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We consider general relativistic magnetohydrodynamics from a charged multifluids point of view,

taking a variational approach as our starting point. We develop the case of two charged components in

detail, accounting for a phenomenological resistivity, providing specific examples for pair plasmas and

proton-electron systems. We discuss both cold, low-velocity, plasmas and hot systems where we account

for a dynamical entropy component. The results for the cold case (which accord with recent work in the

literature) provide a complete model for resistive relativistic magnetohydrodynamics, clarifying the

assumptions that lead to various models that have been used in astrophysical applications. The analysis

of the hot case is (as far as we are aware) novel, accounting for the relaxation times that are required to

ensure causality and demonstrating the explicit coupling between fluxes of heat and charge.
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I. INTRODUCTION

Magnetic fields are ubiquitous in the Universe, affecting
physics across a vast range of scales. The relevance of
electromagnetism for our everyday experience is obvious.
Electromagnetic effects are also central to many processes
in astrophysics and cosmology. The strongest known mag-
netic fields (above 1014 G) are found in a subclass of
neutron stars aptly referred to as magnetars [1,2], systems
that also form the largest (and hottest!) known supercon-
ductors [3–5]. Magnetic fields are equally relevant on
the vastly larger scale of entire galaxies, and are likely to
have played a role in the early Universe as well [6–8].
Understanding the origin and evolution of electromagnetic
fields in their many different guises remains a fundamental
question for modern science. The literature on the subject
is (understandably) vast [9], yet some problems remain
relatively unexplored. This paper concerns one such
problem.

Our aim is to develop a model for resistivity in general
relativistic magnetohydrodynamics. By necessity this
forces us to consider a charged multifluid system
(we obviously need charged components in relative motion
in order to have a charge current!). This part of the problem
is quite straightforward; we make progress by marrying
the standard variational model for electromagnetism [10]
to the charged fluid version of Carter’s convective
variational description of relativistic fluids [11,12].
Adding a phenomenological resistivity to the mix is not
difficult, either. Combining these ingredients we follow
the textbook strategy [13,14] and derive the simplified
equations of magnetohydrodynamics. As long as we limit
the analysis to low velocities (cold plasmas) the results
follow readily. We demonstrate this for the particular prob-
lem of a two-component system, composed either of pro-
tons and electrons or a pair plasma with positrons and
electrons, and compare our results to the recent literature
[15–17].

The complexity of the problem increases significantly if
we turn our attention to high velocities and hot plasmas.
One reason for this is obvious: In order to describe a hot
system we need to allow for the presence of heat flow.
However, the problem of heat in relativistic systems is
known to be difficult, as a naive implementation inevitably
leads to causality violation and unwanted instabilities
[18–21]. We avoid falling into this trap by building on a
recent model that treats the entropy as an additional
‘‘fluid,’’ which couples to the substantial matter compo-
nents through entrainment [22–24]. This effect represents
the inertia of heat, and leads to the thermal relaxation that
is required to ensure causality and stability. The presence
of this coupling makes the analysis less straightforward,
and the final results are (obviously) less transparent than in
the low-velocity case. However, they are also more
‘‘interesting.’’ The more complicated setting allows for a
number of additional features, most notably a coupling
between the heat flow and the charge current. From a
fundamental point of view one would expect such a
thermo-electric coupling [25], but this effect has neverthe-
less not been previously discussed in a relativistic context.
The analysis of this problem requires a number of con-

ventions. We assume that spacetime has a metric gab with
signature þ2 and represent the associated indices by itali-
cized letters from the beginning of the alphabet, a; b; c; . . . .
Spatial indices, with respect to the frame moving with the
four-velocity ua associated with the specific observer that
measures the electromagnetic field (the chosen spacetime
fibration), are given by italicized letters i; j; k; . . . . In order
to distinguish between different fluid components, we label
these by roman letters x; y; z; . . . The Einstein summation
convention does not apply to these constituent indices. The
inclusion of electromagnetism is complicated by the fact
that there are different conventions regarding units, signs
etc. Our discussion, that follows [26], differs from alter-
natives like [6] in a few subtle ways. First of all the sign
of the magnetic field Ba is different, but this is later
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compensated for by a difference in the definition of �abc
which is used to represent the spatial curl. These differ-
ences mean that any comparison with the literature must be
carried out with care. The model we develop is completely
self-consistent and natural in that it leads to the anticipated
weak-field, low-velocity results.

II. CHARGED RELATIVISTIC
MULTIFLUID SYSTEMS

This section sets the stage for the discussion by bringing
together and adapting established results from the litera-
ture. The key building blocks are obvious: We need a
framework for discussing electromagnetism in general
relativity, and in order to understand the nature of the
associated current we also need a multifluid formulation
for charged components. The first part can be found in
many standard textbooks (see for example [10]). The mul-
tifluid part is less mainstream fare, but the required formal-
ism (mainly designed by Carter and colleagues, see [11,12]
for reviews) has been developed to the required level.
The marriage of the two systems has not been discussed
extensively in the literature but, as we will see, it is
comfortable.

A. Variational multifluid dynamics

Multifluid dynamics arise whenever a system has several
components, each in the ‘‘fluid regime,’’ which retain their
identity. The archetypal such system, known to be well-
described by a two-fluid model, is superfluid 4He [27]. In
principle, similar systems arise whenever the mean-free
path due to interspecies scattering is much larger than that
for intraspecies scattering [28]. On intermediate scales one
can then meaningfully discuss different fluid components.
This setup may seem somewhat artificial, but there clearly
are systems in nature where this separation of scales oc-
curs. One reason why superfluid systems tend to require a
multifluid approach is that the relevant scale deciding the
‘‘size of the fluid elements’’ is not the mean-free path
(since particle scattering is suppressed in a superfluid)
but the coherence length of the relevant condensate. This
scale is usually much smaller than the mean-free path in
the corresponding system at temperatures above the super-
fluid transition, so the system ends up acting as a fluid on
much smaller length scales than usual. In an astrophysical
context, the modelling of mature neutron-star cores
must account for superfluidity (and superconductivity!).
Indeed, most applications of the general relativistic multi-
fluid formalism have been in that problem area, see for
example [29].

The model we consider builds on the convective varia-
tional principle developed by Carter [11]. This method
deals, in a natural way, with the fact that a variational
derivation of the equations of fluid dynamics must be
constrained. The development takes as starting point a
Lagrangian for the matter, �, which is built from all

relevant fluxes nax in the system. In the variational ap-
proach, the conservation of the individual fluxes,

ran
a
x ¼ 0; (1)

is ensured by means of a pullback construction based
on the notion of a three-dimensional matter space. This
exercise identifies the spacetime displacements �a

x that
guarantee (1), and with respect to which the variation of
the Lagrangian is carried out. The detailed procedure is
discussed in [12]. For later convenience we simply note
that the final result is

�nax ¼ nbxrb�
a
x � �b

xrbn
a
x � nax

�
rb�

b
x þ 1

2
gbc�gbc

�
;

(2)

where gab is the spacetime metric and �gab is the induced
variation.
A key strength of the variational approach is that it

correctly identifies the momentum �x
a that is conjugate to

each flux. This is crucial in a multifluid system since the
momenta should encode the so-called entrainment effect
[12]. As an illustration of how this effect arises, consider a
general isotropic Lagrangian. Taking the view that the
fluxes are the fundamental variables in the problem, we
can build this Lagrangian from the different scalars that we
can construct. This means that we should consider both

n2x ¼ �naxn
x
a; (3)

which defines the number density of the x component, and

n2xy ¼ �naxn
y
a; y � x: (4)

An unconstrained variation of � with respect to the inde-
pendent vectors nax and the metric gab then leads to

�� ¼ X
x

�x
a�n

a
x þ 1

2
gcb

�X
x

nax�
x
c

�
�gab; (5)

where the momenta are given by

�x
a ¼ gab

�
Bxnbx þ

X
y�x

Axynby

�
; (6)

with coefficients

B x ¼ �2
@�

@n2x
; (7)

and

Axy ¼ Ayx ¼ � @�

@n2xy
; x � y: (8)

The momenta are dynamically, and thermodynamically,
conjugate to their respective number density fluxes, and
their magnitudes are the chemical potentials (as we will see
later). The Axy coefficients represent the fact that each
fluid momentum �x

a may, in general, be given by a linear
combination of the individual currents nax . That is, the

N. ANDERSSON PHYSICAL REVIEW D 86, 043002 (2012)

043002-2



current and momentum for a particular fluid do not have to
be parallel. This is the entrainment effect. In the limit
where all the currents are parallel, e.g. when the fluids
are comoving, �� corresponds to the local thermody-
namic energy density, but in the general case this is not so.

