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The reported spatial variation in the fine structure constant at high redshift, if physical, could be due to

the presence of dilatonic domains, and one or more domain walls inside our horizon. An absorption

spectrum of an object in a different domain from our own would be characterized by a different value of �.

We show that while a single-wall solution is statically comparable to a dipole fit, and is a big improvement

over a weighted mean (despite adding three parameters), a two-wall solution is a far better fit (despite

adding three parameters over the single-wall solution). We derive a simple model accounting for the two

domain wall solution. The goodness of these fits is, however, dependent on the extra random error which

was argued to account for the large scatter in most of the data. When this error is omitted, all the above

solutions are poor fits to the data. When included, the solutions that exhibit a spatial dependence agree

with the data much more significantly than the standard model; however, the standard model itself is not a

terrible fit to the data, having a p value of �20%.

DOI: 10.1103/PhysRevD.86.043501 PACS numbers: 98.80.Cq

I. INTRODUCTION

The universality of fundamental constants is one of the
underlying tenets of physics. Of course, some of these
constants, like the fine structure constant, �, may be
dynamical, and their values may be the result of an
expectation value of some scalar field. Thus, testing this
universality is a bridge to physics beyond the standard
model [1].

Claims of a temporal variation in � from observations of
quasar absorption spectra have been extended to include a
possible spatial variation as well [2]. The initial indications
of a temporal variation in � made use of the many-
multiplet method [3] and sparked an enormous amount of
theoretical activity in attempts to explain it [4–8]. The
Keck/Hires data yielded a statistically significant trend
with ��=� ¼ ð�0:54� 0:12Þ � 10�5 over a redshift
range 0:5 & z & 3:0 (the minus sign indicates a smaller
value of � in the past). Subsequent studies based on VLT
data using the same method have shown �� to be consis-
tent with zero [9,10]. Of course, these results can be made
compatible if there is a spatial variation in �.

Variations of � observed in individual absorbers using
the many-multiplet method or more generally temporal
variations could be due to systematics related to the astro-
physical assumptions made regarding each absorber. For
example, it is generally assumed that the abundance ratio
of Mg isotopes take their terrestrial values. However, even
a slight enhancement in 25;26Mg=24Mg could nullify many
of the observed variations. Furthermore, such an enhance-
ment in the heavier Mg isotopes could be explained by an
earlier population of intermediate-mass stars [11].

Results from a recent VLT survey of 153 absorbers [2]
taken together with the Keck data lead to a large sample
of 293 absorbers across the sky. However, it was shown

that there is a statistically significant spatial variation, as
demonstrated by a dipole fit to the data

��

�
¼ mþ A cosð#Þ; (1)

which cannot be accounted for by the systematic uncer-
tainty due to the Mg isotopic abundances. In Eq. (1), m is
the monopole term, A is the magnitude of the dipole, and#
is the angle between the directions of the absorbers and the
dipole. The template therefore has four parameters: m, A,
and the two angles which specify the direction of the dipole.
There is a marked improvement to the fit (using the full data
set) using the dipole rather than a simple weighted mean
(monopole) despite adding three parameters.
Despite the improvement in the fit for the dipole [Eq. (1)]

relative to the standard model, the p value for both fits is
unacceptable when the full data set is used. To overcome
this, Refs. [2,3] add an additional common ‘‘random error’’
to some of the Keck data, and to all the VLT data, until the
�2 values of the fits become order 1 and hence lead to
acceptable p values (see Sec. III for a detailed discussion).
While some justification was attempted for adding this error
to some of the Keck data, this procedure is arbitrary to a
large extent, and the errors are added only during the data
analysis phase. More troubling is the fact that the value of
the random error depends on the functional form of the
assumed fit.
In addition, no underlying physical model that could

produce a variation of the form given in Eq. (1) was
proposed in [2,3]. In contrast, a model was proposed in
[12] where the spatial variation of � could be due to a
dilatonic domain wall between us and some of the absorb-
ers. No data analysis was performed in [12], and therefore
the proposal of [12] remains to be investigated. This is the
object of the present work. As we discuss below, the fit to a
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domain wall model [12] is in general different from a
dipole. Therefore, to substantiate the suggestion of [12],
we would like to answer two questions: (i) Is the model of
[12] a better fit to the data relative to a dipole? (ii) Is the p
value associated with this model acceptable in the absence
of adding an extra error of unclear origin to the data? The
present analysis shows that the answer to the first question
is positive: a simple extension of the model of [12], char-
acterized by two walls, has (in absence of the extra error) a
p value that is about 5 orders of magnitude better than that
of the dipole fit; however, the answer to the second ques-
tion remains negative. When the random error is included,
the two-wall fit to the full dataset is better than the dipole
fit, and, as we remarked, it has also the advantage that it is
based on an underlying physical model.

Before comparing with the data, it is interesting to study
how a spatial variation of � can be realized from funda-
mental physics. The simplest possibility is to assume that
the fine structure constant depends on some dynamical
scalar field � (for instance, the dilaton in string theory).
In this case �ð�ðxÞÞ can be space-time dependent. On
cosmological scales, it is usually thought that the time
variation dominates over spatial fluctuations, as suggested
by most models. For example, suppose we couple a scalar

field to electromagnetism through BFð�Þ
4 F��F

��,F�� being

the Faraday tensor and BF an arbitrary function of �. This
will necessarily induce a coupling to matter which is
generated radiatively if not present at the tree level (see
below). The equation of motion for the scalar field simply
takes the form

h�þ @Veff

@�
¼ 0; (2)

where Veff includes the self-interactions of� as well as any
couplings to matter. If the Lagrangian contains a term
BNð�ÞmN

�NN, then the coupling to matter is effectively
density dependent, and could serve as the source of spatial
variations through

h�þm2
�� ¼ B0

Nð�Þ�N; (3)

where m� is the scalar mass and �N is the baryon energy

density, as is the case for the chameleon mechanism [13].
However, the density-dependent shifts from the homo-
geneous solution are typically extremely small except
perhaps in the vicinity of a neutron star [14–16]. In con-
trast, temporal variations are relatively easy to achieve,
particularly over cosmological time scales, as long as the
field remains light.

Thus, we know of no physical or field theoretic model
which could produce a dipole accounting for the observed
spatial variations. Instead, one can invoke the existence of
a spatial discontinuity of the fine structure constant due to
the existence of a domain wall crossing our Hubble volume
[12] (this idea was further studied in [17]). In this case, �
would take two values, �þ (the larger value of �) on our
side of the wall and�� at high redshifts on the other side of

the wall. This implies that local constraints [1] on the
variation of � such as atomic clocks, Oklo and meteoritic
dating will be trivially satisfied.
The simplest way to implement this idea is to consider

the following theory:

S ¼
Z �

1

2
M2

pR� 1

2
ð@��Þ2 � Vð�Þ � 1

4
BFð�ÞF2

��

�X
j

i �c j 6D=c j � Bjð�Þmj
�c jc j

� ffiffiffiffiffiffiffi�g
p

d4x; (4)

whereM�2
p ¼ 8�G is the reduced Planck mass. The scalar

field � is assumed to have a simple quartic potential

Vð�Þ ¼ 1

4
�ð�2 � 	2Þ2 (5)

and a coupling to the Faraday tensor as well as to the
fermions c j. The coupling functions Bi are assumed to

be of the form

Bið�Þ ¼ exp

�

i

�

M�

�
’ 1þ 
i

�

M�
; (6)

where the coefficients 
i are constant and M� is a
mass scale. This model depends on the parameters (�,
M�, 	, 
F, 
i), and we shall assume here that, at tree level,
only 
F is nonvanishing. Nevertheless, the scalar field
inevitably couples to nucleons radiatively through 
N ¼
m�1

N hNjð
F=4ÞF2
��jNi [7]. This yields 
p ¼ �0:0007
F

and 
n ¼ 0:00015
F [18] for the proton and neutron,
respectively. Since most baryons in the Universe are pro-
tons, we shall take 
N ¼ 
p for simplicity in our estimates.

