
Hadronic light-by-light scattering and the pion polarizability

Kevin T. Engel,1 Hiren H. Patel,2 and Michael J. Ramsey-Musolf3

1California Institute of Technology, Pasadena, California 91125, USA
2Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA

3Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA and Kellogg Radiation Laboratory,
California Institute of Technology, Pasadena, California 91125, USA

(Received 17 January 2012; published 27 August 2012)

We compute the charged pion loop contribution to the light-by-light scattering amplitude for off-shell

photons in chiral perturbation theory through next-to-leading order (NLO). We show that for small photon

virtualities (k2 � m2
�) the NLO contributions are relatively more important due to an accidental

numerical suppression of the LO terms. This behavior is consistent with previous calculations of the

hadronic light-by-light contribution to the muon anomalous magnetic moment, aHLBL� , whose leading

order value receives Oð1Þ corrections from models incorporating some of the NLO physics. We also show

that models employed thus far for the charged pion loop contribution to aHLBL� are not fully consistent with

low-momentum behavior implied by quantum chromodynamics, having omitted potentially significant

contributions from the pion polarizability.
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In this paper, we report on the first computation of the
charged pion contribution to the light-by-light (LBL) scat-
tering amplitude for off-shell photons to next-to-leading
order in chiral perturbation theory. The LBL amplitude
constitutes an important input to the Standard Model
(SM) prediction for the anomalous magnetic moment of
the muon, a� ¼ ðg� � 2Þ=2, an observable that continues

be of considerable interest in particle and nuclear physics.
To the extent that the SM prediction aSM� is sufficiently

reliable, a deviation for the experimental value a
exp
� could

indicate the presence of contributions from physics beyond
the SM. Thus, it is important to scrutinize the ingredients in
the SM prediction, particularly those associated with had-
ronic dynamics. The following work represents an effort in
this direction.

To set the context, we first review the experimental and
theoretical situation that motivates this work. The present
experimental value, aexp� ¼ 116592089ð63Þ � 10�11 ob-
tained by the E821 Collaboration [1–3] differs from
theoretical expectations by 3:6� assuming the SM of
particle physics and state-of-the-art computations of had-
ronic contributions, including those obtained using data
on �ðeþe� ! hadronsÞ and dispersion relation methods:
aSM� ¼ 116591802ð49Þ � 10�11 (for recent reviews, see

Refs. [4,5] as well as references therein). A deviation of
this magnitude can be naturally explained in a number of
scenarios for physics beyond the Standard Model, includ-
ing (but not limited to) supersymmetry, extra dimensions,
or additional neutral gauge bosons [6–8]. A next genera-
tion experiment planned for Fermilab would reduce the
experimental uncertainty by a factor of four [9]. If a
corresponding reduction in the theoretical, SM uncertainty
were achieved, the muon anomalous moment could pro-
vide an even more powerful indirect probe of beyond the
Standard Model physics.

The most significant pieces of the error quoted above for
aSM� are associated with the LO hadronic vacuum polariza-

tion and the hadronic light-by-light (HLBL) contributions:
�aHVP� ðLOÞ ¼ �42� 10�11 and �aHLBL� ¼ �26� 10�11

[10] (other authors give somewhat different error estimates
for the latter [11–19], but we will refer to these numbers as
points of reference; see Ref. [20] for a review). In recent
years, considerable scrutiny has been applied to the deter-
mination of aHVP� ðLOÞ from data on �ðeþe� ! hadronsÞ
and hadronic � decays. Use of the latter indicates a some-
what smaller discrepancy between the SM and experimen-
tal values for a� than quoted above. Clearly, a significant

improvement in this determination will be needed if the
levels of theoretical and future experimental precision are
to be commensurate.
Here, we concentrate on the aHLBL� , focusing in particular

on the contributions from charged pion loops. Subsequent
to the first results from the E821 Collaboration, the theo-
retical community devoted substantial effort to refining the
predictions for pseudoscalar ‘‘pole’’ contributions, which
appear at leading order in the expansion of the number of
colors NC and which are numerically dominant. However,
the error quoted for the charged pion loop contributions,
which enter at subleading order in NC, is now comparable
to the uncertainty associated with the pseudoscalar pole
terms. Thus, we are motivated to revisit the former as part
of the effort to improve the level of confidence in the
theoretical SM prediction for aHLBL� .

