PHYSICAL REVIEW D 86, 043502 (2012)

Dynamical systems of eternal inflation: A possible solution to the problems
of entropy, measure, observables, and initial conditions

Vitaly Vanchurin™

Stanford Institute of Theoretical Physics and Department of Physics, Stanford University, Stanford, California 94305, USA
(Received 15 April 2012; published 2 August 2012)

There are two main approaches to nonequilibrium statistical mechanics: one using stochastic processes and

the other using dynamical systems. To model the dynamics during inflation, one usually adopts a stochastic
description, which is known to suffer from serious conceptual problems. To overcome the problems and/or to
gain more insight, we develop a dynamical systems approach. A key assumption which goes into analysis is the
chaotic hypothesis, which is a natural generalization of the ergodic hypothesis to non-Hamiltonian systems.
The unfamiliar feature for gravitational systems is that the local phase-space trajectories can either reproduce or

escape due to the presence of cosmological and black hole horizons. We argue that the effect of horizons can be

studied using dynamical systems and apply the so-called thermodynamic formalism to derive the equilibrium
(or Sinai-Ruelle-Bowen) measure given by a variational principle. We show that the only physical measure is
not the Liouville measure (i.e. no entropy problem), but the equilibrium measure (i.e. no measure problem)
defined overlocal trajectories (i.e. no problem of observables) and supported on only infinite trajectories (i.e. no

problem of initial conditions). Phenomenological aspects of the fluctuation theorem are discussed.
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L. INTRODUCTION

How to make a testable and sensible prediction is one of
the most important unresolved problems in contemporary
cosmology. A number of interesting, but controversial,
ideas had been put forward (e.g. quantum cosmology
[1,2], holographic cosmology [3-7]), but by far, the most
popular approach is realized in the context of eternal in-
flation [8—10], where the problem of making predictions is
known as the measure problem [11-13]. Inrecent years, the
idea of eternal inflation has gained a renewed interest due to
a possible unification of inflationary cosmology and string
theory in the context of a huge landscape of vacua [14]. Itis
also argued that the unified framework may simultaneously
help us to solve the cosmological constant problem using
either a nonanthropic solution [15] or an anthropic solution
[16] with very mild assumptions about an underlying proba-
bility measure. However, to declare a victory, one has to
derive the measure from first principles which has proven to
be a very difficult task. So, the main question is: can the
measure problem in eternal inflation be really solved?

The answer, perhaps, depends crucially on how one
defines inflation. So far, most of the attempts to tackle the
problem were using stochastic description which can be
modeled, for example, by diffusion in a configuration space.
Given the stochastic model, one can start asking probabilistic
questions, but, as it turned out, the answer always depends
on either initial conditions [17-19] (i.e. problem of initial
conditions) or on a cutoff procedure [11-13] (i.e. measure
problem). This would be a real pity if one had to postulate an
additional rule such as initial conditions or a probability
measure to determine observables in a system which seems
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to have an attractor dynamics (e.g. cosmic inflation).
Moreover, many otherwise phenomenologically acceptable
stochastic measures (e.g. causal patch measure [19] or scale
factor measure [20]) give rise to very counterintuitive and
somewhat paradoxical predictions [21-23]. In other words,
it is not always clear how to define a probability space of
observables without violating the basic principles of the
probability theory. We will refer to it as the problem of
defining cosmological observables or simply the problem of
observables. At this point, one might start worrying whether
the stochastic description, which is at most an approximation
to the underlying microscopic dynamics, is a good mathe-
matical model of eternal inflation. The objective of this paper
is to construct an alternative mathematical model of inflation
using dynamical systems, but before we proceed, let us briefly
review another related problem—the entropy problem [24].

Consider a finite Hamiltonian system. For such systems
the most physical time-invariant measure is given by the
Liouville measure, according to which a typical observer
should find himself in a highly entropic state. Cosmology for
such observers (often called Boltzmann observers [25])
would be very boring in a sharp contrast to what we actually
observe. This is the so-called entropy problem. On the other
hand, one can certainly define other noninvariant measures
on the surface of initial conditions of a given observer (e.g.
geocentric measures [23]), but it might be more desirable to
have a dynamical mechanism to explain cosmological
observations.! So, another relevant question is can the en-
tropy problem in cosmology be really solved?

'Indeed, in its origin, the geocentric approach adopts a
Bayesian (or subjective) interpretation of probabilities when a
frequentists (or objective) interpretation is often easier digested
by physicists.
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There are at least two approaches which one might take.
Roughly speaking, we need to violate the Liouville theo-
rem by providing a mechanism to either add or remove
phase-space trajectories. Clearly, a global description of
gravitational systems provides a natural mechanism to
accommodate both phenomena. For example, the eternally
inflating space-time constantly ‘“‘adds” new local trajecto-
ries (i.e. more and more local observers fall out of causal
contact with each other), and the constantly forming black
holes “remove” old local trajectories when the observers
hit singularities. Since the phase-space volume for such
observers is no longer conserved, the Liouville measure is
not very useful, but one might still wonder whether there
are any good time-invariant measures. As we will argue
below, the space of time-invariant measures for a generic
dynamical system is very large, but the so-called equilib-
rium measure is often a unique measure given by a varia-
tional principle. So, it appears that the entropy and measure
problems can be simultaneously avoided, if not solved, in
the context of more general dynamical systems. In addi-
tion, the equilibrium measure is defined on a space of local
trajectories with support on only infinite trajectories.” This
provides a possible resolution to the problem of defining
relevant cosmological observables (i.e. observables are the
trajectories) as well as to the problem of initial conditions
(i.e. for infinite trajectories, the problem is irrelevant).

