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An important open question in cosmology is the degree to which the Friedmann-Lemaı̂tre-Robertson-

Walker (FLRW) solutions of Einstein’s equations are able to model the large-scale behavior of the locally

inhomogeneous observable universe. We investigate this problem by considering a range of exact n-body

solutions of Einstein’s constraint equations. These solutions contain discrete masses, and so allow

arbitrarily large density contrasts to be modeled. We restrict our study to regularly arranged distributions

of masses in topological 3-spheres. This has the benefit of allowing straightforward comparisons to be

made with FLRW solutions, as both spacetimes admit a discrete group of symmetries. It also provides a

time-symmetric hypersurface at the moment of maximum expansion that allows the constraint equations

to be solved exactly. We find that when all the mass in the universe is condensed into a small number of

objects (& 10) then the amount of back-reaction in dust models can be large, with Oð1Þ deviations from
the predictions of the corresponding FLRW solutions. When the number of masses is large (* 100),

however, then our measures of back-reaction become small (& 1%). This result does not rely on any

averaging procedures, which are notoriously hard to define uniquely in general relativity, and so provides

(to the best of our knowledge) the first exact and unambiguous demonstration of back-reaction in general

relativistic cosmological modelling. Discrete models such as these can therefore be used as laboratories to

test ideas about back-reaction that could be applied in more complicated and realistic settings.
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I. INTRODUCTION

The visible matter in the universe contains structure on a
wide range of scales, from stars and planets (�1010 m) to
voids and superclusters (�1024 m), (see e.g. [1]). In stan-
dard general relativistic cosmological modelling the prob-
lem of dealing with this complexity is often circumvented
by assuming that the stress-energy tensor of an inhomoge-
neous universe can be approximated by an ‘‘averaged’’
stress-energy tensor, usually assumed to be representable
by a simple perfect fluid, while leaving the left-hand side of
Einstein’s equations unchanged. The solution to these equa-
tions is then taken to represent the geometry of spacetime on
the scale over which the averaging was performed. If this
scale is large enough to result in a homogeneous and iso-
tropic spacetime, then we will refer to this geometry as the
‘‘background.’’

The great benefit of this approach is the enormous sim-
plification it entails, by allowing cosmology to be done on
any scale, without having to worry about the enormously
complicated task of taking into account the wide range of
structures that exist in the universe. The drawback is that it is
not always clear to what extent the expansion of space in the
background geometry is representative of the large-scale
expansion of space in the actual universe. For a givenmodel,
we will refer to the difference between these two things as
‘‘back-reaction,’’ which can be considered as the influence
of inhomogeneities at different scales on large-scale cosmo-
logical dynamics. As large-scale expansion can be related to

observables such as luminosity distance and redshift [2–4],
it is therefore the case that an understanding of back-
reaction could prove essential in achieving a fundamental
concordance between theory and observations [5,6].
This task becomes increasingly important given that

observational cosmology is now starting to be able to
make high-precision measurements of a variety of different
astrophysical probes, including the Cosmic Microwave
Background (CMB) [7,8], Type Ia supernovae [9,10], and
Baryon Acoustic Oscillations (BAO) [11,12]. When inter-
preted within the background of the standard cosmological
model, these very different probes all suggest that the
universe is at present undergoing a phase of late-time
accelerated expansion. In a genuinely homogeneous and
isotropic general relativistic universe filled with a perfect
fluid, such behavior is only possible if p <��=3, with
data currently being compatible with the presence of a
cosmological constant with p ¼ ��. The presence of
such a fluid is problematic for a variety of reasons, requir-
ing a fine-tuning of perhaps as much as 1 part in 10120. This
immediately raises the question of whether the model we
are using to interpret the data is adequate, a question which
needs to be quantified in any case if we are to start perform-
ing ‘‘precision cosmology’’ [13].
One particular aspect of this complicated problem is the

degree to which dust (a fluid without any self-interactions)
is appropriate for describing the matter content of the
universe [14]. This approximation treats gravitationally
bound, extended objects (such as galaxies, and clusters of
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galaxies) as a medium that is parameterised by only a handful
of continuous, and usually slowly varying, quantities. Within
this framework, the spacetime through which photons travel
has a fundamentally different type of curvature to that of the
real universe [15]. It also ignores the gravitational consequen-
ces of the binding energies between and within astrophysical
systems [16]. A dust description should therefore be consid-
ered as an approximation only, and must itself be investigated
in order to ascertain the extent to which it is justifiable.

We study the problems outlined above by considering
cosmological solutions that are explicitly composed of regu-
larly arranged discrete masses. These solutions consist of
vacuum everywhere exterior to the sources under consid-
eration, and are constructed on a manifold that has spacelike
hypersurfaces that are topological 3-spheres. As a result,
they admit a group of discrete symmetries corresponding to
rotations of the 3-sphere that leave the positions of the
masses invariant. These models are among the simplest
possible inhomogeneous spacetimes that could be consid-
ered to exhibit large-scale homogeneity and isotropy: They
introduce only one extra scale into the problem (the inter-
particle separation), they are vacuum solutions of the field
equations (up to the singularities), and they contain within
them a time-symmetric spatial hypersurface (which greatly
simplifies the constraint equations). This makes them ideal
candidates for studying back-reaction.

Cosmological solutions of this type have been consid-
ered before, starting with the seminal work of Lindquist
and Wheeler [17]. The approach these authors took was to
construct a gravitational analogue of the highly successful
Wigner-Seitz construction. The basic idea was to build
lattices from regular cells, and attach the cell boundaries
tangentially to a background 3-sphere. Dynamics were
then imposed by assuming that observers that are equidis-
tant between neighboring sources should be falling freely
with respect to those sources. This led to a dynamical
model of the universe in which the masses are regularly
arranged, and that is taken to be an approximate solution to
Einstein’s equations. The Lindquist-Wheeler approach has
recently been extended to include models with spatially flat
and open topologies [18], as well as to models with a
cosmological constant [19]. The optical properties of spa-
tially flat models of this type have also been considered in
[18–20], as have those of negatively curved models in [21].
Other attempts to construct cosmological models for simi-
lar configurations of discrete masses have been made using
perturbative expansions [22], and Regge calculus [23].

