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We study the dynamics of a homogeneous and isotropic Friedmann-Robertson-Walker universe in the

context of the Eddington-inspired Born-Infeld theory of gravity. We generalize earlier results, obtained in

the context of a radiation dominated universe, to account for the evolution of a universe permeated by a

perfect fluid with an arbitrary equation of state parameter w. We show that a bounce may occur for � > 0,

if w is time dependent, and we demonstrate that it is free from tensor singularities. We argue that

Eddington-inspired Born-Infeld cosmologies may be a viable alternative to the inflationary paradigm as a

solution to fundamental problems of the standard cosmological model.
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I. INTRODUCTION

A new Eddington-inspired Born-Infeld (EiBI) theory of
gravity [1] has recently been proposed by Banados and
Ferreira in [2] (see also [3–18] for other relevant studies of
Born-Infeld type gravitational models and [19] for a recent
review on alternative theories of gravity). This theory is
equivalent to Einstein’s general relativity in vacuum but it
leads to several attractive new features in the presence of
matter. In particular, it has been shown that homogeneous
and isotropic EiBI cosmologies may be singularity free and
that nonsingular compact stars may form even in the
absence of pressure support (see [20–22] for recent astro-
physical and cosmological constraints).

The evolution of transverse, traceless (tensor) perturba-
tions in the Eddington regime of a radiation dominated
cosmology has been studied in [23], and it has been shown
that a linear instability develops as the universe approaches
its maximum density. In [24] a five-dimensional brane
model has been considered as a possible solution to the
stability of gravitational perturbations. In this paper we
investigate the cosmological implications of the EiBI the-
ory of gravity showing that there is a natural solution to the
instability problem even in the absence of extra space-time
dimensions.

In Sec. II we investigate the dynamics of a universe
permeated by a perfect fluid with an arbitrary constant
equation of state (EoS) parameter w, generalizing previous
results obtained forw ¼ 1=3. We solve the equation for the
evolution of tensor perturbations, showing that indepen-
dently of the value of w, there is an instability for both
positive and negative �. In Sec. III we consider a massive
scalar field with a time-dependent EoS parameter and we
show that a nonsingular bounce may occur for � > 0. We
further argue that EiBI cosmologies provide an interesting

alternative to inflation as a solution to some of the most
fundamental problems of the standard cosmological
model. We conclude in Sec. IV.
Throughout this paper we shall use fundamental

units with c ¼ 8�G ¼ j�j ¼ 1 and a metric signature
ð�;þ;þ;þÞ. The Einstein summation convention will
be used when a greek or Latin index variable appears twice
in a single term. Greek and Latin indices take the values
0; . . . ; 3 and 1; . . . ; 3, respectively.

II. EIBI COSMOLOGY (CONSTANT
EOS PARAMETER)

The action for the Eddington-inspired Born-Infeld
theory of gravity is given by

S ¼ 2

�

Z
d4x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg�� þ �R��j

q
� �

ffiffiffiffiffiffi
jgj

q
� þ SM; (1)

where g�� are the components of the metric, g is the

determinant of g��, R�� is the symmetric Ricci tensor

built from the connection ��
�� and SM is the action asso-

ciated with the matter fields. In the Palatini formulation,
��
�� and g�� are treated as independent fields.

Varying the action with respect to the connection leads
to the following equation of motion:

q�� ¼ g�� þ �R��; (2)

where q�� is an auxiliary metric related to the original

connection by ��
�� ¼ 1

2q
�	 ðq	�;� þ q	�;� � q��;	 Þ (a

comma represents a partial derivative). Varying the action
with respect to the metric one obtains the other equation
of motion:

ffiffiffiffiffiffi
jqj

q
q�� ¼ �

ffiffiffiffiffiffi
jgj

q
g�� � �

ffiffiffiffiffiffi
jgj

q
T��; (3)

where q�� is the inverse of q��. Without loss of gen-

erality we set � ¼ 1 (this term can be included in the
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stress- energy tensor) and we shall use fundamental
units with j�j ¼ 1.

In order to analyze the cosmological implications of this
theory, we consider a flat homogeneous and isotropic
Friedmann-Robertson-Walker universe with line element

ds2 ¼ g��dx
�dx� ¼ �a2d
2 þ a2�ijdx

idxj; (4)

where 
 is the conformal time, xi are comoving spatial
coordinates (with i ¼ 1, 2, 3) and �ij is the Kronecker

delta. We further assume that the universe is permeated
with a perfect fluid with stress-energy tensor

T�� ¼ 1ffiffiffiffiffiffijgjp �SM
�g��

¼ ðpþ �Þu�u� þ pg��; (5)

where u� are the components of the four-velocity, � is the
energy density and p is the pressure. The perfect fluid
satisfies the standard conservation equation

_� ¼ �3H ð1þ wÞ�; (6)

where w ¼ p=� is the EoS parameter (we shall assume
that w>�1) and a dot represents a derivative with respect
to 
.