In terms of the constrained Lagrangian displacements,
�a
x , a variation of � yields [30]

�ð ffiffiffiffiffiffiffi�g
p

�Þ ¼ 1

2

ffiffiffiffiffiffiffi�g
p �

��a
b þ

X
x

nax�
x
b

�
gbc�gac

� ffiffiffiffiffiffiffi�g
p X

x

fxa�
a
x ; (9)

where we have defined

fxa ¼ 2nbxr½b�x
a�; (10)

(and the square brackets indicate antisymmetrization, as
usual). It follows immediately that the equations of motion
for the individual fluids are expressed as an integrability
condition on the vorticity (associated with the momentum
not the flux!)

fxa ¼ 0: (11)

In (9) we have also introduced the generalized pressure�,
defined by

� ¼ ��X
x

nax�
x
a: (12)

Finally, we want to account for the coupling between
the matter flow and the dynamics of spacetime [31].
The coupling to gravity follows readily from the fact that
the stress-energy tensor is obtained as the variation of the
matter Lagrangian with respect to the spacetime metric.
Basically, we know that the geometry side of the problem
is obtained from the Einstein-Hilbert action, expressed in
terms of the Ricci scalar R,

IEH ¼
Z

R
ffiffiffiffiffiffiffi�g

p
d4x: (13)

Following the standard procedure, this leads to

�IEH ¼
Z

Gab�g
ab ffiffiffiffiffiffiffi�g
p

d4x

¼
Z �

Rab � 1

2
gabR

�
�gab

ffiffiffiffiffiffiffi�g
p

d4x; (14)

whereGab is the Einstein tensor and Rab is the Ricci tensor.
Now, in the coupled matter-gravity system we have

I ¼ IEH þ IM ¼
Z �

1

2�
Rþ�

� ffiffiffiffiffiffiffi�g
p

d4x; (15)

where the coupling constant �ð¼ 8�G=c4Þ is determined
from the correspondence with Newtonian gravity in the
appropriate limit. This system leads to the usual Einstein
field equations

Gab ¼ �Tab; (16)

provided that

Tab ¼ � 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
�Þ

�gab
; (17)

or, equivalently,

Tab ¼ 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
�Þ

�gab
: (18)

Returning to the fluid problem, we see from (9) that the
multifluid stress-energy tensor takes the form

Tab
M ¼ �gab þX

x

nax�
b
x : (19)

It is worth noting that when the set of fluid equations,
(1) and (11), is satisfied then it is automatically true that
raT

ab
M ¼ 0.

Provided we are given the appropriate matter
Lagrangian (a far from trivial problem as a realistic model
should build on microphysics including the relevant inter-
actions) we now have all the equations we need to describe
the dynamics of the fluid system, its effect on the gravita-
tional field and vice versa.
As an aside, it is worth noting that the variational model

is more general than the typical multicomponent models
considered in the literature (especially in cosmology)
as they tend to assume the existence of partial pressures
(see [32] for a relevant discussion).

B. Electromagnetism

Let us now consider electromagnetism in Einstein’s
theory. As usual [10], we construct the relativistic version
of Maxwell’s equations by means of a variational argument
with respect to the vector potential Aa. The corresponding
Lagrangian is built from the antisymmetric Faraday tensor

Fab ¼ 2r½aAb�: (20)

We also need to couple the electromagnetic field to the
matter flow, represented by the charge current ja. Letting
the relevant coupling constant be �0, the action takes the
form [33]

IEM ¼
Z

LEM

ffiffiffiffiffiffiffi�g
p

d4x; (21)

with

LEM ¼ � 1

4�0

FabF
ab þ jaAa: (22)

However, the current term in this expression is not gauge-
invariant. Under a gauge transformation of the vector
potential, i.e. exercising the freedom to add the gradient
of an arbitrary scalar field c , the second term in (22)
transforms as
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jaAa ! jaAa þ jarac ¼ jaAa þraðc jaÞ � c ðraj
aÞ:
(23)

The second term on the right-hand side will contribute a
surface term to the action integral, and hence can be
‘‘ignored’’ in the usual way. The third term is different.
In order to ensure that the action is gauge-invariant, we
must demand that the current is conserved, i.e. that

raj
a ¼ 0: (24)

The field equations that we derive require that this con-
straint be satisfied.

With an action in hand it is straightforward to work out
the variation with respect to the vector potential (keeping
ja fixed!), and we arrive at the standard result

rbF
ab ¼ �0j

a: (25)

The relativistic Maxwell equations are completed by

r½aFbc� ¼ 0; (26)

which is automatically satisfied given the antisymmetry
of Fab.

Finally, a variation with respect to the metric leads to the
electromagnetic stress-energy tensor being given by

TEM
ab ¼ 1

�0

�
gcdFacFbd � 1

4
gabðFcdF

cdÞ
�
: (27)

It is worth noting that this leads to

raT
ab
EM ¼ jaF

ab � �fbL; (28)

which (as we will see later) defines the Lorentz force faL.
In principle, the electromagnetic dynamics is now fully

specified, as we can solve the system for the vector poten-
tial Aa. However, in most applications it is more intuitive to
work with the electric and magnetic fields Ea and Ba. The
downside to this is that these are observer-dependent quan-
tities. This is obvious since varying electric fields generate
magnetic fields and vice versa, and the induced variation
depends on the motion of the observer.

According to an observer moving with four-velocity ua,
the Faraday tensor can be expressed as

Fab ¼ 2u½aEb� þ �abcdu
cBd; (29)

(where round brackets indicate symmetrization). This de-
fines the electric and magnetic fields as

Ea ¼ �ubFba; (30)

and

Ba ¼ �ub
�
1

2
�abcdF

cd

�
: (31)

The physical fields are both orthogonal to ua, so each field
has three components, just as in nonrelativistic physics. We
also need an expression for the current, and it is natural to
decompose this in a similar way;

ja ¼ �ua þ Ja; where Jaua ¼ 0: (32)

C. A comfortable marriage

So far, we have done quite a lot of preparatory work,
going over standard territory without adding any real new
insight. Our patience with this exercise is about to pay off,
as we will now be able to make swift progress. This
illustrates the advantage of having a well-grounded action
principle for coupled fluids, and an identification of the
true momenta, and shows how easy it is to incorporate
electromagnetism into the multifluid system [34]. We sim-
ply need to consider multiple charge carriers with identi-
fiable fluxes, nax , and individual charges, qx, such that the
charge current associated with each flow is

jax ¼ qxn
a
x ; (33)

and the total current, that sources the electromagnetic field,
is given by the sum

ja ¼ X
x

jax : (34)

It is worth recalling that the variational derivation in
Sec. II B requires that the current is conserved. However,
this constraint is automatically satisfied if each individual
current is conserved, as assumed in the variational multi-
fluid model. Hence, we simply have to change the electro-
magnetic Lagrangian to

LEM ¼ � 1

4�0

FabF
ab þ Aa

X
x

jax ; (35)

to combine the two models.
It is easy to see that the equations that govern the

electromagnetic field remain exactly as before. However,
the coupling to the current leads to modified fluid momenta

��x
a ¼ �x

a þ qxAa; (36)

which satisfy the equations of motion

2naxr½a ��x
b� ¼ 0: (37)

As an alternative, we can write this as an explicit force-
balance relation. Moving the electromagnetic contribution
to the right-hand side, we get

fxa ¼ 2nbxr½b�x
a� ¼ qxnbxFab ¼ jbxFab: (38)

To see that this result makes sense, note that the total
energy-momentum tensor is easily obtained as the sum of
the two previous expressions

Tab ¼ Tab
M þ Tab

EM: (39)

This means that we must have

raT
ab
M ¼ �raT

ab
EM ¼ �jaF

ab ¼ fbL: (40)

In other words, the combined system is such that
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fLb ¼ X
x

fxb: (41)

The variational formalism naturally lends itself to a
consideration of conserved quantities, like the magnetic
helicity [11]. The discussion becomes particularly elegant
if carried out using the language of differential forms [35].
We will not discuss conservation laws in this paper, but
the interested reader can find relevant recent discussions
in [36,37].

