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We consider a relativistic, degenerate electron gas at zero temperature under the influence of a strong,

uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the

electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the

corresponding equation of state also gets modified. In order to investigate the effect of very strong

magnetic field, we focus only on systems in which a maximum of either one, two, or three Landau level(s)

is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very

low magnetic field strength which yields back Chandrasekhar’s celebrated nonmagnetic results. The

maximum number of occupied Landau levels is fixed by the correct choice of two parameters, namely, the

magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of

these one-level, two-level, and three-level systems and compare them by taking three different maximum

Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the

underlying star composed of the gas stated above. We obtain an exciting result that it is possible to have an

electron-degenerate static star, namely, magnetized white dwarfs, with a mass significantly greater

than the Chandrasekhar limit in the range 2:3–2:6M�, provided it has an appropriate magnetic field

strength and central density. In fact, recent observations of peculiar type Ia supernovae—SN 2006gz,

SN 2007if, SN 2009dc, SN 2003fg—seem to suggest super-Chandrasekhar-mass white dwarfs with

masses up to 2:4–2:8M� as their most likely progenitors. Interestingly, our results seem to lie within these

observational limits.
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I. INTRODUCTION

Neutron stars are known to have high magnetic fields as
large as 1012 G or more on their surfaces. Several magnetic
white dwarfs have also been discovered with surface fields
from about 105 G to 109 G [1–6], and the physics of these
objects have also been studied from a long time [7–9]. It is
likely that stronger fields exist in the centers of neutron
stars or even white dwarfs, the limit to which is set by the
scalar virial theorem [10]:

2T þW þ 3�þ ~M ¼ 0; (1)

where T is the total kinetic (rotational) energy, W the
gravitational potential energy, � arises due to the internal
energy, and ~M the magnetic energy. Since T and � are
both positive, the maximum magnetic energy can be com-
pared to, but can never exceed, the gravitational energy in
an equilibrium configuration. For a star of mass M and
radius R, this gives ð4�R3=3ÞðB2

max=8�Þ �GM2=R, or
Bmax � 2� 108ðM=M�ÞðR=R�Þ�2 G. For white dwarfs,
this limit is 1012 G. Ostriker and Hartwick [11] had con-
structed models of magnetic white dwarfs with magnetic
field strength B� 1012 G at the center but with a much
smaller field at the surface. Thus, high interior magnetic

fields in white dwarfs, although rarely observed in nature
so far, are not completely implausible.
It was proposed by Ginzburg [12] and Woltjer [13] that

the magnetic flux �B � 4�BR2 of a star is conserved
during its evolution and subsequent collapse to form a
remnant degenerate star (flux freezing phenomenon).
Thus, degenerate stars of small size and large magnetic
fields are expected to be formed from parent stars which
originally could have quite high magnetic fields of the
order �108 G [14,15]. Thus, the study of such highly
magnetized degenerate stars will help us understand the
origin and evolution of stellar magnetic fields.
The mass-radius relation for (nonmagnetic) white

dwarfs was first determined by Chandrasekhar [16]. He
obtained a maximum mass for stable white dwarfs, known
as the famous Chandrasekhar limit (� 1:44M�), such that
electron degeneracy pressure is just adequate to counteract
gravitational collapse of the star. Suh et al. [17] obtained
the mass-radius relation for white dwarfs with B� 4:4�
1011–13 G. They, however, worked in the weak field
limit (thus ignoring Landau quantization) and applied
Euler-MacLaurin expansion to the equation of state of a
fully degenerate electron gas in a strong magnetic field
[10], in order to recover the usual equation of state in the
absence of a magnetic field. They found that both the
mass and radius of magnetic white dwarfs increase
compared to nonmagnetic white dwarfs, having the same
central density.
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In this paper, we consider a relativistic, degenerate
electron gas at zero temperature under the influence of a
strong, uniform, static magnetic field. We neglect any form
of interactions between the electrons. We study the effect
of a strong magnetic field on the equation of state of the
degenerate matter and consequently obtain the mass-radius
relation for a collapsed static star which might be com-
posed of such matter. In order to highlight the effect of
Landau quantization of electrons due to a strong magnetic
field, we restrict our systems to have, at most, one, two, or
three Landau level(s).

We hypothesize the possibility of the existence of purely
electron-degenerate stars with extremely high magnetic
fields �1015–1017 G at the center, plausibly strongly mag-
netized white dwarfs. We also investigate the possibility of
such stars having a mass greater than the Chandrasekhar
limit, in the range 2:3–2:6M�. In a simple analytical frame-
work, existence of such stars has already been reported
recently [18], and its astrophysical implications based on
numerical analysis was also discussed [19]. Interestingly,
recent observations of peculiar type 1a supernovae—SN
2006gz, SN 2007if, SN 2009dc, SN 2003fg—seem to
suggest super-Chandrasekhar-mass white dwarfs as their
most likely progenitors [20,21]. These white dwarfs are
believed to have masses up to 2:4–2:8M�. A proposed
mechanism by which these white dwarfs exceed the
Chandrasekhar limit is mass accretion from a binary com-
panion accompanied by differential rotation [22]. This is
fundamentally different from what we are proposing here.
However, these observations are quite stimulating as, not
only do they support the existence of super-Chandrasekhar
mass white dwarfs, but also our results seem to lie within
the observational limits.

The paper is organized as follows. In the next section,
we first recall how the equation of state of a cold electron-
degenerate gas gets modified due to the presence of a
strong magnetic field and then state the numerical proce-
dure followed to obtain results. Subsequently, in Sec. III,
we discuss the numerical results describing the nature of
the equations of state and the mass-radius relations. In
Sec. IV, we elaborate on some of the key points of this
work, for example, the timescale of magnetic field decay,
comparison with Chandrasekhar’s standard results, un-
stable branch of the mass-radius relations, the justifications
for a constant magnetic field, the nonrelativistic equation
for hydrostatic equilibrium, neglecting Coulomb interac-
tions, and the anisotropy in pressure due to a strong mag-
netic field. Finally, in Sec. V, we summarize our findings
with conclusions.

II. EQUATION OF STATE FOR A FREE ELECTRON
GAS IN A STRONG MAGNETIC FIELD

A. Basic equations

The energy states of a free electron in a uniform mag-
netic field are quantized into what is known as Landau

orbitals, which define the motion of the electron in a
plane perpendicular to the magnetic field. On solving the
Schrödinger equation in an external, uniform, and static
magnetic field directed along the z axis, one obtains the
following dispersion relation [23]:

E�;pz
¼ �ℏ!c þ p2

z

2me

; (2)

where quantum number � denotes the Landau level and is
given by

� ¼ jþ 1

2
þ �; (3)

with j being the principal quantum number of the Landau
level (j ¼ 0; 1; 2; . . . ), � ¼ � 1

2 , the spin of the electron,

me the rest mass of the electron, ℏ the Planck constant, and
pz the momentum of the electron along the z axis which
may be treated as continuous (the motion along the field is
not quantized).
The cyclotron energy is ℏ!c ¼ ℏðeB=mecÞ, where e is

the charge of the electron, c the speed of light, and B the
magnetic field.
Now, the electrons can become relativistic in either of

the two cases:
(i) when the density is high enough such that the mean

Fermi energy of an electron exceeds its rest-mass
energy,

(ii) when the cyclotron energy of the electron exceeds
its rest-mass energy.