The main difference between the model studied here and
previous models is that the scalar field is assumed to be
heavy so that it is stabilized; hence, we do not expect any
local violation of the equivalence principle. Indeed, the
current model does not exhibit any temporal variation of
constants once the phase transition has occurred. The
resulting shift in the value of � on the other side of the
wall is easily determined [12]:

��

�
’ 2
F

	

M�
: (7)

For simplicity, we shall assume	 ¼ M�, so that 
F ’ 10�6

is required to match the data. Then for �� 1 and
	� 1 MeV, one can show that such a wall makes only a
tiny contribution to the overall energy density [�wall �
ð 	
100 MeVÞ3] [19], it is cosmologically stable, and it is com-

patible with the cosmic microwave background (CMB)
[20] and other astrophysical constraints. Furthermore,
due to the dynamics of the phase transition producing the
wall, we expect to be left with order 1 large wall per
Hubble radius [21] which is moving slowly towards us
[12]. The large wall structure is in general not planar, but
can be expected to have an irregular shape with a typical
curvature of the order of the horizon size [22]. In principle,
we could introduce extra parameters in our fits that model

KEITH A. OLIVE, MARCO PELOSO, AND ADAM J. PETERSON PHYSICAL REVIEW D 86, 043501 (2012)

043501-2



the shape of the wall. We choose not to do so, due to the
large arbitrariness that such a parametrization would in-
volve. Therefore, we assume that the walls can be approxi-
mated as flat for the purposes of our fits. We will see that
for our best fit walls, the point on the wall closest to us is
at a redshift z� 0:5–1. This corresponds to a comoving
distance of �10–20% of the horizon scale. It is not un-
reasonable therefore to assume that a wall can be approxi-
mated as flat over this scale.

Given the large data set available [2,3], it is possible to be
more quantitative concerning the wall. We can in fact use the
data to determine the position of the wall, and the potential
drop across it. We can further make a statistical judgement as
towhether thewall is an improvement over a simple temporal
variation (amonopolefit) and compare it directly to the dipole
fit found in [2]. As we will see below, while in ideal circum-
stances, thewall is an approximation to a dipole; the direction
of the wall only lines up well with the dipole when using the
Keck data alone. For the full data set, the best fit position of
thewall is not alignedwith the dipole. Nevertheless, the fit for
the wall as determined by a �2 analysis is comparable to that
of the dipole. While less significant than the Keck data, the
VLT data show a tendency for positive variations of �. We
show that a two-wall solution (despite requiring three addi-
tional parameters) is a far superior fit to the data than either the
dipole or single-wall solution.

In the next Section, we present a model with three dila-
tonic solutions, which is the basis for the two-wall fits of the
data discussed below. This model is a simple extension of
the model of [12]. In Sec. III, we briefly describe the data
that we use. In Sec. IV, we outline the key algorithm used in
thewalls fit, used to determine inwhich vacuuman absorber
lies. In Sec. V, we present the results of our fits. The
significance for a spatial dependence in the data, and the
orientation of the dipole and wall fits are discussed in
Sec. VI. Our conclusions are summarized in Sec. VII.

II. THE TWO-WALL MODEL

In many extensions of the standard model, the value of �
is a function of the dilaton field, as indicated in Eq. (4). In
general, � is the real part of a complex field �. In [12], it
was suggested that the potential of � has two minima, and
that we live in one of them, while some of the observed
absorbers live in the other vacuum. In this paper, we also fit
the data against a two-wall model. In this fit, absorbers
have either the same value �0 that we measured on Earth,
or the value �0ð1þ �Þ, or �0ð1� �Þ. In this Section, we
briefly indicate how the model of [12] can be modified to
have three dilatonic vacua.

The relevant terms in the action are

L ¼ �j@��j2 � Vð�Þ � 1

4
BFð�ÞF2

��; � ¼ Re�;

V ¼ �

�
j�j2 � 	2

2

�
2 � ffiffiffi

2
p

i�ð�3 ���3Þ þ V0; (8)

where the three parameters �, 	, � are positive and real
numbers. We note that � is dimensionless, while 	 and �
havemass dimension 1. The constant V0 is chosen such that
the potential vanishes at its minimum. For computational
simplicity, we assume that � � �	, so that the second term
in the potential can be treated as a perturbation.
The potential has the three minima

�n ¼ 	ffiffiffi
2

p R0e
ið2�3 n��

6Þ; n ¼ 1; 2; 3;

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9�2

4	2�2

s
þ 3�

2	�
¼ 1þ O

�
�

�	

�
: (9)

The phases of the three minima correspond to the com-
plex vectors shown in the right half of Fig. 1. We assume
that we live in the n ¼ 1 vacuum. To evaluate the values
of � in the other vacua, we assume that B is still given by
Eq. (6), with � ¼ Re�, and expand it for small 
. We
obtain

��1

�
¼ 0;

��2

�
¼ �;

��3

�
¼ ��;

� ¼ 
N

ffiffiffi
3

p

2
ffiffiffi
2

p 	

M�

�
1þ O

�
�

�	

��
:

(10)

For � � �	, the radial excitations of � around the
minima are much more massive than the angular excita-
tions. At energies below the mass of the massive radial
excitations, we have a consistent physical description
which includes only the light degrees of freedom. At
leading order in �, the canonically normalized field, �c,
corresponding to the light excitations, is

FIG. 1. A cosmic string formed at the first stage of symmetry
breaking (left side); the arrows indicate the complex value taken
by� in different spatial positions. The central dot represents the
string (which extends out of the page). At the second stage of
symmetry breaking (right side),� settles in the different minima
[Eq. (9)] inside separated domains. The solid lines represent
sections of the walls separating the domains. This part of the
figure also illustrates a typical wall configuration in our fits: our
location is at the center of the dotted circle, which represents the
typical radial distance to the Keck and VLT absorbers.
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� � 	ffiffiffi
2

p eið�c=	Þ þ Oð�Þ (11)

and is controlled by the Lagrangian1

L ¼ � 1

2
ð@�cÞ2 � �	3

�
sin

�
3�c
	

�
þ 1

�
þ Oð�2Þ: (12)

In the following, we assume � ¼ Oð1Þ for definiteness.
At high temperatures, the potential [Eq. (8)] is modified by
thermal effects. At temperatures greater than Oð	Þ, the
model is in the unbroken phase; namely, the potential is
minimized at � ¼ 0. Below this temperature, the nearly
U(1) invariant set of minima j�j ’ 	ffiffi

2
p appears. This resid-

ual U(1) symmetry is preserved as long as thermal fluctua-
tions are energetic enough to cross the potential barrier
between the three vacua [Eq. (9)]; this is the case until

T ’ Oðð�	Þ1=4	Þ. Below this temperature, the system is in

the fully broken phase.
Therefore, for � � 	, symmetry breaking occurs in two

stages. Cosmic strings are formed at the first stage. Outside
each string, � has fixed magnitude and variable phase. As
the temperature decreases, domains of the three vacua
[Eq. (9)] form; the different domains are separated by a
domain configuration with j�j ¼ 	ffiffi

2
p þ Oð�Þ, and with a

phase interpolating between the values in the two domains.
As illustrated in Fig. 1, at least three domain walls stream
off each string (more domains will be present for strings
characterized by a higher winding number).