Before we proceed, it is worth digressing on the fact that
the charge current does not enter the electromagnetic
stress-energy tensor (27). As this is a key (albeit somewhat
technical) point, it is worth demonstrating the result in
detail. To do this, let us focus on the contribution to the
total action from the matter-field coupling

IC ¼
Z

jaAa

ffiffiffiffiffiffiffi�g
p

d4x: (42)

Variation of the integrand then leads to a sum of terms of
the form

�ðnaxAa

ffiffiffiffiffiffiffi�g
p Þ ¼ ffiffiffiffiffiffiffi�g

p ½Aa�n
a
x þ nax�Aa� þ naxAa�

ffiffiffiffiffiffiffi�g
p

:

(43)

Naively, the first term affects the Euler equation, the sec-
ond leads to the current term in the Maxwell equations
and the final term should enter the stress-energy tensor.
However, the last contribution is canceled by a term orig-
inating from the variation of the matter flux. Using (2) in
(43) (ignoring surface terms) we arrive at

�ðnaxAa

ffiffiffiffiffiffiffi�g
p Þ ¼ ffiffiffiffiffiffiffi�g

p ð2�a
xn

br½aAb� þ nax�AaÞ: (44)

The first term enters the Euler Eqs. (38) and the second
leads to the current term in the Maxwell equations. The
electromagnetic contribution to the stress-energy tensor is
completely determined by the first term in (22), leading to
(27). It is interesting to note that this result is obtained in a
natural way in the constrained variational approach.

III. RESISTIVE MAGNETOHYDRODYNAMICS

The formalism developed in the previous section pro-
vides a general framework for describing the dynamics of
charged multifluid systems in relativity. However, as the
model arises from a variational analysis it does not account
for dissipative mechanisms. Hence, we need to amend it if
we want to model, for example, resistivity. This is obvi-
ously a key aspect if we want to be able to model the
evolution of electromagnetic fields in various astrophysical
and cosmological settings. However, we know that the
general dissipative problem is a severe challenge in rela-
tivity. We also know that many different dissipation chan-
nels may affect a generic multifluid system [25,38]. Hence,
we set a more modest target and explore the role of a
simple, phenomenological, resistivity. As it turns out, the
problem involves tricky issues already at this level. In

general, any dissipative mechanism will generate heat, so
a realistic model must account for the associated heat flux.
However, this problem is known to be associated with both
causality and stability issues in relativity [18–21]. These
problems can be resolved [23,24], but we must proceed
carefully.
Given the various issues involved, we consider the re-

sistive problem at two different levels of sophistication.
First (in this section) we consider a cold plasma, where
the various relative velocities are sufficiently low that the
problem simplifies. Having understood this problem we
proceed (in the next section) to consider the general prob-
lem, with arbitrary velocities and the presence of a heat
flow. In each case, we consider a system with two charge
carriers, with individual particles carrying a single unit of
charge. This means that the models apply to both pair
plasmas with positrons and electrons and proton-electron
plasmas. These examples provide useful illustrations and
the discussion highlights the differences between the two
systems.
Throughout the discussion, we assume that the system is

fully ionized. That is, we do not allow for the presence of a
charge-neutral component, as would be required if we
wanted to model a magnetized neutron-star core, for ex-
ample. The inclusion of such a component is, in principle,
straightforward although the algebra obviously gets more
involved (especially if one accounts for entrainment).

A. Choice of frame

We focus on a two-component system with one compo-
nent, labeled p, carrying a single positive unit of charge
qp ¼ e while the other component, labeled e, carries a

single negative unit of charge qe ¼ �e. The associated
charge currents are jap ¼ enap and j

a
e ¼ �enae , respectively.

We will not, initially, make any assumptions regarding the
relative masses of the two components. This means that the
model applies to both pair plasmas and proton-electron
systems (indeed, any two-component system with elec-
trons and single charged ions).
A key aim of the exercise we are embarking on is to

derive the relativistic version of Ohm’s law. Basically, we
want to start from the charged two-fluid system and arrive
at a model from which the assumptions associated with
standard relativistic magnetohydrodynamics become clear.
This discussion will obviously involve both the electric and
the magnetic field, as well as the charge currents. Now, we
know that Ea and Ba are observer-dependent quantities.
Hence, the model involves a judicious choice of observer.
It is natural to begin by considering this issue.
Given an observer with four-velocity ua (normalized

such that uaua ¼ �1) we can decompose the two fluxes

nax ¼ nxu
a
x ; where n2x ¼ �naxn

x
a and uaxu

x
a ¼ �1;

(45)

using
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uax ¼ �xðua þ va
xÞ;

where uavx
a ¼ 0; and �x ¼ ð1� v2

xÞ�1=2: (46)

In the first instance, we will assume that the ‘‘drift’’ veloc-
ities va

x are small enough that we can linearize the model,
i.e. assume that �x � 1. This model should be relevant for
cold plasmas [39].

We also need the fluid momenta, which would generally
involve entrainment between the two components. However,
as we are not aware of a physical argument for the presence
of entrainment between protons and electrons (or, indeed,
positrons and electrons), we do not account for this effect
here (although we will consider it later when we discuss
heat flux and entropy). This means that we have

�x
a ¼ Bxnxa ¼ Bx�xn

xðua þ vx
aÞ: (47)

The chemical potential of each component is generally
defined by

�x ¼ �uax�
x
a ¼ nxBx; (48)

which means that

�x
a ¼ �x�xðua þ vx

aÞ � �xðua þ vx
aÞ: (49)

With these definitions we can write the (linearized) fluid
stress-energy tensor as

TM
ab ¼ �gab þ ðnp�p þ ne�eÞuaub þ ðnp�pv

p
b

þ ne�ev
e
bÞua þ ðnp�pv

p
a þ ne�ev

e
aÞub: (50)

Contracting this with ua we get an expression for the
momentum flux

uaTM
ab ¼ ð�� np�p � ne�eÞub � ðnp�pv

p
b þ ne�ev

e
bÞ:
(51)

Contracting with ub again, we find that the energy density
measured by the observer is

	 ¼ uaubTM
ab ¼ ��þ np�p þ ne�e: (52)

We see that, in the linear model � is the pressure. Hence,
we replace it with P in the following, leading to the
anticipated thermodynamic relation (the integrated first
law)

Pþ 	 ¼ np�p þ ne�e: (53)

Note that, as we are only considering the fluid contribution
here, our definitions of P and 	 do not include electromag-
netic effects (i.e. the magnetic pressure is not accounted for
yet).

From (51) we see that we can choose observers such that
there is no relative (fluid) momentum flux by setting [40]

np�pv
p
b þ ne�ev

e
b ¼ 0: (54)

This leads us to define a velocity va such that

ðPþ 	Þva ¼ np�pv
a
p þ ne�ev

a
e (55)

and highlights the relevance of the frame in which va ¼ 0.
We express the second degree of freedom in terms of the
relative velocity

wa ¼ va
p � va

e : (56)

With these definitions we have

va
p ¼ va þ ne�e

Pþ 	
wa (57)

and

va
e ¼ va � np�p

Pþ 	
wa (58)

and the charge current takes the form

ja ¼ eðnp � neÞðua þ vaÞ þ e
npne

Pþ 	
ð�p þ�eÞwa:

(59)

From this result we read off the charge density � ¼
eðnp � neÞ in the observer’s frame. If we assume that the

system is charge-neutral on macroscopic scales, a natural
assertion for systems where the charge carriers (like the
electrons) are highly mobile and one of the key assumption
in standard magnetohydrodynamics, then the current sim-
plifies to

ja ¼ Ja ¼ e
npne
Pþ 	

ð�p þ�eÞwa: (60)

Moreover, in the case of a charge-neutral plasma we
have Pþ 	 ¼ neð�p þ�eÞ which means that the current

takes the final form

Ja ¼ enew
a: (61)

B. The resistivity

In order to account for the resistivity, we need to add a
phenomenological ‘‘force’’ term to (38). This additional
term should represent the dissipative interaction between
the two components, and from nonrelativistic intuition
[13,14], we expect it to be linear in the relative velocity
between the two components. We also see from (38) that
the required force must be orthogonal to each respective
flux (note that this condition must be relaxed if we want to
allow for particle creation/destruction). Based on these
points, we let the resistive forces [41] take the form

~f a
p ¼ eR ?ab

p neb ¼ �R ?ab
p jb (62)

and

~f a
e ¼ eR ?ab

e n
p
b ¼ R ?ab

e jb (63)

where we have introduced the projections

?ab
x ¼ gab þ uaxu

b
x : (64)

These expressions represent linear scattering of the
two components. The resistivity experienced by one
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component is proportional to the number of particles of the
other kind that flow relative to it.