While providing insights into the problem, all of the
models mentioned above involve the use of approximate
solutions. Our aim here is to take an alternative approach to
addressing this problem that is exact. This approach is
based on work initiated by Misner about five decades ago
[24], and that has subsequently been used extensively in
the study of black hole physics [25–27]. The underlying
idea here is again drawn from analogy with the study of

electromagnetism, where intuitions about more general situ-
ations are gained by first studying the simple case of static
configurations of charge. In gravitational settings, however,
it is very difficult to arrange for configurations of isolated
masses to be static for a finite interval of time.1In contrast,
configurations that are instantaneously static occur frequently.
The study of such configurations, that occur in many systems
of physical interest, is referred to as geometrostatics.2

In the case of cosmology, which is our main interest
here, an important example is provided by the instantane-
ously static (and therefore time-symmetric) hypersurfaces
that occur at the moment of maximum expansion in dust-
dominated FLRW solutions with positive spatial curvature.
Our goal is to construct a set of instantaneously static
configurations that are exact, and that contain discrete
matter sources, rather than continuous fluids. We do this
by constructing regular tessellations of a 3-sphere by using
different sets of identical polyhedra, each with an identical
mass at their center. We show that the method of geo-
metrostatics can be extended to solve the constraint equa-
tions exactly in these cases. Our aim is then to use these
solutions to study back-reaction in dust-filled cosmological
models. We do this by comparing the time-symmetric
spatial hypersurfaces of the exact discrete solutions to
the corresponding FLRW solutions with the same proper
mass,3 and considering, in particular, the extent to which
the FLRW solutions emerge as the number of sources is
increased. This provides a precise indication of the degree
to which FLRW solutions can be used to represent initial
configurations for spacetimes that contain discrete objects.
A fuller investigation of back-reaction along these lines
would also include considering the dynamical evolution of
models with discrete sources. We leave this for a future
publication.
The plan of the paper is as follows. In Sec. II we recap on

perfect fluid FLRW cosmology. In Sec. III we provide the
constraint equations on time-symmetric hypersurfaces
for discrete masses on a 3-sphere. We discuss the
Schwarzschild solution, and then outline how to find the
solution for arbitrarily many discrete masses in a closed
space. In Sec. IV we construct all of the possible solutions
that consist of discrete sources regularly arranged on a
closed lattice. This allows us to explain why there are no
2-mass solutions with spherical topology to Einstein’s
equations that admit a time-symmetric hypersurface. In
Sec. V we provide evidence that shows that the sources
in our discrete models are always separated by distances

1Counterexamples include spacetimes in which the cosmo-
logical constant is nonzero, and the periodic solution found by
Korotkin and Nicolai [28].

2Examples include dynamical systems that possess a recol-
lapsing phase (as happens when a particle is thrown vertically
upwards from the surface of a massive body, with less than the
escape velocity).

3As defined in [29] and in Sec. III B.
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that are larger than their horizon sizes at the maximum of
expansion. In Sec. VI we investigate back-reaction in dust-
dominated cosmological models by comparing the scale of
our lattices to dust-filled FLRW solutions of Einstein’s
equations with the same total proper mass. We find that
Oð1Þ deviations from the results of Friedmann cosmology
can occur when the number of masses is small (& 10), but
that the scale of the solutions converge to the Friedmann
values when there are very many masses (* 100). In
Sec. VII we then consider what happens when we include
interparticle interaction energies in our definition of mass.
We find that the consequences of changing the number of
masses in the lattice, while keeping the total energy of the
system the same, can considerably change the scale of the
hypersurface of maximum expansion. This shows that
although back-reaction in dust models we consider is
generically quite small, the consequences of ignoring in-
teraction energies when using the dust approximation can
hide potentially interesting effects. In Sec. VIII we present
our conclusions.

II. PERFECT FLUID COSMOLOGY

The spatially homogeneous and isotropic perfect fluid
FLRW solutions have a geometry given by

ds2 ¼ �fðtÞdt2 þ a2ðtÞðd�2 þ h2ð�Þd�2Þ; (1)

where fðtÞ is a free function, d�2 ¼ d�2 þ sin2ð�Þd�2,
and hð�Þ ¼ sin�, � or sinh� for solutions with spatial
curvature k ¼ þ1, 0 or �1, respectively. The scale factor
aðtÞ satisfies the constraint equation

1

f

_a2

a2
¼ 8�

3
�� k

a2
; (2)

where the dot represents a derivative with respect to t, and
� ¼ �ðtÞ is the energy density of the continuous perfect
fluid, which obeys the conservation equation

_�þ 3
_a

a
ð�þ pÞ ¼ 0; (3)

where p ¼ pðtÞ is the pressure. This completely specifies
the solution, up to constants of integration.

For the present study we will be primarily interested in
models with positive spatial curvature (k ¼ þ1), and with
a pressureless dust source (p ¼ 0). In this case, if we take
f ¼ aðtÞ, then the solution can be written as

aðtÞ ¼ 8�

3
�0 � 1

4
ðt� t0Þ2; (4)

where t0 and �0 are constants, and where �ðtÞ ¼ �0=a
3ðtÞ.

The maximum of expansion can then be seen to occur at
t ¼ t0, and the geometry of the hypersurface t ¼ t0 can be
seen to be given by

dl2 ¼ 3

8��ðt0Þ ðd�
2 þ sin2�d�2Þ; (5)

which is rigidly specified once �ðt0Þ, the energy density at
maximum of expansion, is known.
We note that the only dust-filled FLRW solutions that

admit a time-symmetric hypersurface are spatially closed,
with a spherical topology. Interestingly, the boundary con-
ditions for discrete models with a momentarily static distri-
bution of sources also seem to be incompatible with open
topologies (the reason for this is that a 1=r source cannot
live alone on T3, and a regular lattice of identical sources on
E3 is also not possible [28]). This shows a certain qualitative
concordance between discrete and fluid solutions in the
interplay between boundary conditions and topology.

