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Complex scalar singlet dark matter: Vacuum stability and phenomenology
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We analyze one-loop vacuum stability, perturbativity, and phenomenological constraints on a complex
singlet extension of the standard model scalar sector containing a scalar dark matter candidate. We study
vacuum stability considerations using a gauge-invariant approach and compare with the conventional
gauge-dependent procedure. We show that, if new physics exists at the TeV scale, the vacuum stability
analysis and experimental constraints from the dark matter sector, electroweak precision data, and LEP
allow both a Higgs-like scalar in the mass range allowed by the latest results from CMS and ATLAS and a
lighter singlet-like scalar with weak couplings to standard model particles. If instead no new physics
appears until higher energy scales, there may be significant tension between the vacuum stability analysis
and phenomenological constraints (in particular electroweak precision data) to the extent that the complex
singlet extension with light Higgs and singlet masses would be ruled out. We comment on the possible

implications of a scalar with ~125 GeV mass and future ATLAS invisible decay searches.
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I. INTRODUCTION

The standard model (SM) of particle physics is known to
be an incomplete theory in part because of its inability to
explain phenomena such as dark matter and the baryon
asymmetry of the universe. Among the many models vying
to supplant the SM, scalar extensions of the SM are among
the simplest. A gauge singlet real scalar extension has been
studied as a potential dark matter candidate (see [1-10]),
for its impact on the electroweak phase transition (EWPT)
[11-13], and for its role in Higgs collider phenomenology
[14,15]. The collider phenomenology and dark matter
prospects of a complex scalar gauge singlet [16,17] and a
real scalar SU(2); triplet [18-21] have been studied as
well. Extensions involving four or more new degrees of
freedom, such as the 2 Higgs doublet model, have been
widely analyzed over the years. Indeed, such scalar exten-
sions of the SM have resulted in a prolific field of study.

Important assessments of the theoretical self-consistency
of scalar extensions are the vacuum stability of the renor-
malization group (RG) improved one-loop effective poten-
tial and perturbativity of the scalar couplings. Within the
SM, vacuum stability and perturbativity have resulted in
theoretical bounds on the Higgs mass (see [22] for a com-
prehensive review; also, see [23-28]). In the real singlet
extension of the SM, vacuum stability and perturbativity
again place bounds on the Higgs mass but also constrain the
singlet in dark matter and inflation scenarios [29-31]. All of
these results are dependent upon the cutoff scale of the
theory, A. This is the scale of new physics, the scale above
which new massive degrees of freedom can no longer be
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integrated out of the theory and become relevant for inter-
actions and the effective potential. It is widely anticipated
that new physics, in particular supersymmetry (SUSY), will
appear at the TeV scale. The requirement of vacuum stabil-
ity and perturbativity up to A = 1 TeV is thus a minimal
requirement of the scalar extensions of the SM and result in the
weakest theoretical constraints on the models. However, given
the lack of signatures of SUSY or other new physics in early
LHC data (see for example [32-35]), it is possible the scale at
which new physics and new massive degrees of freedom
become relevant lies beyond the TeV scale. As the cutoff scale
increases, vacuum stability and perturbativity can impose
increasingly significant constraints on the scalar extensions.
In this work, we study this issue of vacuum stability and
perturbativity—particularly for higher cutoff scales—for the
complex scalar singlet extension of the SM, referred to as
“the CxSM.” With an appropriate set of symmetries, this
model yields both a viable dark matter candidate (A) as well
as two real neutral scalars 4’ and S’ that are mixtures of the
SM Higgs boson and the real part of the complex singlet. We
discuss in detail the requirement of vacuum stability of the
effective potential, i.e., that the electroweak minimum of
V. be deeper than any other minimum. Generally, however,
there exists at least one deeper minimum at large values of
the scalar field ¢ due to top quark loop contributions. The
conventional stability requirement, then, is to restrict the
effective theory to energy scales below the value of ¢ for
which V,¢(¢) falls below the electroweak minimum.' One
then identifies the maximum stability scale A with this
maximum value of ¢. This criterion, however, is gauge-
dependent since only the value of the potential at its extrema

1Alternately, if the electroweak minimum is metastable with a
lifetime longer than the age of the Universe, then the stability
radius in field space can be increased.
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is gauge-invariant [36], whereas the field itself remains
gauge-dependent. Consequently, identifying the cutoff A
with a value of ¢ is not physically meaningful. As an
alternative, we will use an analysis of the RG evolution of
the quartic couplings of the CxSM since the effective
potential is dominated by terms quartic in the fields. By
restricting the running of these parameters to energy scales
below an appropriately chosen value of A, we guarantee in a
gauge-invariant way that the effective potential is bounded
below and that the EW minimum is stable.

In addition to stability and perturbativity considerations,
we will also apply various phenomenological constraints in
our analysis of the CxSM: results for electroweak precision
observables (EWPO), dark matter relic density and
direct detection measurements, and limits from LEP. We
also study scenarios that may lead to a strong, first order
EWPT as is needed for electroweak baryogenesis that may
lead to relic gravity waves. We find that, should new
physics exist at the TeV scale, the CxSM has regions of
parameter space which satisfy all constraints and favor a
relatively light and weakly coupled singlet-like scalar in
addition to a Higgs-like scalar in the current mass range
allowed by searches at ATLAS [37] and CMS [38].
Conversely, if new physics does not appear until higher
energy scales well above a TeV, the vacuum stability
considerations are in significant tension with experimental
constraints, particularly EWPO data. Rather generally, the
CxSM can be ruled out should new physics fail to appear
just below the grand unification (GUT) scale, Mgyt =
10'¢ GeV. These conclusions hold for both a relatively light
dark matter mass (as indicated by the CoGeNT [39-41],
DAMA/LIBRA [42-44], and CRESST-II [45] collabora-
tions) and a heavier dark matter mass. Furthermore, it is
possible for the scalars 4’ and S’ to decay to dark matter; in
fact, in scenarios where both the dark matter and one of the
scalar eigenstates are light and the scale of new physics is
roughly a TeV, the branching fraction to dark matter is
sufficiently large that the ATLAS detector could be sensitive
to these invisible decays.

Our discussion of these issues is organized as follows. We
begin with an introduction to the CxSM in Sec. II. In Sec. III,
we describe the requirements of vacuum stability and per-
turbativity in detail, and discuss in detail the impact of gauge
dependence on the traditional vacuum stability analysis. We
then present our analysis of the RG evolution as a gauge-
independent substitute. Section IV introduces phenomeno-
logical constraints on the CxSM from the EWPT, EWPO,
dark matter relic density and direct detection measurements,
and collider physics at LEP and the LHC. We present our
results in Sec. V and VI contains our conclusions.

II. COMPLEX SINGLET MODEL

A. Tree level potential

In the CxSM, the SM is supplemented by the addition of
a single complex scalar degree of freedom that transforms

PHYSICAL REVIEW D 86, 043511 (2012)

trivially under the SM gauge groups. Thus, the only
renormalizable tree-level interactions between the com-
plex singlet, S, and the SM occur in the scalar potential
of Eq. (1)—the singlet couples to the SM fermions and
gauge bosons only through the Higgs, H (sometimes
referred to as the “Higgs portal” [46]),

1 A
V(H,S) = 5mZHfH + 1 (HTH)?
52 b2 d2
+ —=HTHIS|? + =|S|> + == |S|*
5 IS > S| 2 S|
1 . .
+ <Z|b1|€l¢h1§2 + la;|ei®aS + c.c.). (1)

In the absence of the b, and a; terms, V(H, S) obeys a
global U(1) symmetry: S — ¢®S. By breaking this sym-
metry both spontaneously and softly (through the last two
terms), we obtain a cold dark matter candidate. When the
singlet gets a vacuum expectation value (vev), (S) = x//2
(the Higgs has its usual vev, (H) = (0, v//2)7 where
v = 246 GeV), the global U(1) symmetry is spontane-
ously broken, the real part of the singlet mixes with the
SM Higgs, and the imaginary part of the singlet becomes a
massless Goldstone boson. To give mass to the imaginary
part of the singlet so that it can potentially fill the role of a
stable cold dark matter candidate, we include the explicit
U(1)-breaking terms proportional to b; and a;.