The resistivity is further constrained by the fact that the
sum of the forces must vanish (essentially Newton’s third
law). This follows immediately from the fact that the
divergence of the nondissipative stress-energy tensor
[which arises from the sum of (38)] must vanish. For the
suggested forces, we have

~f a
p þ ~fae ¼ eRð?ab

p nebþ ?ab
e n

p
bÞ � eRðnp � neÞwa:

(65)

This shows that the linearized model is only consistent as
long as the system is charge-neutral. If there is charge
imbalance, we need to alter the model. At first sight, this
may seem surprising but it is actually quite natural. The
model only accounts for the two charged components,
whereas the general system would also have the heat
generated by the dissipation. The correct interpretation of
(65) is that, for a charge-neutral system, there is no heat
generated at the linear level. In order to consider a more
general system, we need to account for the heat. Then the
force balance is ensured by introducing an additional com-
ponent, which we will take to be the entropy, with a
corresponding force of the required form. We will discuss
this extended system in the next section. For now, we
simply assume charge neutrality and note that the corre-
sponding low-velocity model describes a ‘‘cold plasma’’ in
the sense that there is no heat generated in the system.

C. Generalized Ohm’s law

The problem under consideration has two fluid degrees
of freedom, represented by (38) with the added resistivity
terms (on the right-hand side). One can (obviously) com-
bine these two equations in different ways. It seems natural
to adapt the standard strategy from nonrelativistic plasma
physics [13,14] and consider a ‘‘total momentum’’ equa-
tion alongside a suitably weighted difference. The first of
these equations follows by adding (38), and from the
discussion in the previous section we know that this
leads to

raT
ab ¼ 0 (66)

as the sum of the resistive forces vanishes (to linear order).
In order to represent the second degree of freedom, we
divide the two equations from (38) by nx�x and then take
the difference. The weighting (different from that used in
other recent discussions of the problem [17]) is motivated
by the Newtonian limit, where �x ! mx (the rest mass),
and represents the ‘‘center-of-mass’’ frame. With this
weighting the difference equation simplifies considerably.
One may obtain the same final result with a different
weighting, but the analysis would then have to make ex-
plicit use of the total momentum Eq. (66) in simplifying
the expressions. Our route is more direct.

The difference equation that we require is made up of
three pieces. Considering first the fluid contribution to (38)
and the definition of the chemical potentials, we have

2naxr½a�x
b� ¼ nx ?a

xb ra�x þ nx�xu
a
xrau

x
b: (67)

We also have

?ab
x �?ab þ2uðavbÞ

x ; (68)

where ?ab¼ gab þ uaub is the projection orthogonal to
ua. Using these results, we find that the weighted differ-
ence (let us call it fDa ) in the linear model takes the form;

fDb ¼ 2

np�p

napr½a�
p
b� �

2

ne�e

naer½a�e
b�

¼ uaprau
p
b � uaerau

e
b þ

1

�p

?a
pb ra�p

� 1

�e

?a
eb ra�e � uarawb þ waraub

þ 1

�p

?a
pb ra�p � 1

�e

?a
eb ra�e: (69)

The last two terms expand to

1

�p

?a
pb ra�p � 1

�e

?a
eb ra�e

� ð?a
b þ uavb þ ubv

aÞ
�
1

�p

ra�p � 1

�e

ra�e

�

þ 1

ðPþ 	Þ�p�e

ðuawb þ ubw
aÞ

� ½ne�2
era�p þ np�

2
pra�e�: (70)

This expression obviously simplifies somewhat in the frame
where va ¼ 0. The result also simplifies for the two specific
examples we are considering. For pair plasmas we have
�p¼�e�� so in the chosen frame the final result would be

fDb ¼ uarawb þ waraub þ 2

�
uðawbÞra�: (71)

Meanwhile, for a proton-electron plasma we may assume
that�e � �p in which case (when v

a ¼ 0) we are left with

[42]

fDb � uarawb þ waraubþ ?a
b

�
1

�p

ra�p � 1

�e

ra�e

�

þ 2

�e

uðawbÞra�e: (72)

In each case we can replace the relative velocitywa with the
charge current via Eq. (61).
The expressions we have obtained represent the left-

hand side of the equation that we are developing. The
right-hand side is made up of two pieces. The first is the
weighted difference of the two magnetic forces from (38).
That is, we have
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fMb ¼ e

np�p

napFba þ e

ne�e

naeFba

¼ e

�
�p þ�e

�p�e

�
Eb þ e

�
1

�p

va
p þ 1

�e

va
e

�
Fba

¼ e

�
�p þ�e

�p�e

�
ðEb þ vaFbaÞ

� eðnp�2
p � ne�

2
eÞ

ðPþ 	Þ�p�e

waFba: (73)

As before, this simplifies in the frame where va ¼ 0. In
addition, for (charge-neutral) pair plasmas the second term
vanishes identically and we are left with

fMb ¼ e
�p þ�e

�p�e

Eb ¼ 2e

�
Eb: (74)

Meanwhile, for a proton-electron system we would have

fMb � e

�e

ðEb � waFbaÞ: (75)

In this case we need to consider the remaining term
involving the Faraday tensor in more detail. From (29) it
is easy to see that we will have

waFba ¼ ubðwaEaÞ þ �bcdw
cBd; (76)

where we have defined �bcd ¼ �abcdu
a in order to make the

final term resemble the standard three-dimensional cross
product [43]. Since wa is proportional to the charge cur-
rent, we recognize the two terms as the Joule heating and
the Hall effect, respectively. These effects are notably
absent in the linear model for a pair plasma [15–17].

Finally, we need the weighted difference between the
two resistivities. That is,

fRb ¼ 1

np�p

~fpb �
1

ne�e

~feb

¼ eR
np�p

?p
ab nae � eR

ne�e

?e
ab n

a
p

¼ �R
�

1

np�p

?p
ab þ 1

ne�e

?e
ab

�
ja

� �R
Pþ 	

ðnp�pÞðne�eÞ Jb; (77)

where the fact that the current is proportional to wa in the
charge-neutral case has allowed us to neglect the various
va
x terms in the projections.
The final result now follows from the combination

fDa ¼ fMa þ fRa : (78)

In the general charge-neutral case we have, in the frame
where va ¼ 0,

e
ðPþ 	Þ
ne�p�e

Eb �
eð�p ��eÞ

�p�e

½ubðwaEaÞ þ �bcdw
cBd�

�R
Pþ 	

ðnp�pÞðne�eÞ Jb

¼ uarawb þ waraubþ ?a
b

�
1

�p

ra�p � 1

�e

ra�e

�

þ 2

ðPþ 	Þ�p�e

uðawbÞ½ne�2
era�p þ np�

2
pra�e�:

(79)

This result can be simplified by projecting out the con-
tribution along ua (which will not affect the expression
for the electric field). This leads to the ‘‘final’’ result

e
ðPþ	Þ
ne�p�e

Eb�
eð�p��eÞ

�p�e

�bcdw
cBd

�R
Pþ	

ðnp�pÞðne�eÞJb

¼?a
b

�
ucrcwaþ 1

�p

ra�p� 1

�e

ra�e

�

þwaraubþ ne
ðPþ	Þ�p�e

wbua½�2
era�pþ�2

pra�e�:

(80)

In these expressions, it may be useful to decompose
raub in the standard way, see for example [6]. That is,
we use

raub ¼ �ab þ!ab � ua _ub þ 1

3

 ?ab (81)

where the dot represents the commoving time derivative
ucrc, in terms of the expansion scalar


 ¼ rau
a; (82)

the shear

�ab ¼ Dhaubi; (83)

where the angle brackets indicate symmetrization and trace
removal, and

Daub ¼?a
c ?b

drcud: (84)

The merit of using this (totally projected) derivative is
that the individual terms in (81) are perpendicular to ua.
We have also defined the vorticity [44]

!ab ¼ D½aub�: (85)

The decomposition (81) makes the coupling between the
charge current Ja and the nature of the fluid motion more
explicit.
The final relation for pair plasmas can now be written

[45]
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Eb� R
ene

Jb

¼ �

2e2ne

�
?ab

_Jaþ Ja
�
�abþ!abþ 4

3

?ab

��
: (86)

As already mentioned, this expression is notable for the
absence of the Hall effect, i.e. there is no term proportional
to �abcJ

bBc.
The case of a proton-electron plasma is only slightly

more complicated. After neglecting �e compared to �p,

we end up with

Eb � 1

ene
�bcdJ

cBd � R
ene

Jb

¼ �e

e2ne

�
?ab

_Ja þ Ja
�
�ab þ!ab þ 4

3

 ?ab

��

� 1

e
?a

bra�e: (87)

In this case, the Hall term is obviously present. We also
have a ‘‘Biermann battery’’ term,?a

bra�e, which would

serve to generate a magnetic field even if there was no field
initially [17].