We can define a critical magnetic field strength Bc from
the relation ℏ!c ¼ mec

2, which gives Bc ¼ m2
ec

3=ℏe ¼
4:414� 1013 G. Thus, in order to study the effect of a
strong magnetic field (B * Bc) on the equation of state
of a relativistic, degenerate electron gas, we have to solve
the relativistic Dirac equation. We mention here that, for
the present purpose, the magnetic field considered in the
electron-degenerate star originates due to the flux freezing
phenomenon during the gravitational collapse of the parent
star. The energy eigenstates in this case turn out to be [10]

E�;pz
¼

�
p2
zc

2 þm2
ec

4

�
1þ �

2B

Bc

��
1=2

: (4)

The main effect of the magnetic field is to modify the
available density of states for the electrons. The number
of states per unit volume in an interval �pz for a given
Landau level � is g�ðeB=h2cÞ�pz, where g� is the degen-
eracy which arises due to the Landau level splitting, such
that g� ¼ 1 for � ¼ 0 and g� ¼ 2 for � � 1. Therefore, the
electron-state density in the absence of a magnetic field

2

h3

Z
d3p; (5)

has to be replaced with
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X
�

2eB

h2c
g�

Z
dpz (6)

in the case of a nonzero magnetic field.
Now, in order to calculate the electron number density

ne at zero temperature, we have to evaluate the integral in
Eq. (6) from pz ¼ 0 to pFð�Þ, which is the Fermi momen-
tum of the electron for the Landau level �, to obtain [10]

ne ¼
X�m

�¼0

2eB

h2c
g�pFð�Þ: (7)

The Fermi energy EF of the electrons for the Landau level
� is given by

E2
F ¼ pFð�Þ2c2 þm2

ec
4

�
1þ 2�

B

Bc

�
: (8)

The upper limit �m of the summation in Eq. (7) is de-
rived from the condition that pFð�Þ2 � 0, which implies
E2
F � m2

Ec
4ð1þ 2� B

Bc
Þ, and we obtain

� � �2F � 1

2BD

(9)

or

�m ¼ �2Fmax � 1

2BD

; (10)

where �F ¼ EF=mec
2 is the dimensionless Fermi energy,

BD ¼ B=Bc the dimensionless magnetic field, and
�Fmax ¼ EFmax=mec

2 the dimensionless maximum Fermi
energy of a system for a given BD and �m. We note that �m

is taken be the nearest lowest integer in Eq. (10). For
example, if 0 � �m < 1 for a particular value of �Fmax

and BD, then the upper limit is taken to be �m ¼ 0.
If we define a dimensionless Fermi momentum xFð�Þ ¼

pFð�Þ=mec, then Eqs. (7) and (8) may be written as

ne ¼ 2BD

ð2�Þ2�3
e

X�m

�¼0

g�xFð�Þ (11)

and

�F ¼ ½xFð�Þ2 þ 1þ 2�BD�1=2 (12)

or

xFð�Þ ¼ ½�2F � ð1þ 2�BDÞ�1=2; (13)

where �e ¼ ℏ=mec is the Compton wavelength of the
electron. The matter density � can be written as

� ¼ �emHne; (14)

where �e is the mean molecular weight per electrons and
mH the mass of the hydrogen atom.

The electron energy density at zero temperature is

"e ¼ 2BD

ð2�Þ2�3
e

X�m

�¼0

g�
Z xFð�Þ

0
E�;pz

d

�
pz

mec

�

¼ 2BD

ð2�Þ2�3
e

mec
2
X�m

�¼0

g�ð1þ 2�BDÞc
�

xFð�Þ
ð1þ 2�BDÞ1=2

�
;

(15)

where

c ðzÞ¼
Z z

0
ð1þy2Þ1=2dy¼1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2

p
þ1

2
lnðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2

p
Þ:

(16)

Then, the pressure of an electron gas in a magnetic field is
given by

Pe ¼ n2e
d

dne

�
"e
ne

�
¼ �"e þ neEF

¼ 2BD

ð2�Þ2�3
e

mec
2
X�m

�¼0

g�ð1þ 2�BDÞ	
�

xFð�Þ
ð1þ 2�BDÞ1=2

�
;

(17)

where

	ðzÞ ¼ 1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
� 1

2
lnðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
Þ: (18)

B. Procedure

Referring to the qualitative discussion by Lai and
Shapiro [10], let �m also denote the maximum number of
Landau levels occupied by a cold gas of electrons in a
magnetic field. In this case, from Eq. (10), �m will be the
nearest highest integer. Then, if �m 	 1, the Landau en-
ergy level spacing becomes a very small fraction of the
Fermi energy, and the discrete sum over � can be replaced
by an integral, and we get back the nonmagnetic results.
From Eq. (10), we see that if the magnetic field strength is
high (for a fixed Fermi energy), i.e., BD 	 1, then �m is
small, and the electrons are restricted to the lower Landau
levels only. It is in this case that the magnetic field plays an
important role in influencing the equation of state for the
relativistic degenerate gas.
Since we are investigating the effects of a high magnetic

field in this work, we fix �m such that it can only take
values 1, 2, or 3, which we call a one-level, two-level, and
three-level system, respectively. To clarify further, by one-
level system, we mean where only the ground Landau
level, � ¼ 0, is occupied; two-level means where both
the ground and the first (� ¼ 1) Landau levels are occu-
pied; and three-level means where the ground, first, and
second (� ¼ 2) Landau levels are occupied. Now, from
Eq. (10), we see that once we fix �m, we obtain a fixed BD

on supplying a desired EFmax, which corresponds to the
maximum possible density (in a star which corresponds to
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its central density) for that �m. Hence, in our framework,
the magnetic field is in accordance with the density of the
system. We choose EFmax ¼ 2mec

2, 20mec
2 and 200mec

2,
and for each, we study the one-level, two-level, and three-
level systems, giving a total of 9 cases which are listed in
Table I. We mention here that for a given value of EFmax,
the value of BD listed here corresponds to a lower limit. For
example, when EFmax ¼ 20mec

2, BD with a value of 199.5
just results in a one-level system but, if we choose any
BD > 199:5, that would also lead to a one-level system.

