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The quantum fluctuations of an ‘‘accelerated’’ vacuum state, that is, vacuum fluctuations in the presence

of a constant electromagnetic field, can be described by the temperature TM. Considering TM for the

gyromagnetic factor g ¼ 1 we show that TMðg ¼ 1Þ ¼ TU, where TU is the Unruh temperature experi-

enced by an accelerated observer. We conjecture that both particle production and nonlinear field effects

inherent in the Unruh accelerated observer case are described by the case g ¼ 1 QED of strong fields. We

present rates of particle production for g ¼ 0, 1, 2 and show that the case g ¼ 1 is experimentally

distinguishable from g ¼ 0, 2. Therefore, either accelerated observers are distinguishable from accel-

erated vacuum or there is unexpected modification of the theoretical framework.
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I. INTRODUCTION

A detector in a matter- and field-free spacetime under-
going constant acceleration aU is found to be embedded
in a thermal background at the Unruh temperature
(ℏ ¼ c ¼ 1 ¼ kB)

TU ¼ aU
2�

: (1)

The statistics of the thermal distribution are bosonic con-
sidering the vacuum of a scalar particle [1,2] and fermionic
in the vacuum of a Fermi particle [3]. In other words, the
free and unstructured vacuum fluctuations appear to an
accelerated observer as having an effective temperature
TU with statistics corresponding to the fluctuation of either
Fermi or Bose type.

A complementary effect was recognized by Müller et al.
[4] who found that the structured vacuum fluctuations
induced by an exactly constant electric field E (or magnetic
field) can be understood as a thermal background charac-
terized by the temperature parameter

TM ¼ eE
m�

: (2)

TM arises from the exact solution introduced by
Heisenberg and Euler [5] and generalized by Schwinger
[6] of vacuum fluctuation properties for constant electro-
magnetic fields in QED evaluated at lowest order in �.

Since an electric field accelerates all charged particles
and, in particular, the electron-positron pairs whose fluc-
tuations are considered, it is natural to introduce the global
acceleration av ¼ eE=m [7] (see p. 569 ff) and consider
this equivalent to an ‘‘accelerated quantum vacuum’’ state.
A succinct discussion is found in the work of Pauchy
Hwang and Kim [8]. Writing TM in terms of av shows a
proportionality different by a factor 2 from the Unruh
temperature,

TM ¼ eE
m�

¼ av
�

¼ 2TU: (3)

The factor 2 in the temperature is not the only difference
between the accelerated vacuum and accelerated observer.
For the case of the accelerated vacuum, Müller et al. [4]
show the associated thermal distribution to be opposite
expectation, being bosonic for spin-1=2 electron fluctua-
tions and fermionic for spin-0 charged particle fluctuations.
The difference between the physical conditions giving

rise to the Unruh and Müller temperatures is whether it is
the observer or the vacuum state that is accelerated. While
frame independence of physics phenomena is assured for
inertial observers, there is no imperative need for the two
cases we consider, accelerated observer and accelerated
vacuum, to yield equivalent results. The two different
acceleration cases can be solved by similar methods [9],
yet there is difference in outcomes by a factor 2 highlighted
in Eq. (3). Appearance of two different results suggests
new physics content regarding the description of accelera-
tion in terms of the two reference views, accelerated ob-
server or accelerated vacuum, and suggests that these
views are not equivalent, no matter how small the accel-
eration is. Our objective is to improve the understanding
about the origin of this discrepancy and to show that in a
special new case this discrepancy disappears.
InQED, the structure of vacuumfluctuations is encoded in

the effective action, from which one derives spontaneous
particle creation and the associated temperature. The differ-
ence arises in connection with the spin and statistics of the
particle. Therefore, we study the structure of the QED vac-
uum fluctuations in the presence of strong fields for different
values of the g factor. We show that the specific value g ¼ 1
reconciles the temperatures and statistics and discuss pair
production in strong fields which can help distinguish the
accelerated observer from the accelerated vacuum state.

II. TEMPERATURE OF ELECTRON
FLUCTUATIONS

Separate conservation of charge-convective and spin
currents means that for any particle the value of the
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gyromagnetic ratio g can be arbitrary. For pointlike
electrically charged leptons, quantum corrections result
in g� 2 ¼ �=�þ . . . , and composite spin-1=2 particles
have values which can significantly differ from the Dirac
value g ¼ 2.