Note that for a; = 0 the potential retains a Z, symmetry
associated with the components of S. Since spontaneously
broken discrete symmetries create issues with cosmologi-
cal domain walls [47-49] we also introduce an explicit
Z,-breaking term proportional to a;. These additional
terms are chosen so that the potential retains a Z, symme-
try for Im(S), thereby ensuring stability of the dark matter
particle. Moreover, these operators close under renormal-
ization. The phase ¢,; can be absorbed in a redefinition of
S and ¢;;, and we choose ¢, = 7 to avoid mixing
between the real and complex components of S [17].
Then, expanding S = (S + iA)/\2 and®> H = h/\2 gives
the tree level potential

2 A, 8
Vo(h, S, A) =m7h2 tht 2

1 1
+ Z(b2 —b))S* + Z(bz + by)A?

h*(S* + A?)

d d
— 24,8 + §2S2A2 + Té(54 +AY. Q)

Requiring that the potential in Eq. (2) have a minimum
at (Hy=h/\2=v/\2 and (S)=S+iA=x+i-0
gives the following set of minimization conditions:

*We always choose the minimum of the potential so that the
neutral real component of the Higgs doublet has a nonzero vev
and the other components, the would-be Goldstone bosons, have
Zero vev.
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vy
dA

Vo , Wo _ ) (3)
dh as
where all derivatives are evaluated at (A, S, A) = (v, x, 0).
(Note that other solutions to the minimization equations
may exist; however, our vacuum stability analysis de-
scribed in Sec. III verifies none of these other critical points
is a global minimum given values for all of the parameters.)
These minimization conditions allow the Higgs vev v and
|

2 2 2 11,2

my Mg My 2 AU
2 2 2 1

mye Mg Mgy 30XV
2 2 2

My Mgy My 0

We choose the U(1) and Z, symmetry breaking parameter
a, such that a; < x, i.e., we take a; = 1073 GeV? and
x = 10 GeV. This choice serves two purposes: first, it
simplifies the model by reducing by one the number of
unknown parameters that must be varied; second, it ensures
that the minimum at (4, S, A) = (v, x, 0) is the global mini-
mum of the potential, as we will discuss in Sec. IIL
With this choice for ay, the dark matter mass is given by
my = /b;. Meanwhile, the nonzero entry for m3 induces
mixing between the SM Higgs and the real component of
the singlet. The resulting mass eigenstates, which we denote
h' and S’, have masses given by the eigenvalues of M, the
2 X 2 upper left quadrant of Eq. (5). These eigenvalues are

1
mi = S [Tr(M) = V(Tr(V))? — 4Det(M)]  (6)
with m > m_. In order for these masses to be positive real
numbers, the condition Det(M) > 0 must hold. In the limit
of small a;, this condition simplifies to 83 < Ad,. The
eigenstates h’, S’ are written in terms of /4 and S according

to Eq. (7):

Wl [ cos¢p sing [ &

A\ —sing cosep || S |
The eigenstates 4’, S’ couple to the fermions and gauge
bosons via SM Higgs couplings reduced by a factor of cos¢,
- sin¢, respectively. The mixing angle ¢ is given at tree
level by

@)

2m>
tan2¢ = — _hs 5 ®)
n Mg

We take the mixing angle to be —7/4 = ¢ = 7/4 so that
h' is always the “Higgs-like” eigenstate and S’ is always
“sing]et—like.”3 Which eigenstate is heavier will depend on
our choice of parameters. When choosing 8, < 0 (which

3In the literature, the mass eigenstates are often denoted as /,
and h,. We use a different notation to emphasize that one state is
always “Higgs-like” and the other is always ‘‘singlet-like.”
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the singlet vev x to replace m?* and b, as parameters in the
CxSM according to Eq. (4):

1
2

1 1
bz = bl + 2\/5ﬂ - 7d2x2 - *521}2.
x 2 2

2

1
m? = Av? — 5 5,x2,

“4)

At the minimum, the mass (second derivative) matrix is
then given by Eq. (5):

%52xv 0
Ld,x® + \2ay /x 0 (5)
0 b, +2a,/x

|
allows for a strongly first order EWPT while being consis-
tent with LEP bounds, as discussed later in Sec. IVA),
Egs. (5)—(8) imply that 4’ will be the heavier eigenstate
with ¢ < 0O for relatively large A and relatively small d,, x
whereas S’ will be the heavier eigenstate with ¢ > 0 for
relatively small A and relatively large d,, x.

B. One-loop potential

For our vacuum stability analysis, we use the full
Coleman-Weinberg one-loop effective potential at zero
temperature with one-loop RG running parameters:

Veir(h, S, A) = Vo(h, S, A) + Vi(h, S, A). )

Vo(h, S, A) is given in Eq. (2), where all fields, couplings,
and masses are replaced by their RG running counterparts.
The one-loop contribution, calculated in the Landau gauge
and renormalized in the MS scheme, is given by

1 M3
Vl(h, S, A) = WZI’” Tr{M?(logME - Ci)}' (10)

The sum i runs over scalars, fermions, and gauge bosons. The
field-dependent mass matrices M?, the number of associated
degrees of freedom 7;, and the numerical constants c¢; are
given in appendix A. w is the 't Hooft renormalization scale.
As discussed in the next paragraph, the effective potential is
renormalization scale independent to one-loop order; any
residual scale dependence is higher order. To remove this
residual scale dependence, we would like to choose w to
minimize the logs in Eq. (10). However, no single choice for
p will simultaneously minimize all of the logs, and so we
make the simple choice u? = h? + S? + A2

The RG equations for the fields, couplings, and masses
are determined by requiring scale invariance of the effec-
tive potential to one-loop order: the scale dependence
implicit in the parameters of V,, cancels the explicit scale
dependence in Vi, i.e.,

dVeff _
dp

v,
op

av

T 0. (11)
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Applying this condition to the CxSM effective potential
gives a series of equations to be solved for the 8 and y
(anomalous dimension) functions that determine the running
of the fields, couplings, and masses. The 8 and y functions
are given in Appendix A. For convenience, we take u = M,
as the input scale for all our running parameters.

In analogy with the tree level potential, we apply the
minimization conditions to the one-loop effective poten-
tial: requiring that the minimum of the effective potential
occur at (h, S, A) = (v, x, 0) fixes the boundary conditions
for the running mass parameters m*(M,) and b,(M).
Furthermore, we obtain the masses of the scalars by di-
agonalizing the matrix of second derivatives of the effec-
tive potential evaluated at the minimum. The dark matter A
is protected by a Z, symmetry so that it is stable and does
not mix with z and S at the minimum of the potential even
upon inclusion of the one-loop corrections. (The necessity
of the Z, symmetry to ensure the dark matter cannot decay
is a generic feature of these simple scalar extensions of the
SM. The real scalar singlet dark matter extension of the SM
is referred to as the Z,xSM for this reason.) The mass
eigenstates /', S’ are defined in terms of 4 and S as in
Eq. (7) using the one-loop value of the mixing angle ¢.

III. VACUUM STABILITY ANALYSIS

A. The vacuum stability analysis

The requirement of absolute vacuum stability is equivalent
to requiring that the electroweak (EW) zero-temperature
minimum of the effective potential be a global minimum
over the energy range for which the SM is valid. The
common practice for vacuum stability analyses in the litera-
ture begins, as described above, with the RG improved
effective potential [generically V(¢;)] and choice of the
renormalization scale u?> = $> = @;¢; to minimize loga-
rithms in the one-loop potential. Then, the maximum radius
in field space, ¢,.«, 1s found according to the requirement of
absolute vacuum stability:

Veir(@1) > Ve (@pw) V¥V @ < 0k, (12)

where @gw gives the values of the fields at the electroweak
minimum—i(k, S, A) = (v, x, 0) in the CxSM. This maxi-
mum radius in field space is identified with the cutoff scale of
the effective theory, A. It is presumed that A = ¢,,,, is the
scale at which new physics is required to alter the shape of
the potential so the electroweak minimum remains a global
minimum.

