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Primordial magnetic fields could provide an explanation for the galactic magnetic fields observed

today; in which case, they may leave interesting signals in the CMB and the small-scale matter power

spectrum. We discuss how to approximately calculate the important nonlinear magnetic effects within the

guise of linear perturbation theory and calculate the matter and CMB power spectra including the

Sunyaev-Zel’dovich contribution. We then use various cosmological data sets to constrain the form of

the magnetic field power spectrum. Using solely large-scale CMB data (WMAP7, QUaD, and ACBAR)

we find a 95% C.L. on the variance of the magnetic field at 1 Mpc of B� < 6:4 nG. When we include

South Pole Telescope data to constrain the Sunyaev-Zel’dovich effect, we find a revised limit of

B� < 4:1 nG. The addition of Sloan Digital Sky Survey Lyman-� data lowers this limit even further,

roughly constraining the magnetic field to B� < 1:3 nG.
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I. INTRODUCTION

Magnetic fields are observed at the 10�6 G level in
galaxies and clusters not just in the local Universe but up
to a redshift of z� 0:7–2 [1]. Production of magnetic fields
within a formed galaxy is extremely difficult, and the
consensus is that they are amplified from pregalactic seed
fields [2]. One interesting possibility is that these seed
fields were primordial in origin, formed in the very early
Universe. These seed fields are thought to have originated
either in a phase transition in the early Universe or pro-
duced directly during inflation. However, these scenarios
have problems, the former struggles to produce any sig-
nificant magnetic fields with the correlation lengths
observed [3,4], while many models of inflationary magne-
togenesis must produce fields of limited amplitude in order
that backreaction does not halt inflation [5].

The observation of magnetic fields up to a redshift of
z� 2 are particularly interesting as the fields have ampli-
tudes (B� 10 �G) comparable to those observed locally
[6]. This evidence seems to disfavor a large dynamo am-
plification, requiring a larger seed field to produce today’s
magnetic fields. In the extreme case of there being no
dynamo amplification, adiabatic contraction alone could
amplify a pregalactic field of around 1 nG (comoving) to
the required level.

A stochastic primordial magnetic field not only modifies
the standard evolution of the Universe but sources addi-
tional scalar, vector, and tensor modes, giving rise to both
new temperature and polarization perturbations in the
CMB as well as modifying the standard scenario [7–16];
both these contributions alter the matter distribution in the

local Universe [17–22]. Our aim in this paper is to see what
limits current data places on the level of magnetic fields in
the early Universe, and whether this is compatible with a
scenario where galactic magnetic fields are seeded by
primordial magnetic fields.
Constraints on the strength of a primordial magnetic

field come from many areas. The expansion rate at nucleo-
synthesis places direct limits on the strength of a magnetic
field then of B & 1 �G (comoving) [23,24], though this
can be strengthened by looking at the constraint on mag-
netic sourced gravitational waves [25] (also see Sec. IVD).
An indirect constraint suggests that primordial magnetic
fields must be limited to B� & 10�12 G to match Faraday
rotation measures in clusters [26,27], though this bound is
heavily dependent on the modeling of the magnetohydro-
dynamics during and after cluster formation. Observations
of the CMB provide the strongest direct limits, with pre-
vious statistical analyses [28–30], finding field strengths of
several nG to be consistent with current CMB data, with
comparable bounds also coming from limits on the con-
tribution to �8 [19,21]. These analyses only looked at the
CMB power spectrum and some progress has been made in
improving these limits through higher order moments [31]
such as the CMB bispectrum [32,33].
This work will depend heavily on the results of a pre-

vious paper [16], and will use the same conventions and
notation. Where it is necessary to use perturbation theory
we use a gauge invariant notation [34,35] similar to the
conformal Newtonian gauge. In this work we limit our-
selves to a flat �CDM universe.

II. NONLINEAR FIELD EVOLUTION

We will consider a stochastic magnetic field Biðxj; �Þ
generated by some mechanism in the very early Universe.
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As for all the periods of interest the Universe contains a
highly ionized plasma; we can use the MHD equations to
describe the behavior of the magnetic field. At linear order
in the magnetic field

@

@�
½a2Biðx; �Þ� ¼ 0; (1)

and this motivates the definition of a comoving magnetic

field, B̂iðx; �Þ ¼ a2Biðx; �Þ which is time independent at
linear order. Using this we can write the nonzero compo-
nents of the magnetic energy-momentum tensor as

T0
0 ¼ � 1

8�a4
B̂2ðxÞ; (2a)

Ti
j ¼

1

4�a4

�
1

2
B̂2ðxÞ�i

j � B̂iðxÞB̂jðxÞ
�
: (2b)

As there is no magnetic field on the background, the
perturbations of the stochastic background are manifestly
gauge invariant. We construct density and anisotropic
stress perturbations, �B and �B, defined by

T0
0 ¼ ��	�B; (3a)

Ti
j ¼ p	ð�B�

i
j þ�B

i
jÞ; (3b)

wherewe include the factors of �	 andp	 to take account of

the a�4 factors. As usual the anisotropic stress �B
i
j can be

decomposed into scalar, vector, and tensor contributions.
At higher order the comoving magnetic field obeys