The dynamics of a particle c with arbitrary g is gen-
erated by the equation of motion

�
D2 þm2 � g

2

e���F
��

2

�
c ¼ 0; (4)

where D ¼ i@þ eA is the covariant derivative, F�� the
electromagnetic field strength tensor and ��� ¼ ði=2Þ�
½��; ���. Equation (4) comprises a doubling of dynamical

components since the ‘‘squared’’ equation commutes with
�5. For the specific case g ¼ 2, one can cast Eq. (4) in the
form of the product of two Dirac equations with �m. We
will explicitly show the number of physical degrees of
freedom. The effect of g on the vacuum fluctuations is
determined computing the effective potential

Veff ¼ � i

2
tr ln

�
D2 þm2 � g

2

e���F
��

2

�
: (5)

The Schwinger proper time method [6] can be applied to
evaluate Eq. (5) and one finds for jgj � 2,

Veff ¼ �s

32�2

Z 1

0
e�im2u

�
aucoshðg2auÞ
sinhðauÞ

bucosðg2buÞ
sinðbuÞ �1

�
du

u3
;

(6)

in which �s counts the number of degrees of freedom.With
only bosonic particle and antiparticle degrees of freedom
�s ¼ �2 for g ¼ 0. When g ¼ 2, we have spin-1=2
Dirac fermions, and counting spin degrees of freedom,
�s ¼ þ4. The �1 inside the parentheses removes the
field-independent constant. In Eq. (6), we use a the
electric-like and b the magnetic-like eigenvalues of
eF��, which are related to the field strengths by

a2 � b2 ¼ e2ð ~E2 � ~B2Þ and ðabÞ2 ¼ e4ð ~E � ~BÞ2: (7)

The a eigenvalue is electric-like because a ! ej ~Ej in the

limit b ! 0, and similarly b ! ej ~Bj in the limit a ! 0.
We discuss here the temperature and statistics for the

case of an electric-only field; a transformation similar to
that detailed below is possible for the general case Eq. (6)

[10]. For an electric-only field of strength E � j ~Ej, the
b ! 0 limit of Eq. (6) yields

Veff ¼ �s

32�2

Z 1

0
e�im2u

�
eEu coshðg2 eEuÞ

sinheEu
� 1

�
du

u3
: (8)

Transforming Veff to a statistical format proceeds via
meromorphic expansion of the integrand of Eq. (8) [4].
We introduce the identity

1� z coshðzyÞ
sinhðzÞ ¼ �2z2

X
n¼1

cosn�ðyþ 1Þ
ðn�Þ2

þ 2z4
X
n¼1

cosn�ðyþ 1Þ
ðn�Þ2ðz2 þ ðn�Þ2Þ ; jyj � 1:

(9)

The first term (/ z2) is identified as the logarithmically
divergent contribution and displays the renormalization of
charge.
The finite (regularized and renormalized) effective

potential is obtained by inserting only the second term
of Eq. (9) in the integrand of Eq. (8). Transforming for
jgj � 2 the variable u ! �inu�=eE ¼ �inu=mTM,

Veff ¼ �sm
2T2

M

32�2

Z 1

0

2udu

u2 � 1þ i�

X1
n¼1

e�nuðm=TMÞ

n2

� cos

�
n�

�
g

2
þ 1

��
: (10)

Note that we have rotated the integration contour onto the
real axis and defined the integration contour in accordance
with the assignment

m2 ! m2 � i� � m2�; (11)

which defines the imaginary part discussed further below.
While the real part of Veff controls nonlinear electromag-
netic field-field interactions, its imaginary part controls
the rate at which the electromagnetic field decays into
electron-positron pairs.
Settingg ¼ 2 for a spin-1=2 (Dirac) electron, cos2n� ¼ 1

for all n, and setting g ¼ 0 for a spin-0 electron,
cosn� ¼ ð�1Þn producing an alternating sum. In each
case, integrating by parts twice and summing the series
yields the results of Müller et al. [4] which for jgj � 2 we
present as

Veff ¼ �sm
2TM

64�2

Z 1

0
dE lnðE2 �m2�Þ

�X
�

lnð1þ e�i�ðg=2Þe�E=TMÞ: (12)

The sum over� ensures the distribution is real, so that the
imaginary part arises only from the branch cut in the first
log factor. The exponential weights of the terms in the
series in Eq. (10) generate for integer values of g an exact
thermal distribution, and the statistics of the distribution
are determined by the phase of the terms in the series.
For g ¼ 1 (and, more generally, for any odd integer

value of g) summing in Eq. (12) over � simplifies to

Veffjg¼1 ¼ �sm
2TU

32�2

Z 1

0
dE lnðE2 �m2�Þ lnð1þ e�E=TUÞ;

(13)

exhibiting in the second log factor a thermal fermionic
distribution controlled by the Unruh temperature TU. The
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effective potential of a ‘‘classical’’ spinning electron with
g ¼ 1 in a constant field thus has the format of a thermo-
dynamic potential with the temperature parameter and
statistics in agreement with expectations based on the
result obtained for an accelerated observer in the (unaccel-
erated) vacuum of a fermion field.