The requirement of absolute vacuum stability can be
relaxed to the case of metastability for which the EW
minimum may not be a global minimum, but the tunneling
probability from the EW minimum to the true global mini-
mum is sufficiently small (the lifetime of the electroweak
vacuum is greater than the present age of the Universe). In
the real scalar singlet extension of the SM, the authors of
[50] showed that the vacuum metastability requirement is
indeed less restrictive of the model parameter space than the
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absolute vacuum stability analysis in [29]. To obtain more
conservative bounds, and for simplicity, we focus on the
absolute stability scenario.

B. Vacuum stability for scalar extensions of the SM

There are two primary considerations for vacuum
stability in the CxSM. The first is the possibility of a Z,
symmetry breaking minimum at tree level; the second is
the set of constraints on the quartic couplings and their RG
evolution.

1. Z, symmetry breaking minimum

In the Z,xSM, the singlet mass depends on its quadratic
mass parameter and its coupling to the Higgs. In [29], it
was shown that for dark matter masses in the range
10-100 GeV there is a tension between having a suffi-
ciently large (positive) Higgs-singlet coupling to avoid
oversaturating the dark matter relic density and maintain-
ing a stable EW minimum of the potential. Obtaining light
scalar singlet dark matter that saturates the relic density
can require a negative mass-squared parameter in the
potential, leading to a minimum along the singlet axis of
the potential for which (S) # 0 and (H) = 0; thus the Z,
symmetry is broken and the dark matter is not a stable
particle. In the present analysis of the CxSM, the dark
matter mass depends on the linear parameter a; and the
quadratic parameter b; (plus small loop corrections). We
have chosen a; to be small, and so to obtain a positive dark
matter mass we unambiguously choose b to be positive.
Thus there is no dangerous Z, symmetry-breaking mini-
mum along the Im[S]-axis and we do not have a tension
between the dark matter mass and vacuum stability as in
the real scalar singlet model.

2. Limits on the quartic couplings

In the CxSM, the stability of the tree level potential
minimum is guaranteed simply by requiring that*

83 < Ad,, A>0, d, > 0. (13)

The first condition is necessary for obtaining positive
mass-squared eigenvalues for the mixing between the
Higgs and real component of the singlet at the minimum
of the potential, (A, S,A) = (v, x,0). This is of course
equivalent to the second derivative test to ensure that the
critical point (h, S, A) = (v, x, 0) is actually a minimum.
The second two conditions are required for the potential
to be bounded below in all scenarios; the first condition
is also required for the potential to be bounded below
when 6, < 0.

Going beyond tree level with the one-loop potential and
the one-looprenormalization group equations (RGEs)
affects the stability of the potential in two ways.

4See [17] for further discussion.
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(1) As in the SM and Z,xSM, a global minimum for
h > v can arise due to the running of the Higgs
quartic coupling A. The large top Yukawa coupling,
¥, causes A to evolve to negative values for large
when A(M) is sufficiently small, as seen from the
B-function in Eq. (14):

dA 1

Bir= M@ = 1672

Along the h-axis of the potential, the Higgs self-
coupling dominates, viz.,

(6A% =36y +---).  (14)

VEM Ot > (15)

Setting u = h to minimize large logs in the effec-
tive potential thus combines these two effects: the
potential can develop a very deep global minimum
(h > v, § =0, A =0), high above the EW scale.’
In the Z,xSM, the Higgs-singlet coupling 6, has a
positive contribution to the B-function of A irre-
spective of the sign of §,. As was shown in [29],
the contribution of &, to the running of A decreases
the theoretical lower bounds on the Higgs mass from
vacuum stability. In the CxSM, the running of A is
again tempered by the Higgs-singlet coupling &5, so
a larger value of 6, may push this deep minimum
above the cutoff scale A.

(2) The second effect is one specific to the choice
8, < 0 when one-loop corrections are included. At
tree level, the requirement 83 < Ad, is sufficient to
prevent a runaway direction in the potential between
the h-, S-, and A-axes when §, < 0. However, as the
B-function for 6, shows [Eq. (A16)], a negative
8,(M,) will decrease as the scale u increases.
This could in principle lead to a runaway direction
in the potential for some region of field space be-
tween the axes.

C. Gauge dependence

It has been pointed out that the SM one-loop effective
potential depends on the choice of gauge-fixing condition;
equivalently, in the R; gauges, the potential depends on the
gauge parameter ¢ (see [51,52], and references therein).
Hence, the field expectation values at a minimum, @,y;,, do
not correspond to a physical observable. It was shown in
[51] that the value of the effective potential at its extrema
can be calculated in a gauge-invariant way through a
consistent expansion in %, provided that the extrema have
classical (tree level) analogs. The validity of this procedure
is a consequence of the Nielsen identity [36].

The gauge dependence of the effective potential presents
complications for the vacuum stability analysis despite the
existence of the Nielsen identity. As described above, the

>This is a minimum and not simply an unbounded direction
because A does become positive again at higher scales.
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FIG. 1. A plot of 83(M;) vs A(My)d,(My). For all points,
M, =10 GeV, x = 100 GeV, and d,(M,) = 0.2. The tree level
vacuum stability requirement, 83 < Ad,, is indicated with the
solid line. All points satisfy the effective potential vacuum
stability requirement of Eq. (12) with A =1 TeV for some
choice of gauge parameter £. For gray points, ¢ = 0 (Landau
gauge); for dark gray points, £ = 1; and for light gray points,
¢ =50. [In this and subsequent figures, the point (0, 0) is
included for reference only.]

vacuum stability analysis generally performed in the lit-
erature is interested in a particular radius in field space,
Pmax> obtained from Eq. (12). Because the potential is
gauge dependent, it is possible that for one choice of gauge
the potential may satisfy the stability requirement below
@max> but for another choice of gauge the potential may
become unstable:

Veir(@i5 €1) > Verr(@pw: 1) V % < @,

Veir(@is E)FVere(PEws €2) V¢ < s (16)
This ambiguity is dramatically demonstrated in Fig. 1 for
one particular choice of the CxSM parameters. The plotted
points are those allowed by the vacuum stability require-
ment of Eq. (12) (with a 1 TeV cutoff) for three different
gauge parameters: ¢ = 0 (gray), £ = 1 (blue), and £ = 50
(red). Thus, identifying the cutoff scale of the effective
theory—a physical, gauge-independent number—with
®max 18 problematic.

There exist in the literature two methods for performing
a gauge-independent analysis of the vacuum stability and
corresponding Higgs mass bounds: the “physical effective
potential” in [53], and the Vilkovisky-DeWitt formalism in
[54]. These methods have been applied to toy models and
have derived gauge-independent results that reproduce to

SFurthermore, in the SM and its extensions such as the CxSM,
the appearance of a global minimum for 2 >> v occurs due to the
RG running of the Higgs self-coupling A at one-loop. There is no
classical minimum corresponding to this new global minimum
appearing at one-loop, and so the perturbative # expansion
described in [51] yields trivial equations when evaluating the
potential at this minimum in a gauge-independent way.
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within a few percent the results of a traditional vacuum
stability analysis done in the Landau gauge [53,55]. To our
knowledge, however, no gauge-independent method for
analyzing the vacuum stability of the effective potential
in the full SM, much less the CxSM, has been presented.

Rather than generalizing either of the above methods, in
the current analysis we choose to make vacuum stability
arguments based on the running of the quartic couplings
that dominate the potential, i.e.,

Veff(h! S! A) -~ )\(,LL)h4 + 52(/-‘“)112(52 + Az)
+ dy(u)(S* + A% (17

for u? > v2.” In the CxSM, vacuum stability requires that
the tree level couplings obey Eq. (13). We extend these
requirements to the one-loop RG running couplings, as in
Eq. (18):

85 (w) < AMu)dy(w)
Ap) >0
dy(u) >0

V ou <A (18)

After evolving all the parameters of the theory in the
effective potential up to the cutoff scale of the theory, if
any of these conditions is violated then the potential may
become unstable for larger scales®:

(1) If A(w)#0 there will be a deep second minimum
along the h-axis of the potential.