@�B̂
i ¼ ½r� ðv� B̂Þ þ 
r2B̂�i
¼ �ijk�klm@jðvlB̂mÞ þ 
@j@

jB̂i; (4)

where v is the baryon velocity and 
 is the magnetic
diffusivity. In a highly conductive medium 
 is negligible
and so we will set it to zero from here onward. As (4) is
nonlinear the magnetic field evolution cannot be treated
accurately in the standard linearized Einstein-Boltzmann
approach. The standard approach is to separate the higher
order evolution of the magnetic field into two effects that
are physically well-motivated, a damping due to the radia-
tion viscosity and the effect of the magnetic Jeans length
(for extended discussions, see [36–39]). We follow the
same route in this work, modifying the linear evolution
equations to capture the essential physics without resorting
to a higher order calculation. Though a more detailed
second order calculation would be desirable, it would be
computationally unfeasible to use this in a Markov-chain
Monte Carlo analysis of cosmological data.

The first nonlinear contribution we address is the
magnetic counterpart of the Jeans effect. As gravitational
collapse causes baryon density perturbations to grow the
pressure in the gas is increased and eventually halts the
growth. When present, a magnetic field gives an additional
contribution to the pressure. As a baryon overdensity col-
lapses it compresses the large-scale field, generating an
increase in the magnetic pressure at the scale of the baryon

perturbation. In a magnetized medium there are multiple
modes that could be excited, but we expect the Jeans effect
to be mediated primarily by the fastest (the fast magneto-
sonic mode), which corresponds to the normal acoustic
mode in the limit of a small magnetic field [40]. The
simplest way of encapsulating this is to consider it as a
modification of the baryon sound speed, to the speed of
the fast magneto-acoustic mode [38,40], c2s ! c2s;b þ �v2

A

where � is an angular factor depending on the exact
velocity and field orientation. To include this in our work
we modify the evolution of the baryon velocity to

_�b¼�H�bþk2�þR��1
c ð�	��bÞ

þ1

2
k2R

�
1

2
�B;0�1

3
�ð0Þ

B;0

�
þk2

�
c2s;bþ

2

9
v2
A

�
�b; (5)

where cs;b remains the standard unmagnetized baryon

sound speed, and we have defined the Alfvén velocity vA as

v2
A ¼ 1

4��a4
hB̂2ik (6)

where � is the density of the conducting fluid, and hB̂2ik is
the variance of the field from scales larger than k. We
discuss this effect in more detail in Appendix A, motivat-
ing the specific form of the modification in (5), in particular
the factor 2=9 multiplying the Alfvén velocity. It is impor-
tant to note that as this effect is nonlinear, the modes do not
decouple and even when evolving the standard adiabatic
mode we must add in the Alfvén velocity term.
Radiation free-streaming is particularly important for

magnetic fields and is the most important source of damp-
ing on large scales [37]. Prior to free-streaming, there are
many photon-baryon scatterings per wavelength, and the
radiation and baryons appear like a single tightly-coupled
conducting fluid. However, when the photons start to free-
stream they decouple from the baryon fluid and this be-
comes the sole conducting fluid. While the baryons are no
longer tightly-coupled to the photons, there is still enough
scattering to exert a significant drag force on the fluid, and
this causes damping on propagating magnetic waves.
When the photons decouple from a particular scale, the

fluid no longer feels the radiation pressure, and the magnetic
pressure dominates the baryon pressure for B * 0:1 nG. In
this regime, in addition to Alfvén modes, magneto-acoustic
modes are also significant.
Properly accounting for the damping in the radiation

free-streaming regime requires the use of the full
Boltzmann system for the photons, a procedure that is
complicated by the necessity of including nonlinear mag-
netic effects. Instead we use the prescription of [36], who
analyzed the evolution of Alfvén modes in the presence of
a homogeneous radiation drag force. They find that the
magnetic field on small scales damped approximately as

B̂ iðkÞ ¼ B̂i
0ðkÞ exp

�
�k2

Z ��
v2
A�cd�

�
; (7)
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where vA and �c are defined above, and �� is the time of
last scattering. For magneto-acoustic modes, the damping
is similar to that of (7) with the Alfvén velocity vA replaced
with the baryon sound speed cs;b, causing them to damp

on smaller scales [36,37]. For simplicity, we will treat the
field as damping solely on the largest scale, that of the
Alfvén modes.

To account for this damping in our work, we allow the
linear perturbations �B and �B to evolve. This is in con-
trast to other work in the literature [13,14,28] where the
perturbations are constant for all time and the damping is
imposed as a cutoff on the initial power spectrum. This is
implemented by constructing effective differential equa-
tions for the two perturbations for � < ��

_� B ¼ �2k2v2
A�c�B; _�B ¼ �2k2v2

A�c�B: (8)

For � > ��, we set _�B and _�B to zero, as after recombi-
nation there is less than one scattering per Hubble time and
the damping is negligible. To ensure that energy conserva-
tion is maintained we presume that this is transferred
equally into the photon-baryon fluid. We modify the
baryon density equation to

_� b ¼ ��b þ 3 _�þ 2k2

1þ R�1
v2
A�c�B; (9)

and the photon density equation to

_� 	 ¼ � 4

3
�	 þ 4 _�þ 2k2

1þ R�1
v2
A�c�B; (10)

where we have added the final term in both of the above
equations. Practically, ensuring energy conservation makes
little difference to the results.