For each of these cases, we obtain the equation of state
by simultaneously solving Eqs. (11), (14), and (17)

numerically from EF ¼ mec
2 to EF ¼ EFmax, when each

value of EF gives one point in the Pe � � plot. In this
work, we choose �e ¼ 2 throughout. Figure 1 shows the
equations of state for the different cases given in Table I,
which will be discussed in Sec. III.
If we are to construct the model of a strongly magnetized

star made out of electron-degenerate matter, which is
approximated to be spherical in the presence of a constant
magnetic field, we require solving the following differen-
tial equation, which basically comes from the condition of
hydrostatic equilibrium [24]:

1

r2
d

dr

�
r2

�

dP

dr

�
¼ �4�G�; (19)

where we consider P ¼ Pe throughout this work. See,
however, the appendix in order to understand the effect of
deviation from spherical symmetry due to the anisotropic
effects of a magnetic field, as discussed in Sec. IVG. Since
the pressure cannot be expressed as an analytical function of
density, unlike that of Chandrasekhar’s work [16], we fit the
equation of state with the following polytropic relation:

P ¼ K��; (20)

with different values of the adiabatic index � in different
density ranges (K being a dimensional constant). Thus, the
actual equation of state is reconstructed using multiple poly-
tropic equations of state. One such fit is shown in Fig. 1(d),

TABLE I. Parameters for the equations of state in Fig. 1.

EFmax

Maximum Landau

level(s) �m BD

B in units

of 1015 G

2mec
2 1 1.5 0.066

2 0.75 0.033

3 0.5 0.022

20mec
2 1 199.5 8.81

2 99.75 4.40

3 66.5 2.94

200mec
2 1 19999.5 882.78

2 9999.75 441.38

3 6666.5 294.26
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FIG. 1. Equations of state in a strong magnetic field (given in Table I) for (a) EFmax ¼ 2mec
2, (b) EFmax ¼ 20mec

2,
(c) EFmax ¼ 200mec

2. In all three cases, the solid line, the dotted line, and the dashed lines indicate one-level, two-level, and
three-level systems, respectively. In (d), the solid line is same as the dashed line in (b), but fitted with the dotted line by analytical
formalism (see text for details). Here, PD is the pressure in units of 2:668� 1027 erg=cc, and �D is the density in units of
2� 109 gm=cc.
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and the parameters K and � are stated in Table II. The
motivation behind doing such a fit is the following. First
of all, with this fitting, we can determine the effect of a
magnetic field on the adiabatic index of the matter. More
importantly, once we use an equation of state of the form
(20), the problem essentially reduces to solving the Lane-
Emden equation which arises in the nonmagnetic case,
except that in our case, K and � also carry information
about the magnetic field in the system.

We briefly recall here the Lane-Emden equation,
since we will be referring to some of its solutions in the
next section. We start with Eqs. (19) and (20) and write
� ¼ 1þ 1

n , where n is the polytropic index. Next, two

variable transformations are made as follows [24]:

� ¼ �c

n; (21)

where �c is the central density of the star and 
 is a
dimensionless variable and

r ¼ a�; (22)

where� is another dimensionless variable anda is defined as

a ¼
�ðnþ 1ÞK�ð1�nÞ=n

c

4�G

�
1=2

; (23)

which has the dimension of length. Thus using
Eqs. (20)–(23), Eq. (19) reduces to the famous Lane-
Emden equation,

1

�2

d

d�

�
�2 d


d�

�
¼ �
n; (24)

which can be solved for a given n, subjected to the following
two boundary conditions:


ð� ¼ 0Þ ¼ 1 (25)

and
�
d


d�

�
�¼0

¼ 0: (26)

If n < 5, then 
 falls to zero for a finite value of �, called �1,
which basically denotes the surface of the star where the

pressure goes to zero (and then density becomes zero, too, in
the present context). The physical radius of the star is then
given by

R ¼ a�1: (27)

We note that the value ofnmust be such thatn � �1, so that
a is real in Eq. (23) and R � 0 in Eq. (27). Each value of
central density�c corresponds to a particular value of radius
R and mass M of a star. Substituting a from Eq. (23) in
Eq. (27), we find

R / �ð1�nÞ=2n
c ¼ �ð��2Þ=2

c : (28)

The mass of the spherical star (see, however, the appen-
dix discussing the equations for an oblate spheroid) is
obtained by integrating the following equation:

dM

dr
¼ 4�r2�: (29)

Hence,

M ¼ 4�
Z R

0
r2�dr ¼ 4�a3�c

Z �1

0
�2
nd�: (30)

Again substituting a from Eq. (23) in Eq. (30), we find

M / �ð3�nÞ=2n
c ¼ �ð3��4Þ=2

c ; (31)

and then combining Eqs. (28) and (31), we obtain the
following mass-radius relation:

R / Mð1�nÞ=ð3�nÞ ¼ Mð��2Þ=ð3��4Þ: (32)

In the present work, we do not make the transformations
(21) and (22), but directly solve Eq. (19) (in different
density regions corresponding to the particular values of
� or n) subjected to the same boundary conditions as in
Eqs. (25) and (26), which are written as

�ðr ¼ 0Þ ¼ �c (33)

and
�
d�

dr

�
r¼0

¼ 0: (34)

TABLE II. Parameters for the fitting function of the equation of state shown in Fig. 1(d) and
the corresponding mass-radius relation shown in Fig. 2(c).

�D in units of 2� 109 gm=cc � n ¼ 1
��1 K in CGS units R / Mð1�nÞ=ð3�nÞ

0–0.096 2.9 0.526 4.055 R / M0:192

0.096–0.307 2.4 0.714 1.284 R / M0:125

0.307–1.128 2.1 0.909 0.914 R / M0:044

1.128–2.117 0.35 �1:538 1.105 Unstable

2.117–2.956 4=3 3 0.522 M / R0

2.956–3.842 2.0 1.0 0.246 R / M0

3.842–4.651 0.35 �1:538 2.225 Unstable

4.651–6.116 4=3 3 0.496 M / R0

6.116–7.37 2.0 1.0 0.142 R / M0
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Hence, the results in Eqs. (28), (31), and (32) still remain
applicable to our case. A plot of R as a function ofM gives
the mass-radius relation for the magnetic, degenerate static
star.

Figure 2 shows the mass-radius relations for the one-
level, two-level, and three-level systems with EFmax ¼
20mec

2 (results for EFmax ¼ 2mec
2 and 200mec

2 also
show the same trend). Figure 3 shows a comparison be-
tween the mass-radius relations for all the cases stated in
Table I. All these are discussed in detail in the next section.

III. NUMERICAL RESULTS

A. Equations of state

Now, we come to the discussions of the results obtained.
We start with the equations of state shown in Fig. 1. Let us
consider the panel (b) which shows the cases with EFmax ¼
20mec

2. From Table I, we see that the one-level system
(the solid line) for EFmax ¼ 20mec

2 corresponds to a
magnetic field strength BD ¼ 199:5, and the two-level
and three level systems (the dotted and dashed lines, re-
spectively) correspond to BD ¼ 99:75 and 66.5, respec-
tively. We notice that the solid curve is free of any kink,
the dotted curve has one kink, and the dashed curve has two
kinks. The kinks appear when there is a transition from a
lower Landau level to the next, and they demarcate regions
of the equation of state where the pressure becomes briefly
independent of density. Let us consider the two-level sys-
tems. The portion of the equation of state below the kink

represents the ground Landau level, and the one above the
kink represents the first Landau level. As the Fermi energy
of the electrons increases, more and more electrons occupy
the ground Landau level, and both the density and pressure
of the system keep increasing. Once the ground level is
completely filled, one observes that, on increasing the
Fermi energy of the electrons, the density increases, but
the pressure remains fairly constant for a while, after which
the pressure again starts increasing with density. It is as
if the increase in Fermi energy during the transition is
being used by the system to move to a higher Landau level
instead of increasing the pressure. This situation seems
analogous to that of phase transition in matter (where the
temperature remains constant with respect to the input heat
energy during the change of phase). Similar features are
also seen in Figs. 1(a) and 1(c) for EFmax ¼ 2mec