III. CONSTRAINT EQUATIONS FOR
DISCRETE MODELS

Our aim here is to obtain exact vacuum solutions of
Einstein’s equations corresponding to regular lattices of sources
that are instantaneously at rest on a topological 3-sphere.
In such a setting the relevant equations to solve are the

Gauss-Codazzi equations:

R þ K2 � KijK
ij ¼ 0 (6)

ðKi
j � �i

jKÞjj ¼ 0; (7)

where R is the Ricci curvature of the 3-space, Kij is the

extrinsic curvature of the 3-space in the 4-dimensional
spacetime, and K ¼ Ki

i. The indices i, j refer to coordi-
nates in the 3-space, and the vertical line denotes covariant
derivative in that space.
It is well known that if we choose a time coordinate

that is specified by the normal derivative to this initial
hypersurface (such that gt� ¼ ���

t), then the extrinsic

curvature can be written as Kij ¼ � 1
2gij;t. Instantaneously

static hypersurfaces therefore haveKij ¼ 0, and the Gauss-

Codazzi equations reduce simply to

R ¼ 0: (8)

A key point here is that for any 3-dimensional geometry
that satisfies the initial constraint (8) there is a unique
4-dimensional spacetime that satisfies the full Einstein
equations. This is the method of geometrostatics, presented
by Misner in [24], and studied for the case of asymptoti-
cally flat space in [25–27].
Here we are interested in solving Eq. (8) in closed

spaces. In this case we can make the following ansatz for
the metric of the spatial 3-section:

dl2 ¼ c 4ĥijdx
idxj; (9)

where c ¼ c ðxiÞ, and where ĥij is the metric of a 3-sphere

with constant curvature R̂. The Gauss-Codazzi equations
are then satisfied if c obeys the Helmholtz equation:
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r̂ 2c ¼ 1

8
R̂c ; (10)

where r̂2
is the Laplacian corresponding to ĥij.

A. A Single Schwarzschild mass

The Schwarzschild solution has been well studied using
asymptotically flat solutions in geometrostatics, including
in the original work of Misner [24]. It is important to note
that the Schwarzschild solution is still a solution in the
present case, as the 3-sphere is conformally flat. In this
case, however, there will be a different radial variable and a
different functional form for the conformal factor c . Given
the linearity of the Helmholtz equation, (10), it can be seen
that multisource solutions can be constructed by linear
superposition of the solutions for single sources.

In asymptotically flat, isotropic coordinates, a static space-
like slice of the Schwarzschild solution can be written as

dl2 ¼
�
1þ m

2~r

�
4ðd~r2 þ ~r2d�2Þ; (11)

where m is a constant. Performing the coordinate transfor-
mation ~r ¼ K tan�2 , whereK is a constant, it can be seen that

Eq. (11) becomes

dl2 ¼ K2

4

�
1

cos�2
þ m

2K sin�2

�
4ðd�2 þ sin2�d�2Þ: (12)

This metric is clearly of the same form as Eq. (9), and solves

Eq. (10), with R̂ ¼ 6 (for a unit 3-sphere) and

c ¼
ffiffiffiffi
K

2

s �
1

cos�2
þ m

2K sin�2

�
: (13)

Actually, both functions Að�Þ :¼ ðsin�2Þ�1 and Bð�Þ :¼
ðcos�2Þ�1 satisfy Eq. (8) with R̂ ¼ 6.

This means that although the term in Eq. (12) that
corresponds directly to the 2m=r source term from
Eq. (11) can be seen to be the one that is proportional to
Að�Þ, the term that is proportional to Bð�Þ can also be
treated as a source, although it is located at the antipode.
This becomes obvious if we place the origin of the spheri-
cal coordinates at the antipode by the transformation
� ! �� �, as in that case the roles of the two terms
in Eq. (12) are interchanged (i.e. Að�Þ ! Bð�Þ and
Bð�Þ ! Að�Þ). Thus it appears that placing a Schwarzschild
source on the 3-sphere induces a mirror source at the
antipode. Furthermore, these two source terms are joined
at their horizons, as is clear if we set the gauge parameter to
K ¼ m=2 (in which case the horizon at ~r ¼ m=2 appears at
� ¼ �=2 in the hyperspherical coordinates).

One can then consider that as� ! � one approaches either
the asymptotic region where ~r ! 1, or that one approaches
another Schwarzschild mass. These two situations are geo-
metrically identical, and there is therefore no difference
between the one mass solutions and the two mass solution
(as long as the point at � ¼ � can be added to the manifold).

B. Many Schwarzschild masses

From Eq. (12) we can now infer that there exist multi-
source solutions on the 3-sphere that take the form

dl2 ¼ c 4ðd�2 þ sin2�d�2Þ; (14)

where c ¼ c ð�; �;�Þ is given by

c ð�; �;�Þ ¼ XN
i¼1

ffiffiffiffiffiffi
~mi

p
2fið�; �;�Þ ; (15)

where the mass parameters ~mi are a set of constants and
fið�; �;�Þ ¼ sinð�i=2Þ. Here the �i refer to new coordi-
nates ð�i; �i; �iÞ which are obtained by rotating the coor-
dinates ð�; �;�Þ in Eq. (14) so that the i’th source position
appears at �i ¼ 0.
It follows from the form of Eq. (14) that one cannot

adjust the ~mi and the size of the 3-sphere independently.
For example, scaling the size of the 3-sphere by a constant
�2 automatically results in scaling the ~mi by a factor �.
This demonstrates that there exists a certain rigidity in
the configuration, once the ~mi are specified. Specifying
the value of the ~mi is therefore crucial for determining
any measure of distance in our hypersurface. Once they are
specified, however, then all measures of distance can be
calculated uniquely.
When considering the original single source Schwarzschild

solution, the parameters ~mi ( ~m1 and ~m2 in that case) are
equal to the standard Schwarzschild mass, ~m1 ¼ ~m2 ¼ m
(using the gauge K ¼ m=2). However, when multiple
sources are present, the interpretation of the ~mi parameters
will instead be that of an effective mass which includes the
binding energies with respect to all the other objects in the
universe (cf. [25]). However, their actual, locally measured,
proper mass4 must be determined by the requirement that
the geometry reduces to that given by Eq. (12) in the limit
� ! 0, in analogy with the asymptotically flat situation
analyzed in Ref. [25]. It can be shown that the proper
mass defined in this way is equivalent to the mass in the
Schwarzschild region at the other end of the Einstein-Rosen
bridge of the black hole.
To summarize, these two mass definitions are:
(1) The Effective Mass, ðmiÞeff , is defined to be equal to

the mass parameter of the corresponding source,
ðmiÞeff :¼ ~mi.