The paper is organized as follows. In Sec. II, we review
the stochastic approach and problems associated with it. In
Sec. III, we introduce the dynamical systems approach
with an emphasis to a variational principle and a fluctua-
tion theorem. In Sec. IV, we construct a dynamical system
of eternal inflation and derive its equilibrium measures.
In Sec. V, we summarize the main results.

II. STOCHASTIC APPROACH

Consider a deterministic dynamical system whose evo-
lution is defined by a velocity flow v(x) =4, and the
system at time ¢ is described by a state vector x(r) € X.
If the system does not have any absorbing states, then the
evolution of an arbitrary distribution function w(x, f) can
be followed in time using the continuity equation:

M __9. v(x)u(x, 1).
ot ox
The main challenge in the stochastic approach is to solve
the continuity equation for a given model of the velocity
flow v(x). In what follows, we will consider three models
of the flow, all of which lead to yet unresolved cosmologi-
cal problems.

Q2.1

2Although the precise mathematical definition of equilibrium
measures involves an infinite time limit, for all practical pur-
poses, it is sufficient to follow the system for a very long but
finite time. Moreover, for the systems which only allow finite
trajectories the phrase “infinite trajectories” should be read
throughout the paper as ‘““very long trajectories”.
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A. Entropy problem

Perhaps the most studied dynamical systems are
Hamiltonian systems. For such systems, the components
of a state vector x come in conjugate pairs x = {p, q}
corresponding to momentum p and position q coordinates,
and the Hamiltonian equations of motion imply that the
velocity flow is not compressible % -v=0. Under the
incompressibility assumption, Eq. (2.1) becomes the clas-
sical Liouville equation:

a,bL(X, t) — _V(X) . i

o X (2.2)

p(x, 1),
which has a trivial time-independent solution w; = I'"!
known as the Liouville measure, where I' is the volume of
phase space X. This measure is known to be very useful for
describing a large thermodynamic system, but it is not very
useful for describing the Universe. In particular, the
Liouville measure gives rise to the entropy problem—
entropy of the observable Universe is much smaller than
what one would naively expect [24]. It also follows imme-
diately that for infinite (I' = co0) Hamiltonian systems, the
Liouville measure does not exist, which is the main source
of a measure problem to be discussed below.

But what is really the size of the phase space of eternal
inflation: finite or infinite? In a flat slicing of de Sitter space,

ds* = d? — e2Hidx2, (2.3)

the new degrees of freedom constantly come from under the
Planck scale, but as the modes are eventually stretched out
to superhorizon scales, they can no longer be observed. This
is a global picture which suggests that the total number of
degrees of freedom is infinite, which is misleading if one
wants to count only the states accessible to a local observer.
From a local viewpoint, the evolution is most conveniently
described in static coordinates,

dr?

ds* = (1 — (rH)®dt* — T—0H? —

rdQ, 24)
where the amount of information accessible to a local ob-
server is only finite (when a cutoff is imposed at the Planck
scale). Note that in a quasi-de Sitter space, with possible
transitions between different vacua, the size of the phase
space should be set by an exponent of the entropy of a vacua
with the smallest positive energy density. One could still run
into problems with Minkowski vacua, but this will turn out
not to be the case for the time-invariant measures discussed
in Sec. I'V. The phase space might still be huge, but, what is
more important, it is finite.

B. Measure problem

If we try to model a finite dynamical system, consisting
of only degrees of freedom accessible to a local observer,
then to solve the entropy problem, one should abandon the
idea of a Hamiltonian description whose predictions are in
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conflict with observations. The appearance of a non-
Hamiltonian dynamics is not entirely new and happens
all the time whenever some of the degrees of freedom of a
larger Hamiltonian system are ignored. This is exactly the
situation in a local description of gravitational systems with
horizons. Once we integrate over the degrees of freedom
unaccessible to a local observer, the local dynamical system
should start to behave as a non-Hamiltonian system.

In a global stochastic description of eternal inflation, one
usually models the dynamics with three non-Hamiltonian
ingredients [11]. First of all, the quantum (or thermal)
effects are modeled by a compressible flow in configura-
tion space (e.g. zdqH(q)?dqH(q) " 7u(q, 1) during
slow-roll inflation). Moreover, the constant addition and
removal of local trajectories are modeled with reproducing
(e.g. 3H(q)* u(q, 1)) and absorbing states (e.g. u(q) =0
for q € X). Then, Eq. (2.1) becomes a branching-
diffusion equation with escape:

ou(q, 1) 1 9 9 .
= “H(q)”—H(q)* " u(q, t
o 877 5a (q) 3a (@ "ulq, 1)

~v(q) - aaq,u(q, 0+ 3H@ ulq. 0, (2.5)

where H(q) is the Hubble scale.

Although the stochastic eternal inflation avoids the
entropy problem, it immediately introduces a well-known
measure problem, which one can think of as a counterpart
of the entropy problem for more general dynamical sys-
tems. In other words, what time coordinate (or «) should
we use for calculating probabilities? It is well known that
different choices can lead to very different answers, and the
most popular choice a = 0, corresponding to the scale
factor measure, is often chosen on purely phenomenologi-
cal grounds [20]. This might be acceptable phenomeno-
logically, but it is not acceptable from the theoretical
viewpoint where one wants to derive the measure from
first principles.