As a first step in that direction, we have computed the
HLBL scattering amplitude for off-shell photons to NLO in
chiral perturbation theory (�PT). �PT is an effective field
theory for low-energy interactions of hadrons and photons
that incorporates the approximate chiral symmetry of
quantum chromodynamics (QCD) for light quarks. Long-
distance hadronic effects can be computed order-by-order

PHYSICAL REVIEW D 86, 037502 (2012)

1550-7998=2012=86(3)=037502(5) 037502-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.037502


in an expansion of p=��, where p is a typical energy

scale (such as the pion mass m� or momentum) and �� ¼
4�F� � 1 GeV is the hadronic scale with F� ¼
93:4 MeV being the pion decay constant. At each order
in the expansion, presently incalculable strong interac-
tion effects associated with energy scales of order �� are

parametrized by a set of effective operators whose coef-
ficients—‘‘low energy constants’’ (LECs)—are fit to
experimental results and then used to predict other low-
energy observables.

�PT has been applied with considerable success to the
analysis of a variety of hadronic and electromagnetic
processes (for a recent review, see e.g., Ref. [21]), making
it in principle an appropriate and model-independent
framework for investigating hadronic contributions to a�,

another low-energy observable. In the �PT analysis of the
pseudoscalar pole contributions to aHLBL� , however, one

encounters a new LEC that cannot be determined indepen-
dent of the a� measurement itself. Consequently, hadronic

modeling is presently unavoidable if one wishes to predict
the anomalous moment. Nevertheless, the calculable terms
in �PT can be used to test or constrain model input, as any
credible model for the LBL amplitude must reproduce
behavior in the low-energy regime that is dictated by
QCD. Indeed, the �PT computation of the leading
ln2 term in the pion pole contribution revealed a critical
sign error in earlier numerical computations of the pion
pole contribution [14,15]. The subleading ln term can be
obtained from a combination of analytic computation [19]
and a determination of the relevant LEC from a determi-
nation of the�0 ! eþe� branching ratio[22], and it can be
used to further constrain the model input.

In this spirit, we have analyzed the charged pion loop
contribution to the LBL amplitude to NLO and have com-
pared it with corresponding predictions implied by models
used in the computation of aHLBL� . The leading order (in

chiral counting) contribution is finite, contains no LECs,
and depends only on m� and e. As we show below, this
contribution is fortuitously suppressed. As a result, higher
order contributions are likely to be relatively more impor-
tant than one might expect on general grounds, rendering
this quantity more susceptible to model-dependent uncer-
tainties. Thus, it is arguably all the more important that any
model used for the charged pion contribution to aHLBL�

respect the requirements of QCD at NLO in the low-
momentum regime.

In this respect, we find that models utilized to date have
omitted a potentially significant contribution associated
with the pion polarizability. Consistently embedding
the polarizability in models that can be used to predict
the full charged pion loop contribution to aHLBL� will

be the subject of a future publication. Although the
three-loop point-like pion contribution to aHLBL� is

finite, a four-loop pure �PT computation requires an
overall counter term, as in the case of pseudoscalar pole

contribution. Since the finite part of the counter term (the
LEC) cannot be obtained except from the measurement of
a� itself, obtaining an a priori prediction requires appro-

priately modeling the higher-momentum behavior of the
HLBL amplitude. Doing so in a manner that incorporates
the polarizability and analyzing the corresponding model-
dependent theoretical uncertainty goes beyond the scope
of the present study, where we focus on the unambiguous
requirements of chiral symmetry for the low-momentum
regime.
We compute the charged pion contributions to the LBL