We thus find that when the gyromagnetic moment of
the electron is that of the ‘‘classical’’ spinning particle
g ¼ 1, the differences disappear between an accelerated
observer and an accelerated vacuum in both temperature
and statistics. This situation is summarized in Table I. It
seems that reconciliation of the physics arising under
Unruh and Müller experimental conditions implies that
we can no longer distinguish an accelerated observer
from an accelerated vacuum state. However, in our opin-
ion, one must take the evaluation for g ¼ 1 as a new
method to compute the known result attributed to the
accelerated observer case.

III. OBSERVABLES

We discuss two observable effects inherent in Veff:
spontaneous pair production and light-by-light scattering.
Experiments seeking either of these effects may one day
help resolve the question of whether or not the two cases,
accelerated observer and accelerated vacuum, lead to dif-
ferent physics.

The analyticity of quantum field theory demands that
aside from heat fluctuations the accelerated observer also
sees a rate of real e �e-pair production. Assuming that g ¼ 1
provides an accurate model of the physics seen by an
accelerated observer, pair production in this case is
obtained according to Heisenberg-Euler-Schwinger for
g ¼ 1 with the field strength written in terms of accelera-
tion. On the other hand, a strong field applied to the
vacuum is expected to produce the usual g ¼ 2 pair pro-
duction [11–19].

We obtain the rate (per unit volume) of spontaneous field
decay by pair emission, an effect possible only in the
presence of an electric field, equivalently whenever the
field invariant a > 0, see Eq. (7). The decay rate is con-
trolled by the imaginary part of Veff , which arises from the
poles in the integrand of Eq. (8) at u ¼ in�=eE for integer
n [or equivalently in Eq. (10) at u ¼ 1]. The integration
contour is defined as in Eq. (11) by assigning a small

imaginary constant to the mass before rotating onto the
positive real u axis. For the electric-only field

ImVeff ¼ �sm
2T2

M

32�

X1
n¼1

ð�1Þn
n2

cos

�
n�

g

2

�
e�nm=TM ; jgj � 2:

(14)

The total probability per unit volume per unit time of decay
of the field is twice this imaginary part, d�=d4x ¼
2ImVeff .
Setting g ¼ 1 (accelerated observer case) changes the

analytic structure of Veff , giving odd-n terms in the
sum zero weight. The argument of the exponential is thus
doubled,

d�

d4x
¼ 2ImVeff jg¼1 ¼ �sm

2T2
U

16�

X1
n¼1

ð�1Þn
n2

e�nm=TU : (15)

This change is especially visible in the rate per unit volume
of particle emission dhNi=d4x, which is given by the first
term of the series in Eq. (14) [16]. Because the n ¼ 1 term
vanishes in Eq. (14), the n ¼ 2 term becomes the first term
in the series, and 2=TM ¼ 1=TU appears in the exponent,
corresponding to half the temperature value,

dhNi
d4x

��������g¼1
¼ �sm

2T2
U

32�
e�m=TU : (16)

This notably shows the same numerical factors as the
analogous result for g ¼ 0, 2 after substitution of the
Unruh temperature TU ¼ TM=2, as can be expected, con-
sidering the analytic properties of the effective action
Eq. (12) and the g ¼ 1 form Eq. (13).

TABLE I. Relation between an accelerated observer in quan-
tum vacuum (Unruh case) to quantum vacuum accelerated by
external field (Müller et al. case).