For a planar and static wall perpendicular to the z axis, it
is convenient to define

~� � 3�c
	

� 5�

2
; ~z � 3

ffiffiffiffiffiffiffi
�	

p
z (13)

so that the action is manifestly put in the form of the
sine-Gordon model. Indeed, starting from Eq. (12), and
performing these redefinitions, we obtain the domain wall
action

S ¼
Z

dtdxdy
1

3

ffiffiffiffi
�

	

s
	3

Z
d~z

�
� 1

2

�
d~�

d~z

�
2 � ~V

�
;

~V � cos~�þ 1: (14)

In these coordinates, the three minima [Eq. (9)] correspond

to the ~� ¼ ��, �, 3� minima of ~V, respectively. The
wall solution is obtained from a standard Bogomol’nyi-
Prasad-Sommerfeld procedure. The equation of motion
d2 ~�
d~z2

� d ~V
d~�

¼ 0 is integrated to give

1

2

�
d~�

d~z

�
2 � ~Vð~�Þ ¼ 0: (15)

This equation can be further integrated to give (returning to
the original coordinates)

�c ¼ 	

�
�

2
þ 4

3
tan�1ðe2 ffiffiffiffiffi

�	
p

zÞ
�
: (16)

This is the domain wall solution interpolating between the
two minima n ¼ 1 (at z ¼ �1) and n ¼ 2 (at z ¼ þ1) of
Eq. (9). We note that the thickness of the wall is of Oð 1ffiffiffiffiffi

�	
p Þ.

The tension of the wall is most easily computed using
the rescaling [Eq. (13)], and using Eq. (15), we obtain

T ¼ energy

area
¼

Z
dz

�
1

2

�
d�

dz

�
2 þ V

�

¼ 1

3

ffiffiffiffi
�

	

s
	3

Z �

��
d~�

ffiffiffiffiffiffiffi
2 ~V

p
¼ 8

3

ffiffiffiffi
�

	

s
	3: (17)

The cosmological and astrophysical limits for the single-
wall model were discussed in Ref. [12]. This discussion
can be readily extended to the current case. For example,
the requirement that the CMB is not distorted by the walls
translates into an upper limit [12]�

�

	

�
1=6

	< few MeV (18)

on the wall tension. The tension of the strings is also of
order 	, and values compatible with Eq. (18) do not lead to
any CMB limit from the strings.
Another relevant constraint is related to avoiding exces-

sive emission of dilatonic quanta in supernovae. In the
current model, such quanta in the vacuum n ¼ 1 have a
squared mass m2

� ¼ 9�	 [these are the light excitations

described by Eq. (12)]. If this mass is smaller than the
supernovae temperature, a large number of dilatonic quanta
are produced in supernovae. Such quanta decay back

into photons with a rate ��
2
Fm

3
�=M

2��
2
F�

3=2	3=2=M2�.
If the corresponding decay length is smaller than the size of
the supernova core, we do not have energy loss into such
quanta [12]. This occurs for

�: * Oð10�2Þ MeV

�
10�6


F

�
M�
	

(19)

(for typical supernova temperatures of order T � 30 MeV).
If we make the natural choice 	 ¼ OðM�Þ, we see that the
two conditions of Eqs. (18) and (19) indeed allow the
hierarchical choice � � 	.
Next, we need to discuss the modification of the poten-

tial due to the interaction of� with matter. As discussed in
[12], the interaction generates an additional term in the
potential

�V ¼ 
N

Re�

M�
�b; (20)

where �b is the energy density of baryons in the Universe,
and 
N is the constant controlling the coupling of the
dilaton to nucleons in Eq. (6). As in [12], we assume that
this coupling is generated radiatively starting from the
coupling of the dilaton to photons [7], and we disregard

1Domain walls described by a Lagrangian similar to Eq. (12)
typically appear in axion models [23]. See also [24] for an early
study of solitonic solutions in a potential with analogous struc-
ture to Eq. (8).
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the contribution of neutrons. This gives 
N ’ �0:0007
F

[18]. We then find, for the three vacua [Eq. (9)]

�V1 ¼ 0; �V2 ¼ þ�b; �V3 ¼ ��b;

�b ’ 4� 10�10

�

F

10�6

�
	

M�
�ð0Þ
b ð1þ zÞ3; (21)

where �ð0Þ
b ’ 1:8� 10�48 GeV4 is the current value of the

baryon energy density.
The coupling to baryons breaks the degeneracy between

the energies of any two domains separated by a wall. This
generates motion of a wall towards the region of greater
potential energy; however, the motion is slowed down
by Hubble friction. The velocity v of the wall is described
by [12]

d

dt
ðR
vÞ ¼ R

�V

tensionwall
; (22)

where R is the radius of the Universe and 
 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
.

For the single-wall model studied in [12], this resulted in a
current wall velocity, v0 ’ 0:004. The only significant
difference between the single- and the double-wall models
is the parametric dependence on � � 	 of the wall tension.

This results in an increase of Oð
ffiffiffi
	
�

q
Þ for the value of 
v in

the model considered here with respect to the one in [12].
This means that for the model with two walls, we estimate

v0 ’ 0:004
ffiffiffi
	
�

q
as long as the current motion is nonrelativ-

istic. The two bounds in Eqs. (18) and (19) suggest a
hierarchy �=	� 10�2, in which case it is also safe to
disregard the motion for the two-wall models.

A second potential worry associated with Eq. (21) is the
tunneling of the domains n ¼ 1, 2 into the domain of
lowest energy, n ¼ 3. The tunneling rate is suppressed
by [25,26]

� / exp

�
� 27�2

2

T4

�V3

�
� exp

�
� 10135

ð1þ zÞ9
�
; (23)

where T is the tension evaluated in Eq. (17) and �V is the
potential difference [Eq. (21)]. In the numerical evaluation,
we have set � ¼ 10�2	, 	 ¼ M� ¼ MeV, 
F ¼ 10�6.
The wall forms at z� 109. We see that the tunneling rate
is always negligible.

III. DATA USED

The available data on possible variations in� come from
two sources: Keck data [3] containing 140 absorption
systems and VLT data [2] containing 153 systems.