It is easy to show that our final results agree perfectly
with the results obtained in [17].

Before moving on, it is useful to consider the relation
between our results and the common starting point for
discussions of resistive effects in numerical simulations
[46–48]. Much of the relevant literature builds on the
work by Bekenstein and Oron [49]. Ignoring the right-
hand side of Ohm’s law in the proton-electron case we have

Eb ¼ 1

ene
�bcdJ

cBd þ R
ene

Jb

¼ R
nee

�
?ab þ 1

R
�bacdu

cBd

�
Ja

¼ SbaJ
a: (88)

Define � ¼ 1=R and ~� ¼ R=nee to get

Sba ¼ 1

~�
ð?ba þ��bacdu

cBdÞ: (89)

Inverting this, we arrive at

Jb ¼ �abEb; (90)

with

�ab ¼ �

1þ �2B2
ð?ab þ�2BaBb � ��abcducBdÞ: (91)

This is the result stated in [49], once we account for the
different sign conventions. At this point, we can make an
important observation. It is easy to identify the Hall effect
in the initial expression (88), but its presence is more
convoluted in the alternative expression (91). That this
can lead to conceptual confusion is evidenced by [50],

where numerical evolutions for a truncated form of (91)
are carried out. The considered model includes a peculiarly
amputated Hall effect, the actual meaning of which is
unclear. This lesson tells us that an understanding of the
physical origin of the model is imperative.

D. Towards ideal MHD

We are now in a position where we can assess the
relative importance of the different terms in the generalized
version of Ohm’s law (80). Let us first consider under
what conditions we can neglect the inertia of the charge
current compared to the resistivity. In order to do this we
need

R
ene

J � �e

e2ne
_J � me

e2ne
_J: (92)

It is natural [49] to associate the resistivity with a relaxa-
tion time scale �r such that

R ¼ me

e�r
: (93)

If we also assume that the dynamics has a characteristic
time scale �d, such that _J � J=�d, then it is easy to see that
we can neglect the inertia of the charge current as long as

�d � �r: (94)

When this condition holds, i.e. for sufficiently slow dy-
namics, the system is essentially oblivious of its plasma
physics origins. This condition shows why ideal magneto-
hydrodynamics is a good model for slowly evolving, or
stationary, systems.
Next let us compare the Hall term to the resistivity. The

former dominates (in magnitude) if

B � R; (95)

which, if we introduce the electron cyclotron frequency

!c ¼ eB

me

; (96)

leads to the condition

!c�r � 1: (97)

This means that the electron executes many cyclotron
‘‘oscillations’’ before the motion is damped.
Finally, we need to establish when the resistivity can be

neglected compared to the electric field. This requires

E � R
ene

J ¼ me

nee
2�r

J: (98)

Here we need to make use of Maxwell’s equations (see
below), which lead to (in Gaussian units!)

E� V

c
B; (99)
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where we assume that the dynamics has a characteristic
length scale Land an associated velocity V ¼ L=�d. This
leads to the final condition

J � nee

�
V

c

�
!c�r � nee

�
V

c

�
: (100)

The last condition is required since we also want to be
able to neglect the Hall term. We are essentially left with a
low-velocity constraint.

These rough estimates provide useful insight into the
applicability of ‘‘ideal’’ magnetohydrodynamics, which
corresponds to the assumption that Ea � 0. The usual
argument for this is that the medium is a perfect conductor,
i.e. R ! 0. However, this limit only affects the resistive
term in (80). We still have to argue that the remaining terms
are unimportant. This is not quite as easy. At the end of the
day, ideal magnetohydrodynamics is more an assumption
than an approximation [13] (the interested reader may want
to compare the present discussion to the variational deri-
vation of ideal magnetohydrodynamics in [51]).

E. The remaining fluid equation

So far, we have focused on the weighted difference
between the two momentum equations in the plasma. To
complete the ‘‘single-fluid’’ model we need to express the
remaining degree of freedom in terms of our chosen varia-
bles. It is natural to obtain the required equation from (66).

As a first step, we consider the nonmagnetic contribu-
tions. As the individual number fluxes are conserved in the
variational approach, we see that

raT
ab
M ¼ rb�þ ubpn

a
pra�p þ uben

a
era�e

þ�pn
a
prau

b
p þ�en

a
erau

b
e

�?ab raPþ ðPþ 	Þ _ub þ 2uðavbÞ
p npra�p

þ 2uðavbÞ
e npra�e þ np�pð _vb

p þ va
prau

bÞ
þ ne�eð _vb

e þ va
erau

bÞ: (101)

The first equality is exact, while the second line holds at the
level of linearized relative velocities. Expressing this result
in terms of va and wa, we have

raT
ab
M � ðPþ 	Þ _ubþ ?ab raPþ 2uðavbÞra�

þ n2e�p�e

Pþ 	
ubwa

�
1

�p

ra�p � 1

�e

ra�e

�

þ ðPþ 	Þð _vb þ varau
bÞ: (102)

Here we have used the fact that we are considering a
charge-neutral system. This result provides the left-hand
side of the final equation. As discussed in Sec. II C the
matter contribution is balanced by the electromagnetic
stresses, which provides the right-hand side for the equa-
tion we are interested in. This takes the form

�raT
ab
EM ¼ ubðjaEaÞ þ �bacjaBc: (103)

The final equation will only have spatial components with
respect to ua, but the relations we have written down so far
also have a parallel contribution. However, if we contract
the combined equation with ub and compare to what we get
if we contract our generalized Ohm’s law (80) with the
current, then we see that the two results agree (at the
linearized level, of course). Hence, only the orthogonal
component contains new information. In the frame where
va ¼ 0 the final fluid equation takes the form

ðPþ 	Þ _ubþ ?ab raP ¼ �bacJaBc: (104)

This is simply the perfect fluid equation of motion aug-
mented by the Lorentz force.
To complete the model, we may also consider the two

conservation laws (1). It is straightforward to show that
the difference between these corresponds to the required
conservation law for the charge current. Meanwhile, after
making use of the component aligned with ua from the
weighted difference equation that leads to (80), the sum of
the two conservation laws can be written

JaE
a ¼ Pþ 	

ne
ð _ne þ ne
Þ: (105)

Moreover, one can show that (at the linear level) this
expression also follows from the component of the total
momentum equation, Eq. (66) that is aligned with ua.
At the end of the day we have two scalar equations and

two equations governing velocity components that are
spatial with respect to ua. Thus, we have explicitly ac-
counted for the degrees of freedom of the original two-fluid
system. To complete the system we also need Maxwell’s
equations. Before discussing these, let us make a brief
diversion and touch upon a model that is common for
neutron-star magnetospheres.
The conditions in the magnetosphere of a neutron star

(or, indeed, a black hole) are expected to be such that there
is sufficient plasma present to support a charge current, but
the associated inertia can be neglected [52,53]. Thus, we
may neglect the inertia in (104), essentially decoupling
the matter from the magnetic problem. This leads to what
is known as force-free electrodynamics [54,55]. In these
circumstances we would have

�bacJaBc � 0; (106)

which implies that charges may only flow along the mag-
netic field lines.
The force-free assumption can obviously be used inde-

pendently of the assumptions that lead to ideal magneto-
hydrodynamics. Basically, one may envisage a range of
different ‘‘approximations’’ depending on the circumstan-
ces. The force-free model simplifies magnetosphere mod-
elling, but one must apply it with care since it breaks down
near magnetic neutral points. In the context of the present
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discussion, it is also worth noting that (104) may be
extended to include various dissipation channels (like shear
viscosity) other than the pure collisional resistivity that we
have accounted for. If the multifluid aspects are taken
seriously [28] this may lead to a much more complex
problem.

F. Maxwell’s equations

Given an observer moving with ua, representing a fibra-
tion of spacetime, the decomposition of Maxwell’s equa-
tions is standard. Nevertheless, we list the results here for
completeness. For a more detailed discussion, see, for
example, [6].