4This term is used in analogy with the proper mass defined by
Wald ([29], p. 126). In the context of asymptotically flat space-
times, Brill and Lindquist [25] use the term bare mass, as it is
used in particle physics. We prefer not to use this term here since
the situations in cosmology and particle physics are opposites
with respect to how masses are measured. In particle physics, the
observer is outside the system and cannot measure the bare mass
directly. In cosmology, on the other hand, the observer is inside
the system and therefore measures the bare mass (in particle
physics terminology).
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(2) The Proper Mass, mi, is defined in such a way that
the geometry of the space in the vicinity of each
object is given by Eq. (12), in the limit � ! 0.

Strictly speaking, one requires a region to exist that is
infinitely far away from all of the masses in order to have
an operational definition of the gravitational effect of the
interparticle potentials that are included in the effective
mass. This is clearly impossible in the case of a closed
space, but this does not stop us from drawing an analogy
with cases in which asymptotically distant regions do exist.

IV. LATTICE SOLUTIONS

Using the above ingredients we can now construct a set
of models with different numbers of regularly arranged
discrete masses on a 3-sphere. To do this we proceed in
analogy with the approach taken by Lindquist and Wheeler
[17], so that our models are constructed by considering all
of the possible regular tessellations of the 3-sphere. We
then place identical masses at the center of each cell, with
the result that the distribution of masses is such that the
distance between any mass and its nearest neighbors is the
same for each of them.

There are six possible regular tessellations of the
3-sphere, those with 5, 8, 16, 24, 120 and 600 polyhedra
[30]. In addition, one can also cover a hypersphere with
2 balls [31]. These possibilities are displayed in Table I.
Using these tessellations, we will now proceed to construct
a sequence of exact discrete regular lattice models of the
universe, with increasing numbers of sources, on a time-
symmetric 3-sphere. Our discrete models will consist
of n equal masses (where n ¼ 2, 5, 8, 16, 24, 120, 600).
By positioning these masses at the center of each of
the cells, we will then achieve a regular distribution on
the 3-sphere.

A. The 2-cell model

The 2-cell model, consisting of two balls with their
boundaries identified, is the exceptional case of the struc-
tures listed in Table I. Its cells are not regular polyhedra
(and hence it has no Schläfli symbol), and it was not
considered in either [17] or [30]. Nevertheless, a lattice
with 2 cells seems like a perfectly legitimate object to
consider5 and has indeed been studied recently in [31].
The authors of this paper found that the geometry inside
each cell could only be matched at the junction between
cells if that junction was a horizon. They also found that no
solutions exist unless the cosmological constant � � 0.

Let us now consider this 2-cell model using the initial
value formalism discussed above. The source functions in

this case are given by f1 ¼ sinð�=2Þ and f2 ¼ cosð�=2Þ,
with ~m1 ¼ ~m2 ¼ m. Substituting into Eq. (14) then gives

c ¼
ffiffiffiffi
m

p
2 cos�2

þ
ffiffiffiffi
m

p
2 sin�2

; (16)

which is clearly just the Schwarzschild solution given in
Eq. (12), with K ¼ m=2. As explained above, this model
can be considered to consist of two sources centered at
opposite poles and matched (analytically continued in fact)
across their horizons. Within this interpretation the exterior
parts of the sources are missing, and there are consequently
no static regions outside of the black holes. Because of
the absence of an exterior region between the sources, the
2-cell model is unsuitable for cosmology. This result pro-
vides an alternate illustration of the findings in Ref. [31].

B. The 5-Cell model

Let us now consider the 5-cell model (or hyperpyramid),
that consists of 5 tetrahedra. This structure, which is in fact
a 4-simplex, is the tessellation in Table I with the fewest
number of cells that are regular polyhedra. To obtain the
coordinates of the masses at the centers of the tetrahedra
one can consider a hyperpyramid in the embedding space
E4, and place a unit 3-sphere inside the hyperpyramid such
that the two structures touch at the center of each of the
5 tetrahedral cells. Alternatively, one could consider the
positions of the vertices of the dual lattice,6 which in
this case is another hyperpyramid. The coordinates of the
5 masses that result are given in the Table II, below.
To define the model we use spherical polar coordinates

which are related to Cartesian coordinates of E4 by

w ¼ cos� x ¼ sin� cos�

y ¼ sin� sin� cos� z ¼ sin� sin� sin�:
(17)

TABLE I. All possible regular tessellations of the 3-sphere.
The ‘‘Lattice Structure’’ is given by the Schläfli symbols fpqrg,
where p is the number of edges to a face, q is the number of
faces that meet at a vertex, and r is the number of cells that meet
at an edge [30].

Lattice Structure Cell Shape Number of Cells

- Ball 2

f333g Tetrahedron 5

f433g Cube 8

f334g Tetrahedron 16

f343g Octahedron 24

f533g Dodecahedron 120

f335g Tetrahedron 600

5This object does, in fact, have a considerable advantage over
the lattices in Table I, as the geometry around each mass must be
spherically symmetric, and so is considerably easier to solve for.
This means that the approximations used by Lindquist and
Wheeler in [17] are not required in this case at all.