(ii) If d,(u)#0 there will be a “runaway direction” of
the potential along the S- and A-axis, i.e., the
potential is unbounded from below.

(iii) If 85(u)£A(m)da(p) and 8, <O there will be a
runaway direction somewhere between the field axes.

(iv) If 8,>0, the requirement 83(u) < A(u)d,(w)
may be overly restrictive. Though 83 < Ad, is nec-
essary to ensure that (h, S, A) = (v, x, 0) is a mini-
mum, the running of &, at large scales will not
affect the shape of the potential at the electroweak
minimum. Thus the EW minimum will remain the
global minimum and the potential will be bounded
below for large values of the field.

The values of the fields where these instabilities occur is
immaterial to our analysis; the mere fact that they occur
because the conditions of Eq. (18) are violated implies that
the vacuum stability requirement is not satisfied. Since the
RG evolution of all the mass and coupling parameters in

7 A full gauge-invariant vacuum stability analysis of the effec-
tive potential in the SM and its scalar extensions is relegated to
future work.

8Minimizing logarithms in the one-loop potential requires the
choice u? = @2, when evaluating the potential in a gauge-
independent fashion at the minimum @&,;,, as discussed in
Sec. IITA2.
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the CxSM is gauge-independent, the scale at which any
one of the requirements of Eq. (18) is violated—which we
identify with the cutoff scale of the effective theory, A—is
also gauge-independent. We emphasize that the constraints
placed on the couplings (and hence the masses of the scalar
fields) from Eq. (18) are motivated by the requirement of
vacuum stability. Since we have not calculated gauge-
independent tunneling probabilities for transitions to a
non-EW global minimum of the potential, our analysis
may give more conservative bounds than those determined
by allowing the EW minimum to be metastable.

D. Perturbativity

We also require that the couplings in the scalar potential
remain perturbative for all values of the scale w. The
definition of ‘““perturbative” is somewhat subjective. At
one-loop order in perturbation theory, the quartic scalar
couplings all have Landau poles as u approaches Ajp;
minimally, the location of the Landau pole could be taken
as the cutoff scale of the theory, A = A;p. However, the
couplings reach unreasonably large values well before the
Landau pole. Two-loop analysis of the SM RGEs shows
that Higgs quartic self-coupling A has a fixed point at large
scales where 8, — 0 and A(u) — App [56]. Furthermore,
it has been shown in [57] that the SM remains perturbative
for values of the Higgs quartic self-coupling A(A) in the
range App/4 to Agp/2. A full two-loop analysis of the
CxSMis beyond the scope of our current work, so we
impose the an approximate perturbativity constraint on
the couplings in Eq. (19):

8>(u) = App/3
Mu) =< App/3
dr() < App/3

VM, =u=A (19

E. Analysis procedure

In practice, we take as inputs the boundary conditions for
the running Lagrangian parameters (with the boundary con-
ditions for m? and b, fixed by the other inputs, the scalar
vevs v = 246 GeV and x). We then solve the RGEs up to
the Planck scale [O(10'°) GeV] and determine the scalar
masses and mixing angle by diagonalizing the matrix of
second derivatives [all evaluated at (A, S, A) = (v, x, 0)]:

Vet 9n0sVerr 9394 Vesr
Ip0sVerr  05Ver  959aVerr
Ip0aVerr 059aVer 03 Verr
= P - Diag(M2, M2, M3) - P}, (20)

where the matrix P is the orthogonal matrix containing the
mixing parametrized by the angle ¢ between the SM Higgs
and the real part of the singlet. We take the cutoff scale A as
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an output, obtained by finding the minimum value of w
for which either Eq. (18) is violated or one or more
of the couplings becomes nonperturbative according to
Eq. (19). We also scan over field space for the minimum
radius (if such a point exists) at which the value of
the potential is equal to its value at the electroweak
minimum—Vg (A, S, A) = Vi (v, x, 0)—to compare the
gauge-independent results from the running couplings
with the gauge-dependent results of the effective poten-
tial in the Landau gauge. The cutoff scale is required to
be at least one TeV.

IV. IMPLEMENTATION OF
OTHER CONSTRAINTS

A. Electroweak phase transition

The electroweak phase transition in a real scalar
singlet extension of the SM has been studied extensively
[11-13]. If the potential possesses a Z, symmetry, as in the
Z>xSM, which is spontaneously broken by a nonzero sin-
glet vev, the Higgs and singlet mix and the singlet cannot
act as a stable dark matter candidate. Under these circum-
stances, a negative value of the Higgs-singlet coupling
parameter, 0,, is most suitable for obtaining a strong
first-order phase transition and satisfying the LEP con-
straints on the Higgs mass and mixing angles. We therefore
consider 6, < 0 for our analysis. As mentioned in Sec. III,
this choice has the most interesting implications for vac-
uum stability of the full one-loop potential with running
parameters [58].

B. Electroweak precision observables

In the SM, measurements of EWPO, such as Z° pole
measurements, provide sensitivity to the Higgs mass
via loop-level effects. In the CxSM, mixing between the
SM Higgs and the real component of the complex singlet
alters these loop-level effects. To determine which
values of the CxSM parameters best match EWPO data,
we follow the procedure described in [12], which we
summarize here.

The EWPO data are parameterized in terms of the
oblique parameters S, 7, and U. Experimental values of
the oblique parameters are determined by performing a best
fit analysis using all electroweak precision data, as in [12].
Alternatively, the oblique parameters can be calculated an-
alytically as they are defined in terms of the self-energy
corrections to the gauge boson propagators: I1,,(p?),
Hyw(p?), IL,,(p%), I1,,(p?). Given the direct search limit
from LEP on the Higgs mass, a SM reference value, 00 =
O(M3M = 114.4 GeV), can be computed for each of these
oblique parameters (O = S, T, U). The best-fit value deter-
mined from electroweak precision data for the difference
between O and the SM reference value is defined as

AO® =0 - 0. 1)

PHYSICAL REVIEW D 86, 043511 (2012)

Since the real component of the scalar singlet S mixes
with the Higgs, the propagator corrections Il and I1,,
in the CxSM , and hence the oblique parameters, are
different from the SM results (however, 11, and 1l,
are unchanged because the scalars are neutral). The differ-
ence can be written as

AO = cos?¢ - O(MM — M)
+sin?¢p - O(MM — Mg) — O°. (22)

Thus, given values for the masses of the scalar eigenstates
h' and §’ and the mixing angle ¢, all extracted from the
effective potential, the quantity AO can be computed. The
masses and mixing angle of the CxSM are consistent with
EWPO data if the oblique parameter differences AO fall
within the 95% C.L. region of the experimental values
AO°. This is equivalent to Ay? < 7.815, where Ay? is
defined in Eq. (23) using the correlation matrix p and
errors o from [12]:

Ay? = Z(Ao,- — A0 (opa);'(A0; — AOY). (23)
LJ

The analytic forms of the oblique parameters are given in
Appendix B.