There is further avenue of decay for the magnetic fields,
through the damping of MHD turbulence in the post-
recombination Universe [41]. This effect is able to damp
scales larger than those affected by free-streaming but
smaller than the Jeans length, though its magnitude is
uncertain. This extra damping is not included in this
work, however, as this only modifies modes smaller than
the Jeans length we do not expect it to change our con-
straints (which are based on data probing larger scales).

One might worry that the modification to the evolution
equations above invalidate the initial conditions for the
magnetic modes that we are using [16], whichwere derived
for the unmodified equations. First, the modification to (5)
takes the form of amodification to the baryon sound speed, as
this is higher order in the initial conditions we do not expect it
to affect our results. The further changesmade are to (8)–(10),
and are all proportional to k2��c which is negligible on
superhorizon scales during radiation domination.

III. MAGNETIC MATTER POWER SPECTRUM

Using the above modifications to the evolution equations
we are able to calculate matter power spectra including
approximate treatments of the important nonlinear effects.

The remaining input is the statistics of the initial magnetic
perturbations �B and �B. We assume that at some early
time the comoving magnetic field power spectrum is de-
scribed by a power spectrum

hB̂iðkÞB̂�
j ðk0Þi ¼ ð2�Þ3�ðk� k0ÞPijðk̂Þ

2
PBðkÞ; (11)

where Pij ¼ �ij � k̂ik̂j, and we will not consider helicity.

The magnetic field power spectrum is

PBðkÞ ¼ AknB: (12)

We will use the spectral index nB as defined, but it is
conventional to give the amplitude of the spectrum in terms
of the variance B2

� of the magnetic field strength at a scale �
(we choose � ¼ 1 Mpc to agree with the bulk of the
literature). This gives

A ¼ ð2�ÞnBþ5B2
�

2�ðnBþ3
2 ÞknBþ3

�

: (13)

To calculate the two required power spectra P�B
ðkÞ,

P�B
ðkÞ and the cross spectrum P�B�B

ðkÞ requires convo-
lutions of the magnetic power spectrum. We use the results
of a previous paper [16], which allows us to reduce the
convolution into a dimensionless integral depending only
on nB. We numerically evaluate these at a large number of
values such that we can accurately interpolate to find
power spectra at an arbitrary nB. It is important to note
that as we are including the damping and Jeans effects in
the evolution of the magnetic perturbations we can safely
avoid imposing a cutoff in the initial power spectrum as
used in other work [13,30].
In Fig. 1 we show the consequence of the two nonlinear

effects on the matter power spectrum. The first thing to
note is that the linear theory magnetic power spectrum
grows as PðkÞ / k. On subhorizon scales during matter
domination, we can combine the evolution equations for
baryons and dark matter to give an equation for the total
matter perturbation �m ¼ Rb�b þ Rc�c

€� m þH _�m � 3

2
H 2�m ¼ �	

�m

k2LB; (14)

where the Lorentz force LB ¼ 2
3 ð13�B ��BÞ, and we ne-

glect pressure terms in c2s;b. In these limits the equation has

a simple solution for the magnetic mode

�m ¼ RbLB

�	ð�iÞ
�bð�iÞ ðk�iÞ

2

�
1

10

�
�

�i

�
2 þ . . .

�
; (15)

where we have included only the leading order term, and �i
is the time when the mode starts to grow significantly. This
is the time that the baryon perturbation decouples from the
photons. Provided this time is similar across a range of
scales (correct for larger scales), we can expect PmðkÞ /
k4PLB

ðkÞ; for nearly scale invariant magnetic field spectra

this gives PmðkÞ / k.
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The effect of including the magnetic pressure increases
the Jeans length, and thus causes smaller scales to oscillate.
In matter domination, the comoving magnetic Jeans wave
number is constant and thus larger k grow very little after
recombination. On even larger scales the diffusion damping
of the magnetic fields causes the source for the later growth

of the magnetic fields to be exponentially suppressed. This
leads to much slower growth in the matter perturbations,
and an effective cutoff beyondwhich there are no significant
perturbations sourced. The scales at which these effects
start roughly agree with the estimates of [20,36,38], where

both are expected to scale like kc / B�ðnþ5Þ=2
� .

In Figs. 2 and 3, we plot the effect on the matter power
spectrum of the amplitude and tilt of the magnetic spec-
trum. Figure 2 shows that the relative contrast between the
peak magnetic and primary contributions stay roughly
constant as the amplitude B� is varied. This occurs as a
consequence of the fact that the matter power spectrum at
the damping cutoff is / B4

�kc, while the primary spectrum
/ k�3

c . However as the damping wave number kc / B�1
�

for nearly scale invariant spectra, the ratio between the two
is constant.
Both the magnetic damping and Jeans effects give small

changes to the CMB power spectra at very high l. The
maximum scale that is affected by the magnetic damping is
around kD � 1h Mpc�1 and this changes the CMB power
spectra on scales l > DAkD � 104. For l < 104 the power
spectra are essentially the same as those shown in [16],
though in this work our power spectra are evolved from the
modified equations.