6Dual lattices have the vertices and centers of each cell trans-
posed with each other.
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The source functions, fi, from Eq. (14), are then

fi ¼ sin

�
1

2
cos�1ðhiÞ

�
; (18)

where the functions, hi, defined in Eq. (18) are given by

h1 ¼ cos�

h2 ¼
ffiffiffiffiffiffi
15

p
4

cos� sin�� cos�

4

h3 ¼
ffiffiffi
5

6

s
sin� sin� sin��

ffiffiffiffiffiffi
5

48

s
sin� cos�� cos�

4

h4 ¼
ffiffiffi
5

6

s
sin� sin� sin

�
���

6

�
�

ffiffiffiffiffiffi
5

48

s
sin� cos�� cos�

4

h5 ¼�
ffiffiffi
5

6

s
sin� sin� sin

�
�þ�

6

�
�

ffiffiffiffiffiffi
5

48

s
sin� cos�� cos�

4
:

The geometry of this model can be visualized by considering
a slice through it. To this end, consider the surface � ¼ �0

for �0 ¼ cos�1ð�1=4Þ � 1:82. Its metric is given by

dl2 ¼ 15

16
c 4ð�0; �; �Þd�2 (19)

To get a rough idea of the shape of this hypersurface we can
think of � and � as polar angles in E3 and plot the surface
c ð�0; �; �Þ ¼ � where �2 ¼ x2 þ y2 þ z2. This surface is
displayed in Fig. 1(a) and goes through 4 of the 5 masses. It
should be noted that the surface does not represent an isometric
embedding of the geometry in Eq. (19). However, in regions
where the derivatives of c are small, it does give an approxi-
mate representation of that geometry. This approximation is
therefore best in regions which are far from the sources.

C. The 8-cell model

We now proceed in a similar manner to find the geome-
try of the 8-cell (or tesseract) model. In this case the
primitive cell of our lattice is a cube. To find the position
of the center of each cell we can again embed the structure
in E4, together with a unit 3-sphere. Alternatively, the
positions of the masses can be found using the dual lattice,
which in this case is the 16-cell. The positions of the
masses are then given as in Table III.

The fi from Eq. (14) are then found to be

f1 ¼ sin

�
�

2

�
f2 ¼ cos

�
�

2

�

f3 ¼ sin

�
1

2
cos�1ðcos� sin�Þ

�

f4 ¼ cos

�
1

2
cos�1ðcos� sin�Þ

�

f5 ¼ sin

�
1

2
cos�1ðcos� sin� sin�Þ

�

f6 ¼ cos

�
1

2
cos�1ðcos� sin� sin�Þ

�

f7 ¼ sin

�
1

2
cos�1ðsin� sin� sin�Þ

�

f8 ¼ cos

�
1

2
cos�1ðsin� sin� sin�Þ

�
:

TABLE II. Coordinates ðw; x; y; zÞ of the 5 masses in the
embedding space E4, as well as ð�; �;�Þ on the background
3-sphere. In this table, and throughout, cos�1 refers to the inverse
cosine, and not its reciprocal.

Point ðw; x; y; zÞ ð�; �;�Þ
(i) (1, 0, 0, 0) ð0; �2 ; �2Þ
(ii) ð� 1

4 ;
ffiffiffiffi
15
4

q
; 0; 0Þ ðcos�1ð� 1

4Þ; 0; �2Þ
(iii) ð� 1

4 ;�
ffiffiffiffi
5
48

q
;

ffiffi
5
6

q
; 0Þ ðcos�1ð� 1

4Þ; cos�1ð� 1
3Þ; 0Þ

(iv) ð� 1
4 ;�

ffiffiffiffi
5
48

q
;�

ffiffiffiffi
5
24

q
;

ffiffi
5
8

q
Þ ðcos�1ð� 1

4Þ; cos�1ð� 1
3Þ; 2�3 Þ

(v) ð� 1
4 ;�

ffiffiffiffi
5
48

q
;�

ffiffiffiffi
5
24

q
;�

ffiffi
5
8

q
Þ ðcos�1ð� 1

4Þ; cos�1ð� 1
3Þ; 4�3 Þ

FIG. 1 (color online). Slices through the hypersurfaces of the
discrete lattice solutions. The distance from the center is pro-
portional to c . The tubes correspond to the locations of the
masses. These objects become more and more spherical as the
number of sources in the lattice increases.
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The first two of these functions are identical to those
corresponding to the 2-cell model, considered above.

We can again visualize the geometry of this model by
considering a slice though it. In Fig. 1(b) we show the
surface with � ¼ �=2, which passes through 6 of the
8 masses. The radial position of the surface at any given
ð�;�Þ is proportional to c .

D. Models with 16-600 Equally Spaced Masses

We can construct the other discrete models, made using
16, 24, 120 and 600 equally spaced masses, by proceeding
in a similar way to the cases discussed in detail above. We
shall not present the details of these constructions here, but
to help with their visualization we display slices through
these structures in Figs. 1(c)–1(f). It can be seen that as the
number of masses increases, the shape of each of these
structures becomes increasingly spherical, while the tubes
become thinner. This corresponds to the spacetime approach-
ing homogeneity as the number of masses is increased. We
will use the results obtained from studying these larger lattice
models in the sections that follow.

V. LOCATION OF THE HORIZONS

To qualify as cosmological solutions we require that the
discrete models considered here avoid having any overlap
in the horizons corresponding to different masses. We
therefore need to investigate the positions of the horizons
in the models discussed in the previous section, in order to
see if this criterion is met. In these models the location of
the event horizon can be approximated by marginally
trapped surfaces [26] (such surfaces give the exact loca-
tions of the event horizons if the spacetime is static).