C. Problem of initial conditions

Since the main source of the measure problem was
due to the presence of reproducing states, one might won-
der what would happen if we ignore the reproduction term,
3H(x)*u(x, t). In fact, this is a well-known limit, corre-
sponding to a local description of eternal inflation, where
one concentrates on the evolution of comoving distribu-
tions, i.e.

du(q 1) _ 1

d d
Y 372 aH(q)”iH(q)%”,u,(q, 1)

a9
- - —ulq, 1) 2.6
v(q) iq (g, 1) (2.6)
The local stochastic approach was originally proposed to
study the effects of quantum fluctuations during inflation
[9,17], but later, it was adopted to study the landscape models
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of eternal inflation [18]. Due to the presence of absorbing
states, the answer always depends on the initial conditions,
and even unequal weighting (e.g. entropic or anthropic) of
states would not cure the problem. In other words, even if a
given local measure (e.g. causal patch measure [19]) gives
phenomenologically acceptable results for some ranges of
initial conditions and some ranges of parameters of a model,
it does not solve the problem of initial conditions.

One can certainly take a point of view that any physical
problem must involve the knowledge of initial conditions.
This was an attitude in the early days of quantum cosmology
[1] as well as very recently in the geocentric approach [23].
But then it seems unnecessarily complicated to postulate a
measure in addition to postulating initial conditions. If the
only role of cosmology is to assign probabilities to local
observations, then it is always only a problem of initial
conditions, and instead of fighting it, we should learn how
to construct a theory of initial conditions [1,23].

This would have been an acceptable “‘solution” if we did
not have examples where, in the long run, the system
completely forgets its initial state. For example, a large
Hamiltonian system close to a thermal equilibrium is a
system for which one can study its macroscopic properties
without the knowledge of initial conditions. Of course, as we
have argued above, the Universe is not in a thermal state, but
one might still hope that a similar phenomena would occur
for more general, and perhaps, non-Hamiltonian systems. In
constructing a system which eventually forgets its initial
state, we should be careful not to introduce any other prob-
lems as it was in the case of a global description of eternal
inflation discussed above.

However, in our opinion, the best possible solution to the
problem of initial conditions would be if the initial con-
ditions did not exist. In other words, if the Universe would
be infinite to the past (as well as to the future), then the
question of initial condition would be irrelevant. For some
time, it was believed that eternal inflation might provide a
possible framework to accomplish this task, until a no-go
theorem was proved which states that the eternally inflating
space-times are not past complete [26]. Of course, to prove
any no-go theorem, one makes certain assumptions which
often turn out to be false, and finding such “loopholes” is
one of the biggest challenges for theoretical physics. In
fact, the conclusions of Ref. [26] do not apply to infinite
trajectories, which play a central role in the dynamical
systems approach developed in this paper, even when their
Liouville measure is zero.

D. Problem of observables

Another problem associated with stochastic descriptions
of eternal inflation is related to the problem of defining
relevant cosmological observables. More precisely, the
problem is to define a measurable space of observables
on which the cosmological measures are to be constructed.
A priori, there is a lot of freedom in choosing a relevant
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measurable space, and some popular choices include a
space of local states, a space of states of local observers,
or even a space of states of local brains. However, it turned
out to be a very nontrivial task to define a measurable space
which avoids paradoxes [11,21-23,27].

For example, if one applies the (global or local) stochas-
tic measures to laboratory experiments, then even the most
popular phenomenological choices (scale-factor measure
[20] and causal patch measure [19]) are not free of logical
inconsistencies [21-23]. The problems arise due to an
exponential growth of the distribution w(x, t) defined on
a measurable space of local states. In such exponentially
growing models, one can construct paradoxical situations
where the probabilities of past events change with time
[21]. This is, perhaps, an indication that the measure
u(x, 1) on a space of local states might not be suitable
for describing inflationary systems.

For Hamiltonian systems, the measure on states was
certainly very useful for calculating macroscopic observ-
ables using microcanonical, canonical, or grand canonical
ensembles, but it does not have to be appropriate for more
general dynamical systems. The measure w(x, f) contains
only a very limited amount of information about the dy-
namics which was sufficient for equilibrium statistical
mechanics, but might be insufficient for describing eternal
inflation. For example, if the relevant distributions are to be
defined on a space of trajectories, then such distributions
would contain much more information than any distribu-
tion on states. Evidently, one can easily calculate a mea-
sure on states from a measure on trajectories by using a
sequential cutoff measure (see Ref. [21] for details), but
not the other way around.

III. DYNAMICAL SYSTEMS APPROACH

A stochastic approach to statistical mechanics was origi-
nated over a century ago by Boltzmann, while a dynamical
systems approach was proposed by Ruelle only 40 years ago
and later developed into a consistent mathematical frame-
work [28]. Although most of the precise results are known
only for mathematically ““simple” systems such as Anosov
(or hyperbolic) systems, the more complicated dynamical
systems are usually analyzed under the so-called chaotic
hypothesis. It says that for computing macroscopic observ-
ables, any chaotic dynamical system can be considered as an
Anosov system. In contrast to nonchaotic (or integrable)
systems, the chaotic systems allow us to define time aver-
ages independent of initial conditions which is a desired
property if one wants to solve the cosmological problem of
initial conditions. The chaotic hypothesis can be viewed as a
generalization of the ergodic hypothesis to more general
non-Hamiltonian systems.