2 and
200mec

2, respectively.
Thus, looking at Fig. 1, we observe that in the one-level

systems (solid lines), all the electrons are in the ground
Landau level, and hence there is no kink. In the two-level
systems (dotted lines), as the electrons start filling up the
first Landau level, a kink develops in the equation of state.
Finally, in the three-level systems (dashed lines), there are
two kinks—the one at the lower density indicating transi-
tion to the first Landau level and another at the higher
density indicating transition to the second Landau level.
The value of EFmax determines the maximum density of
the system, and hence the positions of the kinks shift
accordingly in Figs. 1(a)–1(c).
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FIG. 2. Mass-radius relations with EFmax ¼ 20mec
2 for (a) one-level system, (b) two-level system, (c) three-level system. Here,MD

is the mass of the star in units of M�, and RD is the radius of the star in units of 108 cm (the solid, dotted, and dashed lines have the
same meaning as in Fig. 1).
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B. Mass-radius relations

Next, we come to Fig. 2. Here, we show the mass-radius
relations for the one-level, two-level, and three level
systems with EFmax ¼ 20mec

2 (the explanation which
follows also holds true for the cases with EFmax ¼ 2mec

2

and 200mec
2). Each point in the mass-radius curve corre-

sponds to a star with a particular value of central density �c

which is supplied by us as a boundary condition (RD and
MD are the dimensionless radius and mass of a star,
respectively, as defined in Fig. 2’s caption).

Figure 2(a) shows the mass-radius relation for the one-
level system (BD ¼ 199:5). We see that, initially, as �c

increases, both the mass and radius increase, and then
at higher central densities, the radius becomes nearly in-
dependent of the mass (we will be explaining later
in this section why such a trend is observed). We note
that the last point on this curve has a mass� 2:3M� and
radius� 6:4� 107 cm, which corresponds to the maxi-
mum density point of the solid curve in Fig. 1(b). This
denotes the density (� 1:16� 1010 gm=cc) at which the
ground Landau level is completely filled. Thus, a star with
this �c and a magnetic field strength of B ¼ 199:5Bc ¼
8:81� 1015 G has a mass greater than the Chandrasekhar
limit (� 1:44M� for �e ¼ 2).

Figure 2(b) shows the mass-radius relation for the
two-level system (BD ¼ 99:75). In this case, a maximum
mass �2:3M� is reached at a radius �8:9� 107 cm for
�c � 4:0� 109gm=cc, in the same way as in Fig. 2(a)
when the ground Landau level is completely filled. After

this, there is a turning point in the curve, from where the
mass starts decreasing. This turning point corresponds to
the kink in the corresponding equation of state [dotted
curve in Fig. 1(b)]. During the transition (when 4:0�
109 gm=cc< �c & 8:0� 109 gm=cc) from ground to the
first Landau level, the radius and mass both decrease with
increasing �c. Then, there is a brief range of densities
(8:0� 109 gm=cc<�c & 1:2� 1010 gm=cc) where the
radius decreases as the mass remains fairly constant, and
ultimately at very high densities (1:2�109 gm=cc<�c&
1:5�1010 gm=cc), the radius is again nearly independent
of the mass, as in the uppermost branch.
Figure 2(c) shows the mass-radius relation for the three-

level system (BD ¼ 66:5). Here, we see two turning points,
denoted by the decrease of both mass and radius, which
correspond to the two kinks in the corresponding equation of
state [dashed curve in Fig. 1(b)]. The maximum mass at the
first turning point �2:3M� is reached at a radius �1:1�
108 cm for �c � 2:2� 109 gm=cc (the first kink in the
equation of state). The mass at the second turning point is
�1:2M� which has a radius�6:3� 107 cm for�c � 7:6�
109 gm=cc (the second kink in the equation of state). Just
after either of the turning points denoted by the decrease of
radius and mass both, briefly, the radius decreases as the
mass remains almost constant, and, finally, the radius be-
comes nearly independent of mass. The maximum mass
�2:3M� occurs at the central density where the ground
Landau level is completely filled and transition to the first
Landau level is about to start. We observe that this density
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FIG. 3. Comparison of the mass-radius relations, for (a) one-level system, (b) two-level system, (c) three-level system, when the
solid, dotted, and dashed lines represent EFmax ¼ 2mec

2, 20mec
2 and 200mec

2, respectively. In each of the three panels, the y axis is in
log scale. See Table I for details.
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follows �cðthree-levelÞ< �cðtwo-levelÞ< �cðone-levelÞ as
is also seen from the positions of the kinks in Fig. 1.

In order to explain this behavior in further detail, we resort
to the Lane-Emden relations (28), (31), and (32). From
Eq. (28), we note that if �> 2, then R increases with �c,
and if � ¼ 2, then R is independent of �c. From
Eq. (31), we note that if �> 4=3, then M increases with
�c, and if � ¼ 4=3, then M is independent of �c. Finally
fromEq. (32), wenote that if�> 2, thenR increaseswithM,
if� ¼ 2, thenR is independent ofM, and if� ¼ 4=3, thenM
is independent ofR. This is exactlywhat is observed inFig. 2.

Let us look again at the mass-radius relation correspond-
ing to Fig. 2(c) (also see Table II). At very low densities, �
is �3 (which is the case for nonrelativistic electrons in the
ground Landau level; Peð¼ PÞ / �3; see Ref. [25]), and
the value of � keeps decreasing with increasing density. Up
to the first turning point density �c � 2:2� 109 gm=cc,
both the radius and mass keep increasing with �c, and then
the radius becomes nearly independent of mass when
�� 2. Then, � suddenly drops to the small value �0:35
which marks the onset of the transition from the ground
Landau level to the first Landau level. In this region, the
pressure becomes independent of density, revealing an
unstable zone in the equation of state (see detailed discus-
sion in Sec. IVE). As the density increases further, �
approaches the relativistic value of 4=3. In this regime,
we see that the radius decreases slightly as the mass does

not change significantly, as is also true for the mass-radius
relation in the classical nonmagnetic case for � ¼ 4=3 [see
Fig. 4(b)]. Next, � takes up a value of 2, and the radius
again becomes nearly independent of mass until it reaches
the second turning point at density �c � 7:6� 109 gm=cc.
Again, during the transition from the first Landau level to
the second, � drops to 0.35, followed by values of 4=3 and
2, which have the same explanations as stated above.
We also observe that, for a certain range of masses in the

two-level and three-level systems, it is possible to have
multiple values of the radius for a given value of mass. For
instance, looking at the two-level system in Fig. 2(b) in the
range �0:6–1:0M�, we observe that the same value of
mass corresponds to three different values of the radius.
Let us call them R1, R2, and R3, such that R1 >R2 >R3

