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We analyze the properties of the tilted Szekeres spacetime, i.e. the version of such spacetime as seen by

a congruence of observers with respect to which the fluid is moving. The imperfect fluid and the

kinematical variables associated to the four-velocity of the fluid assigned by tilted observers are studied in

detail. As it happens for the case of the Lemaitre-Tolman-Bondi spacetime, the fluid evolves nonreversibly

(with nonvanishing entropy production) and is nongeodesic. However, unlike the latter case, the tilted

observer detects vorticity in the congruence of the fluid world lines. Also, as for the nontilted congruence,

the magnetic part of the Weyl tensor vanishes, reinforcing the nonradiative character of this kind of

spacetime. Possible physical implications of these results are discussed.
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I. INTRODUCTION

In any physical theory, part of the description of a specific
scenario is tightly related to the congruence of observers
carrying out the study [1]. In the case of general relativity,
the existing arbitrariness in the choice of the four-velocity in
terms of which the energy-momentum tensor is split leads to
a variety of physical interpretations for the source of a given
spacetime (see [2–17], and references therein).

As it has been shown in the references above, when the
two possible interpretations of a given spacetime correspond
to two congruences of observers related by a local Lorentz
boost, both the general properties of the source and the
kinematical properties of the congruencewould be different.

Particularly enlightening is the case of tilted Lemaitre-
Tolman-Bondi (LTB) spacetime whose fluid source is non-
geodesic and evolves nonreversibly, unlike the nontilted
version (see [17] for details).

An important (though obvious) remark is in order at
this point: we are assuming general relativity to be valid.
This implies that special relativity is always valid at the
local level. Therefore we can always perform a Lorentz
boost (locally), thereby ensuring the existence of tilted
observers.

In this work we endeavour to study in detail tilted
Szekeres spacetimes [18,19]. The motivations to undertake
such a task are many.

Szekeres dust models have no Killing vectors and
therefore represent an interesting generalization of LTB
spacetimes [20,21]. They have been extensively used as

cosmological models (see [22,23], and references therein)
and in the discussion of the gravitational arrow of time [24].
Physical and topological properties of Szekeres space-

times, as well as the problem of structure formation and
other cosmological related issues, have been considered in
[25–34].
A renewed interest in Szekeres spacetimes has appeared,

in relation with the potential role of density inhomogeneity
to explain the observed cosmic acceleration, without in-
voking dark energy (see [35–42], and references therein).
As we shall see below, a heat flux term will appear in the

energy-momentum tensor of the tilted congruence. As it
happens for LTB [17], such a heat flux vector would be
necessarily associated to a ‘‘truly’’ (i.e. entropy producing)
dissipative phenomenon, even in the absence of bulk and
shear viscosity.
We shall see that as in the nontilted version, the magnetic

part of the Weyl tensor vanishes, implying that the super-
Poynting vector associated to the Bel-Robinson tensor van-
ishes, too, which suggests the absence of gravitational
radiation. Thus, this confirms the nonradiative character of
the Szekeres spacetime already stressed in [20].
Besides the dissipative (irreversible) evolution of the

tilted version, and the nongeodesic character of the fluid,
another important difference with respect to the nontilted
version appears; namely, the vorticity of the fluid lines
defined by the tilted four-velocity is now nonvanishing.
As it can be expected, this vorticity has important conse-
quences on the physical interpretation of the model. We
shall comment on this issue in the last section.

II. SZEKERES SPACETIME

Before considering the tilted version of Szekeres space-
time, we find it useful to provide a very brief review of this
spacetime in its standard, nontilted, version.
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Since the publication of the first two original papers by
Szekeres [18,19], this metric has been presented in many
different forms. Here we shall closely follow (with slight
changes in notation) the formulation given in [26].

There are two classes of Szekeres spacetimes, which
in Szekeres notation correspond to �0 � 0 and �0 ¼ 0;
here we shall deal only with the first class, denoted as the
LT-type Szekeres metric in [26].

Thus, the line element is given by

ds2 ¼ �dt2 þ ðR0E� RE0Þ2
E2ð�þ fÞ dr2 þ R2

E2
ðdp2 þ dq2Þ; (1)

where a prime denotes a derivative with respect to
r, R ¼ Rðt; rÞ, � ¼ �1, 0, and f ¼ fðrÞ>�� is an arbi-
trary function of r. We number the coordinates x0 ¼ t,
x1 ¼ r, x2 ¼ p, x3 ¼ q.