C. Dark matter relic density

As described in Sec. II, we choose parameters for the
CxSM such that the imaginary component of the complex
singlet is a stable dark matter candidate. The thermal relic
density of the scalar A, () Ah2, is controlled in part by the
annihilation cross section of the dark matter particles,
Oann(AA — XX): roughly, Quh> ~1/{0 V) Where
(O g Vrer) 18 the thermal average of the annihilation cross
section times the relative velocity of the dark matter
particles in the center-of-mass frame. Processes that con-
tribute to o,,, are shown in Fig. 2. The kinematical/
mass-dependent factors associated with the cross sections
for these diagrams can be of particular importance in
determining the relic density. In the limit of nonrelativistic
dark matter where /s = 2my, and v, = 2|psl/my4,

YN f Ay VoA 8
AN 7
Mo Mo
>t >t x
Y ; // \\
Al a7l Vv A’ KL S
! 4 ! "
A\ sMS A< _ =M
N e T
< Al
/ AN Py
A/ \w, s A” \\h/’sl

FIG. 2. Feynman diagrams showing processes contributing to
the annihilation cross section of the dark matter particles, A.
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- (&)zmn.

d 1
<_ O-ann(AA - XX))vrel o W MA

0 2
(24)

In the case of the four-point vertex in Fig. 4, the amplitude
|2M|? is independent of masses and momenta, so the
annihilation channels AA — h'h' or AA — S'S’, when kin-
ematically allowed, are largest for M, or Mg << M,. For
the s-channel resonances AA — h' — XX and AA — §' —
XX, |M|* o< (4M3 — M},)™2 or (4M% — M3,)~%; thus the
annihilation cross section of course becomes large for M,
or Mg =~2M,. When the annihilation cross section be-
comes large, the complex singlet undersaturates the total
dark matter relic density, QpypA%, for which we use the
WMAP 10 measurement Qpyh? = 0.92-0.118 [59]. We
use the computational tool micrOMEGAs [60] to numeri-
cally calculate the relic density. Though we allow the
CxSM to undersaturate the relic density, oversaturation
is forbidden.

D. Dark matter direct detection

A number of experiments have performed searches for
dark matter scattering off atomic nuclei and have published
limits on the spin-independent scattering cross section as a
function of the dark matter mass. The most restrictive
limits at present come from the XENON100 [61,62] and
CDMS [63,64] experiments. In apparent conflict with these
limits are results from the CoGeNT [39-41], DAMA/
LIBRA [42-44], and CRESST-II [45] experiments which
have observed signal events corresponding to dark matter
particles with M, ~ 10 GeV [65]. For our analysis, we
remain impartial in the debate over these experimental
results. In the CxSM, the scattering cross section of the
dark matter candidate with a proton is calculated (see
[16,66]) according to Eq. (25):

o — mj, (gAAh/ cos¢  gaas sin¢)2
ad 2mvi(m, + My)? Mz, Mg,
o) 2
X(fpu+fpd+f17s+ﬁ(3fG)>! (25)
where
Saan = (v cosgp + dyxsing)/2, (26)
gaas = (drxcosd — S,vsing)/2. 27
The proton matrix elements f,
m,f¥) = (plm,qqlp),
fe=1-3 ft (28)
q=u,d,s

are calculated in [67]; we take the central values

PHYSICAL REVIEW D 86, 043511 (2012)

) = 0,020,
£ = 0.026, (29)
") = 0.118.

We consider masses and cross sections that satisfy exactly
one of the direct detection experiments: either the upper
bound from XENONI100 or the signal regions from
CoGeNT, or DAMA/LIBRA, or CRESST-II. We utilize
micrOMEGASs [68] for numerical calculation of the direct
detection cross section. In comparing this calculated scat-
tering cross section to the limits from the cited experi-
ments, in Eq. (30) we scale the cross section by the fraction
of the total relic density constituted by the CxSM dark
matter candidate to account for the reduced flux of dark
matter particles in the detectors when the relic density is
undersaturated:

QO h?
Ogcaled = Odd m- (30)

E. LEP mixing angle constraints

Application of the LEP limits (this section) and the
ATLAS invisibly decaying Higgs search conditions
(Sec. IVF) requires calculation of the scalar mass eigen-
states’ widths. These are given by Eq. (31):

Lo (h') = cos*¢p - Tsy(H*)[+T(h — AA)]

X [+T(W — S'S)[+T(H — AAAA)] (31
Lo (8') = sin’¢ - o (H*)[+T(S" — AA)]

X [+T(S"— h'A)][+T(S’ — AAAA)].

In Eq. (31), I's\(H™) is the rate of decays of the SM Higgs
to SM final states where the Higgs is assumed to have a
mass equivalent to that of the A’ or S’ eigenstate appropri-
ately. We calculate the SM Higgs width as a function of the
Higgs mass using the program HDECAY [69]. The decay
rates in square brackets in Eq. (31) are only included when
the indicated decay is kinematically allowed. The decay
rate of the A/, S’ eigenstates to pairs of dark matter particles
is given in Eq. (32):

2 2
T(H, §' — AA) = lgaawansl® 1, _ o (32
32mmy ¢ My ¢

The parameters g44;, and g 4 are defined in Sec. IV D.
Decays to four dark matter particles have intermediate
states of two (possibly off-shell) scalars.

The LEP Working Group for Higgs Boson Searches has
made use of the combined data from the four LEP experi-
ments to constrain the mass and ZZH coupling of BSM
Higgs-like scalars [70]. An upper bound is set on the
quantity
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SM

2

2 gg%l

&= X Br(H — SM) (33)
87zH

as a function of the Higgs mass. If the scalar particle H has
only SM decays, then Br(H — SM) = 1 and the limits are
on the BSM-to-SM ratio of the Higgs-Z-Z coupling. In the
CxSM, the ratio of the couplings is cos?¢ for 4’ and sin” ¢
for §’. If additional scalar decays are kinematically
allowed, then the widths in Egs. (31) and (32) are used to
calculate Br(H — SM). We apply the LEP limits to both
scalar mass eigenstates 4’ and S’.

F. ATLAS sensitivity to an invisibly decaying Higgs

The mixing between the SM Higgs and the real compo-
nent of the complex singlet, as well as the potential for one
or both eigenstates to decay to an even number of dark
matter particles when kinematically allowed, also has im-
plications for Higgs searches at the LHC. The study in [71]
found that the ATLAS experiment at the LHC would be
sensitive, via the vector boson fusion channel, to a Higgs
with a mass between 114-200 GeV and an invisible decay
mode so long as the condition

& = Br(H — invis) X Z8M = 60 (34)
Osm

is satisfied (for masses greater than 200 GeV, the require-
ment increases to &2 = 70%). In Eq. (34), oggy and ogy
are the beyond-the-standard-model and SM production
cross sections, respectively. In the CxSM, opgy * Ogum
where the proportionality factor is either cos’¢ for
the “Higgs-like” eigenstate or sin’¢ for the ‘“‘singlet-
like” eigenstate. The invisible decay branching fraction,
Br(H — invis), includes the kinematically allowed decays
of the &’ or §’ to two or four dark matter particles:

Br(#/, S’ — invis)
I, 8" — AA)][+T'(K, S — AAAA)]
- (i, 8) '
We calculate £ for each choice of the CxSM parameters to

determine if the ATLAS experiment is sensitive to decays
of the A’ or S’ eigenstates to dark matter.

(35)

V. RESULTS

In addition to fixing the Z, breaking parameter
a, = 1073, we also choose fixed representative values of
some of the CxSM parameters for simplicity. We make the
following choices for the parameters:

(i) the dark matter mass is 10 or 100 GeV;,

(i1) d,(M,) is fixed to 0.2, 0.5, or 0.9;

(iii) the singlet vev, x = 10, 100, or 1000 GeV.

The values for the dark matter mass and the coupling d,
were motivated by the study of the Z,xSM in [29] which
found a dark matter self-coupling of order 0.1-1.0 to be
most interesting for satisfying vacuum stability while

PHYSICAL REVIEW D 86, 043511 (2012)

TABLE I. A list of parameter scans performed. a; is chosen to
be 1073 GeV? so b, =~ M3. The only free parameters are A and
8,. A number between 0 and 1.5 is randomly chosen for A; then,
a number between 0 and —+/Ad, is chosen for §,.

M, = 10 GeV M, = 100 GeV
x =10 GeV d, = 0.2,0.5, 0.9 d, = 0.2, 0.5, 0.9
x = 100 GeV d, = 0.2, 0.5, 0.9 d, = 0.2, 0.5, 0.9
x = 1000 GeV d, = 0.2, 05,09

avoiding problems with nonperturbativity when the dark
matter mass is between 10 and 100 GeV. The chosen
order-of-magnitude values for the singlet vev result in
masses for the S’ state which span a sufficiently large
range that allows us to draw conclusions about the pa-
rameter space of the CxSM. We summarize in Table I the
values of the CxSM parameters chosen for our analysis.
We will first present our results in detail for a single
choice of parameters, and then present our general results
for all those values in Table I.