Concerning the VLT measurements, we use the results
appearing in Table A1 of the second reference in [2].
Consistently with what is done in [2], we discard the fourth
absorber in the list as an outlier. We use the last column of
that table for the values of ��=� for each of the absorbers.
In several fits using these data, Ref. [2] added in quadrature

a common ‘‘random error’’ �ran ¼ 0:905� 10�5 to the
value of � given in the table for each absorber. The
motivation given in [2] is that the VLT data are too scat-
tered, and therefore the original error given in the table
must be underestimating the true error. Ref. [2] actually
uses slightly different values for �ran for fits of the data to
different functional forms. The mathematical procedure
leading to the values used is described in their Sec. 3.5.3.
This procedure ultimately allows the data to agree with the
fitting model (the random error is determined by requiring
that a subset of the data—once the biggest outliers are
excluded—have a reduced �2 equal to 1 for the model
under which the data are being fit). This is certainly a
necessary condition for a meaningful model comparison,
if one wants to claim that the better model fits the data.
However, we stress that the procedure is arbitrary to a large
extent, and that Ref. [2] did not identify the physical source
of this additional error. We therefore regard as unmotivated
any p value obtained for the fits when �ran is added; we
agree that it is nonetheless interesting to compare the
significance of different fits to the data, in the hope that
the physical source of the error is eventually found, and
that this error is not correlated with the spatial position
of the observers. Concerning this last comment, we stress
that, for�ran ¼ 0, all of the models considered in [2] and in
this paper are a very bad fit to the data, and therefore we
cannot rule out that any claimed spatial dependence is
spurious. In our data analysis, we compute the p value of
the fits with and without adding �ran, in order to see how
the significance of the dipole and wall fits is affected by
this random error.
Concerning the Keck/Hires data, we use the same data

studied in [2]. Such data were analyzed in [27,28], and can
be found in the online data table I linked to [29]. This table
contains 143 absorbers, 27 of which are denoted as a
‘‘high-contrast sample’’; such absorbers are at redshift
z > 1:8, and both strong and weak transition lines had to
be fit to extract the value of � associated to them.
According to [27], this is the origin of the excess scatter
present in these data, which is not adequately reproduced
by the calculated statistical error. To account for this,
Ref. [27] added in quadrature the common error � ¼
1:75� 10�5 to the individual error of each high contrast
absorber. The value of this common error was chosen in
[27] so that, once the total error is used, a common mean
fits these 27 absorbers with a reduced �2 equal to 1.
Reference [2] used different values for this common error
according to different fits of the data, analogously to what
was done for the VLT data. In our study, we compare the
significance of different models both with and without the
additional error, � ¼ 1:63� 10�5, which is the value
used in [2] for most of the dipole fits. We stress that this
error is added only to the 27 ‘‘high contrast’’ absorbers.
According to Ref. [30], the original values of � studied in
[27] are affected by an incorrect wavelength calibration.
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Reference [28] estimated the shift induced by the miscali-
bration on each individual absorber. In most cases, the
quoted values are smaller than the statistical error on
each measurement, and Ref. [28] concluded that this effect
does not significantly impact the data analysis. This recali-
bration was disregarded in the analysis of [2]. Additionally,
Ref. [2] indicated that two absorbers in the table in [29],
and included in the previous analysis, are affected by
overly large calibration problems, and should be disre-
garded. One additional absorber is also identified as an
outlier in the analysis of [2], and disregarded. To compare
our results with those of [2], we also disregard the recali-
bration and these three absorbers in our study.

IV. WALL FITTING PROCEDURE

Let us first discuss our fitting procedure for the single
domain wall model. The wall separates the dilatonic vac-
uum we live in (characterized by the value of � measured
on Earth) from the other vacuum (characterized by a differ-
ent value of �). We need to establish an algorithm that, for
any wall configuration, indicates whether a given absorber
is in our vacuum, or in the other one.

As discussed above, the wall can be assumed to be
planar and static today. This means that one can choose
coordinates so that the wall is at a constant comoving
Cartesian coordinate, say x ¼ xwall. The wall has a point
which is closest to us. Let us denote this point by P. The
position of P is characterized by the two angular polar
coordinates ð��; ��Þ and by the redshift z�. An additional
parameter of the model is the value of � in the other
vacuum. These four parameters completely specify the
wall model for the purpose of data fitting.

The dashed line shown in Fig. 2 illustrates how the wall
appears on our sky. In the figure, the coordinates have been
chosen so that the origin corresponds to our location, while
points at greater radial distance from the origin correspond
to points at greater redshift on our sky (we did not attempt
to show this relation to scale in the figure). The coordinates
in the figure have also been chosen so that the point P lies
on the positive vertical axis, �� ¼ 0. The wall is described
by a function �ðzÞ, that relates the redshift z of a generic
point on the wall to the angle � formed by the line of sight
to this point (as seen by us), and the line of sight to the
point P. To obtain this function, we first note that the radial

comoving coordinate of this generic point on the wall is
related to this angle by

r ¼ r�
cos�

; (24)

where r� is the radial comoving coordinate of P. We then
recall the relations adr ¼ dt ¼ da=ðaHÞ, where a is the
scale factor, and H the Hubble rate. We insert the expres-
sion of the scale factor in terms of redshift, a ¼ a0=ð1þ zÞ
in this differential relation (a0 denotes the value of the
scale factor today), and we integrate the resulting equation
to obtain a relation between r and z. We finally insert this
result into Eq. (24) to obtain

cos�ðzÞ ¼
Rz�
0

dz0
Hðz0ÞR

z
0

dz0
Hðz0Þ

¼
Rz�
0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��;0þ�m;0ð1þz0Þ3

pR
z
0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��;0þ�m;0ð1þz0Þ3

p ; (25)

where we have restricted our attention to a flat universe
containing only matter and a cosmological constant.

TABLE I. �2 (and p values) without adding random errors on the VLT data or the 27 ‘‘high
contrast’’ Keck data.

Fit Keck VLT Combined

Standard model 217:1ð3� 10�5Þ 280:2ð2� 10�9Þ 497:3ð10�12Þ
Monopole 180.3(0.011) 269:9ð10�8Þ 496:5ð10�12Þ
Dipole 176.5(0.011) 250:8ð4� 10�7Þ 449:6ð4� 10�9Þ
One wall 165.6(0.043) 229:5ð3� 10�5Þ 449:2ð5� 10�9Þ
Two walls 162.0(0.044) 209:0ð5� 10�4Þ 397:0ð10�5Þ

P

wall

absorber

(z  )θ A
θWA

redshift

FIG. 2. Illustration of how we determine whether an absorber
is in our vacuum, or in a different one. Our location is placed at
the origin, and increasing radial distance corresponds to increas-
ing redshift. The figure shows the wall as it appears on our sky
and an absorber at redshift zA. This redshift is shown as the
dotted circle. The angle �ðzAÞ is the angle at which we see the
wall at that redshift; the angle �WA is instead the angle between
the center of the wall and the absorber. The case shown has
�WA > �ðzAÞ, and the absorber is in our vacuum.
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��;0 ’ 0:728 and �m;0 ¼ 1���;0 denote the present

fractional energies of cosmological constant and matter,
respectively (the numerical value is the Maximal
Likelihood value given in [31] for a�CDM universe, using
WMAP7, BAO, and H0 data). Upon changing the integra-
tion variable z0 ! y� 1, this relation becomes

cos�ðzÞ ¼ F ðz�Þ
F ðzÞ ; F ðzÞ �

Z 1þz

1

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��;0

1���;0
þ y3

r :

(26)

This relation correctly reproduces �ðz�Þ ¼ 0 for the case
in which the generic point on the wall coincides with P. It
also indicates that the wall is seen within a maximal open-
ing angle, which is mathematically given by �ðz ¼ 1Þ.
(For fitting purposes, there is no difference between con-
sidering the maximal opening angle given by z ¼ 1 and
the one given by the redshift at which the wall formed,
since the latter quantity is much greater than the redshifts
of the absorbers.) The opening angle is maximal for
z� ¼ 0, when the wall passes through our location. In
this limit Eq. (26) gives � ¼ �=2, which correctly indi-
cates that the wall is seen in half of the sky.