A. Equilibrium measures

The problems of interest in the measure theoretic dis-
cussions of non-Hamiltonian systems involve finding the
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most physical measure u € M, where M is the space of
all time-invariant measures (i.e. measures which are in-
variant under the time evolution). Although the space is
very large, there is often a unique measure u . defined as a
late time attractor starting from an arbitrary (continuous
with respect to ;) distribution.’ More precisely, if O(x) is
some observable (continuous with respect to ), then

[ 0w way = lim [foxmnar
1—00 0

should be satisfied almost surely for all but a measure zero
of initial states x(0) with respect to w .. These measures
were originally proposed by Sinai [29], Ruelle [30], and
Bowen [31] and go by the name of SRB measures [28]. In
this article, we will refer to them as the equilibrium mea-
sures with respect to a certain energylike function E to be
defined below. Recently, the equilibrium measures were
proven to be related to steady states in thermostated
systems.”*

Although the equilibrium measure seems to be the most
physical, it is by no means unique. The situation is com-
pletely analogous to the equilibrium statistical mechanics
where the Gibbs measure is defined only once the energy
function is specified. This is also not a unique choice, and
under certain circumstances other measures with respect to
other constraints can be more physically relevant (e.g.
grand canonical ensemble). The general rule for finding
an appropriate measure is given by the maximal entropy
(MaxEnt) principle proposed by Jaynes [33]. It says that
for any given set of constraints on a system or for a given
knowledge about the system, the probability measure,
which best represents the state of knowledge, is the one
with largest entropy.

What is, however, unique about the equilibrium measure
M+ is that it is the only measure which is a zero-noise limit
of small perturbations around deterministic trajectories
[28]. In other words, if we slightly perturb our determinis-
tic evolution and take the perturbation to zero, then the
equilibrium measure is the only measure which converges
to itself. Thus, if we are to construct a measure which
respects the quantum-classical correspondence principle,

*For Hamiltonian systems g, = i, but for non-Hamiltonian
systems, the two measures need not be the same.

“For example, a Gaussian thermostat [32] is a collection of
particles subject to a nonconservative force F and a constraint

3(Fia) -~ %) -,
a = (3.2)
2

with non-Hamiltonian equations of motions given by

dp; aV(q;)
! = —_——"Y +F(q,) — ap; d

such that the total kinetic energy remains constant }_ jp% = const.

4 _Pi 53
m
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then w, might be the only choice within a framework of
dynamical systems.” To make the above statement more
precise, a full quantization of the cosmological systems
must be carried out which proved to be a difficult task,
although a number of recent attempts have been made to
advance our understanding of quantum mechanics on cos-
mological scales [35].

B. Variational principle

To study the statistical properties of non-Hamiltonian
systems, a thermodynamic formalism was developed with
many ideas borrowed from the equilibrium statistical me-
chanics, but one very important difference. In the conven-
tional statistical mechanics, we are usually interested in
states, when in a dynamical system, the key role is played
by a time-ordered collection of states or by trajectories.
Thus, it is convenient to think of time as a thermodynam-
ical volume which is a conjugate variable to the so-called
topological pressure. The topological pressure of a given
energylike function E(x) is defined as

1
p(BE) = tlirg; logZ, (3.4)
where
Z = f dx(0)e P Jo Bz (3.5)

is a dynamical partition function.® For BE = 0, the topo-
logical pressure (known as topological entropy) is equal to
the rate of growth of the number of topologically distin-
guishable trajectories, and for BE # 0, these trajectories
are also weighted by exp(— BE).

The energylike function E, which corresponds to the
forward equilibrium measures ., is given by a sum of
local Lyapunov exponents y; (defined as local rates of
separation of nearby trajectories) over directions corre-
sponding to only positive (global) Lyapunov exponents
A; (defined as rates of separation of nearby trajectories in
the limit of infinite times), i.e.

Ex) = xx.

A,>0

(3.6)

Similarly, the energylike function E_, which corresponds
to the backward equilibrium measure w_, is given by a
sum over negative Lyapunov exponents or by a sum over
positive Lyapunov exponents of a time-reversed system,

E_(x) = =) xix). 3.7)

1<0

A possible connection of the equilibrium measures to quan-
tum gravity was expressed in Ref. [34].

“There is no 1/ in the definition of the topological pressure
which might cause some confusion whenever B # 1, but it
seems to be a standard convention in the dynamical systems
literature.
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For Hamiltonian systems, the Lyapunov exponents come in
conjugate pairs (i.e. E; (x) = E_(x)), and the two equilib-
rium measures (backward and forward) are identical, i.e.
My = p.

Another important quantity is the Kolmogorov-Sinai en-
tropy defined for any given time-invariant measure w(x)
using the Shannon entropy formula on a space of trajecto-
ries. For a discrete time dynamical system 7: X — X, the
entropy is defined as’

1
S, = sup{}ir?o;S# (VIZLT7K(C)): Cis afinite partition ofX},

3.8)
where
S,(€) = = u(Cy)log(u(C))). (3.9)
i=1
The union of two partitions (C = {C;, C,, ..., C,} and

D={D\ D, ...,D,}) is defined as CVD={C;n
D;: C; €C D; € D). The Kolmogorov-Sinai entropy
(pre unit time) can also be defined for a continues time
process [28]. Intuitively, S, quantifies the significance of
long periodic orbits with respect to a given measure w and
should not be confused with a thermodynamic entropy on
states.

We are now ready to state one of the two most important
results of the thermodynamic formalism—a variational
principle.8 It says that

p(BE) = supfS, — B [ Ecoutxdx: u e M)
(3.10)

where the extremum is realized for w = . The varia-
tional principle allows us to calculate the topological
pressure

PBED =S, — B [Ecop.ax G

as well as the equilibrium measure, corresponding to 8 = 1,

pe(x0) < exp(~ [ Eutx(oar) G2

from a spectrum of Lyapunov exponents. For closed systems
without any absorbing sates, the topological pressure

vanishes, p(E ) = 0 and, for open systems, p(E,) = —v,
where v is the escape rate of trajectories.