A. A light dark matter example

We will use as our example the parameter set M, =
10 GeV, x = 100 GeV, and d,(M,) = 0.2. The restric-
tions on the CxSM parameters from the vacuum stability
and RG analysis vary greatly with the choice of the cutoff
scale A (described in Sec. III). This is demonstrated in the
plots of 82 vs Ad, in Fig. 3. In the left column, §, > 0, and
on the right 6, < 0. The latter choice may accommodate a
first order EWPT, as indicated by the work of [12].

In each plot, the solid line indicates the tree level vac-
uum stability requirement 63 < Ad,. The plotted points
correspond to values of the parameters that satisfy the
RG running coupling constraints in Eq. (18) (gray points)
or the traditional Landau gauge one-loop effective poten-
tial vacuum stability requirement in Eq. (12) (black
points). Values of the cutoff scale A are taken to be
1 TeV (top row), 1000 TeV (middle row), or 10" GeV =
Mgyt (bottom row).

Figure 3 evinces all of the generic features of the vac-
uum stability analysis discussed in Sec. III. Even with the
most generous cutoff scale, A = 1 TeV, the allowed val-
ues of &, for a given A and d, do not extend up to the tree
level bound because the RG evolution of the couplings
breaks the condition of eqn. (18) that 8,(u)*> < A(u)d,(u)
at some u < A. When 8, < 0 (right column), this leads to
a runaway direction in the Landau gauge effective poten-
tial: hence, the effective potential limits (black points)
closely match the RG coupling limits (gray points).
However, if 6, > 0 (left column), the potential still appears
stable (in the Landau gauge) even if the condition on the
RG evolution of §, is not satisfied and so the effective
potential bound closely matches the tree level requirement.

Furthermore, as the cutoff scale increases, small values
of A are forbidden because of the appearance of deep
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FIG. 3. Plots of 83(My) vs A(My)d,(My). For all plots, M4, = 10 GeV, x = 100 GeV, and d,(M;) = 0.2. The tree level vacuum
stability requirement, 83 < Ad,, is indicated with the solid line. Gray points satisfy the constraints on the running couplings, Eq. (18),
while black points satisfy the effective potential vacuum stability requirement, Eq. (12), in the Landau gauge. In the left column we take
8, > 0 while in the right column &, < 0. The cutoff scale A is 1 TeV (top row), 1000 TeV (middle row), or 10> GeV (bottom row).

minima along the A-axis of the potential (or, alternatively,
A(u) <0), as in the SM. Large values of A are also
forbidden because RG evolution results in non-perturbative
values for the quartic couplings in violation of eq. (19).

In the discussion that follows, we consider the more
conservative but gauge-independent bounds on the parame-
ter space from the RG evolution of the quartic couplings in
Eq. (18), rather than the gauge-dependent limits from the
effective potential stability requirement in eqn. (12). The
plots for 6, > 0 have similar features so we do not show
them here; instead we focus on the 6, << 0 scenario because
of the impact on the electroweak phase transition, dis-
cussed in Sec. IVA.

The allowed masses of the &/, S’ eigenstates are shown
in Fig. 4 for the same set of parameters in Fig. 3:
M, =10 GeV, x =100 GeV, d,(M,) = 0.2, and also

A =1TeV and 6, <O0. Figure 4 shows the constraints
on the masses from LEP searches, EWPO measurements,
and the RG evolution of the quartic couplings in Eq. (18).
Darker colored points result in a singlet relic density that is
above the 10 WMAP bound, i.e., Q44> > 0.118. Lighter
colored points correspond to saturation or undersaturation
of the relic density, Q4% < 0.118. We note that the relic
density is (under)saturated when there are s-channel reso-
nances in the annihilation cross section (for 2M, = M) or
the 4-point interaction dominates (for M4, > My).

One important feature of note is that increasing
the Higgs-singlet coupling &, decreases the mass of the
lighter eigenstate—the singlet-like My here—according to
Eq. (6) and increases the mixing angle [see Eq. (8)] when
the other parameters (A, d,, x) are fixed. This effect is
responsible for three features observed in Fig. 4:
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FIG. 4 (color online).

Results of the scan for M4, = 10 GeV, x = 100 GeV, dy(M,) = 0.2, and A = 1 TeV with §, < 0 shown in

the Mg vs M), plane. Dark colored points oversaturate the relic density, while light colored points (under)saturate. The top left plot
imposes only the RG coupling limits, Eq. (18). RG coupling limits plus either the LEP constraints (top right) or the EWPO constraints

(bottom left), and finally all three (bottom right), are also shown.

(1) The EWPO constraints (imposed in Fig. 4, bottom
left) favor a light scalar with SM-like couplings. As
indicated by the slight slope on the right edge of the
allowed region, larger 4’ masses are allowed as M
decreases due to the increased mixing that allows S’
to offset the heavier A'.

It is possible for the heavier Higgs-like eigenstate to
avoid the 114 GeV bound from LEP (see Fig. 4, top
right) as My decreases from a maximum of Mg >
30 GeV due to an increased mixing angle and
reduced /' coupling strength to SM particles.

Also regarding the LEP constraints, a significant
number of points corresponding to Mg <
20 GeV = 2M, are eliminated because the decay
S’ — AA is no longer allowed, resulting in a light
scalar §” with SM-like branching fractions in viola-
tion of the LEP constraints. Increasing the 4’ mass
above 200 GeV decreases the mixing angle, so the
lighter Mg masses are once again allowed by the
LEP constraint despite the SM-like branching frac-
tions of the §'.

Figures 5 and 6 are the same as Fig. 4 but with A = 10°
and 10" GeV, respectively. Increasing the cutoff scale
forces 0, smaller—as was shown in Fig. 3—and results
in relatively larger masses for both the scalar eigenstates.
As these plots show, for a 1 TeV cutoff scale the effects of

2

3)

the LEP and EWPO limits are roughly equivalent.
However, as A increases, the vacuum stability and
perturbativity requirements reduce the allowed regions of
parameters and masses; of the points that remain at these
higher cutoff scales, a smaller number satisfy the EWPO
constraint than the LEP bounds. Thus the EWPO constraint
is more significant than the LEP bounds at higher cutoff
scales. Indeed, Fig. 6 shows that there are scalar masses
that satisfy the RG evolution requirement in Eq. (18) up to
the GUT scale, and the LEP bounds, but not the EWPO
constraints.

We now show the impact of the dark matter direct
detection limits and the condition for invisibly decaying
Higgs searches at ATLAS. Figure 7 displays those values
of the Higgs-like and singlet-like scalar masses that satisfy
Eq. (18) (top left—the same as the top left plot in Fig. 4),
plus the XENONI100 direct detection cross section
bound (top right) or the requirement for ATLAS invisible
Higgs decay searches (bottom left), and all three together
(bottom right). Figures 8 and 9 are similar to Fig. 7 but with
A = 10° and 10" GeV, respectively.

The choice of parameters here is such that nearly all the
points satisfy the XENON100 bound on the direct detec-
tion cross section. Consequently, very few points satisfy
the CRESST-II or DAMA regions (and a 10 GeV dark
matter particle is incompatible with the result from
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FIG. 5 (color online). Same as Fig. 4 but with A = 10° GeV.
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FIG. 6 (color online).
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FIG. 7 (color online).

Results of the scan for M4, = 10 GeV, x = 100 GeV, dy(M,) = 0.2, and A = 1 TeV with §, < 0 shown in

the Mg vs M), plane. Dark colored points oversaturate the relic density, while light colored points (under)saturate. The top left plot
imposes only the RG coupling limits, Eq. (18). RG coupling limits plus either the XENON100 bound (top right) or satisfaction of the
requirement for ATLAS invisible Higgs decay searches (bottom left), and finally all three (bottom right), are also shown.

CoGeNT presented in [39]). Therefore, here and in what
follows in later sections, we impose the XENON100 bound
as a more conservative upper bound on the direct detection
cross section.