To find these trapped surfaces let us consider a surface
given by some function � ¼ �ð�;�Þ. This surface has
geometry

d	2 ¼ c 4ð�2
;� þ sin2�Þd�2 þ 2�;��;�c

4d�d�

þ c 4ð�2
;� þ sin2�sin2�Þd�2;

and the unit normal to it is

n� ¼ c 2 sin� sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2�sin2�þ sin2��2

;� þ �2
;�

q ð1;��;�;��;�Þ;

where commas in subscripts denote partial differentiation.
The extrinsic curvature of this surface is then K�
 ¼ n�;
,

where the covariant derivative here is with respect to the
metric of the 3-space. Transforming to coordinates a; b; . . .
on the 2-space, using Kab ¼ @x�

@xa
@x


@xb
K�
, the trapped sur-

faces are those that have K ¼ �abKab ¼ 0, where �ab is
the contravariant induced metric on the 2-space. This
condition is satisfied if

4sin2� sin�ð1þ �2
j�Þð1þ�2

j�Þð�j�c j� þ �j�c j� � c ;�Þ
þ c sin�½ð1þ�2

j� þ�2
j�Þ�j�� þ ð1þ�2

j�Þ�j���
þ c cos� sin�½ð1þ �2

j�Þ�2
j� þ �2

j�ð1þ �2
j� þ �2

j�Þ sin�
� sin�ð2þ 3�2

j� þ ð3þ 4�2
j�Þ�2

j�Þ�
¼ �c sin� cos��j�ð1þ �2

j�Þ; (20)

where for compactness we have introduced the notation
�j� � 1

sin��;�, and �j� � 1
sin� sin� �;�. The positions of the

horizons are then approximated by the solution to this
equation.
In practice Eq. (20) is not easy to solve, but we can

obtain approximate solutions by looking for minimal sur-
faces of constant �, for which Eq. (20) reduces to
ðc 4sin2�Þ;� ¼ 0. We expect this to be a good approxima-

tion for all the models considered here, and for its accuracy
to increase as the number of masses in the lattice is
increased. To establish this result we calculate the area of
the horizon of each mass using our approximation, Amin, as
well as the horizon area of a Schwarzschild black hole with
an equal proper mass, AS. We then calculate the ratio
ðAmin � ASÞ=AS, which we have displayed in Table IV.
As expected, the difference is small, and decreases as the
number of masses is increased.
To check that the horizons are not overlapping we

compare �min with half the separation between neighbor-
ing sources, ��. This is also displayed for each of our 6
discrete models in Table IV. It can be seen that �min is
always less than half ��, and that it decreases as the
number of masses is increased. Together with the small
values of ðAmin � ASÞ=AS this provides a good indication
that the horizons of the masses in our models do not
intersect at the maximum of expansion, thus ensuring
that our discrete models satisfy a necessary condition to
qualify as cosmological models.7

TABLE III. Coordinates ðw; x; y; zÞ of the 8 masses in the
embedding space E4, as well as ð�; �;�Þ in the lattice.

Point ðw; x; y; zÞ ð�; �;�Þ
(i) (1, 0, 0, 0) ð0; �2 ; �2Þ
(ii) ð�1; 0; 0; 0Þ ð�; �2 ; �2Þ
(iii) (0, 1, 0, 0) ð�2 ; 0; �2Þ
(iv) ð0;�1; 0; 0Þ ð�2 ; �; �2Þ
(v) (0, 0, 1, 0) ð�2 ; �2 ; 0Þ
(vi) ð0; 0;�1; 0Þ ð�2 ; �2 ; �Þ
(vii) (0, 0, 0, 1) ð�2 ; �2 ; �2Þ
(viii) ð0; 0; 0;�1Þ ð�2 ; �2 ; 3�2 Þ

7We leave aside for now the more complicated question of
whether there are additional horizons that could encompass two
or more masses. We note only that this would appear to be
unlikely, given that in every case the masses are separated by
multiple horizon distances.
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VI. BACK-REACTION IN DUST MODELS

We shall now employ our exact discrete solutions in
order to study back-reaction in dust-filled cosmological
models. This will be done by comparing the scale of
discrete and continuous models on their time-symmetric
hypersurfaces, at the maximum of expansion.

Here we will make use of the notion of ‘‘proper mass’’ in
order to compare our lattice models with the dust-filled
(k ¼ þ1) FLRW solutions. That is, for a given lattice we
will calculate the total proper mass of all the sources in the
lattice, and we will then compare this lattice to an FLRW
solution with the same total proper mass. The motivation
for this procedure is that in both cases, the proper mass
corresponds to locally measured masses. Specifically, for
the FLRW models, the proper mass for a given region can
be defined as the integral of the energy density over that
region. For the lattice models, the mass within each cell is
identified with the proper mass of the source it contains, so
that the total proper mass of the lattice is given by the sum
of the proper masses of all the sources within it.

The geometry of the time-symmetric hypersurface of
maximum expansion in (k ¼ þ1) FLRW solutions is
now given by Eq. (5). On the other hand, the metric
corresponding to the 3-sphere containing n discrete masses
of equal size is given by Eq. (14), with ~miþ1 ¼ ~mi for every
i < n. The value of ~mi can then be related to the proper
mass of each of the objects using the procedure outlined in
Sec. III B. In order to compare continuous and discrete
solutions we then only need to make sure that the mass of
the continuous solutions (defined as the constant M ¼ �V
where V is the total spatial volume of the universe) is the
same as the sum of the proper masses in the discrete
solutions.

In the discrete solutions, consisting of n objects each
with proper massm, the total mass is clearly justM ¼ nm.
In the FLRW solutions the volume of a spatial section of
constant t is given by V ¼ 2�2a3, where a ¼ aðtÞ is the
scale factor. Thus the energy density for a (k ¼ þ1) FLRW
solution with the same total mass (M) is given at its
maximum of expansion by

�ðt0Þ ¼ M

V
¼ M

2�2a3ðt0Þ
: (21)

Recalling that in a (k ¼ þ1) FLRW solution the maximum
of expansion occurs when a2 ¼ 3=ð8��Þ, the line-element
(5) can be written as

dl2 ¼ 16M2

9�2
ðd�2 þ sin2�d�2 þ sin2�sin2�d�2Þ: (22)