The function E is given by

Eðr; p; qÞ ¼ S

2

��
p� P

S

�
2 þ

�
q�Q

S

�
2 þ �

�
; (2)

where S ¼ SðrÞ, P ¼ PðrÞ, and Q ¼ QðrÞ are arbitrary
functions.

From Einstein equations, it follows that R satisfies the
equation

_R 2 ¼ 2M

R
þ f; (3)

where a dot denotes a derivative with respect to t, and
M ¼ MðrÞ is an arbitrary function. From the above equa-
tion, it follows that

€R ¼ �M

R2
; (4)

from where the meaning of M as an effective gravitational
mass becomes evident.

As in the LTB case, there are three subfamilies of
solutions depending on the value of f, namely, hyperbolic
(f > 0), parabolic (f ¼ 0), and elliptic (f < 0).

On the other hand, the parameter � determines how the
two-surfaces, r ¼ constant, foliate the three-dimensional
spatial sections of constant t. These may be spheres
(� ¼ þ1), planes (� ¼ 0), or quasispheres (� ¼ �1).

For the ‘‘spherical’’ case � ¼ þ1, we have the following
relationship between coordinates q, p and ‘‘spherical
angle’’ coordinates ð�;�Þ:

ðp� PÞ
S

¼ cot
�

2
cos�; (5)

ðq�QÞ
S

¼ cot
�

2
sin�: (6)

The LTB spacetime is recovered in the caseE0 ¼ 0, �¼þ1.
For the nontilted (comoving) congruence, the source of

Szekeres spacetime is pure dust; therefore the energy-
momentum tensor is

T�� ¼ ��ðt; r; p; qÞv�v�; (7)

where the vector v� (v�v� ¼ �1) is just

v� ¼ ð1; 0; 0; 0Þ; (8)

and �� denotes the energy-momentum density as measured
by comoving observers. Then, from the ðt; tÞ component of
the Einstein equations, we have

8� �� ¼ 2ðM0 � 3ME0=EÞ
R2ðR0 � RE0=EÞ : (9)

The two nonvanishing kinematical variables are the
expansion scalar

�� ¼ v
�
;� ¼ _R0E� _RE0

R0E� RE0 þ 2
_R

R
(10)

and the shear tensor, which can be written as

���� ¼ �

�
n�n� � 1

3
h��

�
; (11)

where h�� ¼ g�� þ v�v�, ���� ���� ¼ 2
3�

2, and

n� ¼
�
0;
Eð�þ fÞ1=2
R0E� RE0 ; 0; 0

�
(12)

(n�n� ¼ 1), with

� ¼ E

R

�
R _R0 � _RR0

R0E� RE0

�
: (13)

Next, the electric part of the Weyl tensor

E�� ¼ C�	�
v
	v
 (14)

can be written as

E�� ¼ E
�
n�n� � 1

3
h��

�
; (15)

where

E ¼ 3
€R

R
þ 4� ��: (16)

The magnetic parts of the Weyl and the Riemann tensors
vanish identically.
The fact that both the shear tensor and the electric part of

the Weyl tensor have only one nonvanishing independent
component, as well as the vanishing of the magnetic part of
the Weyl tensor, illustrates how close this spacetime is to
the spherical symmetry. This similarity is further rein-
forced by the fact that the specific forms (11) and (15)
are typical of spherical symmetry. Thus the qualification of
‘‘quasispherical’’ assigned by Szekeres himself to his so-
lution [18] looks well justified, in spite of the fact that it has
no Killing vectors.
We shall next consider the tilted version of Szekeres

spacetime.
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III. TILTED SZEKERES SPACETIME

In order to obtain a tilted congruence, let us perform a
Lorentz boost from the locally comoving Minkowskian
frame (associated to v�) to the locally Minkowskian frame
with respect to which a fluid element has ‘‘radial’’ (in the r
direction) velocity !. For simplicity we shall consider a
boost only in the ‘‘radial’’ direction and ! to be a function
of t and r alone.

The corresponding tilted congruence is characterized by
the four-velocity vector field

V� ¼
�

1

ð1�!2Þ1=2 ;
Eð�þ fÞ1=2
R0E� RE0

!

ð1�!2Þ1=2 ; 0; 0
�
: (17)

For the tilted observer, the matter distribution described
by (7) will be that given by

T�� ¼ �V�V� þ Ph�� þ��� þ q�V� þ V�q�; (18)

where � is the energy density, P the isotropic pressure, q�

the heat flux vector, and ��� the anisotropic pressure

tensor, that this observer measures (of course the projector
tensor h�� is now defined in terms of V� instead of v�).