and �cðR1Þ< �cðR2Þ< �cðR3Þ. To explain why we ob-
serve such a behavior, we recall that BD of the system is
such that �m is fixed for a given value of EFmax (see Table I
for the values). In Fig. 2(b), BD ¼ 99:75 ensures that the
system can have, at the most, two Landau levels (ground
and first), but to what extent they will be filled depends on
the Fermi energy of the electrons (� EFmax). For low
central densities (i.e., low Fermi energy), the electrons
occupy only the ground Landau level. In order for the
electrons to start occupying the first Landau level, the
central density of the star must be adequately high. Thus,
based on previous discussion for the mass-radius curves in
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2. (a) Equations of state—the solid line

represents Chandrasekhar’s equation of state. The dotted-dashed, dotted, and dashed lines represent the one-level (�m ¼ 1), two-
level (�m ¼ 2), and three-level (�m ¼ 3) systems, respectively. The equation of state for �m ¼ 20 is also shown, which appears as a
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Fig. 2, it is possible that the same mass of a star corre-
sponds to more than one radius, depending on the Landau
level occupancy. Now, R1 lies on the branch of the mass-
radius relation which corresponds to the stars in which the
electrons occupy only the ground Landau level, while R3

lies on the branch which corresponds to the electrons
occupying the first Landau level (the ground level being
already filled). R2 lies on the unstable branch of the mass-
radius relation (see discussion in Sec. IVE) when the
electrons are in the transition mode form the ground to
the first Landau level. The three-level system in Fig. 2(c)
can also be explained likewise, except that it has two
additional possible radii corresponding to the same mass
due to the presence of the second Landau level. In the one-
level system in Fig. 2(a), multiple values of radius are not
observed because the magnetic field (BD ¼ 199:5) is such
that the electrons can occupy only the ground Landau level.

Finally, we come to Fig. 3. For each of the Figs. 3(a), 3(b)
and 3(c), the value of EFmax increases from the top to the
bottom curve, and we see that the overall radius decreases
from the top to the bottom curve. We also note that an
increase in EFmax corresponds to an increase in the mag-
netic field for a fixed �m, which means that as the magnetic
field strength increases, the degenerate stars become more
and more compact in size. The same trend has been ob-
served in the case of neutron stars with a highmagnetic field
[26–28] (see discussion in Sec. IVB.) Interestingly, as seen
from Fig. 3(a), for EFmax ¼ 200mec

2, the maximum mass
of the star is even higher than that of EFmax ¼ 20mec

2,
which is �2:6M�. Also to be noted is the fact that for a
given �m, the curve corresponding to EFmax ¼ 20mec

2

covers almost the same range inmass as that of theEFmax ¼
200mec

2 curve, while the curve for EFmax ¼ 2mec
2 covers

a considerably smaller range in mass. The reason behind
this saturation at higher EFmax may be due to the fact that a
Fermi energy�2mec

2 corresponds to very low density such
that the electrons are, at the most, only mildly relativistic.
By the time Fermi energy reaches a value of about 20mec

2

(which corresponds to high density), the electrons have
become highly relativistic, giving rise to denser, more mas-
sive stars, and, hence, further increase of EFmax could not
bring any new effect in the system.

IV. DISCUSSIONS

A. Time scale of decay of magnetic field

Generally, the magnetic fields inside an electron-
degenerate star undergo Ohmic decay. The time scale for

this is given by tohm ¼ 4��EL
2

c2
, where �E is the electrical

conductivity and L is the length scale over which the
magnetic field changes. Theoretical calculations of
Ohmic decay in isolated, cooling white dwarfs, which are
generally known in nature, show that the magnetic field
changes little over their lifetime [29–31]. Cumming [32]
estimated a lowest-order decay time as

tohm 
 1010 yrs

�
�c

3� 106 gm=cc

�
1=3

�
R

109 cm

�
1=2

�
10h�i
�c

�
;

(35)

where h�i is the mean density of the star. For the three stars
represented in Fig. 5(d), the above time scale turns out to
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be * 109 years. Thus, we can say that the magnetic
fields of these stars do not decay significantly via Ohmic
dissipation in their lifetime. However, while for B &
1011 G, Ohmic decay is the dominant phenomenon, for
B� 1012 � 1013 G, decay is supposed to take place via
Hall drift, and for B * 1014 G, it undergoes ambipolar
diffusion [33]. Note that all the decay time scales stated
above are valid only for normal or nonsuperfluid matter.
Hence, while they might be unrealistic for neutron stars
[34], these time scales are applicable to white dwarfs since
they do not have a superconducting core [35,36].

Heyl and Kulkarni [33] examined the consequences of
the magnetic field decay in magnetars having surface field
1014 G to 1016 G by using an appropriate cooling model
and by solving the following decay equation:

dB

dt
¼ �B

�
1

tohmic

þ 1

tambip

þ 1

tHall

�
: (36)

The strongly magnetized white dwarfs considered in
the present work have central magnetic field strengths
�1015 G, which is comparable to the surface field
strengths of magnetars. It is then likely that the magnetic
fields in both these cases would undergo similar decay
mechanisms. The decay of such strong fields is dominated
by ambipolar diffusion [33]. However, for a typical initial
field strength of 1015 G, the magnetic field remains nearly
constant up to about 105 years, and in the next 100 years, its
value decreases by, at most, an order of magnitude [33]. As
discussed in Sec. IVC below, it is the central magnetic field
which is crucial for the super-Chandrasekhar mass of the
white dwarfs. Thus, applying the above results to these
magnetized white dwarfs, we can conclude that the central
field will not decay appreciably for a long period of time.

An alternate scenario could arise if the magnetized white
dwarfs are accreting. In this case, the heat generated due to
accretion decreases the electrical conductivity of the sur-
face of the star, causing a faster decay of the (surface)
magnetic field due to a reduced Ohmic decay time scale.
However, as the mass of the star increases, it becomes more
compact, and the current carrying accreted material is
pushed deeper into the star. Since conductivity is a steeply
increasing function of density, the higher conductivity of
the denser inner region of the star will again slow down
further decay of the magnetic field [37].

Since we are working with magnetic field strengths
B> Bc, one might be concerned about the process of
electron-positron pair creation (via Schwinger process) at
the expense of magnetic energy, which might lead to a
reduction of the field strength. However, Canuto and Chiu
[38–40] and also Daugherty et al. [41] showed that it is
impossible to have spontaneous pair creation in a magnetic
field alone, irrespective of its strength. Now, from
Maxwell’s equations in a steady state, we have

r�B ¼ 4�

c
j; (37)

and Ohm’s law states

E ¼ j

�E

; (38)

when E is the electric field and j the current density. Thus,
for an electric field to be generated, the magnetic field must
vary with space as seen from Eq. (37). However, in this
work, we have chosen a constant magnetic field, which
leads to j ¼ 0 and hence E ¼ 0 from Eq. (38). Now, the
main effect of the magnetic field, which is to give rise to a
mass exceeding the Chandrasekhar limit, is restricted to the
high-density region, where the field remains essentially
constant. Thus, our choice of a constant magnetic field is
justified (see Sec. IVC for detailed discussion). Moreover,
since the magnetic field in the degenerate star is generated
due to the flux freezing phenomenon, it incorporates the
fact that the conductivity �E is very large. Thus, even if the
magnetic field is highly inhomogeneous, from Eq. (38), we
see that the electric field generated would again be negli-
gible. Thus, the electron-degenerate stars in this work are
magnetically dominated systems, i.e., both the magnetic
field strength is very high (B> Bc) and the electric field
strength is negligible. Recently, Jones [42] calculated the
cross section for photon-induced pair creation in very high
magnetic fields and has arrived at the result that there is a
rapid decrease of the pair creation cross section at B> Bc.
Hence, one can ignore the effect of pair creation in reduc-
ing the magnetic field strength in these stars.