IV. RESULTS

We have used versions of CAMB [42] and COSMOMC [43]
modified to generate the magnetic contributions to both the
CMB angular power spectrum and the matter power spec-
trum.1 We limit ourselves to the most important magnetic

FIG. 3 (color online). The full matter power spectrum with all
nonlinear effects at a variety of magnetic spectral indices be-
tween nB ¼ �2:9 to�1:8. The amplitude is fixed at B� ¼ 2 nG.

FIG. 1 (color online). The additional nonlinear effects modify
the magnetic power spectrum. We plot the linear-only behavior,
the diffusion damping of the magnetic field, the magnetic
pressure support, and both effects combined. For comparison
we also include the primary adiabatic mode. All these plots are
calculated with a magnetic field strength of B� ¼ 5 nG and
spectral index nB ¼ �2:9.

FIG. 2 (color online). The full matter power spectrum with all
nonlinear effects at a variety of magnetic field strengths between
B� ¼ 1–5 nG. We have held the magnetic spectral index con-
stant at nB ¼ �2:9. The power spectrum amplitude increases
strongly with that of the magnetic field, however the two scales
associated with the diffusion damping and magnetic Jeans length
also increase rapidly.

1The modified version of CAMB and the adaptation of
COSMOMC to use will be available from http://camb.info/jrs.
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contributions in this work, the magnetic scalar and vector
modes and the tensor passive mode. We sample with a flat
prior in the standard set of cosmological parameters
f�bh

2;�ch
2;�;�;ns; logð1010AsÞg, assuming a flat �CDM

universe. To describe the magnetic fields we supplement
this with three parameters, the magnetic power spectrum
amplitude B�, and spectral index nB. We also need to
specify the production time of the magnetic fields �B to
calculate the passive modes. The tensor passive mode that
we calculate has the same structure as the standard tensor
mode with amplitude

Hð2Þ ¼ R	�
ð2Þ
B

�
logð�=�BÞ þ 5

8R	

� 1

�
; (16)

where � is the time of neutrino decoupling (see [16]).
Rather than directly specifying the magnetic field produc-
tion time we use a proxy rB ¼ log10ð�=�BÞ, such that

Hð2Þ � logð10ÞR	�
ð2Þ
B rB.

For priors on the magnetic quantities we choose a flat
prior in B� < 10 nG. For rB we use a flat prior with bounds
6 � rB � 17 corresponding to magnetic field production
between the electroweak phase transition and reheating at
the GUT scale. Finally for the spectral index we use a flat
prior �2:95 � nB � �1:6, the lower bound of this comes
from the fact that there is an infrared divergence for
nB � �3. The upper bound is from the fact that we are
primarily interested in primordial fields produced in the
early Universe (prior to nucleosynthesis); the work of [25]
suggests that larger spectral indices are ruled out by
nucleosynthesis constraints (see Sec. IVD). Other than
the upper bound on the spectral index, our results should
be valid for fields produced at later epochs.

A. CMB-only

Primordial magnetic fields contribute both passive
and compensated scalar and tensor modes, as well as a
compensated vector mode. However, the significant con-
tributions are from the passive tensor mode, and the com-
pensated vector mode, which are important on large and
small scales, respectively [16]. For comparison to CMB
data (for scales l & 3000) we need only need calculate
these two.

We use the recent WMAP 7 yr release [44] along with
the final data from QUaD [45] and ACBAR [46] for
l < 3000. We also use the Hubble Key Project data [47],
BBN data, Union Supernova dataset [48], and BAO data
from SDSS DR7 [49]. To account for the Sunyaev–
Zel’dovich effect at high multipoles we adopt the standard
treatment and use the WMAP template [44]. This requires
an extra parameter for its normalization ASZ which we treat
as a nuisance parameter and marginalize over.

The resulting constraints are shown in Fig. 4, which
are in broad agreement with those of Ref. [30]. We have
included only the magnetic amplitude B� and spectral
index nB, marginalizing over the other parameters. The

standard cosmological parameters are not shown as they
are in agreement with their values in a universe with no
primordial magnetic fields. We have also chosen not to
include rB as it is unconstrained by the data (see Fig. 5).
This is a manifestation of the fact that the tensor passive
mode can be only significant at large magnetic ampli-
tudes, and these are already excluded by the magnetic
vector mode. From this we calculate a 95% C.L. of
B� < 6:4 nG.
The constraints on the magnetic parameter space are

unchanged when adding in large-scale matter power
data sets such as 2dF [50] and SDSS LRG data from
DR4 [51],2 though the cosmological parameters change
as expected. The reason can be seen from Fig. 2, as
the magnetic contributions are only significant for k *
1h Mpc�1, and the galaxy redshift surveys probe only up
to k� 0:2h Mpc�1. We will include this data for the
remainder of this paper.