vertex function����	 through NLO from the diagrams in
Fig. 1, expanding the result as a power series in the external
(photon) momentum and pion mass. The LO amplitude
that corresponds to a pure scalar QED calculation for
point-like charged pions follows from Fig. 1(a) and yields
a finite result that is free from any LECs. The result
contains two Oðp4Þ structures that can be expressed in

terms of two dimension-eight (d ¼ 8) operators, 32Oð8Þ
1 �

ðF2Þ2 � ðF��F
��Þ2 and 8Oð8Þ

2 � F4 ¼ F�	F
	
F
�F

��,

whose coefficients are given in Table I (the operators are
defined to absorb symmetry factors). Naively, one would
expect the magnitude of the coefficients to be set by
1=ð4�Þ2 � 1=m4

�. However, we find that each operator
contains an additional suppression factor of 1=9 and
1=45, respectively. Thus, we anticipate that the NLO
contributions from the graphs of Figs. 1(b)–1(d) will be
relatively more important.

FIG. 1. Representative diagrams for charged pion loop contri-
butions to the LO and NLO to LBL amplitude.
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The graphs in Figs. 1(b)–1(d) correspond respectively
to the propagator, vertex, and polarizability corrections.
The first two classes are divergent and require the intro-
duction of counterterms from theOðp4Þ chiral Lagrangian.
We carry out the calculation using dimensional regulariza-
tion in d ¼ 4� 2� dimensions and define the counterterms
to remove the contributions proportional to 1=�� 
þ
ln4�þ 1, as is the standard convention for �PT [21]. We
find that the explicit dependence on the counterterms
needed for renormalization of the pion propagator is can-
celled by charge and mass renormalization, leaving only a
dependence on the Oðp4Þ operator associated with the
charge radius of the pion:

L 9 ¼ ie�9F��TrðQ½D��; D��y�Þ; (1)

where Q ¼ diagð2=3;�1=3Þ is the electric charge matrix
and � ¼ expði�a�a=F�Þ with a ¼ 1, 2, 3 giving the
nonlinear realization of the spontaneously broken chiral
symmetry. After renormalization, one has for the square of
the pion charge radius

r2� ¼ 12

F2
�

�r
9ð�Þ þ 1

�2
�

�
ln

�
�2

m2
�

�
� 1

�
; (2)

where the superscript ‘‘r’’ indicates the finite component
after the subtraction of the 1=�� 
þ ln4�þ 1 term
is performed. Choosing � ¼ m
 and taking the experi-

mental value for r2� gives �r
9ðm
Þ ¼ ð7:0� 0:2Þ � 10�3

for two-flavor �PT at Oðp4Þ. Within error bars, this result
is the same as that obtained in Ref. [24] for the three-
flavor case.

The ��

 vertex correction shown in Fig. 1(d) is finite,
but the polarizability amplitude nevertheless receives an
additional finite contribution from L9 and

L 10 ¼ e2�10F
2TrðQ�Q�yÞ: (3)

The corresponding combination entering the LBL ampli-
tude is �r

9 þ �r
10. As the sum of the one-loop polarizabil-

ity sub-graphs is finite, this combination of LECs is
independent of the renormalization scale. An experimental
value ð�r

9 þ �r
10Þexp ¼ ð1:32� 0:14Þ � 10�3 has been ob-

tained from radiative pion decay [25]. As a cross check on
the extraction of these LECs we also consider the deter-
mination of �r

10 from semileptonic �-decays given in

Ref. [26]. Converting from three- to two-flavor �PT we
obtain �r

10ðm
Þ ¼ �ð5:19� 0:06Þ � 10�3, in reasonable

agreement with the determination of �r
9ðm
Þ from the

pion form factor and ð�r
9 þ �r

10Þ from pion radiative de-

cay. The resulting prediction for the pion polarizability
[27], which we confirm by taking the on-shell photon limit
of our off-shell �þ��

 computation, disagrees with
the latest experimental determination [28] by a factor
of two [29].
The final NLO results for the LBL amplitude are sum-

marized in Table I. To lowest order in external momenta,
the only change from LO are polarizability corrections

which modify the Oð8Þ
1 coefficient. To see the full impact

of the (higher-momentum) NLO terms, we expand our
result to Oðp6Þ, introducing a complete basis of seven
d ¼ 10 four-photon operators:

16Oð10Þ
1 ¼ @
F��@


F��F�	F
�	;

8Oð10Þ
2 ¼ @
F��F

��@
F�	F
�	;

2Oð10Þ
3 ¼ @
F�	@


F	
F
�F
��;

4Oð10Þ
4 ¼ @
F�	F

	
@
F
�F
��;

4Oð10Þ
5 ¼ @�F��F

��@�F	
F
	
;

4Oð10Þ
6 ¼ F��F

��@�F	
@�F
	
;

2Oð10Þ
7 ¼ F��@

�F�	@
�F	
F
�:

The coefficients of these operators are given in Table II. At
this order, both vertex and polarizability corrections mod-
ify the LO result.
To obtain a sense of the numerical impact of the two-

loop corrections, including those involving �r
9 þ �r

10, we

utilize the values of the LECs discussed above. In the case

TABLE I. Coefficients of lowest dimension (d ¼ 8) op-
erators contributing to the HLBL amplitude, scaled by
e�4ð4�Þ2m4

�. The second and third columns give LO and NLO
contributions in �PT, while the final column indicates the VMD
result [23].

Operator 1 loop �PT 2 loop VMD

Oð8Þ
1 1=9 m2

�

F2
�

16
3 ð�r

9 þ �r
10Þ 0

Oð8Þ
2 1=45 0 0

TABLE II. Coefficients of d ¼ 10 operators Oð10Þ
n contributing

to the HLBL amplitude, scaled by e�4ð4�Þ2m6
�. The first column

denotes operator index n. The second and third columns give LO
and NLO contributions in �PT, while the final column indicates
VMD result. Identifying r2� ¼ 6=M2

V (see text) implies agree-

ment between the two-loop �PT and VMD predictions for the
charge radius contribution.

n 1 loop 2 loop VMD

1 1
45

1
3 f19 ðm�r�Þ2 þ 4

5 ðm�

F�
Þ2ð�r

9 þ �r
10Þg 2

9
m2

�

M2
V

2 2
45

1
9 f13 ðm�r�Þ2 þ 1

2
m2

�

�2
�
þ 44

5 ðm�

F�
Þ2ð�r

9 þ �r
10Þg 2

9
m2

�

M2
V

3 2
315

1
135 ðm�r�Þ2 2

45
m2

�

M2
V

4 1
189

1
135 ðm�r�Þ2 2

45
m2

�

M2
V

5 1
135

4
45 ðm�

F�
Þ2ð�r

9 þ �r
10Þ 0

6 1
315 0 0

7 1
945 0 0
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of Oð8Þ
1 , the NLO (two-loop) contribution represents a

�20% correction to the LO term, substantially larger
than the �m2

�=�
2
� � 0:01 magnitude one might expect

from power counting arguments. In the case of the d¼10
operators, the NLO corrections range from a few to�30%.
The largest impact of the charge radius corrections is on

Oð10Þ
1 (� 30%) while the most important effect of the

polarizability is on Oð10Þ
2 (� 10%). These results, while

illustrating the relative importance of the NLO terms due
to the LO suppression, may not be fully indicative of
their impact on aHLBL� , as they cover only a small portion

of the kinematic regime relevant to the aHLBL� calculation.

As we discuss below, pion form factors have been included
in previous works [12,13,23,30] which reproduce the
charge radius terms at low energies. These model-based
attempts to include higher-order physics all result in
significant, Oð1Þ shifts to the leading order aHLBL� value.

The impact on aHLBL� of extending these models to cor-

rectly include the polarization contribution remains to
be seen.