'c={c,,C,,...,C,} is a finite partition of X if X = U"_,C;
and C;NC, = @ for j # k.

8The variation principle is analogous to the Gibbs variational
principle which defines the equilibrium state of a system by
minimizing its free energy. Thus, it might be helpful to think of
JE (x)u(x)dx — S, /B as a dynamical free energy per unit
time.
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C. Absorbing states

In the context of eternal inflation, it will be useful to
study dynamical systems whose phase-space trajectories
can either reproduce or escape. The escape of trajectories is
easier to understand when a system with absorbing states is
followed forward in time. Similarly, if the system with
escape is followed backward in time, then it would seem
as though the forward trajectories reproduce. Thus, it is
convenient to define the reproducing states as absorbing
states of a time-reversed system. Of course, if we are only
interested in the time-invariant measures, then none of the
forward nor backward trajectories would ever escape, and
the existence of absorbing and reproducing states is not
directly observable.

The simplest dynamical systems with absorbing states
are called cookie cutters. Cookie cutters are defined by a
discrete map T from a union of disjoint subsets A; C [0, 1]
to the entire unit interval such that [0, 1] — UA; # @. For

example,
3x
T(x) =
(x) {Zx -1

On each iteration, the map of an open interval (1/3, 1/2) is
undetermined which represents a terminal or absorbing
state. The set of all points which are never mapped to
(1/3,1/2) is A = sup{Y|Y = T(Y)}. The set A is a fractal
whose Liouville (or, more precisely, Lebesgue) measure is
zero (i.e. wy(A) = 0), but one could still ask whether it is
possible to construct an equilibrium time-invariant mea-
sure on A.

The space of all time-invariant measures is very
large (e.g. u(x) = 6(x —0), ukx)=8x—-1/5)/2+6
(x —3/5)/2, etc.), but the equilibrium measure ., is a
unique late time limit of an arbitrary (continuous with
respect to w; ) distribution, i.e.

if x € [0,1/3]

if xe[1/2,1] (3.13)

-1

pel) < exp( B3 E+(Tf(x))), (3.14)
i=0

where E (x) = logl[g—g]xl is the only positive Lapunov

exponents at x. Although w ., (x) is defined precisely for
infinite ¢, one can study a coarse-grained partition function
for a fixed ¢t by summing over periodic orbits:

—1 dT
> eo(-e 3],

T'(x)=x

—

). (3.15)
Then, the topological pressure is

1 1
p= lim; logZ = lim; log(3# + 278)!
1—00 1—00

(3.16)
=log(3™ 8 +27F).

According to Bowen [31], the vanishing topological pressure
p = Oimplies that 8 = 0.7879 is the fractal dimension of A,
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but the most physical choice is given by the equilibrium
measure with 8 = 1.

D. Fluctuation theorem
In dynamical systems literature, the entropy production
rate had been identified with (minus) the phase-space con-
traction rate,

e(x) = — 9. v(x) (3.17)

0x
whose average with respect to the equilibrium measures
M4+ 1s non-negative, i.e.

- f 9 @) dps (%) = 0,

g (3.18)

and is strictly positive for dissipating systems. In our
notations, the local entropy production rate is given by a
sum of all local Lyapunov exponents:

e(x) = D xi(x) = E4(x) — E_(x), (3.19)

where the expressions for both E, (x) and E_(x) in the
context of eternal inflation will be derived in the following
section. Alternative calculations of the entropy production
during inflation using stochastic methods are described in
Ref. [36].

Since any physical system is usually observed only for a
finite period of time, one might want to define a finite time
average as

1 (T
er(x(0) = f e(x(1))d (3.20)
0
and study the properties of the probability distribution
P(er). This problem was analyzed in the context of
Anosov systems, where it was found that

1°g<P}()(—62)) —er?

(3.21)

is exactly linear with no higher-order terms for an arbi-
trarily large er. This relation is the second of the two most
important results of the thermodynamic formalism known
as the fluctuation theorem [37,38]. The symmetry of the
distribution P(e;) (sometimes called Gallavotti-Cohen
symmetry) involves the statistics of very atypical fluctua-
tions and was first discovered in numerical simulations
[37]. Later, the fluctuation theorem was also proved ana-
lytically for Anosov systems [38].

However, if we assume that the chaotic hypothesis holds
for a dynamical system of eternal inflation (i.e. eternal
inflation can be regarded as an Anosov system), then we
should also expect to see the symmetry described by
Eq. (3.21) in primordial fluctuations. Note that this sym-
metry is more than just Gaussianity, but involves the
statistics of very improbable events. On a positive side,
the cosmic microwave background (CMB) experiments
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allow us to retrieve information about separate (i.e. caus-
ally disconnected) trajectories by simply looking at differ-
ent directions on the sky. This is certainly an advantage
compared to other nonequilibrium systems such as thermo-
stats [32] where the fluctuation relation is being tested. For
example, one can divide the CMB sky into N equal regions
and use the CMB data to estimate what could have been the
entropy production e(x) during inflation on each of the
corresponding trajectories separately. Then, according to
the fluctuation theorem, the distribution P(e;) must have a
symmetry described by Eq. (3.21) which can always be
verified for a sufficiently large N and sufficiently small 7.