First of all,

raF
ba ¼ �0j

b (107)

leads to

?ab rbEa ¼ raE
a � Ea _ua

¼ �0�þ �abc!abBc

¼ �0�þ 2WaBa; (108)

where we have defined the vorticity vector as

Wa ¼ 1

2
�abc!bc; so that !ab ¼ �abcW

c; and uaWa ¼ 0:

(109)

We also get

?ab
_Eb � �abcrbBc þ�0Ja

¼
�
�ab �!ab � 2

3

 ?ab

�
Eb þ �abc _u

bBc: (110)

Secondly,

r½aFbc� ¼ 0 (111)

leads to

?ab rbBa ¼ �2WaEa (112)

and

?ab
_Bb þ �abcrbEc

¼ ��abc _u
bEc þ

�
�ab �!ab � 2

3

 ?ab

�
Bb: (113)

It is easy to see that, if we consider an inertial observer,
these results reduce to the standard textbook form of
Maxwell’s equations. The complete expressions given
here are, of course, useful if we are interested in more
general settings. In particular, they highlight the coupling
between the electromagnetic field and a given fluid flow
(with shear, vorticity and expansion).

IV. ADDING ENTROPY: HOT PLASMAS

The low-velocity model we have discussed so far is
consistent and applicable to many situations of interest. It
also provides a number of potentially important extensions
of the ideal magnetohydrodynamics that tends to be used in
relativistic astrophysics. However, as we have already
hinted at, the model does not account for the presence of
heat. This is an unfortunate omission since resistivity is a
dissipative process and hence will be associated with en-
tropy variations constrained by the second law of thermo-
dynamics. This effect turns out to be quadratic in the
relative velocities, which is why we got away with neglect-
ing it in the linear model. In a more general setting we need
to account for the induced heat flow. The problem of heat in
relativity is, however, known to be thorny. A model needs
to be constructed carefully in order to avoid unwanted
instabilities and causality violation [18–21]. As recently
demonstrated, one can construct a satisfactory model by
treating the entropy as an additional fluid component [56],
accounting for entrainment between the entropy and the
other components in the system [23,24]. This entropy
entrainment is closely associated with the inertia of heat
and the finite thermal relaxation time scale that is required
in order to avoid superluminal signal propagation. We
develop our model with these key points in mind.

A. Setting the stage: A three-fluid system

We consider a hot plasma consisting of the two charged
components from the cold model, labeled p and e as before,
and an additional entropy, which we label s. As the entropy
plays a special role, being constrained by the second law,
we single out this component by letting its flux be given by
sa ¼ nas while the corresponding chemical potential is
�a ¼ �s

a. The latter determines the temperature measured
by a given observer. With these definitions we have the
total stress-energy tensor [12]

Tab ¼ �gab þ n
p
a�

p
b þ nea�

e
b þ sa�b; (114)

where the generalized pressure � is defined as

� ¼ �� nap�
p
a � nae�

e
e � sa�a: (115)

Following [23,24] we account for entrainment between the
entropy and each of the material components (encoded in
coefficients Axs). Thus, we have the momenta

�x
a ¼ Bxnxa þAxssa; x ¼ p; e; (116)

and

�a ¼ Bssa þApsnpa þAesnea: (117)

As in the low-velocity model, we introduce a family of
observers that allow us to define the electric and magnetic
field components. We now have a number of different
options. The strategy that we adopt provides a natural
extension of the Eckart frame for a single component
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matter model, cf. [23,24]. To be specific, we choose the
observer frame to be such that the only relative momentum
flow is due to the heat.

Defining first of all the number densities as measured in
the respective fluid frames, we have [57]

n̂ 2
x ¼ �naxn

x
a; and ŝ2 ¼ �sasa: (118)

Decomposing the velocities with respect to a specific ob-
server moving with ua we then have

nax ¼ n̂x�xðua þ va
xÞ;

uavx
a ¼ 0;

�x ¼ ð1� v2
xÞ�1=2;

(119)

leading to the number density measured by the observer
being given by

nx ¼ �uan
a
x ¼ n̂x�x: (120)

Similarly, we have

sa ¼ ŝ�sðua þva
s Þ; uavs

a ¼ 0; �s ¼ ð1�v2
s Þ�1=2;

(121)

and

s ¼ �uaa
a ¼ ŝ�s: (122)

It is also natural to introduce the chemical potentials
inferred by the observer

�x ¼ �ua�x
a ¼ nxBx þ sAxs (123)

and

� ¼ sBs þ npAps þ neAes: (124)

With these definitions it is straightforward to show that
the total energy density measured by the observer will be

	 ¼ uaubTab ¼ ��þ np�p þ ne�e þ s�; (125)

corresponding to the (integrated) first law of thermody-
namics once we identify� as the generalized pressure and
� as the temperature. Meanwhile, the momentum flux
relative to the observer’s frame is given by

uaTab ¼ �	ub � np�pv
p
b � ne�ev

e
b � s�vs

b: (126)

Here it is, first of all, natural to identify the heat flux as
[23,24]

qa ¼ s�va
s : (127)

We also see that we can choose the observer frame in such
a way that this is the only relative momentum flux. To do
this, we let

ð	þ�Þva ¼ np�pv
a
p þ ne�ev

a
e ¼ 0: (128)

This is the natural extension of the ‘‘ center of mass’’ frame
we used in the low-velocity model, cf. Eq. (55). We also
define the velocity difference (as before)

wa ¼ va
p � va

e : (129)

In the frame where va ¼ 0 (which will be assumed from
now on) we have

va
p ¼ ne�e

	þ�
wa; (130)

and

va
e ¼ � np�p

	þ�
wa; (131)

which means that the charge current can be written

ja ¼ eðnp � neÞua þ e
npne

	þ�
ð�p þ�eÞwa: (132)

At this point we note an important difference with respect
to the low-velocity discussion. While we were naturally led
to the assumption of charge neutrality in that case, the
situation is much less clear now. This is immediately
obvious from (132) once we recall that the densities in
the first term are measured by the chosen observer, not in
the respective rest frames. Hence, it would not be appro-
priate to assume that np ¼ ne at this point.

B. Friction and causal heat flow

Having introduced the various ingredients, let us move
on to the new aspect of the problem; the equation that
governs the heat propagation. As we are treating the en-
tropy as an additional fluid, it follows from the general
analysis in [12] that the thermal dynamics will be governed
by its own momentum equation. We already know from
[23,24] that this will lead to an equation that contains the
thermal relaxation that is required to ensure causality.
However, as the entropy need not be conserved this mo-
mentum equation takes a slightly different form from those
that govern the (individually conserved) material compo-
nents. We have [23,24]

2sar½a�b� þ�b�s ¼ ~fsb; (133)

where

ras
a ¼ �s 	 0; (134)

in accordance with the second law.
Building on the analysis of the low-velocity case, we

know that the overall conservation of energy and momen-
tum requires X

x

~fax ¼ 0 ! ~fas ¼ �~fap � ~fae : (135)

The form of the force that acts on the entropy thus follows
immediately from the forces on the charged components.
Extending the low-velocity model, we will allow for re-
sistivity due to scattering between both charged species
(R) and entropy (Sx). Thus, we let the forces take the (still
phenomenological) form
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~f a
p ¼?ab

p ðeRneb þ Spu
s
bÞ; (136)

and

~f a
e ¼?ab

e ðeRnpb þ Seu
s
bÞ; (137)

where we have used sa ¼ ŝuas . Combining these expres-
sions and expanding the projections, we arrive at

~fas ¼ �eR½ne � np�
2
eð1� vb

pv
e
bÞ�ðua þ va

e Þ
� eR½np � ne�

2
pð1� vb

pv
e
bÞ�ðua þ va

pÞ
� Sp½uas � �s�pu

a
pð1� vb

pv
s
bÞ�

� Se½uas � �s�eu
a
e ð1� vb

ev
s
bÞ�: (138)

Let us now return to (133), focusing on the entropy
creation rate. Contracting the equation with the observer’s
four-velocity we easily arrive at

��s ¼ �ub ~fsb þ 2subva
sr½a�b�: (139)

We need to constrain this in such a way that the right-hand
side is non-negative. To do this, we first need the contrac-
tion between the entropy force and the four-velocity. This
leads to

�ub ~fsb¼
eR

	þ�
ðn2e�e�

2
pþn2p�p�

2
eÞw2

þ �s

ð	þ�Þ2 ½Sp�
2
pðne�eÞ2þSe�

2
eðnp�pÞ2�w2

þ �s

	þ�
ðSe�

2
enp�p�Sp�

2
pne�eÞw

bqb
s�

: (140)

In this expression, the first two terms on the right-hand side
will be positive as long as R 	 0 and Sx 	 0. The sign of
the third term is not so clear.