It is now straightforward to describe the algorithm that
we use to determine whether an absorber is in our vacuum
or in the other one. Figure 2 also illustrates the position of a
generic absorber. For each wall configuration, and for each
absorber, we compute the angle between the line of sight of
the absorber and the line of sight of P. This is the angle
�WA indicated in the figure. We then insert the redshift of
the absorber zA into Eq. (26). The corresponding quantity
�ðzAÞ is also shown in the figure, and it corresponds to the
angle between the line of sight of P and the line of sight of
a point on the wall having the redshift zA. If, as in the
figure, �WA > �ðzAÞ, the absorber is seen by us outside the
region delimited by the wall for that redshift. Therefore
the absorber is in our vacuum. If instead �WA < �ðzAÞ, the
absorber is ‘‘beyond the wall,’’ and therefore in the other
vacuum.

In the case of two walls, one could have the situation in
which (i) the walls are far apart, so that they do not
intersect (at least in the region occupied by the absorbers),
or (ii) they are close enough that they do intersect. In case
(i), the stationary and planar approximation holds for both
walls, and we readily extend to this case the procedure just
outlined for the single-wall case. In the case (ii), one
should in principle solve the field theory equations at the
intersection of the two walls to determine the precise
spatial distribution of the different vacuum domains. For
simplicity, we disregard the configurations of the type
(ii) in our analysis. In practice, referring to Fig. 1, we
imagine that the string connecting the walls is at a compa-
rable but slightly greater distance relative to the Keck and
VLT absorbers. Concretely, in our fits of the two-wall
model, we first choose the six parameters that character-
ized the geometry of the walls (three per wall, as described

above), implicitly assuming that the walls do not intersect.
We then use (in our numerical fitting program) the algo-
rithm described above to determine whether an absorber is
beyond either of the two walls. If the algorithm gives that
no absorber is beyond both walls, then the assumption that
the twowalls do not intersect (in the region occupied by the
absorbers) is correct, and the configuration is indeed of
the type (i). Otherwise, the configuration is of the type (ii),
and we disregard the initial choice of the six parameters
in the data analysis. Therefore, when we fit the two-wall
model, we are only fitting the data against a subset of
possible configurations. This effectively results in the
fact that the significance that we quote for the two-wall
model is a conservative figure: we cannot exclude that a
configuration of the type (ii) would be a better fit to the data
than those that we probe in our analysis.

V. RESULTS

We perform separate fits for the Keck measurements
alone (140 objects), for the VLT measurements alone
(153 objects), and for the total combined set (293 objects).
The data were described in Sec. III. The data are given
in Equatorial J2000 coordinates; the polar angles � and �
correspond to ‘‘declination’’ (given in degrees) and
‘‘ascension’’ (given in hours), respectively. The relation
between the different units is

�

radians
¼ �

2

�
1� declination

90�

�
;

�

radians
¼ �

12

ascension

hours
: (27)

The data are fit against
(i) the standard model: no variation of � with respect to

that measured on Earth (0 free parameters),
(ii) a monopole template: a common constantm ¼ ���0

�0
,

where �0 is the terrestrial value (1 free parameter),
(iii) the dipole template [Eq. (1)] (4 free parameters),
(iv) the one-wall model of [12] (4 free parameters),
(v) the two-wall model introduced in Sec. II (7 free

parameters).
Two parameters of the dipole fit are the dipole and

monopole amplitudes A and m specified in Eq. (1). The
other two parameters, � and �, are the angles that specify
the direction of the dipole in a given coordinate system
(specifically, we use Equatorial J2000 coordinates in all
our fits). The angle � should not be confused with the angle
# defined after Eq. (1). The two angles � and � actually
point towards a single position on the sphere, and therefore
also specify the orientation of the dipole. Reversing this
orientation (� ! �� �, � ! �þ �, if the angles are
expressed in radians), and changing the sign of A in
Eq. (1) results in the same dipole fit.
The four parameters characterizing the one-wall model

are the two angular coordinates and the redshift of the point
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of the wall closest to us, and the value � ¼ ���0

�0
corre-

sponding to the vacuum on the other side of the wall with
respect to us. In the two-wall model there are three addi-
tional free parameters characterizing the position of the
second wall; in principle, an eighth parameter could be
immediately introduced, since one can trivially modify the
model introduced in Sec. II to have two independent values
�i beyond the two walls. We remove half of the freedom
by imposing that the values of �i beyond the two walls are
opposite to each other. This is done to reduce the dimen-
sionality of the parameter space, in order to facilitate the
search for the best fitting parameters. Due to this choice,
changing the sign of � and the order of the two walls
results in the same configuration. Finally, as mentioned at
the end of the previous Section, we exclude from the fit the
configurations for which the two walls intersect each other
(at least, within the region occupied by the absorbers). This
assumption is made for simplicity (otherwise we would
need to study the dynamics of the intersection, or at least
introduce additional parameters specifying the position of
a third wall, see Fig. 1).

For any fit, the �2 of any parameter choice is computed
in the standard way:

�2½parameters	 � X
i

ð��� ji � ��
� jparametersÞ2
�2

i

; (28)

where the sum is performed over the absorbers in a given

data set, and where �i is the error on the ��
� ji measure-

ment; ��
� jparameters is instead the theoretical value for that

parameter choice. The likelihood is defined asL ¼ e��2=2.
The dipole and walls fits are performed with a Markov

chain. Each point in the chain corresponds to a point in the
n-dimensional space of the n parameters that are being fit.
The first point in the chain is chosen at random. The chain
is then characterized by the algorithm that allows one to
add the ðnþ 1Þ-th point to it starting from the nth point.
The addition is performed by identifying a candidate point
and by accepting it with a given probability. The identi-
fication is performed by doing a small random step in
parameter space starting from the nth point in the chain.
The candidate point is accepted with the probability

probability accepting point nþ 1 ¼ Min

�
Lnþ1

Ln

; 1

�
;

(29)

where Ln is the likelihood of the nth point, and analo-
gously for nþ 1. We note that a candidate point is always
accepted if it has a better likelihood than the point that was
last accepted in the chain; otherwise, the probability de-
creases in proportion to how much worse the likelihood of
the candidate point is. A long chain then behaves as a grid
which is more dense in regions with higher likelihood.

The point in the chain with smallest �2 is our solution
for the parameters that best describe the data within a given

fit. To find the confidence intervals around this best
point, we vary the value of one parameter at a time, and
marginalize over the other parameters (namely, the other
parameters are free to vary, until the configuration with the
minimal�2 is found). For the dipole fits, the �2 distribution
is approximately Gaussian around the best fit point.
Therefore, we determine the (approximate) 1� confidence
level by varying each parameter until the �2 (with the other
parameters marginalized over) increases by 1 with respect
to the best fit point. For the wall fits, this was possible only
for the parameter �, and because the distribution does not
resemble a Gaussian, the 68% C. L. s are determined
directly from the the likelihood function. For the other
parameters, the �2 behavior is too irregular. We show the
�2 distribution for some of the fits in Figs. 3–6.
The results of our analysis are summarized in a number

of tables and figures. In the tables, we give the �2 and
the corresponding p values of a number of fits to the data.