The above is the canonical, algebraic decomposition of a
second order symmetric tensor with respect to a unit time-
like vector, which has the above indicated standard physi-
cal meaning when T�� is the energy-momentum tensor

describing some energy distribution, and V� the four-velocity
assigned by a certain observer.

It is immediate to see that

� ¼ T��V
�V�; q� ¼ ��V� � T��V

�; (19)

P ¼ 1

3
h��T��; ��� ¼ h

�
�h��ðT�� � Ph��Þ: (20)

A quick calculation taking into account the above renders

� ¼ ��

1�!2
; P ¼ ��!2

3ð1�!2Þ ; (21)

q� ¼ qN�; q ¼ � ��!

1�!2
; (22)

N�¼
�

!

ð1�!2Þ1=2 ;
Eð�þfÞ1=2
R0E�RE0

1

ð1�!2Þ1=2 ;0;0
�
; (23)

��� ¼ ��!2

1�!2

�
N�N� � 1

3
h��

�
; (24)

where use has been made of

v� ¼ 1

ð1�!2Þ1=2 V� � !

ð1�!2Þ1=2 N�: (25)

Alternatively, it may be useful to define two auxiliary varia-
bles (Pr and P?) as

Pr ¼ N�N�T��; P? ¼ K�K�T��; (26)

where K� is a unit spacelike vector (orthogonal to V�) in the
p direction.
Then we may write

��� ¼ �

�
N�N� � 1

3
h��

�
; (27)

with

� ¼ Pr � P?; P ¼ Pr þ 2P?
3

; (28)

from where the physical meaning of Pr and P? becomes
evident.
Using the above definitions, the relationships linking

tilted and nontilted variables, besides (21) and (22), read

P? ¼ 0; 3P ¼ � ¼ Pr ¼ �!2: (29)

We have next calculated the kinematical variables for
the tilted congruence. These were obtained with MAPLE 13.
The four-acceleration is now nonvanishing, and its com-

ponents are

a0 ¼ !2!0

ð1�!2Þ2
E

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p
R0E� RE0

þ !2

1�!2

E _R0 � E0 _R
R0E� RE0 þ

! _!

ð1�!2Þ2 ; (30)

a1 ¼ 1

!

E
ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p
R0E� RE0 a

0; (31)

a2 ¼ !2�

1�!2

E

R
a3 ¼ !2�

1�!2

E

R
; (32)

where subscripts p, q denote a derivative with respect to
these coordinates and

� ¼ E0
pE� E0Ep

R0E� RE0 ; � ¼ E0
qE� E0Eq

R0E� RE0 : (33)

The expansion scalar now becomes

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p ER _R0 þ _Rð2R0E� 3RE0Þ
RðR0E� RE0Þ þ ! _!

ð1�!2Þ3=2 þ
2!

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
R
þ !0

ð1�!2Þ3=2
E

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p
ðR0E� RE0Þ ¼

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p ��þ ! _!

ð1�!2Þ3=2 þ
2!

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
R
þ !0

ð1�!2Þ3=2
E

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p
ðR0E� RE0Þ :

(34)
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Next, for the vorticity tensor

��� ¼ 1

2
ðV�;� � V�;�Þ þ 1

2
ða�V� � a�V�Þ; (35)

we find the following nonvanishing components:

�02 ¼ !2�

ð1�!2Þ3=2
R

E
; �03 ¼ !2�

ð1�!2Þ3=2
R

E
; (36)

�12 ¼ � !

ð1�!2Þ3=2
R

E

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p ðE0
pE� E0EpÞ; (37)

�13 ¼ � !

ð1�!2Þ3=2
R

E

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p ðE0
qE� E0EqÞ; (38)

whereas for the vorticity vector,

��¼���
�V�;�V
�g��g
�; �0123¼� ffiffiffiffiffiffiffi�g

p
; (39)

we find

�0 ¼ �1 ¼ 0; (40)

�2 ¼ !�

1�!2

R

E
�3 ¼ �!�

1�!2

R

E
: (41)

Finally, for the shear tensor the following nonvanishing
components appear:

�00 ¼ 2

3

!2

1�!2
�I; �01 ¼ � 1

!

ffiffiffiffiffiffiffi
g11

p
�00; (42)

�02 ¼�1

2

!2�

ð1�!2Þ3=2
R

E
; �03 ¼�1

2

!2�

ð1�!2Þ3=2
R

E
;

(43)

�11 ¼ 1

!2
g11�00; �12 ¼ � 1

!

ffiffiffiffiffiffiffi
g11

p
�02; (44)

�13 ¼� 1

!

ffiffiffiffiffiffiffi
g11

p
�03; �22 ¼�1

2

1�!2

!2
g22�00; (45)

�33 ¼ �22; (46)

where

�I ¼ � !