B. Sunyaev—Zel’dovich effect

Recent work [20] has suggested that the Sunyaev–
Zel’dovich (SZ) effect may be able to give tight constraints
on the magnetic power spectrum. As the magnetic fields
cause an increase in the small-scale matter power

FIG. 4 (color online). The CMB-only (WMAP7þ QUADþ
ACBAR) constraints on the magnetic field amplitude and spec-
tral index. The top left plot is the marginalized constraint solely
on the magnetic field, and the bottom right is the marginal
constraint on its spectral index. The bottom left plot is the joint
constraint (marginalized over the other cosmological parame-
ters), with contours for one and two sigma errors.

2We do not use the latest SDSS DR7 data [52] due to
complications modifying its likelihood calculation to include
the magnetic field matter power spectrum.
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spectrum, this gives rise to a large number of small mass
halos and thus a rise in the SZ angular power spectrum. The
recent release of data from the South Pole Telescope (SPT)
[53] provides CMB observations up to l� 104 that we will
compare to.

We follow the general method of [20], using the pre-
scription of [54] to calculate the thermal SZ angular power
spectrum from the matter power spectrum, which we have
calculated using our modified version of CAMB. We give
the details of this calculation in Appendix B. In addition to
the SZ contribution the magnetic vector mode gives a
significant addition to the small-scale CMB power, which
must be included. We do not include the kinetic SZ spec-
trum which is subdominant to the thermal spectrum. We
also note that the non-Gaussian statistics of the SZ effect
can significantly increase its intrinsic variance [55]; we do
not account for this within this paper.

As well as the data sets for the CMB-only constraints,
and the SPT data, we have also included the large-scale
matter power data. When generating the SZ power spec-
trum we must include all contributions, both the adiabatic
and magnetic contributions, as such we do not add in an SZ
template, and thus ASZ is no longer sampled over. The SPT
data contains a further small-scale contribution from the
unresolved point sources, both from star-forming and radio
galaxies (see Fig. 6). The exact value must be fit from the
bandpowers (in the analysis of [53] it is poorly constrained
with Cps

l ¼ ð6:2� 6:4Þ � 10�7 �K2). We expect that

neglecting this contribution will result in a small increase
to our upper limits.
The magnetic contribution to the SZ power spectrum

from our calculations is smaller than that of [20].
Differences between our calculations, such as in finding
the amplitude of the matter perturbations and treating the
nonlinear effects, make it difficult to give a single reason
for this.
Figure 7 shows the marginalized probability distribu-

tions for the magnetic parameters (again we do not plot rB).
The addition of the SPT data has excluded much of the
parameter space that was allowed when including primary
CMB effects only, especially the region with large mag-
netic field and blue spectral index, which gives the most
dramatic change in the matter power spectrum (see Fig. 3).
This gives a large decrease in the 95% C.L. of the magnetic
amplitude to B� < 4:1 nG.

C. Lyman alpha data

It is clear from both Figs. 2 and 3 that the small-scale
matter power spectrum is significantly affected by the
presence of a primordial magnetic field. Unfortunately
galaxy redshift surveys such as SDSS probe only as far
as k & 0:2h Mpc�1, scales too large to be affected by the
magnetic fields. However, observations of the Lyman-�
flux power spectrum probe the matter density power spec-
trum to scales as small as k� 5h Mpc�1 and may be able
to give a much more powerful constraint. Unfortunately
there is no simple analytic mapping from the observations
to the matter spectrum, so cosmological constraints need to

FIG. 5 (color online). The CMB-only marginal constraint on
the production time ratio rB ¼ log10ð�=�BÞ (bottom left), along
with the correlations with the magnetic field amplitude (top left)
and spectral index (bottom right). Even in the CMB-only con-
straint rB is largely unconstrained and has minimal correlation
with the other parameters, being only important in the case of
very large magnetic fields, and a very red spectral index.

FIG. 6 (color online). The angular power spectrum of the
CMB and the SZ contributions to it. We plot the SZ contribution
from the primary adiabatic mode only, and in combination with
four magnetic field strengths B� ¼ 2–5 nG, with a magnetic
spectral index of nB ¼ �2:4. We also plot the band powers from
SPT, and the estimate of the residual point source contribution
(labeled PS). Both the SZ contribution and the SPT data are at
150 GHz.
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be obtained by comparison to simulations [56]. A fully
consistent analysis including magnetic fields is beyond the
scope of this paper; instead we use a very rough simple
approximation to the likelihood.

We use the standard Lyman-� module in COSMOMC

which is based on the work of [56]. This finds an effective
amplitude and spectral index about a pivot scale of
k ¼ 0:009 s km�1 (roughly k� 1h Mpc�1). It calculates
a likelihood from these by interpolating between a set of
simulations compared to SDSS quasar data. Because of the
large difference between our power spectra (when includ-
ing magnetic effects) and those of �CDM we cannot
expect the likelihoods to be very accurate, especially at
large magnetic amplitudes and blue spectral indices, where
the effect is greatest. However for the pivot scale, and
range of scales probed by the SDSS spectra used k &
0:02 s km�1, the magnetic contribution is generally small
compared to that of the primary adiabatic mode. In this
light our results should be viewed as an approximation to
the constraints that a more sophisticated likelihood ap-
proach would achieve.