We recall that the p value p ¼ �ð�2 ; �
2

2 Þ=�ð�2Þ (where �
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FIG. 3 (color online). �2 vs � for the one-wall model fit of the
total data; see the main text for details.
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FIG. 4 (color online). �2 vs redshift of the closest point on the
wall, for the one-wall model fit of the total data.
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represents the number of degrees of freedom) indicates the
probability that a set of fictitious data generated from
the model being studied has a greater �2 than the fit of
the actual data. Therefore, it is a measure of how well the
model fits the data.

The results given in Table I are derived when omitting
the additional random errors discussed in Sec. III. For the
Keck data, we see a significant drop in �2 for the monopole
which was the basis of the claim in [3] for a temporal
variation in �. There is little motivation here for a dipole,
but the single-wall solution does bring another significant
drop in �2. Here, adding a second wall does very little. For
the one-wall solution, the p value reaches 4%. For the VLT
data, the monopole solution offers a modest improvement
in �2, and we see that �2 has significant improvements as
we move from the dipole to the two-wall solution. In each
case, the p value is extremely small. For the combined
data, the monopole offers almost no improvement, while
the dipole and one-wall solutions give an almost identical
drop in �2, which is further lowered in the two-wall
solution. In total, �2 is lowered by 100, at the cost of seven

parameters. As we see from the very low p values, none of
the fits are good representations of the data. It is, however,
worth noting that the p value of the two-wall model is about
5 orders of magnitude better than that of the dipole fit.
Without adding the common random error, the only fits

that have a p value above the percent level are those of the
Keck data. Therefore, it is meaningless to discuss the fits to
the other data. The results of the fits to the Keck data in
absence of the extra error are summarized in Table II. As
was argued in [3], the monopole fit is incompatible with
zero by several �s. As noted above, the wall fit is signifi-
cantly better, and we give in Table II the position of the
wall and the redshift to the closest point on the wall. The
fact that the single wall is oriented in a different direction
with respect to the dipole also confirms that the dipole is
not a good approximation for the wall model for these data.
When comparing the one-wall and the two-wall solutions,
we note that they have comparable significance, and that
one of the two walls in the two-wall solution nearly co-
incides with the wall of the single-wall solution. Therefore,
adding a second wall is superfluous for these data.
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FIG. 6 (color online). �2 vs ascension of the closest point on
the wall, for the one-wall model fit of the total data.
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FIG. 5 (color online). �2 vs declination of the closest point on
the wall, for the one-wall model fit of the total data.

TABLE II. Fits for the Keck data, without adding random errors on the data. The quantities m,
A, � are given in units of 10�5.

Keck fits Parameters �2 (p value)

Standard model 217:1ð3� 10�5Þ
Monopole m ¼ �0:61� 0:10 180.3(0.011)

Dipole m ¼ �0:47� 0:13
A ¼ 0:51� 0:29

� ¼ �57þ25
�16, � ¼ 13:4þ2:3

�5:9 176.5(0.011)

One wall � ¼ �1:15þ0:16
�0:18, z ¼ 0:44

� ¼ 67:9, � ¼ 20:1 165.6(0.043)

Two walls z1 ¼ 0:44, �1 ¼ 68:8, �1 ¼ 20:2
z2 ¼ 0:62, �2 ¼ �37:9, �2 ¼ 18:3

� ¼ �1:17 162.0(0.044)
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Tables III, IV, and V present the solutions for the best
parameter values, the �2, and the p value of the various fits
for the Keck data, the VLT data, and the total combined
data, respectively, with the additional random uncertainty
included. The basic behavior of �2 described for Table I is
repeated when the extra random errors are included. Of
course, overall values of �2 are significantly lower with
correspondingly high values of p. We stress that the value
of the extra error is determined a posteriori during the data
analysis itself [2,27], and its value is chosen so that the
dipole fit is a good fit to the data.

It is interesting to compare the fits to the Keck data with
and without the added random error. Obviously (and, in a
sense, ‘‘by construction’’), the main impact of the added
error is the great increase of the p values of the fits. We
note, however, that while the best fit parameters for the
monopole and dipole fits are essentially unaffected by the
random error, this is not the case for the wall solutions.
The second wall for the Keck data ramains superfluous
when the random errors are included.

We note that as seen in Fig. 3, there are multiple local
minima for the value of � corresponding to the shift in �.
For the Keck and VLT data alone, the lowest two minima
have comparable values of �2 and as such, there are two
distinct ranges for � at the 68% C. L.: (� 1:24 to �1:00)

and (� 0:97 to �0:68) for Keck, and (1.01 to 1.68)
and (1.78 to 2.33) for VLT. For the combined data, the
68% C. L. falls within a single range for �.
We see that the dipole or wall solutions offer little

improvement for the Keck data alone. The single wall gives
a large improvement for the VLT data. For the combined
data, we see again that the single-wall and dipole fits are
clearly better than the standard model or the monopole fit,
while the two-wall fit offers the best solution to the com-
bined data.
Figures 3–6, correspond to the one-wall fit of the

combined data (with the additional random uncertainty in-
cluded). In each figure we show the �2 obtained by keeping
one parameter fixed (to thevalue shownon the horizontal axis
of the figure) and by varying the remaining three parameters
until theminimum�2 is found (i.e., bymarginalizing over the
remaining three parameters). For each figure, 200 values of
the fixed parameter plus the resulting �2 are connected by a
solid line. For each value, the marginalization procedure
is done with a Markov chain of 500 000 points. The large
dots visible in three of the figures are obtainedwith a chain of
2� 107 points, andverify that the shorter chain used to obtain
the solid line is sufficient for the marginalization.
In Fig. 7, we show the position of the Keck absorbers on

our sky and the wall configuration for the single-wall best

TABLE III. Fits for the Keck data, adding random errors on 27 ‘‘high contrast’’ data. The
quantities m, A, � are given in units of 10�5.

Keck fits Parameters �2 (p value)

Standard model 157.9(0.14)

Monopole m ¼ �0:57� 0:11 132.8(0.63)

Dipole m ¼ �0:47� 0:15
A ¼ 0:41þ0:33

�0:32

� ¼ �47þ49
�31, � ¼ 16:0þ2:6

�4:3 131.0(0.61)

One wall � ¼ �0:80þ0:12
�0:44, z ¼ 0:15

� ¼ 32, � ¼ 4:0 127.6(0.68)

Two walls z1 ¼ 0:16, �1 ¼ 33:9, �1 ¼ 3:9
z2 ¼ 0:74, �2 ¼ �37:6, �2 ¼ 18:2

� ¼ �0:82 127.5(0.62)

TABLE IV. Fits for the VLT data, including random errors.