ð1�!2Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p
R

þ 1

ð1�!2Þ1=2
E

R

R _R0 � R0 _R
R0E� RE0

þ ! _!

ð1�!2Þ3=2 þ
!0

ð1�!2Þ3=2
E

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ f

p
R0E� RE0 : (47)

It is a simple matter to check that the shear tensor may be
written as

��� ¼ �I

�
N�N� � 1

3
h��

�
þ �IIðN�K� þ N�K�Þ

þ �IIIðN�L� þ N�L�Þ; (48)

where

�II ¼ !�

2ð1�!2Þ ; �III ¼ !�

2ð1�!2Þ ; (49)

and L� is a unit spacelike vector in the q direction.
Observe that comparing (24) with (48), it follows that

the anisotropy described by ��� cannot be associated

exclusively to shear viscosity.
It is worth stressing that the appearance of vorticity is

unavoidable for a generic tilted Szekeres spacetime.
Indeed, vanishing of vorticity implies, because of (41),

� ¼ � ¼ 0; (50)

producing

Ep

Eq
¼ c ðp; qÞ; (51)

where c is an arbitrary function of its arguments. Then
using (2) in (51), we obtain

p� PðrÞ ¼ qc ðp; qÞ �QðrÞc ðp; qÞ; (52)

which implies PðrÞ ¼ QðrÞ ¼ 0, where the regularity con-
dition Pð0Þ ¼ Qð0Þ ¼ 0 has been used. Conditions (50)
can also be satisfied for some axially symmetric Szekeres
models [43].
Thus for a generic Szekeres spacetime there is a non-

vanishing vorticity according to the tilted observer.
Furthermore, as it follows from (49) the shear tensor has
the form (48), implying three independent components
instead of one for the nontilted observer.
It is worth mentioning that the magnetic part of the Weyl

tensor vanishes, like for the nontilted case. However the
magnetic part of the Riemann tensor

Z�� ¼ 1

2
��
��R��

��V
V� (53)

now has nonvanishing components which are associated to
the dissipative flux q�. They are

Z23 ¼ �Z32

¼ � !

1�!2

R

E2

1

R0E� RE0 ½EðR €R0 þ 2 €RR0Þ
þ E0ð2 _R2 þ R €RÞ�: (54)

Finally, the electric part of the Weyl tensor,

E�� ¼ C����V
�V�; (55)

now has the following components:

E00 ¼ 2

3

!2

1�!2
E; E01 ¼ � 2

3

!

1�!2

ffiffiffiffiffiffiffi
g11

p
E; (56)

E22 ¼ � 1

3
g22E; E33 ¼ E22; (57)

where
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E ¼ E

R

R0 €R� R €R0

R0E� RE0 : (58)

From the above it follows that we may write the electric
part of the Weyl tensor as

E�� ¼ E
�
N�N� � 1

3
h��

�
; (59)

which is similar to the expression (15) for the non-
tilted case.

IV. TRANSPORT EQUATION AND
ENTROPY PRODUCTION

In order to evaluate the possibility of entropy production
we need a transport equation for the heat conduction.

Due to the well-known pathologies of the Eckart [44]
and Landau [45] approaches we shall resort to causal
dissipative theories. Reasons for doing that have been
extensively discussed in recent years (see [46–59], and
references therein).

Thus for a second order phenomenological theory for
dissipative fluids we obtain from the Gibbs equation and
conservation equations (see [53,58] for details)

TS�;� ¼ �q�
�
h�� ðlnTÞ;� þ V�;�V

�

þ �1q�;�V
� þ T

2

�
�1

T
V�

�
;�
q�

�
; (60)

where S� is the entropy four-current, T is temperature and
�1 ¼ �

�T , where � and � denote thermal relaxation time

and the thermal conductivity coefficient, respectively.
Then from the second law of thermodynamics

S�;� � 0; (61)

the following transport equation is obtained (see [53,58]
for details):

�h��V	q�;	 þ q� ¼ ��h��ðT;� þ Ta�Þ

� 1

2
�T2

�
�V�

�T2

�
;�
q�: (62)

For simplicity, in the above equations we have not included
thermodynamic viscous/heat coupling coefficients, nor
have we included couplings of heat flux to the vorticity.
Also, because of the comment below (49) and for simplic-
ity we have omitted the contributions of shear viscosity
(see [53] for details).