Writing q��dx
�dx� ¼ �A2d
2 þ B2�ijdx

idxj one

obtains, using Eq. (3), that

A2 ¼ a2
D

1þ ��
; (7)

B2 ¼ a2
D

1� w��
; (8)

where D ¼ ð1þ ��Þ1=2ð1� w��Þ3=2.
The Friedmann equation can be obtained from

Eqs. (2) and (3). It is given by

H 2 ¼ 8

3
a2

F1

F2
2

; (9)

where the functions F1 and F2 are equal to

F1¼ 1

�
ð1þ��Þð1���wÞ2�ð�2þ��ð1þ3wÞþ2DÞ;

(10)

F2¼4þ��ð1�2wð2���Þþ3w2ð1þ2��ÞÞ: (11)

For w ¼ 1=3, one recovers the result found in [2].
At low densities one obtains

H 2 ¼ �a2

3
þ a2��2

8
ð1þ wÞð1� 3wÞ; (12)

up to second order in ��.
According to Eq. (9),H ¼ 0 when � ¼ �1 and � ¼ 1.

Near this critical point one has

H 2 ¼ 8a2

9ð1þ wÞ ð1� �Þ þOðð1� �Þ3=2Þ: (13)

If � ¼ �1 then Eqs. (6) and (13) imply that a bounce
occurs when � ¼ 1 with 1� � / 
2 for �� 1 (taking

 ¼ 0 at the bounce). Hence, in the absence of perturba-
tions, EiBI cosmologies are singularity free for � < 0 and
the universe has no big bang.
On the other hand, if _w ¼ 0, � ¼ 1 andw> 0 then there

is another critical point with H ¼ 0 at � ¼ w�1.
Expanding around this point, one obtains

H 2¼ 8a2w2

27ð1þwÞ2
�
1

w
��

�
2þO

��
1

w
��

�
3
�
: (14)

If � ¼ 1 then Eqs. (6) and (14) imply that � ! w�1 when

 ! �1 with 1� w� / expð
Þ. Consequently, if � > 0
then the singularity may be avoided in the case of a
constant EoS parameter w> 0 with the universe becoming
static when 
 ! �1.

Tensor modes

Consider a perturbed homogeneous and isotropic flat
space-time characterized by

g��dx
�dx�¼�a2d
2þa2ð�ijþhijÞdxidxj; (15)

q��dx
�dx�¼�A2d
2þB2ð�ijþ�ijÞdxidxj; (16)

where a, A and B are functions of the conformal time 
,
and hij is transverse and traceless (hii ¼ 0 and hij;i ¼ 0).

In [23] it has been shown that �ij ¼ hij and that the

dynamics of hij is given by

€h ij þ F4
_hij þ F5k

2hij ¼ 0; (17)

where

F4 ¼ 3
_B

B
�

_A

A
¼ 2H þ � _�

1þ ��
; (18)

F5 ¼
�
A

B

�
2 ¼ 1� w��

1þ ��
; (19)

and k is a comoving wave number.

1. � ¼ �1

If � ¼ �1 then the universe has a bounce for � ¼ 1.
Near the bounce, H ! 0 and the infinite wavelength
(k ¼ 0) limit of Eq. (17) can be written as

d _hij
d�

�
_hij

1� �
¼ 0; (20)

which implies that _hij / ð1� �Þ�1. Dividing this equation

by _� one finds, using Eqs. (6) and (13), that

hij / ð1� �Þ�1=2 þ C1; (21)

where C1 is a real constant. This signals the presence of a
singularity at the bounce for any value of w if � ¼ �1. We
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shall see that this singularity cannot be avoided by consid-
ering _w � 0, as long as w is well behaved at the bounce.

2. � ¼ 1

If � ¼ 1, then for w> 0, � ! w�1 when 
 ! �1 (for
w � 0 the singularity is not avoided even in the absence of
cosmological perturbations). Hence, bothF4 andF5 tend to

zero as 
 ! �1. In that limit Eq. (17) reduces to €hij ¼ 0,

whose solution is hij / C2
þ C3 (C2 and C3 are real

constants), signaling the presence of an instability in the
infinite past [23].