More restrictive is the requirement for sensitivity to an
invisibly decaying Higgs at ATLAS: this condition prefers
a lighter Higgs-like eigenstate for which the total decay
rate is smaller and hence the 7/ — AA decay has a larger
branching fraction. Though the light S’ eigenstate has a
large branching fraction to dark matter, the mixing angle is
too small to give a &2 greater than the requisite 60%. The
RG evolution bounds and the ATLAS sensitivity become
mutually exclusive at higher A.

B. All results for light and heavy dark matter

‘We now consider all values of the couplings, singlet vev,
and dark matter mass (light being 10 GeV, heavy being
100 GeV) listed in Table I. Figure 10 shows the effect of
varying the model parameters on the scalar mass eigen-
states when M, = 10 GeV; only the RG evolution con-
straints of Eq. (18) have been imposed with a 1 TeV cutoff.
The top center plot in Fig. 10 is identical to the top left
plots in Fig. 4 through Fig. 9.

Varying the singlet vev x between 10 and 1000 GeV
clearly has a greater effect on the singlet-like eigenstate

mass than varying the singlet quartic self-coupling d, be-
tween 0.2 and 0.9, as is expected from Eq. (5). Furthermore,
the S’ eigenstate, when it is the lighter state (as in the left and
middle columns), has a maximum allowed mass: the smaller
eigenvalue of the mass matrix has, for fixed d,, x, a maxi-
mum value of d,x?/2 (plus loop corrections) even as A
increases. The Higgs-like eigenstate has a maximum value
because we have limited our scan of A. Finally, the general
trend for the relic density is oversaturation when M,
Mg > 2M ,—due to an off-resonance s-channel scalar ex-
change in the dark matter annihilation cross section—and
undersaturation when 2Mg¢ =~ M, or Mg < M.

Figures 11 and 12 show the inclusion of LEP and EWPO
constraints (right columns), direct detection and invisible
search constraints (left columns), and higher cutoff scales
of the effective theory for M, = 10 and 100 GeV, respec-
tively. Most of the discussion in Sec. VA generalizes to the
other choices of the parameters. We summarize the main
results from these two figures as follows:

(i) Avoiding oversaturation of the relic density requires
at least one scalar eigenstate to be lighter than the
dark matter except in the vicinity of a resonance in
the annihilation cross section. Thus, if any of the
dark matter direct detection experiments—in par-
ticular, DAMA/LIBRA, CoGeNT, or CRESST-II—
unambiguously detects lighter (M, = 10 GeV) or
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FIG. 8 (color online). Same as Fig. 7 but with A = 10° GeV.
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FIG. 9 (color online).
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FIG. 10 (color online).

Here are shown the effects on the mass eigenvalues and the relic density of changing d, and x (with §, < 0).

Only the RG running constraints (A = 1 TeV) have been imposed. Left column (Mg < 10 GeV, red in color version), x = 10 GeV;,
middle column (10 < Mg < 100 GeV, blue in color version), x = 100 GeV; right column (Mg > 100 GeV, green in color version),
x = 1000 GeV. Top row, d, = 0.2; middle row, d, = 0.5; bottom row, d, = 0.9. Dark colored points oversaturate the relic density,

while light colored points (under)saturate.

heavier (M, = 100 GeV) dark matter, it would be
natural to consider the possibility of other light
scalars weakly coupled to the SM.

(i1)) The RG evolution and vacuum stability analysis
requires heavier Higgs- and singlet-like eigenstates,
i.e., less mixing, at larger cutoff scales (central
columns). This is primarily to avoid the runaway
direction in the potential corresponding to 6, <0
and 8,(u)* > A(u)d; ().

(iii) the CxSM requires the existence of additional
new physics below the GUT scale, regardless of
whether the dark matter is lighter or heavier. If the
S’ eigenstate is lighter than the A’ state, the RG
evolution constraints and the LEP and EWPO
limits (right columns) become mutually exclusive
at high cutoff scales. If the S’ eigenstate is heavier
than the 4/, it is possible to satisfy LEP and
EWPO constraints with a lighter Higgs, but hav-
ing a heavier S’ results in oversaturation of the
relic density.

(iv) The regions of parameter space most favorable for
the invisible decay channel in the ATLAS detector
correspond to light (10 GeV) dark matter, a light
singlet-like eigenstate, and a low (1 TeV) new
physics scale.

C. Discussion

Putting together the trends from all of the plots in Fig. 4
through Fig. 12, we conclude that in order for the CxSM to
be natural, the singlet vev cannot be very large (1000 GeV)
and the scale of new physics has to be at most 10'> GeV.
Moreover, if ATLAS observes the invisible decay mode of
the Higgs, the new physics scale has to be in fact much
smaller, at most 10 TeV, and the singlet self-coupling d,
cannot be too large. To illustrate, for x = 10 GeV, the
maximum value of A for points that satisfy all constraints
(LEP, EWPO, relic density, and direct detection) is
10'? GeV. However, as Fig. 11 shows, none of these points
satisfy the requirements for the ATLAS Higgs search via
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FIG. 11 (color online).

Here are shown the allowed mass eigenvalues (M, = 10 GeV) after imposing the RG evolution requirement

in Eq. (18) (central column) plus the LEP and EWPO constraints (right column) or, alternately, the direct detection bound from
XENONI100 and the invisible decay requirements (left column). The effect of increasing the cutoff scale is also seen: A = 1 TeV (top
row), 10° GeV (middle row), and 10'> GeV (bottom row). Note that the top central plot corresponds to overlaying all plots in Fig. 10.
The value of x determines My as in Fig. 10 with x = 10 GeV for My < 10 GeV, x = 100 GeV for 10 < My < 100 GeV, and
x = 1000 GeV for Mg > 100 GeV. The appearance of discrete bands for a given x is the result of the three different choices for d,.

invisible decays. For x = 100 GeV, the maximum A for
points that satisfy all constraints is about 100 TeV for
dy, = 0.2, 10 TeV for d, = 0.5, and slightly greater than
1 TeV for d, = 0.9. When we consider those points that
also satisfy the requirements for the ATLAS Higgs search
via invisible decays, the maximum A is 10 TeV for
d, = 0.2, approximately 5 TeV for d, = 0.5, and no points
for d, = 0.9. For x = 1000 GeV, there are no points that
satisfy all constraints at any cutoff scale.

It is interesting, then, to consider the additional impact
of specifying the mass of the Higgs-like scalar to the range
suggested by the recent ATLAS and CMS results.” If the
mass of the Higgs-like scalar is 125 GeV and ATLAS does
not detect the invisible decay mode, then the region near

“We note that the significance of the reported excess will vary
with the singlet-doublet mixing angle that affects the production
cross section and the value of the dark matter mass that could
allow additional decay channels to open.

x = 10 GeV is favored (the singlet-like state is very light)
and the maximum A is ~100 TeV.'° On the other hand, if
the Higgs-like scalar mass is 125 GeV and ATLAS does
detect the invisible decay mode, this seems to be compat-
ible only with a singlet vev near x = 100 GeV and
d, = 0.2. In this case, the singlet is again very light, with
mass of order 20-25 GeV, and the CxSM requires new
physics at 5 TeV, well within reach of the LHC.

VI. CONCLUSIONS

Two of the significant outstanding questions in particle
physics are the nature of dark matter and the energy scale

"%In these scenarios for which ATLAS is not sensitive to the
invisible decay mode, the Higgs branching fraction to dark
matter may nonetheless be large and the branching fractions to
visible final states reduced. This may be in conflict with the
results from ATLAS and CMS, as pointed out in [9] for the
szSM.
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FIG. 12 (color online).

associated with physics beyond the standard model. Both
of these topics are relevant for general simple scalar
extensions of the SM including the model we have studied,
a complex scalar singlet extension. In the CxSM, through
spontaneous and soft breaking of a global U(1) symmetry,
we obtain a massive stable dark matter candidate and
two scalars which mix at the minimum of the potential,
one Higgs-like and the other singlet-like. Rather than a
traditional gauge-dependent vacuum stability analysis of
the one-loop effective potential, we have chosen to place
constraints on the parameters of the CxSM using a gauge-
independent analysis of the renormalization group evolu-
tion of the quartic couplings, motivated by requiring the
potential to be bounded below for the vacuum to be abso-
lutely stable (metastable vacua may also be allowed, but
we have not considered this possibility in our analysis).
Our analysis shows that constraints on the RG running of
the couplings gives results quite similar to the traditional
vacuum stability analysis of the Landau gauge effective
potential when the Higgs-dark matter coupling, &,, is
negative as can be favorable to an EWPT; for §, > 0, the
RG running constraints may be more conservative than is
strictly necessary for vacuum stability.