B. Comparison with Chandrasekhar’s results

In Fig. 4, we put together our results along with
Chandrasekhar’s result for nonmagnetic white dwarfs to
obtain a more complete picture. Figure 4(a) shows the
equation of state obtained by Chandrasekhar and those
corresponding to the one- (�m ¼ 1), two- (�m ¼ 2), and
three-level (�m ¼ 3) systems [same as in Fig. 1(b)].
Interestingly, the equation of state for�m ¼ 20 almost grazes
Chandrasekhar’s equation of state, except for the appearance
of a series of kinks. This clearly shows that, as the magnetic
field strength decreases, or, equivalently, as the maximum
number of occupied Landau levels increases, the equation of
state approaches Chandrasekhar’s equation of state.
Figure 4(b) represents the mass-radius relations corre-

sponding to the equations of state shown in Fig. 4(a). The
mass-radius relation for �m ¼ 500 (500 Landau levels) is
also shown. We observe that, as the magnetic field strength
decreases or as the maximum number of occupied Landau
levels increases, the mass-radius relation approaches the
nonmagnetic relation, and one recovers Chandrasekhar’s
mass limit.
Figure 4(b) also shows that the stars of a given mass

become more and more compact in size as the magnetic
field strength increases. In order to explain this behavior,
we resort to Figs. 4(a) and 4(c). Let us, for simplicity, look
at Chandrasekhar’s equation of state (solid line) and
that of the one-level system (dotted-dashed line), which
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corresponds to B ¼ 199:5Bc, in Fig. 4(a). We notice that at
low densities, the dotted-dashed line lies below the solid
line, and at higher densities, �D * 2, the dotted-dashed
line lies above the solid line. In other words, the equa-
tion of state for the one-level system is softer than
Chandrasekhar’s equation of state at low densities, which
means that the pressure does not rise with density as
rapidly as that in Chandrasekhar’s case. This trend reverses
at higher densities, and the equation of state for the one-
level case becomes stiffer than that of Chandrasekhar’s.
Now, matter with a softer equation of state is less efficient
in counteracting gravity, and hence stars made out of such
matter will be more compact in size. Keeping this in mind,
we now look at Fig. 4(c). Figure 4(c) shows the variation of
density with radius, within a nonmagnetized star and a
magnetized star with �m ¼ 1 (one-level), both having the
same central density (�c ¼ 5). We mention here that for
ease of explanation, we have chosen a high central density
such that the equations of state for both the stars cover
almost the entire range of density. We observe that for a
given radius, density for the magnetized star is higher than
that of the nonmagnetized star for a large range, from
�D ¼ �c ¼ 5 to �D � 0:3. But at very low densities,
�D < 0:3, the density of the magnetized star sharply falls
to zero due to smaller pressure, leading to a smaller star
(R ¼ 6:4� 107 cm) than in the nonmagnetized case
(R ¼ 1:3� 108 cm). From the analysis of the equations
of state for these two stars, we can say that if the equation
of state of the magnetized star would have remained stiffer
than the nonmagnetized star throughout, then the magne-
tized star would have a larger radius, as, in this case, the
pressure would be more efficient in counteracting the
gravitational collapse of the star. But this is not true. At
very low densities, the equation of state suddenly becomes
softer for the magnetized star, and the pressure is not
able to counteract gravity efficiently, causing the star to
collapse rapidly. Hence, the density goes to zero very
rapidly, causing the star to have a (much) smaller radius.

We also note from Fig. 4(b) that as the magnetic field
strength increases, the probability that the stars will have
masses exceeding the Chandrasekhar limit increases. From
Fig. 4(c), we see that the density of the magnetized star is
much higher than that of the nonmagnetized star, except for
a very small range of low densities. Thus, calculating the
total mass of the stars from Eq. (29), we obtain a much
higher value for the magnetized star.

C. Choice of constant magnetic field

Figures 5(a)–5(c) show the variation of mass as a func-
tion of density within a magnetized electron-degenerate
star for three different magnetic field strengths. In all the
cases, we note that, by the time the density falls to about
half the value of the central density, the mass has increased
significantly, crossing the Chandrasekhar limit (indicated
by the horizontal line) soon after. Hence, although we have

considered a constant magnetic field, the effect of the
magnetic field is restricted to the high-density regime,
where the field remains essentially constant in reality.
Hence, we can also interpret this constant magnetic field
as the central magnetic field of the star. This would be more
clear from the description of the variation of magnetic field
given by Refs. [26,43], which show that an inhomogeneous
magnetic profile in a compact star could be such that the
magnetic field is nearly constant throughout most of the
star and then gradually falls off close to the surface (see
Fig. 5b in Ref. [26]). Thus, choosing an inhomogeneous
magnetic profile would not affect our main finding that the
Chandrasekhar mass limit can be exceeded for high mag-
netic field strengths.

D. Choice of nonrelativistic equation
of hydrostatic equilibrium

Figure 5(d) shows the variation of mass as a function of
radius within the stars represented in Figs. 5(a)–5(c). All
these stars have a total mass �2:3M�, and hence their
Schwarzschild radius Rg ¼ 2GM

c2
¼ 6:8� 105 cm. Now,

general relativistic effects usually start becoming important
at a radius & 10Rg, i.e., rD & 0:068 for the above-

mentioned stars. However, from Fig. 5(d), we see that for
all the three stars, the contribution to the mass from a radius
<10Rg, i.e., the central region, is negligible. Contribution

to the mass rather effectively starts from a radius rD * 0:13
(� 20Rg), and the Chandrasekhar limit is crossed at

Rg � 66, 95, and 118, for the stars represented by the

dashed, dotted, and dotted-dashed lines, respectively.
Thus, significant contribution to the total mass of the stars
comes from a region well beyond the regime of general
relativity. Hence, one need not consider the Tolman-
Oppenheimer-Volkoff equation, and our choice of the non-
relativistic equation of equilibrium, Eq. (19), is justified.