We can now compare this geometry with the corresponding
discrete geometry given by Eq. (14).
To proceed we require a measure of the global scale for

both the discrete and the continuous solutions. In the
continuous case it is clear what this measure should be,
as there is only one scale in the geometry (the curvature of
the 3-sphere). For the discrete solutions, on the other hand,
the length of a curve of fixed angle on the 3-sphere will
depend on its particular position, as the geometry of the
space is inhomogeneous in these solutions. We must there-
fore proceed with some care. Here, for the discrete solu-
tions, we propose two possible measures of the ‘‘size’’ of
the space. These are:
D1 The line-element, dl, of a curve at a vertex of the

lattice. These are clearly distinguished positions within the
lattice, corresponding to the points that are furthest from all
masses.
D2 The length of the edge of a cell. Again, this is clearly

a preferred curve within the lattice.
Both of these proposed definitions of size are aimed at

trying to identify the scale of the lattice structure that the
masses occupy, as this is the closest thing to a background
that exists in these solutions. Identifying the size of the
lattice was also what was attempted by Lindquist and
Wheeler in their approximate solution with the same con-
figuration of masses [17]. Within this context, Definition
D1 will turn out to be the most conservative possible
comparison of the scales of the discrete and continuous
solutions, and Definition D2 will be found to be not very
different.
Let us first consider Definition D1. In this case it can be

seen that the ratio of the line-elements of curves that cover
the same angle on the 3-sphere in the continuous and the
discrete solutions is given by

dldiscrete

dlFLRW
¼ 3� ~mi

16nm

�Xn
i¼1

f�1
i

�
2
: (23)

Because of the fact that ~mi can be shown to be in direct
proportion to m, it can be seen that this expression is, in
fact, independent ofm. It is therefore specified uniquely by
the structure of the lattice (i.e. by n, and the functions fi
corresponding to the lattice in question).
The ratio of scales in Eq. (23) is a function of �, � and�,

and so varies depending on which point in the discrete
solution wewish to consider. Using Definitions D1 and D2,
we find the results displayed in the third and fourth col-
umns of Table V, respectively. Here adiscrete0 refers to the

TABLE IV. The fractional difference between our estimate of
the horizon size, Amin, and the horizon size of a Schwarzschild
black hole with the same proper mass, AS. Also displayed is our
estimate of the fraction of thedistance to the point halfwaybetween
masses that the horizon reaches, for each of our discrete models.

Number of Masses
Amin � Ah

Ah

�min

��=2

5 0.001 14 0.428

8 �0:001 26 0.268

16 0.000 208 0.173

24 �0:000 272 0.110

120 �0:000 749 0.0330

600 0.000 601 0.0147
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scale of discrete solution, as defined using D1 or D2. These
results are also displayed graphically in Fig. 2, for each of
our lattices. It can be seen that the scales corresponding to
the discrete solutions is always larger than that of the
corresponding continuous solution, with the only excep-
tion being the scale of the solution with 600 masses, when
Definition D1 is used.

Figure 2 shows that adiscrete0 =aFLRW0 approaches 1 as n
becomes large, but that this approach is not exactly mono-
tonic. In particular, the ratio for the lattice with 16 masses
is a little lower than might have been the case for a smooth
curve. This behavior is likely to be a consequence of the
fact that the shape of the cells used in different tessellations
are different. For the lattice solutions made from tetrahedra
(i.e. those with n ¼ 5, 16 or 600 masses), for example, the
approach to the FLRW limit does appear to be monotonic.
For the sake of comparison, we have also shown in Fig. 2
the ratios obtained using the approximate solutions of
Lindquist and Wheeler [17]. It can be seen that the ratios
given by the approximate solutions compare well with
those of the exact solutions.

The outcome of this comparison demonstrates that, for
large numbers of regularly arranged masses at their maxi-
mum of expansion, this measure of back-reaction in dust-
filled models is small.

VII. EFFECTIVE MASSES AND
INTERACTION ENERGY

An advantage of the discrete models we consider is that
they provide us with a framework within which it is
possible to discuss the role of interparticle interactions in
cosmology. Given that these are the interactions that gov-
ern the structure and evolution of the real universe, we
consider it to be an important undertaking to obtain a
deeper understanding of them. In particular, interactions
are ignored when approximating the universe as being
filled with dust, and so these considerations potentially
allows us further insights into the behavior of spacetimes
filled with discrete objects.

Here we will begin by comparing the notions of proper
mass and effective mass for each of our discrete solutions,
as defined in Sec. III B. We remind the reader that our
definition of effective mass is based on analogy with the
asymptotically flat case studied by Brill and Lindquist [25],
as it is problematic to define it operationally in the closed
spherical settings we are currently studying. Now, the
values of these masses can be set to any given value for
each lattice, but the ratio of effective mass to proper mass
must take a particular constant value for any given con-
figuration. We display this ratio for each of the six
possible tessellations in Table VI, and show it graphically
in Fig. 3. It is clear that the ratio of effective mass to
proper mass increases as the number of masses in the
lattice is decreased. This is due to decreasing contribu-
tions from the interaction energies between particles,
which correspondingly increase the value of the effective
mass of each source.
In Fig. 4 we compare the scale of the hypersurface of

maximum expansion for each of our discrete solutions,
when the total effective mass of the lattice is kept constant.
As the effective mass includes the interparticle interaction
energies, this procedure of comparing the scale of solutions
with the same total effective mass is equivalent to enforc-
ing the condition that the lattices being compared should
contain the same total energy (that is, the same total proper

TABLE V. The scale of the discrete solutions as a fraction of
the scale of the continuous solutions, when the total mass in the
continuous model is taken to be equal to the total proper mass of
the discrete model. The two definitions of scale in the discrete
solutions have both been calculated.

Cell Shape Number of Masses

�
adiscrete0

aFLRW0

�
D1

�
adiscrete0

aFLRW0

�
D2

Tetrahedron 5 1.321 1.360

Cube 8 1.258 1.291

Tetrahedron 16 1.061 1.097

Octahedron 24 1.083 1.099

Dodecahedron 120 1.033 1.034

Tetrahedron 600 0.996 1.002

FIG. 2 (color online). The scale of the discrete solutions as a
fraction of the scale of the continuous solutions, when the total
mass in the continuous model is taken to be equal to the total
proper mass of the discrete model. The lower full curve (blue)
shows the result of using Definition D1 for the scale of the
discrete solution, and the upper full curve (red) shows the result
for Definition D2. The dotted curve which represents the ap-
proximate Lindquist-Wheeler solution is shown for comparison.
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mass plus interaction energies). Figure 4 then shows that
the scale of the hypersurface of maximum expansion grows
approximately linearly with the number of masses, n.
Changing the method of determining the scale of the dis-
crete solutions from D1 to D2 has very little effect.

