointed out,
one possible loophole to this puzzle could be a supersym-
metric extension of the action in (95). About the finiteness of
string theory, we are likely to endorse the following ideas.
Due to the presence of the exponential factor, the effective
string theory in (127) manifests an asymmetry between the
kinetic and the interaction terms. Contrary to our covariant
action (95), such an asymmetrical state implies that the string
theory does not manifest any divergence. The well-known
‘‘softness’’ of the high energy tree-level amplitudes also
descends from the same asymmetry. However, the compari-
son here proposed can only be qualitative and partial
because, unlike the effective string field theory, ours is a
general covariant theory. Indeed, general coordinate invari-
ance in string theory can only be achieved through cancella-
tions among contributions from infinitely many interactions
terms [62]. However, we do not exclude that a supersym-
metric extension of our theory (95) can be framedwithin ‘‘M
theory’’ as one of its possible vacua.

X. CONCLUSIONS

In this paper we studied a new perturbative quantum
gravity theory with a ‘‘gentle nonlocal character.’’ This
theory was introduced by Tomboulis in 1997 [4]. Here
we derived the same theory from a different ‘‘semiclassi-
cal’’ point of view as extensively explained in Sec. I. We
recalled the Tomboulis theory in Sec. II and we expanded
the super-renormalizability analysis in Sec. III. We also
studied another class of super-renormalizable theories in
Sec. V. In Sec. IV we provided an interpretation of the good
ultraviolet behavior as an effective dimensional reduction of
the spacetime, and in Sec. VII we studied spherically sym-
metric/black hole solutions. In Sec. VIII we generalized the
theory to a multidimensional spacetime. The theory is super-
renormalizable and unitary regardless of the spacetime dimen-
sion. In the last Sec. IX we suggested a possible interpretation
of the nonlocal nature of gravity at short distance.

In brief, the properties required for the theory expanded
and studied in this paper were the following:

(i) the theory should reproduce general relativity in the
infrared limit;

(ii) black hole solutions of the classical theory have to
be singularity free;

(iii) the theory should be perturbatively renormalizable
or super-renormalizable or finite;

(iv) the spectral dimension should decrease at short
distances;

(v) the theory has to be unitary with no other degrees of
freedom than the graviton.

All the above properties are satisfied by our quite re-
strictive class of actions, which differ uniquely for the
choice of an entire function HðzÞ. This class of theories
can not be renormalizable or finite but such theories turn
out to be super-renormalizable, since only one loop
Feynman diagrams diverge, implying a renormalization
of just three coupling constants. The propagator has only
one pole in the graviton mass shell. The minimal super-
renormalizable theory we built in d ¼ 4 has spectral di-
mension ds ¼ 4=5 in the ultraviolet regime and is four-
dimensional in the infrared limit.
We have also considered a truncation of the classical

theory, showing that spherically symmetric black hole solu-
tions are singularity-free. As for the solutions in [30–49], we
have black holes only if the mass is bigger than the Planck
mass (if we assume the fundamental scale in the theory to be
the Planck mass). The new black hole solutions are more
properly ‘‘multihorizon black holes,’’ showing a very reach
spacetime structure depending on the value of the ADM
mass.
Future work will focus on the following subjects:
(i) the cosmological singularity problem at the classical

or semiclassical level. Some preliminary work has
been already done in [69];

(ii) the high curvature corrections to the black hole
solutions presented in this paper.

Future work will also take the following directions:
(i) we will consider more in detail the connection be-

tween nonlocality and the fractality of the spacetime
(see, in particular, the recent work by Calcagni in
[10]);

(ii) we will reconsider super-renormalizable gauge theo-
ries, with particular attention to the grand unification
of the fundamental interactions with or without grav-
ity. It this work, we will try to put together ideas
coming from [4] and the more recent paper [70].

Possible simplifications of the theory are
(i) a scalar field theory with the same nonlocal

structure;
(ii) a simplification of the metric to the conformal form

g�� ¼ �ðxÞ�� and therefore a quantization of the

conformal factor �ðxÞ.
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