The magnetic parameter space is significantly con-
stricted by the use of the Lyman-� data (see Fig. 8)
with the allowed region for B� being largely independent
of the spectral index nB. As the Lyman-� pivot scale
(k� 1h Mpc�1) coincides with the scale at which the
magnetic matter power spectrum amplitudes are very simi-
lar across a large range of nB. This is to be expected as the
Lyman-� pivot (k� 1h�1Mpc�1) coincides with the scale

at which the magnetic matter power spectrum amplitude is
similar across a broad range of nB. Overall this results in a
95% C.L. of B� < 1:3 nG.

D. Nucleosynthesis constraints

Nucleosynthesis places strong constraints on the amount
of energy density in gravitational waves allowed in the
Universe, giving a limit of �GW & 1:1� 10�6 [57]. Prior
to neutrino decoupling the anisotropic stress of an inho-
mogeneous magnetic field on superhorizon scales sources
gravitational waves,3 this allows the small-scale magnetic
fields to transfer some of their energy into gravitational
waves before it is dissipated into the photon- baryon
plasma [25]. This process is quite efficient, and gives the
gravitational waves a significant fraction of the original
magnetic energy (see [58] for an intuitive explanation of
this). As the magnetic field energy density is necessarily
blue, there is more energy density in the smallest scale
fluctuations. This allows us to strengthen the usual con-
straints on the total magnetic energy density which only
take into account the energy remaining in the field at
nucleosynthesis by constraining �GW which is sourced at
a time when much smaller scales have not been damped.
We take Eq. (33) from [25] adapted to our conventions,
yielding

FIG. 8 (color online). Constraints on the magnetic field
amplitude and spectral index using CMB and matter power
data, including Lyman-� data. The Lyman-� data, which probes
the small-scale matter distribution, has dramatically reduced
the allowable parameter space, to a range of small amplitudes
(B� & 1:5 nG) roughly independent of spectral index nB.

FIG. 7 (color online). The CMB and SZ constraints on the
magnetic field amplitude and spectral index. The individual plots
are equivalent to those in Fig. 4. Calculating the magnetic SZ
contributions with the addition of SPT data has restricted the
parameter space to lower amplitudes and redder spectral indices
than the large-scale CMB data.

3These are the same as tensor passive modes [16], though they
stop growing when they enter the horizon prior to neutrino
decoupling.
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B�=nG< 700h

�
2ððnþ5Þ=2Þ�

�
nþ 5

2

��
1=2

10�ððnþ3Þ=2Þð4þrBÞ:

(17)

It is essential to note that this assumes that the magnetic
field is well-described by a single power law across a vast
range of scales—from the pivot scale at k ¼ 1 Mpc�1 up
to at least k ¼ 1010 Mpc�1, the horizon scale at the
electroweak phase transition. Depending on how the
magnetic field is generated this assumption may break
down—any freedom to reduce small scale power would
significantly weaken the constraints.

In Fig. 9 we show the probability distribution of the
magnetic parameters when combining the nucleosynthesis
constraint with the Lyman-� data of Sec. IVC. As we
would expect this reduces the allowed parameter spaces
to redder spectral indices nB & �2. Because of this the
limits on the amplitude are slightly enlarged with the
95% C.L. becoming B� < 1:6 nG.

V. CONCLUSION

As we have seen in this paper, when considering the
magnetic contributions to the matter power spectrum it is
essential to treat important small-scale, nonlinear effects.
We have demonstrated a technique for approximating the
main nonlinear effects within linear perturbation theory,
and have incorporated this into a modified version of
CAMB. This gives an alternative to the common approach

of incorporating these effects directly into the initial power
spectrum, such as in Ref. [30].
We have used our theoretical predictions to place con-

straints on the allowable magnetic field amplitude given
various data sets. Where all limits are at 95% confidence,
using CMB data only we find B� < 6:4 nG, with a redder
spectral index favored. As the presence of a stochastic
magnetic field gives significant modifications to the
small-scale matter distribution, we also look at the con-
straints when adding two probes of it: the Sunyaev–
Zel’dovich effect measured by SPT [53], which gives a
limit of B� < 4:1 nG, and Lyman-� forest data from SDSS
[56], which gives a rough constraint of B� & 1:3 nG.
While the addition of the small-scale matter data gives a

large reduction in the allowed amplitude of a primordial
magnetic field (certainly when using Lyman-� data), this
is still roughly consistent with a scenario where current
galactic fields are formed solely by adiabatic contraction of
primordial fields. Increasing the accuracy of measurements
at the scales we can currently probe with data will provide
limited gains: since the magnetic power spectrum increases
with B4

�, significantly decreasing the errors on matter
power spectrum measurements will produce less impres-
sive gains in the upper limit on B�. However, if better
observations and modeling allow accurate comparison to
smaller scales there should be an almost linear decrease in
the upper limit with the smallest scale probed. This would
seem to provide the best opportunity for testing the pri-
mordial field hypothesis.
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APPENDIX A: MOTIVATING THE
MAGNETIC JEANS EFFECT

To analyze the magnetic Jeans effect we need to look
at the nonlinear evolution of the field perturbations. First
let us construct �ij, a quadratic combination of the mag-
netic field