We now compare the explicit NLO results in �PT
with the corresponding expectations for the operators in
Tables I and II derived from models used to compute the
charged pion loop contribution to aHLBL� . For concreteness,

we focus on the extended Nambu-Jona-Lasinio (ENJL)
model adopted in Ref. [23]. In that work, the point-like
contributions to the LBL vertex function ����	 are
modified by the inclusion of vector meson dominance
(VMD)-type propagator functions V��ðp2Þ ¼ ðg��M

2
V �

p�p�Þ=ðM2
V � p2Þ as

����	 ! V��ðp1ÞV��ðp2ÞV�
ðp3ÞV	�ðp4Þ���
�;

(4)

with the ‘‘vector meson mass’’MV in general a function of
the photon momentum p2

j . The Ward identities imply that

the p�p� terms do not contribute to the overall LBL vertex

function; hence, the replacement of Eq. (4) is equivalent to
introducing a VMD form factor for each photon when MV

is taken to be a constant. The corresponding prediction for
the charge radius is ðr2�ÞVMD ¼ 6=M2

V . For MV ¼ m
, one

obtains a value for r2� in good agreement with experiment.
An analogous treatment using a hidden local symmetry
approach [12,13] agrees with the ENJL prescription to
Oðp6Þ.

Expanding the right hand side of Eq. (4) to first order
in p2=M2

V we obtain the VMD model prediction for the
NLO operator coefficients given in the last column of
Tables I and II. Since ����	 is already Oðp4Þ the leading
order expansion of Eq. (4) is Oðp6Þ. Hence, corrections to
Wilson coefficients from VMD start at d ¼ 10 operators in
Table II. Identifying 6=M2

V with the corresponding quantity
that gives the pion charge radius, we observe that the VMD
model reproduces some but not all of the physics that one

expects at NLO for the LBL amplitude. In particular, the

polarizability contributions to Oð8Þ
1 as well as Oð10Þ

1;2;5 are

absent from the VMD prescription. As a point of principle,
the results of this comparison imply that the VMD-type
models employed for aHLBL� are not fully consistent with

the strictures of QCD for the low-momentum behavior of
����	 and that use of a more consistent model prescription
is warranted.
On a practical level, given the relative magnitudes of the

�r
9 þ �r

10 and �r
9, one has reason to suspect that the omis-

sion of the polarizability contribution could have numeri-
cally significant implications for aHLBL� . As discussed

earlier, a comparison of the low-momentum LO and
NLO contributions to the low-momentum HLBL ampli-
tude indicates that both the charge radius and polarizability
contributions that appear at NLO can generate substan-
tially larger corrections than one might expect based on
power counting, due to the fortuitous numerical suppres-
sion of the LO terms. Moreover, the charge radius and
polarizability contributions can have comparable magni-
tudes in the case of some operators, while for others, one or
the other dominates.
At this point, one may only speculate as to the effect on

aHLBL� of the previously neglected polarizability contribu-

tion. Nevertheless, it is instructive to refer to existing
model computations that introduce a pion form factor at
the �þ��
 vertices. In the original computation of
Ref. [31], inclusion of the form factor via a VMD pre-
scription reduced the magnitude of the charged pion
loop contribution to aHLBL� by a factor of three from the

scalar QED/point-like pion result. The subsequent com-
putation using the HLS procedure yielded an even
stronger suppression (a factor of 10) [12,13]. The ENJL
calculation of Ref. [23] leads to a result that is about
four times larger than the HLS computation, but still
strongly suppressed compared to the point-like pion/sca-
lar QED limit. In all cases, the use of a VMD type
procedure that matches onto the r2� terms for the HLBL
amplitude at low momentum has a much more significant
numerical impact on aHLBL� than the low-momentum

comparisons would suggest. Given that the latter already
indicate a substantial contribution from the pion polar-
izability, one has ample motivation to include the corre-
sponding physics in modeling the charged pion
contribution to aHLBL� . An effort to do so will be reported

in forthcoming work.
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