IV. ETERNAL INFLATION

The main objective of this section is to construct the
time-invariant equilibrium measures of eternal inflation
using dynamical systems, but before we proceed, it is
instructive to highlight the main properties of such mea-
sures within a more familiar stochastic approach. Since all
time-invariant measures, u € M, are defined on a space
of infinite (or very large) trajectories, the relevant observ-
ables are the trajectories.9 As was emphasized above, this
might potentially solve the problem of defining the relevant
cosmological observables. For example, one can show that
various paradoxes [21-23] can be resolved whenever the
probabilities of cosmological observations are defined on a
space of trajectories. In addition, the time-invariant mea-
sures provide a simple solution to the problem of initial
conditions which does not exist for infinite trajectories. '’
In eternal inflation literature, such trajectories are usually
neglected on the grounds of zero measure (with respect to
comoving volume), but because of their infinite lengths,
one might also argue that any infinite trajectory is infinitely
more probable than any finite trajectory. Clearly, there is an
order-of-limits issue which we are going to discuss next.

A. Order of limits

Consider a stochastic mode of eternal inflation with
absorbing (or terminal) states. The only relevant, for our
considerations, parameter is the decay rate per unit time y
to one of the absorbing states. Our task is to define a
measure w(7T) on a measurable space of trajectories pa-
rametrized by their duration T before the final transition
to an absorbing state. There are two factors which might
g0 into M(T) o Wevolution(T)Wobservation(T)- First of aua
the trajectories could be weighted by their probabilities
with respect to some Markovian evolution operator,
Wevolution(T)- In addition, the trajectories could also be
weighted by some monotonic function wpeervation(7) Such

9 A possibility of defining measures on trajectories was already
ex&)ressed in Ref. [39].

'9The measures on only nonsingular infinite trajectories were
also discussed in Ref. [40] in the context of homogeneous
cosmologies.
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that Wopservation () = 00. The first factor can be argued for
using, for example, semiclassical methods [17,18], and
the second factor can be argued for using, for example,
anthropic principle [16] since the longer trajectories inter-
sect more observers which could observe them.

Now, if we compare forward trajectories of length T
with trajectories of infinite length, then from the point of
view of evolution,

Wevolution (T) _ CXP(_ ')/T) _
Wevolution (OO) CXP( - 700)

00, 4.1)

but from the point of view of observations,
Wobservation(T) =0, (42)
Wobservation (OO)

where the exact form of wpgervaiion(7’) i not important. To

make sense of % = o0 X 0, we can introduce two separate
cutoffs,

ILL(T) = lim lim Wevolution(T) Wobservation(T)
M (oo) b—00 a—00 Wevolution(b) Wobservation (a) '

(4.3)

where the order of limits is not specified a priori. The
standard choice is to first take » — oo (or to take both limits

simultaneously a = b — o), which usually gives a diver-
w(@
(c0)

trajectories. Such ordering of limits is known to give an-
swers which depend on ether initial conditions (for local
stochastic measures), or cutoffs (for global stochastic mea-

sures). Another alternative is to first take @ — o which
would yield a completely different answer, i.e. % = 0.
According to the dynamical systems approach, the latter
ordering procedure is a lot more natural and corresponds to
the time-invariant measures.

The situation is very similar in a negative time direction.
It is well known that all but a measure zero (with respect to
comoving volume) of trajectories are past-incomplete [26],
and that is why all past-complete trajectories are usually
neglected. However, if the relevant measurable space is a
space of trajectories, then the measure on trajectories
depends on the order of limits as in Eq. (4.3), and the infinite
past-complete trajectories must not be overlooked. In fact,
such trajectories are the only trajectories which acquire a
finite weight with respect to the ordering procedure sug-
gested by the dynamical systems approach. However, in the
models, where the past-complete infinite trajectories are
strictly forbidden, the time-invariant measures would still
be supported on only future-infinite trajectories.

In a stochastic picture, the time-invariant measures might
be thought of as fractal measures defined on only eternal
geodesics [18] in the limit when the cutoff a is taken to
infinity and b remains large, but finite. Of course, for any
finite value of a >> b, the measure assigns a nonvanishing
weight to all trajectories within a small neighborhood
around each eternal geodesic. It might be tempting to

gent answer, i.e. 00, or a zero measure for infinite
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conclude that the probability to observe a terminal vacua
(i.e. anti-de Sitter vacua) is extremely small, if not identi-
cally zero. This is a very nice prediction which is in agree-
ment with the observed positive value of the cosmological
constant. On the other hand, if there would be a mechanism
(perhaps quantum) to resolve the black-hole singularities by
recycling local trajectories back to eternal inflation, then the
system would not contain any absorbing states, and the
above conclusion would certainly change.

B. Backward measure

We are now ready to switch to a more formal measure-
theoretic discussion of eternal inflation. To warm up, we
start with a construction of a backward (in time) equilib-
rium measure for a single scalar field inflation. The objec-
tive is to describe the dynamics of the field from the point
of view of a local observer moving along a timelike geo-
desic. The background equations of motion are given by

dm

= —9,V+3Hm
dt

4.4

and

de _

o T 4.5)
where ¢ and 7 are the position and momentum coordi-
nates. In Minkowski space, H = 0, and the dynamics is
described by a time-independent Hamiltonian leading to an
incompressible flow of the nearby phase-space trajectories,
but during inflation, H # 0 and the flow becomes com-
pressible. More precisely, the Hubble friction introduces a
single negative local Lyapunov exponent y; of a forward
evolution or a single positive local Lyapunov exponent of a
backward evolution. If this exponent has the same sign as
the corresponding (global) Lyapunov exponent A;, then

E_(x) == xi(x) = 3H(x), (4.6)
A,<0
where x(1) = {7(¢), ¢(1)}. In fact, every field contributing
to a quasi-de Sitter expansion by forming a condensate is
likely to contribute to a sum of the negative local Lyapunov
exponents, but, for the time being, we assume that there is
only a single scalar field which drives inflation. Note that
all noninflating fields would also have negative local
Lyapunov exponents y; during inflation, but their relation
to signs of the corresponding (global) Lyapunov exponents
A; is not direct, and we will assume that on average they do
not contribute to the compressibility of the flow.
Since the Hubble friction introduces only negative
Lyapunov exponents, it plays a central role for constructing
the equilibrium measure on backward trajectories, i.e.