Moving on to the final term in (139), we first of all note
that it is proportional to va

s (in turn proportional to qa).
Defining


1 ¼ 1

s�
ð�� npAps � neAesÞ (141)

and


2 ¼
npne

	þ�
ð�eAps ��pAesÞ; (142)

we have

�a ¼ �ua þ 
1qa þ 
2wa; (143)

and we find that

2ubr½a�b� ¼ �?b
a rb��� _ua �
1 _qa �
2 _wa� _
1qa

� _
2wa�ð
1q
b þ
2w

bÞraub: (144)

Combining (140) and (144) we see that �s satisfies the
required constraint provided that [58]

�
1 _qa þ ð1þ � _
1Þqa
¼ ��

�
?b

a rb�þ� _ua þ 
2 _wa þ _
2wa

þ ð
1q
b þ 
2w

bÞraub

� �s

sð	þ�Þ ðSe�
2
enp�p � Sp�

2
pne�eÞwa

�
; (145)

with � 	 0. This has the form of a Cattaneo-type equation
[23], and a comparison of the qa and _qa terms suggest that
the thermal relaxation time is

� ¼ �
1

1þ � _
1

: (146)

However, the equation is also coupled to the four-
acceleration _ua and the variation of the charge current, in
terms of _wa, so if we want to infer the actual relaxation
times in the problem we need to consider the coupled
system.
Combining the relevant contributions, we find that the

total entropy creation rate is given by

�s ¼ 1

�

�
q2

��
þ eR

	þ�
ðn2e�e�

2
p þ n2p�p�

2
eÞw2

þ �s

ð	þ�Þ2 ½Sp�
2
pðne�eÞ2 þ Se�

2
eðnp�pÞ2�w2

�
	 0:

(147)

C. Ohm’s law

The derivation of the generalized form of Ohm’s law
follows the same steps as in the linear model, although now
we need to keep careful track of the different redshift
factors, etc. Basically, we want to construct the weighted
difference between the momentum equations for the two
charged components, but the two momenta now depend
also on the entropy flux. In the frame associated with our
chosen observer, we have

�x
a ¼ �xðua þ vx

aÞ þ sAxsðvs
a � vx

aÞ
� �xðua þ vx

aÞ þW x
a; (148)

where we have introduced the combinations

W p
a ¼ sAps

�
qa
s�

� ne�e

	þ�
wa

�
; (149)

and

W e
a ¼ sAes

�
qa
s�

þ np�p

	þ�
wa

�
; (150)

(obviously expressed in the chosen frame).
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Given these expressions it follows that

~fxb ¼ 2naxr½a�x
b� ¼ nx�xð _ub þ _vx

b þ va
xrbuaÞ þ nx ?a

b ra�x þ nxu
avx

bra�x þ 2nxu
ar½aW x

b� þ 2nxv
a
xr½a�x

b�: (151)

The weighted difference equation (inevitably rather complicated) combines three pieces. On the left-hand side we have

fDb ¼ 1

np�p

~fpb �
1

ne�e

~feb ¼ _wb þ warbuaþ ?a
b

�
1

�p

ra�p � 1

�e

ra�e

�
þ ua

�
1

�p

vb
pra�p � 1

�e

vb
era�e

�

þ 2

�p

uar½aW
p
b� �

2

�e

uar½aW e
b� þ

2

�p

va
pr½a�

p
b� �

2

�e

va
er½a�e

b�: (152)

In the frame associated with the chosen observer, this expression takes the form [59]

fDb ¼ _wb þ waraubþ ?a
b

�
1

�p

ra�p � 1

�e

ra�e

�
þ 1

�p�eð	þ�Þ 2uðawbÞ½ne�2
era�p � np�

2
pra�e�

� ?w
ab

��
ne�e

	þ�

�
2 1

�p

ra�p �
�
np�p

	þ�

�
2 1

�e

ra�e

�
þ ua

�
2r½a

�

4

s�
qb�

�
� 2r½að
3wb�Þ �W p

bra

�
1

�p

�

þW e
bra

�
1

�e

��
þ 2Dwar½awb� � 2

ne�e

	þ�
waw½bra�

�
ne�e

	þ�

�
þ 2

np�p

	þ�
waw½bra�

�
np�p

	þ�

�

þ 2
ne�e

�pð	þ�Þw
ar½aW

p
b� � 2

np�p

�eð	þ�Þw
ar½aW e

b�: (153)

Here we have introduced


3 ¼ s

�e�pð	þ�Þ ðne�
2
eAps þ np�

2
pAesÞ ¼ s

npne

�
�

	þ�
ðs
1 � 1Þ þ ne�e � np�p

np�pne�e


2

�
; (154)


4 ¼ sð	þ�Þ
ne�enp�p


2: (155)

and

D ¼
�
ne�e

	þ�

�
2 �

�
np�p

	þ�

�
2

(156)

We have also used the projection orthogonal to wa, given by

?w
ab¼ w2gab � wawb: (157)

Meanwhile, the right-hand side is made up of, first of all, the combined friction forces

fRb ¼ 1

np�p

?p
ab ðeRnae þ Spu

a
s Þ � 1

ne�e

?e
ab ðeRnap þ Seu

a
s Þ

¼ eR
np�pne�e

�
1

	þ�
ðn3p�2

p�
2
e � n3e�

2
e�

2
pÞw2ub � ðn2e�e�

2
p þ n2p�p�

2
eÞ
�
1� s�

	þ�

�
wb

�

þ Sp

�s�
2
p

np�p

�
ne�e

	þ�

�
waqa
s�

� ne�ew
2

	þ�

�
ub þ

�
1�

�
ne�e

	þ�

�
2
w2

�
qb
s�

� ne�e

	þ�

�
1� ne�e

	þ�

waqa
s�

�
wb

�

þ Se

�s�
2
e

ne�e

�
np�p

	þ�

�
waqa
s�

þ np�pw
2

	þ�

�
ub �

�
1�

�
np�p

	þ�

�
2
w2

�
qb
s�

� np�p

	þ�

�
1þ np�p

	þ�

waqa
s�

�
wb

�
; (158)

where the second equality holds in the frame where va ¼ 0.
The final part accounts for the electromagnetic field. We need
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fMb ¼ 1

np�p

enapFba þ 1

ne�e

enaeFba ¼ e
�p þ�e

�p�e

uaFba þ e

�
1

�p

va
p þ 1

�e

va
e

�
Fba

¼ e

�
�p þ�e

�p�e

�
Eb þ e

ne�
2
e � np�

2
p

�p�eð	þ�Þ ½ubðw
aEaÞ þ �bacw

aBc�: (159)

Again the second equality holds only in the chosen frame.
The final relation follows from the combination (78) after projecting out the component orthogonal to ua. The result is

(obviously) rather complex and may not be particularly instructive. Yet, we provide it in the interest of completeness. The
generalized form for Ohm’s law for a hot two-component plasma can be written (expressed in terms of wa rather than the
spatial component of the charge current Ja, for convenience)

_wb þ waraubþ ?a
b

�
1

�p

ra�p � 1

�e

ra�e

�
þ 1

�p�eð	þ�Þwbu
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2
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2 1

�p

ra�p �
�
np�p

	þ�
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2 1

�e

ra�e

�
þ ua

�
2r½aQb� �W p
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�
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�
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�p þ�e

�p�e
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Eb þ e

ne�
2
e � np�

2
p

�p�eð	þ�Þ �bacw
aBc; (160)

where we have defined

Qb ¼ 
4

s�
qb � 
3wb: (161)

D. The total momentum equation

As in the two-component system, the model is com-
pleted by the total momentum equation, which follows
(more or less) immediately from the divergence of the
stress-energy tensor. In the frame moving with ua (where
va ¼ 0), the matter stress-energy tensor takes the form

TM
ab ¼ 	uaubþ ?ab �þ 2uðaqbÞ þ �wawb

þ 2
2

�
wðaqbÞ þ 
1

�
qaqb; (162)

with

�¼ ne�enp�p

	þ�

�
1� s�

	þ�

�
�

�
ne�e

	þ�

�
2
snpAps

�
�
np�p

	þ�

�
2
sneAes

¼ ne�enp�p

	þ�

�
1� s2
1�

	þ�

�
� sðne�e � np�pÞ

	þ�

2: (163)