Let us first consider the situation within the context of
the standard (Eckart-Landau) irreversible thermodynam-
ics, in which case � ¼ 0. Then after simple manipulations
we obtain

S�;� ¼ � 1

2
T��
dis L�g��; (63)

where L� denotes the Lie derivative with respect to the

vector field �� ¼ V�

T , and T��
dis ¼ V�q� þ V�q�. From the

above it is evident that if � defines a conformal Killing
vector, i.e.

L �g�� ¼ �g��; (64)

for an arbitrary function �, then

S�;� ¼ 0; (65)

a well-known result [60].
Since a generic Szekeres spacetime does not admit a

conformal Killing vector [61], then the heat flux q� has to
be associated to an irreversible process.
In the case of the causal thermodynamics the following

expression emerges from (60):

S�;� ¼ � 1

2
T��
dis L�g�� � 1

2

�
q2V��

�T2

�
;�
: (66)

Due to the presence of different phenomenological pa-
rameters in different terms in (66), it becomes evident that
for a generic Szekeres spacetime S�;� � 0.
We recall that in the above expression we have ne-

glected terms involving couplings of heat flux to the vor-
ticity. These couplings give rise to terms of the form
�T	1���q

�, where 	1 is the thermodynamic coupling

coefficient, which have to be added to the right-hand side
of (62). Also, the omitted shear viscosity contribution in
(60) would give rise to a term of the form 2�	2�

�
h�!�i�,

which has to be added to the transport equation for the
shear viscosity, where 	2 is a coupling coefficient, �
denotes the shear viscosity coefficient and hi is the spatial
tracefree part of the tensor.
Thus, as in the LTB case [17], tilted observers in

Szekeres spacetime detect a real (entropy producing) dis-
sipative process, while for the nontilted observer the evo-
lution proceeds adiabatically. In this case however it is
worth noticing that vorticity contributes to entropy produc-
tion, too.
Also, as in the LTB case we might speculate that the

origin of such an important difference in the pictures be-
tween both sets of observers may be found in the fact that
while the fluid is geodesic for nontilted observers, it is not
for tilted ones. Then invoking the equivalence between
collisional terms and force terms in the Boltzmann equation
established in [62], it could be possible that the force term
associated with the nonvanishing four-acceleration plays the
role of a collisional term, leading to entropy production.

V. CONCLUSIONS

We have analyzed the hydrodynamic and thermody-
namic properties of the tilted Szekeres spacetime and
compared them with the nontilted case.
Two main differences emerge from our study: first, the

fluid as seen by the tilted observer evolves irreversibly in
contrast with the picture described by the nontilted observ-
ers according to which the system evolves adiabatically;
furthermore in the former case the fluid is no longer
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geodesic. These differences between both sets of observers
also appear in the FRW and LTB spacetimes.

Second and more interesting, the fluid lines as seen by the
tilted observers have nonvanishing vorticity. As mentioned
before this is true for any generic Szekeres spacetime.

From a cosmological point of view this might have
interesting consequences. Indeed, the possibility of rotat-
ing universes (besides the well-known case of the Gödel
model) and eventual restrictions on the magnitude of
the associated vorticity have been studied in the past (see
[63–66], and references therein). Also different mecha-
nisms for vorticity generation in a cosmological back-
ground have been presented (see [67–71], and references
therein). Here we have seen that the appearance of vorticity
may also be an observer related phenomenon.

We would like to conclude with the following remarks:
(i) We have considered the simplest possible case of

tilted congruence; it is obvious that a boost in all
possible directions would produce a much richer
physical picture from the point of view of a tilted
observer. In the same line of arguments we have
considered the simplest dissipative scenario and
have not considered the possible presence of an elec-
tromagnetic field. The reasons for doing that are, on
the one hand, the cumbersome resulting expressions
and, on the other, the fact that even at this level of
simplicity very interesting physical results emerge.

(ii) It is worth noticing that, as it follows from (29), if
�� has a good physical behavior, it also has the

physical tilted variables (at least for small values
of !).

(iii) In spite of the differences, the tilted version con-
serves some of the ‘‘structural’’ properties of the
nontilted one; e.g. the magnetic part of the Weyl
tensor vanishes and the electric part has only one
nonvanishing independent component.

(iv) For a generic Szekeres spacetime with no symme-
tries and nonbarotropic equation of state, it is not
obvious that the Gibbs framework would be
applicable (see [72]). This point deserves more
attention.
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