1 (x(0)) = exp(— [ E-x(ear)

- exp(— ﬁ) ’ 3H(X(7’))d7’), 4.7)
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but has no effect on the equilibrium measure of forward
trajectories. This implies that E, (x) # E_(x) (at the level
of background dynamics) and w, # w_ which should not
be too surprising. The equilibrium measures on forward
and backward trajectories of a non-Hamiltonian system
usually differ even though they are defined on the same
space of infinite trajectories. In fact, this will turn out to be
the case for the dynamical system of eternal inflation even
when perturbations are taken into account.

C. Forward measure

At the level of background dynamics, the nearby phase-
space trajectories do not expand, and one must go beyond
the homogeneous limit in order to derive the equilibrium
measures on forward trajectories. In this limit, the quan-
tum effects cannot be ignored, and one often employs the
semiclassical tools to study quantum fluctuation generated
during inflation. It is well-known that the semiclassical
analysis gives rise to a stochastic picture which is sufficient
for modeling inflation using diffusion Egs. (2.5) and (2.6),
but for the methods developed in the previous section to be
useful, we should also learn how to extract the microscopic
properties. In particular, it is desired to map the micro-
scopic parameters, such as Lyapunov exponents, to the
macroscopic parameters, such as transport coefficients.
This would enable us to estimate the equilibrium measures
on forward trajectories and to study their properties.

A number of different ideas had been put forward to
address this issue, but perhaps the simplest of all is the
escape-rate formalism [41]. The idea is to express the rate
of escape 7y from a given phase-space neighborhood of size
L using thermodynamic formalism and then to equate it to
the escape rate calculated using a diffusion equation, i.e.

y=-pE) = [Eou.dx =5, = (7) D
4.8)

where S, is the Kolmogorov-Sinai entropy of the neigh-
borhood. The semiclassical analysis [17] suggests that the
evolution is described by Eq. (2.6) with diffusion coeffi-
cient given by
H3

87
where we ignore the problem of factor ordering. Then,
according to Egs. (4.8) and (4.9), the sum of positive local

Lyapunov exponents is likely to scale linearly with diffu-
sion coefficient, i.e.

E,(x) =« H(x)3.

(4.9)

(4.10)

This is our best guess of what the underlying microscopic
properties of the system should be based on the semiclas-
sical methods [17] and on the escape-rate formalism [41].
Of course, one would want to go beyond the semiclassical
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theory to confirm (or disprove) the linear dependence of
microscopic Lyapunov exponents on macroscopic diffu-
sion coefficients.

In addition to diffusion, the fluctuations are constantly
stretched by cosmological expansion which gradually re-
duces the effect of any particular mode (along a given local
trajectory) on the Lyapunov spectrum. This can be cap-
tured by an additional factor = a(x)? in the expression for
E. (x), where a(x) is a local scale factor which describes
the local Friedmann-Robertson-Walker geometry. Then,
the final expression for the sum of positive Lyapunov
exponents is

E,(x) =« H(x)3a(x)3, 4.11)

and the corresponding equilibrium measure is

e (x0) < exp( ~ [ B (x()a)
- exp(—,B fo tH(X(T))3a(X(7'))3d7'>, 4.12)

where 3 is a yet undetermined constant. We would like to
stress that the above equation does not contain all of the
quantum effects (e.g. quantum tunnelings), but only pro-
vides an estimate of the effect of linear inflationary pertur-
bations on the equilibrium measure of forward trajectories
due to positive Lyapunov exponents.

D. Effect of horizons

In the dynamical systems of inflation discussed so far,
the local phase-space trajectories did not escape nor repro-
duce, but a generic dynamical system may contain both
absorbing and reproducing (i.e. absorbing states of a time-
reversed system) states. For such systems, the rate of
escape of forward trajectories is usually given by the sum
of positive Lyapunov exponents (4.11). Then, the contri-
bution to the escape rate from N scalar fields is given by

N

E[jrhasefspace(x) ~ Z B[H(X)3a(x)3.
i=1

(4.13)

Roughly speaking, the larger the rate of a phase-space
expansion, the easier it is for a given trajectory to escape
or to hit an absorbing state if such a state exists. Similarly,
the rate of reproduction of local trajectories is given by the
rate of escape of backward trajectories or by minus the sum
of negative Lyapunov exponents (4.6). For inflation driven
by N scalar field, the rate is

N
[phase space(x) ~ Z 3H(x) = 3NH(x). 4.14)

i=1

This is a phase-space picture.

At the same time, eternal inflation can be described from
a physical-space point of view where the local trajectories
reproduce or escape due to the presence of cosmological
and black hole horizons. According to the physical-space
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picture, the local trajectories reproduce with the following
rate:

H(x)

3
d <V°“ (4.15)

o log H*3) 3H(x) + 3H(x)’
where Vya®/H 3 is the number of independent local trajec-
tories at time 7 inside of comoving volume V,,. The second
term of Eq. (4.15), averaged over periodic orbits, is exactly
zero, but the first term gives a nonzero contribution to the
reproduction rate,

[Ephysical space(x) = 3H(X) (416)

Roughly speaking, this is the rate with which local observers
fall out of causal contact with each other and start to follow
their own local trajectories.