As usual, raT
ab ¼ 0 can be divided into a component

along the four-velocity and an orthogonal piece. After a bit

of algebra, recalling that the electromagnetic contribution
is given by Eq. (28), we find that the former can be written

_	þ ð	þ�Þrau
a þraq

a � ub

�
_qb þ �waraw

b

þ 
2

�
ðwaraq

b þ qaraw
bÞ þ 
1

�
qaraq

b

�

¼ e
npne

	þ�
ð�p þ�eÞðwaE

aÞ: (164)

Meanwhile, the orthogonal projection leads to the momen-
tum equation

ð	þ�Þ _ubþ ?ab ra�þ qarau
b þ qbraðua þ Va

1 Þ
þ ?b

c ð _qc þ Va
2raw

c þ Va
1raq

cÞ þ wbraV
a
2

¼ eðnp � neÞEb þ e
npne

	þ�
ð�p þ�eÞ�bacwaBc; (165)

where we have defined

Va
1 ¼ 1

�
ð
2w

a þ 
1q
aÞ; (166)

and

Va
2 ¼ �wa þ 
2

�
qa: (167)
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E Linearized model

The final equations for the coupled three-component
model are obviously rather complex. This is not surprising
since, apart from working in a specific observer frame, we
did not make any simplifications. Hence, the model is quite
general, including the relevant nonlinearities and redshift
factors. The main take-home message should be that the
steps involved in the derivation are natural and intuitive,
but the expressions involved will be messy. One may query
the immediate usefulness of the analysis, as it takes us far
beyond what is currently considered in applications.
However, the argument on behalf of the defense is clear.
Once we have worked our way through the general case it
is relatively straightforward to reduce the complexity by
considering specific models. This is, in fact, a valuable
exercise as it provides a clearer insight into the key features
of the hot system.

A natural, and in many cases of interest reasonable,
assumption is that we only need to retain the linear relative
velocities. As in the cold model, we neglect higher-order
terms in wa and qa, and we also ignore all the redshift
factors by taking �x � 1. It then follows that the pressure is
� ¼ P and the temperature is � ¼ T. In the interest of
clarity we will also ignore the resistive scattering between
entropy (phonons) and the material components, i.e. we set
Sx ¼ 0. These assumptions lead to, i) the heat equation

�
1 _qa þ ð1þ � _
1Þqa
¼ ��½?a

b rbT þ T _ua þ 
2 _wa þ _
2wa

þ ð
1q
b þ 
2w

bÞraub�; (168)

ii) the generalized version of Ohm’s law

e

�
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Eb � e

np�
2
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2
e

�p�eðPþ 	Þ �bacw
aBc � eR

np�pne�e

ðn2e�e þ n2p�pÞ
�
1� sT

Pþ 	

�
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¼ _wb þ waraubþ ?a
b

�
1

�p

ra�p � 1

�e

ra�e

�
þ 1

�p�eðPþ 	Þwbu
a½ne�2

era�p þ np�
2
pra�e�

þ ua
�
2r½aQb� �W p

bra

�
1

�p

�
þW e

bra

�
1

�e

��
; (169)

and, iii) the total momentum conservation equation

ðPþ	Þ _ubþ?abraPþqarau
bþqbrau

aþ?b
c _qc

¼eðnp�neÞEbþe
npne

Pþ	
ð�pþ�eÞ�bacwaBc: (170)

We simplify these relations further by noting that we can
reinstate the assumption of charge neutrality, as the issues
alluded to after Eq. (132) originate from the redshift fac-
tors. Thus we let np ¼ ne, which leads to a number of

simplifications (the arguments are the same as in the cold
case). Focussing on the proton-electron plasma, we also
assume that �e � �p. It follows that the charge current is

(again) given by

Ja ¼ enew
a: (171)

We can use this to write (168) in the elegant form

qa ¼ ��ð?b
a rbT þ T _ua þ 2ubr½b ~Qa�Þ; (172)

where

~Qa ¼ 
1qa þ 
2

ene
Ja: (173)

The thermal relaxation is encoded in this quantity.

Turning to the momentum Eq. (170), we have

ðPþ 	Þ _ubþ ?ab raPþ qarau
b þ qbrau

aþ ?b
c _qc

¼ �bacJaBc: (174)

Finally, we find that Ohm’s law simplifies to [60]

Eb � 1

ene
�bcdJ

cBd � R
ene

Jb

¼ �e

e2ne

�
?ab

_Ja þ Ja
�
�ab þ!ab þ 4

3

 ?ab

��

� 1

e
?a

bra�e þ 2uar½aQb�: (175)

At this point, we have stripped the hot plasma model
down to the level where it is easy to compare the final
expressions to those of the cold model. At the linear level,
the only difference is the presence of couplings that arise
due to the entropy entrainment (expressed in terms of the
different 
 coefficients) and the explicit presence of the
heat flux qa in the momentum equation. These may seem
like minor adjustments, but they are significant. In particu-
lar, we need to retain the relevant relaxation times in order
to ensure that the model is causal.
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Of course, the main differences between the two models
we have developed enters at the nonlinear level (in the
relative velocities). At quadratic order, the problem is non-
adiabatic (as �s � 0) and it is no longer natural to assume
charge neutrality. Given these effects, it would be very
interesting to study a quadratic model in more detail.
However, the corresponding problem is somewhat in-
volved so we prefer to postpone discussion of it for the
future.

The model is completed by three scalar relations (whose
origin are the conservation laws for the fluxes). In the linear
case, these take the simple form

_	þ ðPþ 	Þ
þraq
a � ub _q

b ¼ 0; (176)

_sþ s
þra

�
qa

T

�
¼ 0; (177)

and

raJ
a ¼ 0; (178)

which can be replaced by

_n e þ ne
 ¼ 0: (179)

V. CONCLUDING REMARKS

We have developed the theory for charged fluids coupled
to an electromagnetic field in the framework of general
relativity, accounting for both a phenomenological resis-
tivity and the relaxation times (associated with the charge
current and the heat flux) that are required to ensure
causality. The final formalism can be applied to a range
of interesting problems in astrophysics and cosmology.
The cold two-component plasma model (from Sec. III)
extends the ideal magnetohydrodynamics framework in
several directions, and the hot model (from Sec. IV) adds
dimensions that come into play when thermal aspects of
the problem cannot be neglected. These developments are
important as a number of interesting problems may require
‘‘nonideal’’ aspects for their solution. Of most obvious
relevance are problems involving not only electromagnetic
fields but the live spacetime of general relativity. Several
key gravitational-wave sources come to mind, like core-
collapse supernovae [61] and compact binary mergers
[62,63]. Both cases involve strong gravity, a significant
thermal component and magnetic fields. To apply a resis-
tive framework to these problems is, of course, seriously

challenging but this does not mean that we should not have
aspirations in this direction [46–48]. Actual multifluid
simulations [64] are also of obvious relevance.
Focusing on relativistic stars, one can think of a number

of unresolved problems, ranging from the dynamics of the
magnetosphere and the pulsar emission mechanism to the
formation and evolution of the star’s interior magnetic
field. These are problems where there has been significant
progress, but further effort is required. In the case of the
magnetosphere, the main focus has been on force-free
models, but recent arguments [65] point to the need to
include resistivity in the discussion. In the case of the
formation and evolution of a compact star’s global mag-
netic field, we need a better understanding of dynamo
effects that may come into operation (see [1] and also
[66] for a recent review) and we also need to understand
the coupled evolution of the star’s spin, temperature and
magnetic field [67]. There are some very difficult issues to
resolve here.
In fact, the suggested examples highlight the need to

develop the theory further. Typical questions that would
need to be addressed involve (i) the dynamics predicted by
the model, e.g. causality and stability of wave propagation
and relation to issues like pulsar emission or the launch of
outflows and jets, (ii) transitions between spatial regions
where different simplifying assumptions are valid, such as
a region in the magnetosphere where the fluid model
applies and a low-density region where the description
breaks down and one would need to fall back on a kinetic
theory model [32,68,69], the transition from magneto-
sphere to interior field at the star’s surface or, indeed,
accreting systems where an ion-electron plasma describes
the inflowing matter while regions in the magnetosphere
may still be appropriately modeled as a pair plasma,
(iii) the role of more complex physics, like the supercon-
ductor that is expected to be present in the star’s core [70]
or regions where the assumption that the medium is elec-
tromagnetically ‘‘passive’’ does not apply, possibly in the
pasta region near the crust-core transition. The present
work provides a foundation for developments in all these
directions, but each problem is associated with specific
challenges that will need to be addressed if we want to
make further progress.
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