VLT fits Parameters �2 (p value)

Standard model 152.5(0.50)

Monopole m ¼ 0:21� 0:13 149.8(0.54)

Dipole m ¼ �0:11� 0:19
A ¼ 1:17þ0:47

�0:46

� ¼ �62� 14, � ¼ 18:3þ1:5
�1:3 141.8(0.65)

One wall � ¼ 1:38þ0:95
�0:37, z ¼ 1:34

� ¼ �37:8, � ¼ 20:1 132.7(0.83)

Two walls z1 ¼ 1:04, �1 ¼ �42:9, �1 ¼ 19:3
z2 ¼ 1:50, �2 ¼ �14:6, �2 ¼ 8:1

� ¼ 1:44 127.2(0.87)
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fit given in Table III. Each absorber is marked by a zero
sign if it is in our vacuum (since�� ¼ 0 in this case), or by
a minus sign if it is in the other vacuum (since ��< 0 in
this case). The location of the point on the wall which is
closest to us is marked with an asterisk. The wall boundary,
shown with a dashed line in the figure, corresponds to the
(mathematical) locations at which the wall would be seen
at infinite redshift on our sky. The wall intersects any line
of sight pointing in the region limited by that boundary
(and including the asterisk); the redshift of the intersection
is an increasing function of the angle between that line of
sight and the line of sight of the nearest point of the wall
[this corresponds to the angle denoted by �ðzAÞ in Fig. 2].
An absorber in that portion of the sky can either be in our
vacuum if it is ‘‘in front of’’ the wall (namely, if its redshift
is smaller than the redshift at which the wall intersects the
line of sight of that absorber), or in the other vacuum if it is
‘‘behind’’ the wall. All the absorbers in the other portion of
the sky (the one delimited by the dashed-line boundary, and

not containing the asterisk) are instead in our vacuum. Also
shown in Fig. 7 is the position of the dipole solution,
marked by a ‘‘D,’’ which is well aligned (perpendicular)
to the wall.
The VLT absorbers and the corresponding single-wall

best fit (Table IV) are shown in Fig. 8. The absorbers in the
other vacuum are marked with a plus sign in this figure,
since��> 0 in that vacuum. Thewall solution in this case
is found in a different region of the sky, though it too is
well aligned with the dipole (which moved very little).
The combined sample and the corresponding single-wall
best fit (Table V) are shown instead in Fig. 9. In this case,
the single wall attempts to interpolate between the two
previous solutions and is no longer aligned with the dipole.
Finally, Fig. 10 shows how the combined sample separates
into three vacua for the two-wall best fit (Table V). We note
the presence on the sky of a region where the two wall
solutions intersect. The actual wall solution should be
modified in that region so as to properly account for this
(we expect the presence of a third wall, see Fig. 1).
However, all absorbers in that portion of the sky have a
redshift smaller than the intersection (in fact, they have a
redshift smaller than the one corresponding to the second

TABLE V. Fits for the Keck and the VLT data, including random errors on 27 ‘‘high contrast’’
Keck data, and on all of the VLT data.

Combined fits Parameters �2 (p value)

Standard model 310.4(0.23)

Monopole m ¼ �0:22� 0:08 303.7(0.31)

Dipole m ¼ �0:18� 0:09
A ¼ 0:97� 0:21

� ¼ �61� 10, � ¼ 17:3þ1:0
�1:1 280.6(0.63)

One wall � ¼ �1:06þ0:24
�0:22, z ¼ 0:45

� ¼ 68:3, � ¼ 20:2 282.0(0.60)

Two walls z1 ¼ 0:44, �1 ¼ 67:9, �1 ¼ 20:1
z2 ¼ 1:02, �2 ¼ �39:4, �2 ¼ 19:2

� ¼ �1:12 263.2(0.83)

FIG. 7 (color online). Keck absorbers (marked according to
which vacuum they are in) and wall configuration for the single-
wall best fit given in Table III. The asterisk indicates the position
of the point on the wall closest to us; the dashed line indicates the
boundary of the wall. The letter ‘‘D’’ marks the direction of the
dipole, oriented where the dipole amplitude is greatest.

FIG. 8 (color online). VLT absorbers and wall configuration
for the single-wall best fit given in Table IV.
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wall). Therefore, the more precise solution is not needed
for the fit.

VI. SPATIAL DEPENDENCE

We divide this Section into two parts. In the first part, we
study the significance of the fits for which � exhibits
spatial dependence. In the second part, we further discuss
the spatial orientation of the different solutions.

A. Significance of the fits

For this discussion, we assume that the extra random
errors included in [2,27] are a valid estimate of the actual
error in the data. Here, we pose a well-defined question of
whether ‘‘model 2’’ (spatial variation), which includes
‘‘model 1’’ (no spatial variation) as a subcase, is a signifi-
cantly better fit to the data. The statistical significance
of the improvement is obtained by comparing the value

F ¼ �2
1
��2

2

p1�p2
=

�2
2

n�p2
(where �2

i and pi are the �2 and the

number of parameters of the ith model, respectively, while
n is the total number of observations) of the actual data
with that of a random set of data. The values reported in
Table VI are the probabilities that fitting a random set of

data with the model indicated in the row results in a greater
�2 improvement over the standard model than the im-
provement obtained with the actual data. For example,
we see that for the VLT data, there is a 10% chance that
random data would yield a comparable improvement in �2

relative to that of the monopole.
Table VII shows the analogous comparison of the dipole

template and the wall models against the monopole tem-
plate. While Ref. [2] discussed a number of uncertainties
that could affect the value for � obtained for each absorber,
none of these uncertainties is correlated with the spatial
position of the absorber. Therefore, the uncertainties
studied in [2] may result in at most a bias in the average
value of �� that one obtains from the data. Therefore,
comparing the dipole and wall fits against a nonvanishing
monopole term allows one to study the significance for a
spatial variation of � including the possible systematic
errors discussed in [2].
Most of the results presented in these two tables already

emerged in the discussions done in the previous Section.
The significance for the monopole over the standard model
(which, as we said, could be interpreted as a signal of an
overall systematic error in the data) is very strong for the
Keck absorbers, and less marked for the VLT measure-
ments. The Keck data do not show any evidence for a
dipole modulation being preferred over monopole, while
a stronger significance emerges for the one-wall model.
The significance for the dipole is increased in the VLT
data; however, the one-wall solution has a far greater
significance than that of the dipole. The individual VLT
and (particularly) Keck measurements do not support the

FIG. 9 (color online). Total absorbers sample and wall con-
figuration for the single-wall best fit given in Table V.

FIG. 10 (color online). Total absorbers sample and wall con-
figuration for the double-wall best fit given in Table V.

TABLE VI. Significance of the various fits compared with that
of the standard model ��� ¼ 0. The smaller a number in the table,

the more the model indicated in the corresponding row is
statistically significant over the standard model. Random errors
are added to the data as indicated in Sec. III.

Statistical preference of

standard model over: Keck VLT Total

Monopole 10�6 0.10 0.012

Dipole 4� 10�5 0.03 7� 10�6

One wall 7� 10�6 3� 10�4 1:4� 10�5

Two walls 1:5� 10�4 3� 10�4 4� 10�8

TABLE VII. Significance of the various fits with that of a
monopole template, ��

� ¼ m. Random errors are added to the

data as indicated in Sec. III.

Statistical preference of

monopole over: Keck VLT Total

Dipole 0.60 0.04 4� 10�5

One wall 0.14 4� 10�4 8� 10�5

Two walls 0.48 5� 10�4 3� 10�7
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two-wall model over the one-wall model. However, a very
strong significance for the two-wall model appears once all
the data are included. In this case, the two-wall model is a
significantly better fit than the dipole template and the
single-wall model, even accounting for the fact that it has
three more parameters.

B. Spatial orientation

Finally, let us further study and compare the spatial
orientations of the various fits. We confirm that the Keck
and VLT dipole orientations are consistent with each other
[2]. The orientation of the one-wall fit of the Keck data is
also in excellent agreement with that of the dipole fits as
seen in Fig. 7 (in the wall fits, the orientation refers to the
line of sight to the point on the wall closest to us). This is
not the case for the VLT data; in this case the dipole and the
one-wall orientations are only consistent with each other at
the�2� level (see Fig. 8 and Table IV). More importantly,
the domain structures indicated by the Keck and the VLT
data are incompatible with each other, as they imply an
opposite sign for � on the other side of their respective
walls. The inconsistency is also noted by the fact that the
best one-wall fit of the combined sample is oriented in a
different direction with respect to the two separate samples
(see Fig. 9).