III. EIBI COSMOLOGY (VARIABLE
EOS PARAMETER)

In the previous section we generalized, for an arbitrary
constant value of w>�1, the results presented in [2,23]
which were obtained considering w ¼ 1=3. In this section
we further generalize our analysis to include models where
_w � 0. A time-dependentw is expected, for example, if the
energy density of the universe is dominated by a dynamical
scalar field, particularly in the transition between dif-
ferent cosmological epochs [25]. If _w � 0 then Eq. (9) is
modified to

H 2 ¼
�
a

ffiffiffiffiffiffi
F1

p þ F3 _w

F2

�
2
; (22)

where

F3 ¼ �3�ð1þ ��Þ: (23)

If � ¼ �1 and � ¼ 1 then both F1 and F3 vanish, which
implies that H ¼ 0 for � ¼ 1, even for _w � 0. On the
other hand, if � ¼ �1 then the term F3 _w becomes negli-
gible compared to a

ffiffiffiffiffiffi
F1

p
in the � ! 1 limit, assuming that

_w is finite near the bounce at � ¼ 1. Consequently, the
tensor instability previously found for a constant w assum-
ing � ¼ �1, cannot be avoided even for a time-dependent
w. In the remainder of this paper we shall focus on the
more interesting � ¼ 1 case. For the sake of completeness
it is important to mention that if _w � 0 then Eq. (12)
should be modified to

H 2 ¼ �a2

3
� a _w��3=2

2
ffiffiffi
3

p þ a2��2

16

�
�
2ð1þ wÞð1� 3wÞ þ � _w2

a2

�
;

while Eq. (13) remains valid.

A. Scalar field

Let us assume that the matter fields can be described by a
real scalar field with action

SM ¼
Z

d4x
ffiffiffiffiffiffi
jgj

q
L; (24)

where

L ¼ Lð
;XÞ; (25)

X ¼ � 1

2

;�
;�: (26)

For timelike 
;�, the energy-momentum tensor associated

with a scalar field 
 may be written in a perfect fluid form
by means of the following identifications:

u� ¼ 
;�ffiffiffiffiffiffi
2X

p ; � ¼ 2XL;X �L; p ¼ L; (27)

so that the EoS parameter is given by

w ¼ L
2XL;X �L

: (28)

In this paper we shall consider a standard scalar field
with Lagrangian given by

L ¼ X � Vð
Þ; (29)

where V is the scalar field potential. The value of w is
given by

w ¼ X � V

X þ V
; (30)

where X ¼ a2 _
2=2. Here, we shall consider a massive
scalar field with Vð
Þ ¼ m2
2=2 so that w may vary
continuously between �1 and 1.

B. Bounce with �¼ 1

If � ¼ 1 and _w � 0 then the condition H ¼ 0 is no
longer verified for � ¼ w�1. Instead, depending on the
value of _w, this critical point might occur for different
values of w. Unlike the constant w> 0 case, where

� ! w�1 as 
 ! �1 (with _H ! 0 as H ! 0), if

100 50 0 50 100
0

5

10

t

a

FIG. 1. Evolution of a as a function of the physical time t near
the bounce.
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_w � 0, in general, _H � 0whenH ¼ 0. This implies that
a bounce may occur. Here, we present a simple example
with a real scalar field considering initial conditions with
�i ¼ 10�4 and wi ¼ 0. Figure 1 shows the evolution of a
as a function of the physical time t ¼ R

a
1 H ða0Þ�1da0 near

the bounce for m ¼ 100 (the scale factor is normalized to
unity at the bounce). The presence of a bounce in the � ¼ 1
case removes the tensor instability since F4 � 0 near the
bounce, while for � � 1 the dynamics of hij becomes

identical to the one obtained in Einstein’s general relativity
(with F4 ¼ 2H and F5 ¼ 1).

C. An alternative to inflation

Bouncing EiBI cosmologies may be an interesting alter-
native to inflation (see [26,27] for recent reviews of cosmic
inflation) as a solution to fundamental problems of the
standard cosmological model. The singularity problem
may be solved in this class of models since there is no
big bang singularity if � ¼ 1. If the contracting period is
sufficiently long then the age of the universe as well as its
particle horizon can be arbitrarily large and consequently
there is no horizon problem. Given that the universe can be
arbitrarily large at early times, the size age and entropy
problems do not arise. The curvature problem is signifi-
cantly alleviated since the universe approaches the critical
density in the contracting phase. The monopole problem

can also be solved if the bounce occurs at an energy scale
considerably smaller than the grand unification scale. In
that case the Planck era is also avoided. In addition, a
nearly scale invariant spectrum of density fluctuations
may also be realized in the context of the ‘‘matter bounce’’
scenario, leading to a scale-invariant spectrum of perturba-
tions generated in a matter dominated collapsing phase
[28,29] (see also [30,31] for a detailed discussion of bounc-
ing cosmologies).

IV. CONCLUSIONS

In this paper we generalized earlier results for the dy-
namics of EiBI cosmologies to accommodate an arbitrary
constant EoS parameter w. In the absence of fluctuations,
we have shown that the singularity problem can be avoided
if � < 0 or if � > 0 and w> 0. However, we have dem-
onstrated that the inclusion of linear tensor perturbations
leads to an instability which cannot be lifted for � < 0,
even if _w � 0. Still, we have shown that a time-dependent
w can naturally lead to a bounce which is free from
cosmological singularities if � > 0. We have argued that
several of the fundamental problems of the standard cos-
mological model can be solved in the context of
Eddington-inspired Born-Infeld gravity even in the ab-
sence of an inflationary era in the early Universe.
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