�ij ¼ 1

4��	a
4
B̂iB̂j; (A1)

with the normalization chosen such that it is conveniently
close to the magnetic perturbations

�B ¼ 1

2
�k

k; �ij
B ¼ �k

k�
ij � 3�ij: (A2)

We are interested in the time evolution of �ij, and thus

want to calculate the derivative _�ij ¼ 1
2��	a

4 B̂
ði@�B̂jÞ,

where the parentheses indicate symmetrization with

FIG. 9 (color online). Constraints on the magnetic parameter
space from Lyman-� data including the nucleosynthesis con-
straints of [25]. The solid- and dashed-orange lines give the
upper bounds in amplitude of a magnetic field produced at GUT
scale inflation and the electroweak phase transition, respectively.
This corresponds to our priors.
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respect to the enclosed indices. It will be useful to reex-
press (4) by expanding the Levi-Civita symbols

@�B̂
i ¼ B̂kð@kviÞ � vkð@kB̂iÞ � B̂i@kv

k: (A3)

Using (A3) we can calculate the time derivative of _�ij

_� ij ¼ 2ð@kvðiÞ�jÞk � 2ð@kvkÞ�ij � vkð@k�ijÞ: (A4)

Using the definitions of (A2) we can split the above into
equations for each of the perturbations �B and �B. First

_� B ¼ � 4

3
�B�b � vkð@k�BÞ � 1

3
�kl�

kl
B ; (A5)

where we have only included terms up to second order, and
we have decomposed

@ivj ¼ 1

3
�b�ij þ �ij þ!ij (A6)

at linear order. Physically �b is the divergence of the
baryon 3-velocity, and �ij is its shear; we will neglect

the antisymmetric vorticity tensor !ij. Second, the mag-

netic
anisotropic stress evolves as

_�ij
B ¼ � 4

3
�b�

ij
B � vk@k�

ij
B � 4�ij�B

þ 2�k
ði�jÞk

B � 2

3
�kl�

kl
B �

ij: (A7)

In this paper we do not attempt a fully self-consistent
nonlinear analysis. Instead, we try to identify the most
important nonlinear effects and then model them using an
approximate method that is at least as consistent as most
previous work. Herewe are interested in themagnetic Jeans
instability—the isotropic part of this effect is described by
the first terms on the right-hand side of (A5) and (A7),

_� B ¼ � 4

3
�B�b; _�ij

B ¼ � 4

3
�ij

B�b; (A8)

corresponding to an enhancement/ ð�b=�
0
bÞ4=3 as a pertur-

bation collapses to density �b compared to a background
value of �0

b. To leading order we can use the linear baryon

density evolution equation

_� b ¼ ��b þ 3 _� (A9)

to replace �b, and neglect _� on the small scales of interest,
giving

�B ¼�B;0

�
1þ 4

3
�b

�
�ij

B ¼�ij
B;0

�
1þ 4

3
�b

�
; (A10)

where�B;0 and�B;0 are themagnetic perturbations at some

initial time where the baryon perturbation �b was much
smaller than its present value. The linearized equation for
the evolution of the baryon velocities in Fourier space is

_�b ¼ �H�b þ k2c2s;b�b þ k2�þ R��1
c ð�	 � �bÞ

þ 1

2
k2R

�
1

2
�B � 1

3
�ð0Þ

B

�
; (A11)

where �c is defined as �c ¼ 1=ðane�TÞ, cs;b the baryon

sound speed, R ¼ 4�	=3�b, and the last term is the mag-

netic interaction, the Lorentz force. To include themagnetic
field evolution in this, we use Eq. (A10), and replace the
magnetic perturbation with its expectation (smoothed at the
relevant scale) in the higher order terms only. This is not
fully justified, however the magnetic pressure is always
positive, and there are large-scale modes that look locally
homogeneous, so this prescription aims to include the main
qualitative effect of the pressure enhancement due to the
large-scale magnetic field being adiabatically compressed.
The corresponding effect from large-scale densities com-
pressing the small-scale field has random sign, and hence is
expected to have zero mean. In Fourier space this leaves

�B ¼ �B;0 þ 4

3
h�B;0ik�b; (A12)

�ij
B ¼ �ij

B;0; (A13)

where the expectation is evaluated using only modes larger
than the scale of interest. The equation for�B has only the
lowest order term as h�B;0ik ¼ 0. As a caveat we note that
this averaging procedure it unlikely to be valid if the
objective is to study nonlinear collapse at density peaks:
the large-scale background field changes from place to
place, and the density of collapsed objects is expected to
be correspondingly modulated. For calculating the power
spectrum it may however be a reasonable approximation,
and our later results are in fact most constrained by the
power spectrum.
Inserting (A12) into (A11) gives

_�b ¼ �H�b þ k2c2s;b�b þ k2�þ R��1
c ð�	 � �bÞ

þ 1

2
k2R

�
1

2
�B;0 � 1

3
�ð0Þ

B;0

�
þ 2

9
k2v2

A�b; (A14)

where we have defined the Alfvén velocity vA as

v2
A ¼ 1

4��a4
hB̂2ik ¼ 3

2
Rh�B;0ik; (A15)

where � is the density of the conducting fluid. The last
equality comes from the fact that during matter domination
� ¼ �b. This is the standard evolution Eq. (A11) with a
new effective sound speed c2s ! c2s þ 2

9v
2
A. This agrees

with other approximate treatments of the magnetic Jeans
effect in the literature up to the factor of 2

9 [36,38,40],

which is different but of the same order. This discrepancy
has little effect on the magnetic Jeans scale, changing it by
at most a factor of 2.
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APPENDIX B: SUNYAEV—ZEL’DOVICH EFFECT

In order to compare to the recent data from the South
Pole Telescope [53], we need to be able to calculate SZ
angular power spectra from linear matter power spectra.
We use the halo method of Komatsu and Seljak [54], and
largely follow details of the calculation in [53]. We give an
outline of this below.