The same as Fg. 11 but with a dark matter mass of 100 GeV.

We have also considered constraints from relic density
measurements, the electroweak phase transition, LEP,
EWPO data, and dark matter direct detection experiments.
Additionally, we have considered the sensitivity of the
ATLAS experiment to a scalar which decays invisibly to
dark matter. We have found that if the scale of new physics
(the effective theory cutoff of the RG evolution of the
CxSM parameters) is a TeV, then it is possible to satisfy
all phenomenological constraints with a Higgs-like scalar
mass in the region allowed by recent results from ATLAS
and CMS and a light singlet-like scalar with a mass
roughly twice the dark matter mass or less. Under these
conditions, the mixing between the Higgs and the complex
scalar singlet is very small, so the singlet-like scalar cou-
ples very weakly to SM particles. If the dark matter is light
(10 GeV), the ATLAS detector may have sufficient sensi-
tivity to a Higgs that decays to dark matter with a large
branching fraction.

If new physics does not appear at the TeV scale but
instead arises at higher scales (10® GeV or the GUT scale,
10'> GeV), the CxSM is severely restricted by the com-
bined vacuum stability and phenomenological bounds. In
particular, limits from EWPO data are most in conflict with
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vacuum stability constraints (when the singlet-like eigen-
state is lighter than the Higgs-like state) since the former
generally favors a lighter Higgs while the latter requires a
heavier Higgs at higher cutoff scales.

With the continued operation of the LHC, a definitive
statement on the existence of a SM-like Higgs and TeV
scale new physics is expected. Determining whether
or not the Higgs exists and whether or not it has SM
production cross sections and branching fractions will
shed light on the scalar sector of fundamental particle
physics. Conclusive and consistent results from dark mat-
ter direct detection experiments will also provide informa-
tion crucial for determining whether or not dark matter is a
scalar particle and how dark matter couples to the SM.
Until such results become available, our vacuum stability
and phenomenology analysis has shown that further study
of simple scalar extensions of the SM—in particular the
CxSM with a light singlet-like scalar—is worthwhile.
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APPENDIX A: ONE-LOOP POTENTIAL AND RGES

The one-loop potential is given by
Vi(h, S, A) = an ZZn Tr{M4<log— — ¢ )} (A1)

The sum i runs over the scalar, fermion, and vector boson
contributions. The field-dependent mass matrices are
given in Egs. (A2)-(All). The number of degrees of
freedom associated with each contribution, n;, are given
in Eq. (A12), and the numerical factors are given in
Eq. (A13). In the scalar sector, we include the contributions
from the would-be Goldstone bosons. We use the notation g
and g’ for the SU(2); and U(1)y gauge couplings, respec-
tively, and y, is the top quark Yukawa coupling. Due to
the smallness of the other fermion Yukawa couplings, we
exclude them from the one-loop effective potential:

mz,(h, S,A) mig(h,S,A) mi,(h, S, A)
M2, = Diag| M3 3(h, S, A), mig(h, S,A) miy(h,S,A) mk,(h S A) || (A2)
mi (b, S,A) mi(h,S,A) mi,(h S, A)
|
h 1 1
e X Mier = Ding(3 7, 0, (2 + gP07). (AID
m 52 A
M2(h, S, A) = (— + 2252 4 A7) + —h2)|]3x3, (A3)
¢ 2 4 4 Rgcatar = 1, Nfermion = — 2, Nyecior = 3, (A12)
25 3\ 3 3 5
m%h(h, S, A) = mj + 72(52 + A2) + Thz (A4) Cscalar — 5’ Cfermion — E’ Cvector — 8 (A13)
5 The B and 7y functions are defined as
2 _ 92
th(h’r S’ A) - _hS’ (AS) dX M legZ
2 Bx = K aw W=7 dp L (Al4)
é
mi,(h, S, A) = TZhA, (A6)  for some coupling or mass parameter X and some field Y

1 8 d
mig(h, S, A) = E(b2 — b))+ f}ﬂ + f(352 + A2),
(A7)
d
m3,(h, S, A) = fSA, (A8)

1 8 d
mia(h, 8, A) =2 (by + b)) + Zth + ZZ(SZ +3A2),

(A9)

Mtgermlon - _yt h2 (AIO)

with wave function renormalization Zy. The B and y
functions for the CxSM are shown in Egs. (A15)—(A24).
Since there are no interactions between scalars involving
derivatives, at one-loop order there is no contribution to 7y,
Vs, or y4 from scalar loops. Thus yg = y4, = 0 and y,, is
unchanged from the SM result.

1 9 , .9 27
+ 82 _ + 4 + 2 /2 4)
By = T 2(6)~ 36y; 18 T8 T s
+ 4Ay,, (A15)
352 167 P (2d252 + 252 + 352)\) + 252(’)’h + ’yS)

(A16)
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1 =y, =
Bi, = 1o (5d3 +263) + ddyys, (A17) Vs =74 =0 (AZ3)
T
Also included is the running of the vacuum energy,
1
Bz = —— (b6, + 3m*A) + 2m*y,, (A18) 5 12 4
" dQ 1 (by b
tom ( +22 4 m—). (A24)
d,u 1672 4 2
By, = Tom 2(17 dy) +2byys, (A19)
B, =7 6 ——(2bydy +2m*8;) + 2byys, (A20) APPENDIX B: OBLIQUE PARAMETERS
Ba, = aiys (A21) Here we present the oblique parameters S, 7, and U, in
| 9 3 terms of the gauge boson propagator corrections. We use
3 2 _ 2 /2)) A22 the usual shorthand ¢,, = cosf,, = My /M, s,, = sinf,,,
[T ( Vi~ 48 48 (829 t,, = tanf,,:
|
g 1 .,
al = — @y M—2 cilIlz2(0) + 21,114, (0)] — Ly (0)),
g> 4sick » c s2 » )
as = 5 —>— Re| [1;(0) — I1,,(M3) + [I1,(M3) — 11,(0)] + IL,,(M3) ),
(477') M
g> (4s? %v
0l = 5 (S (M)~ T O3)] + S [N02) — 117,00
258,,Cyy 52, »
t— M2 [HZ'}/(MZ) ]-_-[Z'y(o)] + M—%H'y'y(MZ) : (Bl)

When calculating the differences AO between the CxSM and the SM values of S, T, and U, all terms except those
dependent upon the scalar masses cancel. The relevant terms are given in Eq. (B2):

1 371 M? M3 M3 M3
Ir=—~—al 22z ™a2) 2oz Mae )| T
167 s2 L2 M2 — M2 M%) M2—M3% \M3,

11 3M; M\ | M} - S V- S
5= _E[m ln(ﬁ%) + ZM% + 2F1(M ’ MZ’ MZ) + M_FI(MZ’ Mh’ Mz) - M—% ln(Mh)
— 4F()(M2, M%, M%) - ZAFlz(MZ’ M%’ M%)] + .. .,
17 3M; M2\ M3 2M? M2
V- __[27]12 ln<—2h) + o+ 2F (M, My, Miy) + 58 Fy (M, M3, M3y) = - In(M;
Amlmi—m3 \M3)  2M3, ", 7
— AF (M3, M2, M3,) — 2AF (M3, M2, Mgv)] - )
The functions Fy, F;, and F, (AF,, = F, — F,) are given by Eq. (B3):
1 ;
Fi(M3, M3, ¢*) = ] dzz'In[(1 — 2)M? + M3 — z(1 — 2)¢*] (B3)
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