E. Unstable branch of the mass-radius relations

Figure 6(a) shows the variation of density as a function
of radius inside the degenerate stars having EFmax ¼
20mec

2 and B ¼ 99:75Bc. If we look at the equation of
state for the two-level system with EFmax ¼ 20mec

2, i.e.,
the dotted line in Fig. 1(b), we see that both �D ¼ 1:5 and 2
lie below the density at which transition takes place from
the ground Landau level to the first Landau level. For stars
with these central densities, the pressure rises monotoni-
cally with density throughout, and one forms a stable star.
From the corresponding curves (solid and dashed) in
Fig. 6(b), also we note that the sound speed (cs) varies
smoothly with radius, reaching a maximum value at the
center. Both the mass and radius of these stars increase
with central density, and, hence, they lie on the uppermost
branch of the mass-radius relation in Fig. 2(b).
Now, �D ¼ 2:5 lies on the plateau following the kink in

the equation of state. A star having this central density will
have within it a zone where pressure does not steadily
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increase with density, but is nearly constant. Thus, such a
star will tend to collapse faster under gravity and hencewill
have a smaller radius. From the dotted line in Fig. 6(a), we
see that the density of such a star falls steeply to zero
compared to the �D ¼ 2 case, indicated by the dashed
line. The corresponding curve in Fig. 6(b) shows a peak
in cs at the radius where pressure starts becoming inde-
pendent of density. Since mass of the star is calculated
using Eq. (29), such a star has a smaller mass too due to
smaller size. These stars lie on the middle branch of the
corresponding mass-radius relation. Since these stars con-
sist of an unstable zone mentioned above, we argue that
they constitute the somewhat unstable branch in the mass-
radius relation.

Finally, let us choose a larger density, say �D ¼ 7,
which lies on that portion of the equation of state above
the kink, where pressure again rises monotonically with
density, but not as steeply as that in the regions around
�D ¼ 1:5 and 2. Although these stars also have an unstable
zone inside them, but softer pressure in a large range of
density, which together cause them to have a smaller
radius, their central density is very high. As a result, their
mass starts increasing again, as can be inferred from the
dotted-dashed line in Fig. 6(a). The cs again shows a sharp
peak indicating the appearance of an unstable zone within
the star. These stars constitute the bottommost branch of
the mass-radius relation.

F. Neglecting Coulomb interactions

The distance between nuclei in highly magnetized
electron-degenerate stars could be as small as 50 Fermi.

The Coulomb repulsion energy between electrons e2

r , at the

separation of 50 Fermi, is of the order of 4� 10�8 ergs,
which is quite less than the rest-mass energy of an electron
mec

2 � 8� 10�7 ergs. There can be Coulomb interaction

between electrons and the ions, which is given by Ze2

r .

Commonly, electron-degenerate stars consist of helium,
carbon, oxygen, etc., so that Z can have a value of 10 at
the most. Hence, the Coulomb interaction energy would
still be less than or, at most, the same order as the rest-mass

energy. Thus, we can neglect the effects of Coulomb
interaction for the present purpose.

G. Anisotropy in pressure due to a strong magnetic field

The strong magnetic field causes the pressure to become
anisotropic [27,44,45]. The total energy momentum tensor
due to both matter and magnetic field is to be given by

T�� ¼ T
��
m þ T

��
f ; (39)

where

T��
m ¼ �mu

�u� � Pmðg�� � u�u�Þ (40)

and

T��
f ¼ B2

4�

�
u�u� � 1

2
g��

�
� B�B�

4�
; (41)

when �m ¼ �e is the matter energy density given by
Eq. (15) and Pm ¼ Pe is the matter pressure given by
Eq. (17). The first term in Eq. (41) is equivalent to mag-
netic pressure, while the second term gives rise to the
magnetic tension. If B is along the z axis, then we have

T��
f ¼

B2

8� 0 0 0

0 B2

8� 0 0

0 0 B2

8� 0

0 0 0 � B2

8�

2
66666664

3
77777775
: (42)

Thus, we see that pressure becomes anisotropic. The total
pressure in the perpendicular direction to the magnetic
field is given by

P? ¼ Pm þ B2

8�
; (43)

and the parallel direction to the magnetic field is given by

Pk ¼ Pm � B2

8�
: (44)

Now, the parallel pressure becomes negative if the
magnetic pressure exceeds the fluid pressure. In order to
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understand this effect, we write the component of T
��
f

along the z axis as

Tzz
f ¼ B2

8�
� B2

4�
: (45)

The second term �B2=4� corresponds to an excess nega-
tive pressure or tension along the direction to the magnetic
field. Thus, the total energy momentum tensor can be
written as

T��¼

�mþ B2

8� 0 0 0

0 Pmþ B2

8� 0 0

0 0 Pmþ B2

8� 0

0 0 0

�
Pmþ B2

8�

�
� B2

4�

2
6666666664

3
7777777775
:

(46)

The strong magnetic field also reveals anisotropy
due to magnetization pressure [27]. Hence, actually, the
pressure in the perpendicular direction to the magnetic
field is given by

P? ¼ Pm þ B2

8�
�MB; (47)

where M is the magnetization of the system, which is
given by

M ¼ �@�m
@B

: (48)

However, for the magnetic fields considered in the present
work exhibiting super-Chandrasekhar masses, B2=8� 	
MB. Therefore, we do not include the magnetization term
in the pressure which does not affect the result practically
for the present purpose.

Here, we refer to the work by Bocquet et al. [46], which
models rotating neutron stars with magnetic fields, by
using an extension of the electromagnetic code used by
Bonazzola et al. [47]. They observed that the component
of the total energy momentum tensor along the symmetry
axis becomes negative (equivalent to Tzz < 0 in our case),
since the fluid pressure decreases more rapidly than the
magnetic pressure away from the center of the star. This
happens because the combined fluid-magnetic medium
develops a tension. As a result of this magnetic tension,
the star displays a pinch across the symmetry axis and
assumes a flattened shape. A similar effect is expected to
occur in our work, where the magnetic tension will be
responsible for deforming the magnetized white dwarf
along the direction to the magnetic field, and turns it into
a kind of oblate spheroid. Hence, one should be cautious
before considering Eq. (19), which is applicable for a
spherical star [45].

However, in this work, we consider a constant mag-
netic field, since our interest is to see the effect of the

magnetic field of the central region of the white dwarf,
where the field is supposed to be (almost) constant (see
Sec. IVC). Thus, even if we use either the parallel or
the perpendicular pressure in the hydrostatic equilibrium
equation (19), B does not appear explicitly in the equation
(dB=dr ¼ 0)—only the gravitational field will be modified
due to deformation. Hence, it is still possible to have
super-Chandrasekhar-mass white dwarfs—only theywill be
deformed in shape due to the strong field, which might even
render a more massive white dwarf (as is discussed in the
appendix).