The separate analyses are indeed rather suggestive of the
presence of two different domain walls. This is confirmed
by the two-wall fits. Neither separate sample provides
evidence for the two-wall fit: each separate sample only
covers a limited portion of the sky, with the Keck data more
concentrated in the northern galactic hemisphere, and VLT
data concentrating on more southern galactic coordinates
(the different positions of the absorbers are clear from
comparing Figs. 7 and 8; the position of the galactic disk
in these coordinates can be seen in Fig. 30 of [2]). The
evidence for the two domain walls only emerges when the
two samples are combined.2 We remark that, for the total
sample of data, the double-wall fit is much more significant
than either the dipole or the single-wall fits.

In comparing the different fits, one should not be mis-
guided by the expectation that the one-wall model should
always be well modeled by a dipole. This is the case only if
the wall is very close to us, so that most (if not all) of the
absorbers in the direction of the wall are indeed beyond it.
Only in this case, the wall model assigns a nonvanishing �
to those absorbers, and one would find that, approximately,
the value of � of the absorbers is only a function of the
hemisphere in which they lie, which would indeed be well
approximated by a dipole; in the opposite case, we note
that a wall further than all the absorbers provides �� ¼ 0

for all the absorbers, exactly like the standard model.
Therefore, we expect that a single model can be well
approximated by a dipole only if the redshift of the wall
is sufficiently small. This is confirmed by the data: only for
the Keck sample is the best dipole fit a good approximation
to the best single-wall fit; it is not a coincidence that the
value of zwall emerging from the Keck sample is smaller
than the one emerging from the VLT and from the com-
bined samples. In this regard, the fact that the dipole and
the single-wall best fits of the combined data have a
comparable �2 appears to be just a coincidence.

VII. SUMMARY

In this work, we examined models which could account
for a spatial variation in the electromagnetic fine structure
constant from Keck and VLT observations. We used data
derived by [2,3] using the many-multiplet method on each
absorption spectrum. We fit this set of data against one of
the dipole templates studied in [2], against the dilatonic
domain wall model of [12], and against a simple general-
ization of this model containing two walls. It is first of all
worth stressing that all these models are very bad fits to the
data (see Table I) if one takes only the statistical error
provided by the many-multiplet procedure as the error in
the measurements. To compensate for this, Ref. [3] added a
common error (in quadrature) to 27 of the Keck absorbers,
and Ref. [2] added a common random error to all of the
VLT measurements. The value of the added errors are
chosen such that a monopole (in the Keck case) and a
dipole (in the VLT case) are good fits to the data (we
described the procedure in Sec. III). For the Keck data, a
case was made for adding such an error on 27 objects, since
different lines (with respect to the other absorbers) are used
for deducing the value of � in these absorbers. An analo-
gous justification was not given for the VLT data. Given the
profound consequences that a variation of � would imply,
it would certainly be preferable to understand and quantify
this error before embarking on an analysis of the data.
Given that the dipole fit constituted an improvement

over the standard model fit to the data, but that neither
fit—in absence of the random error—had an acceptable p
value, one should investigate whether a different, and
possibly physically motivated, spatial variation could suc-
cessfully fit the data. It would also be useful to understand
whether the dipole template considered in [2,3] is robust.
Finding, for example, that some different fit describes the
data better could help in identifying possible systematic
origins of the spatial variation. Furthermore, no underlying
physical model was presented in [2,3] for a dipole variation
of �. The simplest theoretical way to achieve a variation of
� is to assume that � is controlled by the vacuum expec-
tation value of a field; in string theory models this is the
dilaton field. If the potential of the dilaton admits multiple
minima, one may imagine a situation in which different
dilatonic domains exist in the Universe, characterized by

2The nonuniform distribution of the absorbers on our sky
appears to be the origin of the non-Gaussian �2 behavior
observed in Figs. 5 and 6. The sky coverage is not sufficiently
complete and uniform for the central limit theorem to apply.
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different values of �. A variation of � on large spatial
scales would result if one of these domains is at a distance
comparable to the typical distances of the Keck and VLT
absorbers [12]. It is interesting to see how this more
physically motivated model compares against a dipole
template, and the hope that it could fit the data even
without adding the extra errors.

As the dipole and the wall fits have the same number of
parameters [Eq. (4)], an immediate comparison is obtained
by comparing the resulting �2 for each model. The wall
performs better when the Keck and VLT samples are
analyzed separately. However, the Keck and the VLT
best dipoles are consistent with each other, while the wall
fits are not (the Keck wall has �< 0 for the other vacuum,
while the VLT wall has �> 0). As a consequence, the
combined data set are fit (marginally) better by a dipole
than by a single wall; the difference is however of only
��2 ’ 1:4 over 293 objects in the sample, so that the two
fits are nearly equivalent. The fact that the two samples
were best fit by two different walls, and the fact that the
Keck and the VLT absorbers—with a few exceptions—
cover different portions of the sky (so that a second wall
could affect a largely different sample), prompted us to
investigate the total data set with two walls. This turns out
to be the fit with the highest significance, even if it has
three more parameters than either the single wall or the
dipole fits. With the extra random errors added, the statis-
tical significance of the standard model over the latter fits is
Oð10�5Þ, while the statistical significance of the standard
model fit over the two-wall is Oð10�8Þ. Even when the
extra errors are not included, the two-wall model is cer-
tainly the best fit of the data. The addition of its seven
parameters allows the �2 to decrease by 100 with respect to
the standard model. When the random errors are included,
the drop in �2 is 47.

We have shown that we can derive the position of the
wall or walls leading to an improved fit of the Keck and
VLT data. Indeed, the p value is about 5 orders of magni-
tude larger for the two-wall fit than that of the dipole fit,
and this may signify that, if the data have indeed a spatial

variation, the model suggested in [12] represents a step in
the right direction. However, the p value of the two-wall
model is still unacceptably small without the added extra
error. It is fair to say that only if the extra errors turn out to
be a good measure of the total errors, the two-wall model
gives a viable, statistically significant, physical model for
the spatial dependence of the data. The model that we have
proposed in Sec. II to account for the multiple walls under-
goes two stages of symmetry breaking as the temperature
of the Universe decreases. Cosmic strings form at the first
stage (with a tension too small to be of any cosmological
relevance), and multiple domain walls stream off each
string at the second breaking [as discussed in [12], astro-
physical and cosmological limits would force the tension
of the wall to be of �O ðMeVÞ]. Therefore, the physical
statement associated with the two-wall model is that we
would happen to live cosmologically close to one of the
strings formed at the first breaking. On the other hand, it is
also worth noting that, if the added random errors are
correct, the standard model itself is no longer a terrible
fit to the data. Its p value for the total data set is 23%. The
significances of the dipole and wall models over the stan-
dard model quoted in the previous paragraph are purely
statistical ones, and refer to an unbiased model compari-
son. It is unclear whether we should really be unbiased
when comparing the standard model with a template with
no underlying model, or even with a model that is not
supported by any other measurement.
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nificance of a domain wall in relation to a spatial variation
in � appeared [32].
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