In addition to reproduction, the physical-space picture
suggests that the local trajectories might eventually escape
into black hole singularities whenever the energy density
contrast during inflation is of order one or larger. This is
usually the case for inflationary perturbations generated
above the self- reproduction scale, if they are not stretched
out by dark energy, but might occasionally happen on any
scale if the classical drift of a scalar field is of the same order
or smaller than a given quantum jump, i.e. 8 @cjass = 0@ quant-
For Gaussian fluctuations (below self-reproduction scale),
one finds that the corresponding rate of escape is

H(x)?

Epihysical—space (X) ~ )
d,H(x)

4.17)

Of course, the above equation is only valid towards the end of
inflation so that the fluctuations have time to reenter horizon,
and the local observers have time to escape into the singu-
larity before the cosmological constant starts to dominate.

To apply the methods developed in this paper to an
arbitrary model of eternal inflation, one might want to
describe the effects of horizons described by Egs. (4.16)
and (4.17) in a language of dynamical systems. This can be
accomplished by generalizing the energylike functions
E_ and E, to include both the phase-space and physical-
space contributions, i.e.

E_ (X) — Eghase—space(x) + Eghysical-space(x) (418)

and

E+ (X) _ Eg_hase—space(x) + Eﬂhysical—space (X) (4 1 9)

Depending on a model of eternal inflation, the horizons
may or may not change significantly the corresponding
equilibrium measures of Egs. (4.7) and (4.12).

V. SUMMARY OF RESULTS

The dynamical systems approach to nonequilibrium sta-
tistical mechanics is a viable alternative to the stochastic
approaches with a wide range of applications. For cosmo-
logical systems, the approach is introduced here for the first
time, but it is based on a well-known mathematics developed
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over the last few decades. The main motivation to study
something new was to solve the cosmological problems of
entropy, measure, observables, and initial conditions. We do
not claim that the solution presented here is unique, but we do
claim that none of the previously proposed scenarios solve all
of these problems simultaneously. Below, we list the most
popular frameworks'' and their problems'*:

Initial

Framework Entropy Measure Observables conditions
Quantum cosmology [1,2] No Yes No Yes
Local stochastic [17-19] No No Yes Yes
Global stochastic [11,12] No Yes Yes No
Stationary stochastic [13] No Yes No No
Geocentric cosmology [23] No Yes No No
Hamiltonian systems [24] Yes No No No
Dynamical systems No No No No

Perhaps the most interesting result about the new ap-
proach is that, if correct, it gives us a hope to derive the
cosmological predictions from the dynamics itself with-
out a need to postulate any additional rules (e.g. measure,
initial conditions, space of observables, etc.). This would
be a truly dynamical solution to the existing cosmological
problems.

We conclude with a critical summary of the main results:

(1) Problem of observables. Many cosmological mea-
sures, defined over a space of local states, are known to
suffer from serious logical inconsistencies. Although
the probability spaces over local states are natural
within a stochastic approach, it is not the case for
the dynamical systems approach developed in this
paper. The new framework suggests that the relevant
observables should be local trajectories and the mea-
sures should be defined over the space of trajectories
instead of states. Without going into details, we men-
tion that one might still run into philosophical issues
(e.g. terminal states have zero probability) whose
implications remain to be better understood.

(2) Entropy problem. The Liouville measure is the
most physical measure for a finite Hamiltonian
system which is known to suffer from the entropy
problem. A solution proposed here involves a
generalization of a purely Hamiltonian dynamics

"Other promising holographic approaches which are currently
under development include de Sitter (dS)/conformal field theory
[3], Friedmann-Robertson-Walker/conformal field theory [4],

12¢No” means that the respective problem can be solved or
avoided at least for some systems, and ““Yes’’ means that, to our
knowledge, the problem cannot be solved nor avoided within a
given framework.
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to include absorbing and reproducing states. For
such systems, the most physical measures are not
the Liouville measures, but more general equilib-
rium measures. This does not mean that a general
dynamical system would never be in a conflict with
observations, but it does mean that such problems
can be avoided.

(3) Measure problem. There are many ‘‘solutions” to
the entropy problem using stochastic processes (i.e.
local, global, stationary), but their major drawback
is that they always introduce new problems such as
the problem of measure or the problem of initial
conditions. This is not the case for the dynamical
systems approach whose equilibrium measures are
uniquely defined by a variational principle. Of
course, for some dynamical systems close to a dy-
namical phase transition, the equilibrium measure
might still be degenerate, and such critical systems
certainly deserve a closer examination.'?

(4) Problem of initial conditions. The equilibrium mea-
sures are only supported on infinite trajectories to
the past as well as to the future. For such measures,
the initial conditions are irrelevant by construction.
However, even if one demands to start with a distri-
bution (continuous with respect to the Liouville
measure), the dynamical system would eventually
forget its initial state, similarly to what happens in
finite Hamiltonian systems.

(5) Fluctuation theorem.The dynamical systems ap-
proach would not be very useful without the chaotic
hypothesis. The hypothesis is a natural generaliza-
tion of the ergodic hypothesis and is often assumed
for analysis of sufficiently chaotic systems. One of
the results which follows immediately is a symme-
try described by the fluctuation theorem which
could in principle be observable in the cosmic mi-
crowave background radiation where the nearby
local trajectories can be compared side by side.
This involves the analysis of very improbable fluc-
tuations which is a challenging task.
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