V. SUMMARYAND CONCLUSIONS

We have studied the effect of a high magnetic field on
the equation of state of purely electron-degenerate matter
at zero temperature. In the equation of state, we have
considered only the electron degeneracy pressure modified
by the strong magnetic field. We have focused on those
Landau-quantized systems in which the maximum number
of Landau level(s) occupied is one, two, or three, which we
have named to be one-level, two-level, and three-level
system, respectively.
We have found that whenever a lower Landau level is

completely filled and the next higher level is to be filled,
a kink appears in the equation of state, followed by a
plateau—which is a small region where the pressure be-
comes nearly independent of the density. The one-level
system, which has only the ground Landau level filled, has
no kink; the two-level system has one kink at the ground-
to-first-level transition; and the three-level system has two
kinks, one at the ground-to-first and the other at the first-to-
second-level transition. We have studied each of these
systems at three maximum Fermi energies EFmax ¼
2mec

2, 20mec
2 and 200mec

2 and obtained the mass-radius
relations of the corresponding stars.
The mass-radius relations show one or more turning

points, denoted by the decrease of both mass and radius,
which corresponds to the kink(s) in the equation of state.
The most interesting result obtained is that there are pos-
sible stars found on the mass-radius relations whose mass
exceeds the Chandrasekhar limit. They could be potential
magnetized white dwarfs. The maximum mass obtained
is about 2:3–2:6M� and is seen to occur for various
combinations of central density, magnetic field strength,
and the maximum number of occupied Landau levels.
Interestingly, such supermassive white dwarfs have been
suggested to be the most likely progenitors of recently
observed type Ia supernovae [20,21]. Out of the equations
of state considered in the present work, the system with the
lowest magnetic field which gives rise to this mass is
the three-level system with EFmax ¼ 20mec

2, BD ¼ 66:5
(or B ¼ 2:94� 1015 G), and the corresponding central
density is 2:2� 109 gm=cc.
The nature of the mass-radius relations is governed

bywhether the system is one-level, two-level, or three-level
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and is independent of the value of EFmax. However,
EFmax determines how relativistic the system is. For in-
stance, the Chandrasekhar mass limit is not exceeded for a
low EFmax (say ¼ 2mec

2), no matter what the central
density is. We have, however, observed that as EFmax

increases, which corresponds to an increase in the mag-
netic field strength, the degenerate stars become more
compact in size.

As discussed, the minimum magnetic field required to
have a 2:3M� degenerate star is B ¼ 2:94� 1015 G. The
magnetic field of the original star of radius R�, which
collapses into the above degenerate star of radius
�108 cm, turns out to be �6� 109 G, based on the flux
freezing theorem. Existence of such stars is not ruled out
[15]. However, the anisotropy in pressure due to strong
magnetic field causes a deformation in the white dwarfs
which adopt a flattened shape. This effect of flattening
leads to more massive white dwarfs, even at relatively
lower magnetic-field strengths.

One might wonder why highly magnetized white
dwarfs have not yet been observed. A plausible reason
could be that the surface magnetic field is being screened
due to some physical processes. For instance, if the white
dwarf is in a binary system and is accreting matter from its
companion, as is proposed for type Ia supernovae progen-
itors, then the plasma which is being deposited on the

surface of the star could induce an opposite magnetic
moment. This would result in a reduction of the surface
field strength. However, the central magnetic field strength,
which is presumably unaffected by the above processes,
could be several orders of magnitude higher than the
surface field. Indeed as seen in Sec. IVC, it is the central
field which is crucial for exceeding the Chandrasekhar
mass limit.
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APPENDIX

In order to estimate the effect of deviation from
spherical symmetry due to the magnetic field, we have
performed a few calculations. If the magnetic field is
very strong, then the magnetic tension will flatten the star
along the direction to the field (as discussed in Sec. IVG).
If we consider the white dwarf to be an oblate spheroid
with the z axis being the symmetry axis, then its equation is
given by

(a)
 0.1
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 0  1  2  3  4  5  6

R
eq
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FIG. 7. Mass-radius relations with EFmax ¼ 20mec
2 for (a) one-level system (�m ¼ 1), (b) two-level system (�m ¼ 2), (c) 20-level

system (�m ¼ 20), and (d) five hundred-level system (�m ¼ 500). Here, MD is the mass of the white dwarf in units of M�, and Req is

the equatorial radius of the white dwarf in units of 108 cm. All the solid lines represent the mass-radius relations for the cases, if the
stars would have been spherical. The dashed lines in (a) and (b) represent the mass-radius relations for highly flattened (strongly
magnetized) white dwarfs, while the dashed lines in (c) and (d) represent the mass-radius relations for less flattened (relatively weakly
magnetized) white dwarfs. In all the four panels, the y axis is in log scale.
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r2eq

a2
þ z2

c2
¼ 1; (A1)

where r2eq ¼ x2 þ y2, the semi-axis a is the equatorial

radius of the spheroid, and c is the distance from the center
to the pole along the symmetry axis (c < a for an oblate
spheroid).

The equatorial force balance equation can be written as

1

�

dP

dreq
¼ �GM

r2

�
req
r

�
; (A2)

where r2 ¼ r2eq þ z2. The above equation for hydrostatic

equilibrium has to be supplemented by an equation to
determine the mass of the star. Now,

dM ¼ �dV (A3)

and the volume element for an oblate spheroid is given by

dV ¼ �reqðzÞ2dz: (A4)

For a simpler visualization, one can also assume a
cylindrical geometry, and the equation for the mass
can be given by

dM

dreq
¼ 2�reqh�; (A5)

where h denotes an average height of the cylinder (assum-
ing that the density does not change appreciably with z)
and is a parameter which quantifies the degree of flatten-
ing. At high field strengths, the white dwarf will be more
flattened, and h will be small. At low field strengths, it is
likely that the star will be less flattened, and h will have a
larger value. Keeping this in mind, we solved the above
equations and obtained the mass-radius relations for some
of the cases as shown in Fig. 7.

The one-level and two-level systems have strong
magnetic fields, and the corresponding mass-radius
relations for the spherical case are denoted by the solid
lines in Figs. 7(a) and 7(b). From the dashed lines in
Figs. 7(a) and 7(b), we see that the flattened white
dwarfs could have much higher masses than the perfectly
spherical ones. Interestingly, we note from the dashed lines
of Figs. 7(c) and 7(d) that, even for much lower mag-
netic field strengths (B ¼ 4:4� 1014 G for �m ¼ 20 and
1:8� 1013 G for �m ¼ 500), the Chandrasekhar-mass
limit is exceeded even if one includes the corresponding
reduced flattening effect—these white dwarfs were
sub-Chandrasekhar for the spherical cases. One can also
see that the radius of the stars represented by the dashed
lines is larger than that represented by the solid lines.
One must note here that for the dashed lines, this radius
is the equatorial radius, which will automatically be larger
than the spherical radius as a consequence of the flat-
tening effect.
Hence, the effect of flattening leads to a more massive

star. The effect is very similar to the flattening due to
centrifugal force in rapidly rotating stars, which are known
to be more massive than their slow-rotating counterparts
(e.g., Ref. [46]). These are also shown to have larger mass
in the presence of a high magnetic field. Thus, the strong
magnetic field is responsible for increasing the mass of the
white dwarfs, while the deformation (or flattening) of the
white dwarf due to the field further adds on to the mass.
Therefore, our estimate of the mass of the white dwarf,
in fact, just sets a lower bound. More interestingly, flat-
tening effects due to magnetic field will render super-
Chandrasekhar white dwarfs even at a smaller magnetic
field—such relatively low magnetized white dwarfs are
more probable in nature.
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