Detector acceleration

aU relative to vacuum

Constant electric field

acceleration av ¼ eE=m

g ¼ 0 g ¼ 2 g ¼ 0 g ¼ 1 g ¼ 2
T aU

2�
aU
2�

av
�

av
2�

av
�

Statistics boson fermion fermion fermion boson

FIG. 1 (color online). The rate per unit volume of decay of the
field d�=d4x ¼ 2ImVeff with ImVeff given by Eq. (14). The
electric field magnitude is normalized to Ec ¼ m2=e the critical
field strength, at which TM ! m=�. For g � 2 the rate of field
decay is reduced with the largest reduction for g ¼ 1. Above Ec

we see suppression due to the g factor modifying weights in the
sum in Eq. (14).
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Figure 1 shows Eq. (14) for the values g ¼ 0; 1; 2. The
results for g ¼ 0; 2 are very similar and yield the largest
total decay probability as a function of g. The reduction in
the rate driven by the effective temperature parameter is
largest for the particular case g ¼ 1. Due to the exponential
dependence, the reduction in the temperature parameter by
a factor of 2 reduces spontaneous pair production below
the critical field Ec ¼ m2=e by many orders of magnitude.
The real part of Veff leads to the nonlinear field-field
interaction. For g ¼ 1 one finds

Veffjg¼1 ’ �s

32�2

e4

m4

�1

5760
ð7ð ~B2 � ~E2Þ2 þ 4ð ~E � ~BÞ2Þ:

(17)

Terms containing higher powers of the field invariants are
given in [20]. Relative to the g ¼ 2 values, the coefficients

of ð ~B2 � ~E2Þ2 and ð ~E � ~BÞ2 in Eq. (17) are opposite in sign
and suppressed: for light-by-light scattering experiments

the important ð ~E � ~BÞ2 term is 224 times smaller.

IV. DISCUSSION AND CONCLUSIONS

In a constant electric field E � a > 0, the electron fluc-
tuations display a thermal Bose spectrum with temperature
TM ¼ eE=m� ¼ av=�. This result contrasts with the
Fermi spectrum and the Unruh temperature TU ¼ aU=2�
experienced by an accelerated observer. We discovered and
exploited the coincidence that case g ¼ 1 used in an accel-
erated vacuum produces physics relevant to the case of an
accelerated observer. It is important to recognize that we
have not and, in general, cannot resolve the question of
why we should or should not expect that the two cases,
accelerated observer and accelerated vacuum, to yield
different or the same physics.

We have evaluated the effective QED potential of a
g ¼ 1 ‘‘electron’’ in the presence of a constant electric field
Eq. (13) finding the form of theQED effectivepotential with
the Unruh temperature and fermionic statistics appropriate
for the physics of an observer accelerated in the electro-
magnetic force field. Considering the quantum fluctuations
of a ‘‘classical spinning particle’’ g ¼ 1 thus describes the
Unruh result within the effective Heisenberg-Euler-
Schwinger action. We argued that the computation with
g ¼ 1 is providing the complete effective potential gener-
ating the physics of an accelerated observer.

Two effects could be used to distinguish the accelerated
observer with g ¼ 1 from the QED vacuum at g ¼ 2:
e �e-pair production in strong electric fields and nonlinear
field-field interaction. We have shown that both are
greatly suppressed in the case g ¼ 1 relative to the QED
g ¼ 2 expectation. QED strong field experiments such
as light-field scattering [21,22] will, if the accelerated
observer case prevails, be seeking a much weaker signal.
This proves the measurability of the difference between

the frames down to arbitrarily small acceleration. Being
able to determine which is accelerated means that there is a
universal class of inertial reference frames. Introduction of
a class of inertial reference frames realizes Einstein’s in-
terpretation of Mach’s principle within the quantum theory.
The Einstein-Mach principle is incorporated in both the
Unruh-type calculation (by comparing to the vacuum of flat
Minkowski space) and the QED effective action (by re-
normalizing with respect to the zero-particle no-field state).
No experiment has yet tested macroscopic properties of

the QED vacuum of quantum electrodynamics associated
with the critical field strength Ec ¼ m2=e, a value consid-
erably beyond the limiting field of Born-Infeld theory [23]
and even beyond limits set considering precision strong
field tests [24]. For this reason it is necessary to ascertain
that QED of strong fields, which differs from the expecta-
tions based on equivalent accelerated observer, is indeed
different.
Should the strong-fieldQED experiment observe the origi-

nal g ¼ 2 results, one would infer a difference in tempera-
tures Eqs. (1) and (2), and it follows that the two views of
acceleration are not equivalent for any magnitude of the
acceleration. Note that the limit of weak acceleration is
achieved in QED by considering fields smoothly varying on
compact spatial domain. On the other hand, the authors are
not aware of a treatment of the Unruh detector in which the
accelerated observer is smoothly connected to asymptotic
inertial frames. If one insists on the equivalence of the accel-
erated observer and the accelerated vacuum, ourresult, there-
fore, suggests that there is additional, undiscovered physics
content in the properties of the Unruh accelerated detector.
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