The angular power spectrum is given by

Cl ¼ g2
Z

dz
dVc

dz

Z
dM

dnðM; zÞ
dM

jylðM; zÞ2j: (B1)

In the above Vc is the comoving volume out to redshift z,
and g is the spectral function given by

g ¼ x

tanhðx=2Þ � 4; (B2)

where x ¼ h=kBTCMB. The halo mass function dn
dM is

comoving number density of virialized halos at mass M.
Finally yl is the Fourier transform of the projected
Compton y profile

ylðM; zÞ ¼ 4�rs
l2s

Z 1

0
y3DðxÞsincðlx=lsÞx2dx; (B3)

where rs is the scale radius of the profile, ls ¼ da=rs is its
angular projection (da is the angular diameter distance to
redshift z) and y3D is the three-dimensional Compton profile
in terms of x ¼ r=rs. The profile y3D is determined by the
model chosen for the baryon density and temperature profile
of the halo. Following the details of [54], we fix its form
with four assumptions: the dark matter density profile is
Navarro-Frenk-White (NFW) [59]; hydrostatic equilibrium
between the gas pressure and the halo self-gravity; baryon
density traces the dark matter density in the outer halo; and
the gas has a polytropic equation of state Pb / �	

b . The

results of this are given below, for details see [54].
Using an NFW dark matter profile, the scale radius

above rs is the usual NFW definition, rs ¼ rvir=c where
c is the concentration, and rvir is the virial radius given by

rvir ¼
�
3

4�

M

�c�cr

�
1=3

; (B4)

where the virialization parameter �c can be calculated
from the spherical collapse of a top hat perturbation.
A fitting formula for �c is calculated in [60]

�cðzÞ ¼ 18�2 � 82��ðzÞ þ 39��ðzÞ2 (B5)

which is accurate in the range �� < 0:9.
The concentration parameter c which defines the scale

radius of the profile can be fitted from simulations. We use
the relation of [61] which takes the form

cðM; zÞ � 7:85

ð1þ zÞ0:71
�
M

M�

��0:081
; (B6)

where the pivot mass is fixed to beM� ¼ 2� 1012h�1M	.

The profile y3D is given by

y3DðxÞ ¼ 1:14� 10�4 Mpc�1

�
�bð0Þ

1014M	Mpc�3

�

�
�
kBTbð0Þ
8 keV

�
yðxÞ: (B7)

The dimensionless function yðxÞ gives the profile shape
yðxÞ ¼ ½1� B½1� x�1 lnð1þ xÞ��	=ð	�1Þ: (B8)

B is a constant given by

B 
 3
�1 	� 1

	

�
1

c
lnð1þ cÞ � 1

1þ c

��1
: (B9)

Fitting functions for 
 and 	 are derived in [54]. They are
valid for the range 1< c< 25,

	 ¼ 1:137þ 0:0894 lnðc=5Þ � 3:68� 10�3ðc� 5Þ;
(B10)


 ¼ 2:235þ 0:202ðc� 5Þ � 1:16� 10�3ðc� 5Þ2:
(B11)

The central gas density �bð0Þ is

�bð0Þ ¼ 7:96� 1012M	Mpc�3

�
M

1014M	

��
rvir
Mpc

�
3

�
�
�b

�m

�
yðxÞ�1=	

ð1þ cÞ2
�
1

c
lnð1þ cÞ � 1

1þ c

��1
;

(B12)

and the central temperature Tbð0Þ is

Tbð0Þ ¼ 0:880 keV


�
M

1014M	

��
rvir
Mpc

��1
: (B13)

The final ingredient needed to calculate the SZ power
spectrum is the mass function. In common with [53,54]
we use the Jenkins mass function [62] calculated from
N-body simulations. As with the Press-Schechter pre-
scription the key quantity is the smoothed variance
�ðRÞ defined by

�2ðR; zÞ ¼
Z

d lnk eW2
RðkÞP ðk; zÞ: (B14)

In our work we choose a window function eWRðkÞ that is a
spherical top hat in real space. The mass enclosed in this
comoving scale is simply M ¼ 4��m;0R

3=3, and this

defines an obvious mapping between a mass smoothed
�ðMÞ and �ðRÞ. In terms of �ðMÞ the mass function of
[62] is

M2

�m;0

dnðM; zÞ
dM

¼ 0:301

��������d ln�

d lnM

��������expð�j0:64� ln�jÞ:
(B15)
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