The results in Fig. 4 can be understood by considering
Fig. 3—as the number of masses decreases the ratio of the
magnitude of interaction energies to proper mass also
decreases. The interaction energies, however, are negative,
so if we consider a thought experiment in which we deform
the 8-cell into the 5-cell we have to increase the total
amount of energy available for interactions. The only
source of energy in the solution is the proper mass of the
particles, and so a lattice with fewer masses must have a
smaller total proper mass if the total energy in the system is
to remain unchanged. Smaller total proper mass corre-
sponds to a smaller scale for the hypersurface of maximum
expansion, as was shown in Sec. VI. This result suggests

that one can substantially increase the scale of a closed
space by dividing up the mass in that space into smaller
packets, although we have strictly only shown this is the
case on time-symmetric hypersurfaces.8 It should also be
noted that this result relies on the definition of effective
mass that we have generalized from the asymptotically flat
setting in order to define the interaction energies. The
validity of this approach is difficult to confirm operation-
ally in a compact space, and so the interpretation of the
dramatic increases in scale seen here should be treated
with care.
Such increases in scale are entirely absent in dust mod-

els, as interaction energies are not included in the energy
budget in that case. This does not, however, invalidate any
of the conclusions of Sec. VI. It remains the case that back-
reaction is small in models where interaction energies are
ignored. What has changed for the lattices in Fig. 4 is that
the proper mass in each lattice is increasing as the number
of masses is increased, so the dust-dominated FLRW
solution that one should compare with these models is
also changed.

VIII. CONCLUSIONS

We have studied the emergence of spatially closed
Friedmann solutions from inhomogeneous solutions that
contain increasing numbers of regularly arranged discrete

TABLE VI. The ratio of the effective mass, meff , to the proper
mass, m, for each lattice.

Cell Shape Number of Masses
meff

m

Tetrahedron 5 0.20

Cube 8 0.11

Tetrahedro 16 0.045

Octahedron 24 0.029

Dodecahedron 120 0.0052

Tetrahedron 600 0.0010

FIG. 3 (color online). The ratio of the effective mass, meff , to
the proper mass, m, for each lattice solution.

FIG. 4 (color online). The scale of lattice solutions with
the same total effective mass, normalized so that a0 ¼ 1 for
the 5-cell, and using D1 for the scale of the discrete solutions.

8For a dynamical cosmological model we no longer neces-
sarily have energy conservation, and so the situation could be
more complicated.

TIMOTHY CLIFTON, KJELL ROSQUIST, AND REZA TAVAKOL PHYSICAL REVIEW D 86, 043506 (2012)

043506-10



masses in topological 3-spheres. This has been done
using exact methods, and therefore allows for exact mea-
sures of back-reaction in dust-dominated cosmological
models.

More specifically, by considering the instantaneously
static hypersurfaces at the moment of maximum expansion
we have found that universes that contain only a small
number of mass concentrations (& 10) can be 10% or
more larger than the corresponding dust-dominated FLRW
solutions of Einstein’s equations. However, for universes
that contain very many masses (* 100) there is very little
quantitative difference (& 1%) between the scale of maxi-
mum of expansion in the discrete and continuous solutions.
These results are based on comparing dust-dominated con-
tinuous models (which ignore the interparticle interaction
energies) with momentarily static discrete models that con-
tain the same total ‘‘proper mass’’ (which also ignores the
interaction energies between the different masses). While
back-reaction in this case is quite small, it may well be that
the interparticle interactions will come into play in a more
substantive way when we allow for dynamics. That is, back-
reaction could still have a big effect when we consider the
evolution of the universe.

The results we find are in good keeping with the ap-
proximate solutions of Lindquist and Wheeler that use a
gravitational analogue of the Wigner-Seitz construction
[17], as is demonstrated graphically in Fig. 2. They also
present us with exact expressions for the change in scale of
cosmological solutions that has been predicted using
Zalaletdinov’s averaging scheme [32–34]. More generally,
we believe our study could allow some insight into the
problem of how averaging should be performed in relativ-
istic cosmology. To date, most studies on this subject have
used either highly symmetric exact solutions that contain a
perfect fluid, or have considered small fluctuations around
an FLRW background geometry. The former approach is
strongly limited by the high degree of symmetry required
in the solutions, while the latter is limited to geometries
that are already necessarily close to FLRW. The models we
have constructed here suffer from neither of these short-
comings, as they admit no Killing vectors, and do not
require the assumption of an FLRW geometry, either as a
boundary condition for the inhomogeneities, or as a back-
ground geometry. As such it offers a new laboratory for

testing ideas about inhomogeneity, averaging, and back-
reaction in cosmology.
With the notion of effective mass employed here, we

find the interaction energy grows rapidly as the number of
masses in the lattice, and comes to dominate in the limit of
very many masses. This means that if we compare lattices
with different numbers of masses, but with the same total
energy (including interaction energy), then the scale of the
hypersurface of maximum expansion increases dramati-
cally with increasing number of masses. As was discussed
above, however, the interpretation of this effect requires
some care, as it is based on a generalization of the defini-
tion of effective mass given by Brill and Lindquist in
asymptotically flat settings. Nevertheless, this effect is
entirely neglected when treating the matter content of the
universe as dust.
Finally, in this paper, we have confined ourselves to the

comparison of the discrete and continuous models on time-
symmetric hypersurfaces. Clearly the next step would be to
make a detailed comparison of the full evolution of these
models. We shall return to this question in future publica-
tions. We also note that, although we have only considered
regular arrangements of masses in this paper, the formal-
ism we have used allows for the possibility of considering
much more complicated distributions.
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Note added.—After submission of our manuscript the

following related work appeared: [35–37]. The first of the
these papers performs a numerical analysis of a spatially
flat lattice of black holes [35], while the second performs a
perturbative analysis of a similar situation [36]. The third
study finds exact initial data for a lattice of eight black
holes in a space with spherical topology (using the same
method presented in this paper), and then proceeds to
numerically evolve this data [37].
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