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We employ the Nyström method with the extended Simpson’s rule to solve numerically the Schrödinger

equation in momentum space with the screened Cornell potential. Two peculiar phenomena, furcation and

deviation of the first point, occur in the obtained eigenfunctions. By applying the Landé subtraction

method to remove or relieve the singularities in the integrands, the furcation phenomenon disappears, the

deviation of the first point is weakened, and the obtained eigenvalues have high accuracy.
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I. INTRODUCTION

The Cornell potential model (or the funnel potential
model), incorporating a linear term at large distances and
a color-coulomb term at short distances [1–5], has been
successful in describing the spectra for both charmonia and
bottomonia. However, this kind of model will overestimate
the masses of heavy quarkonia above the open-flavor
thresholds, such as �ð6SÞ and �0

c2=Zð3930Þ [6], and will
not be reliable in the domain beyond the open-charm
threshold probably because of the screening of the linear
potential due to light q �q pairs’ creation out of the vacuum
between the two heavy-quark sources. In recent years,
the screened potential models have been applied to calcu-
late the heavy quarkonium spectrum, spin-spin splittings,
radiative decays, and leptonic decay widths [7–10], as well
as the spectra of light hadrons [11,12].

During the last few decades, analytic and numerical
studies [13–27] have been performed. In this paper, we
employ the Landé subtraction method [28–37] to remove
the momentum-space singularities [38] in the screened
Cornell potential. We implement the Nyström method
with the extended Simpson’s rule to solve numerically
the Schrödinger equation with the screened Cornell poten-
tial which incorporates the screened color-Coulomb poten-
tial and the screened linear potential. The obtained results
appear good, but some peculiar phenomena emerge when
we try to make the parameters become small. In the
numerical results, we observe two unexpected peculiar
phenomena. One is named as furcation, to distinguish it
from bifurcation in nonlinear problem, that the obtained
eigenfunctions divide into two branches. More details can
be found in Ref. [39]. Another is the deviation of the first
point in the eigenfunctions which is smaller than expected.
Applying the Landé subtraction method, and then solving
numerically the subtracted Schrödinger equation using the
same method, the furcation phenomenon disappears and
the deviation is weakened.

In Sec. II, we deal analytically with the Schrödinger
equation with the screened Cornell potential in momentum

space and then treat it numerically in Sec. III. In Sec. IV,
the numerical results are given. The conclusions are
in Sec. V.

II. ANALYTICAL TREATMENT OF THE
SCHRÖDINGER EQUATION IN

MOMENTUM SPACE

By letting ℏ ¼ c ¼ 1, the Schrödinger equation reads in
coordinate space

Ec ðrÞ ¼ � 1

2�
r2c ðrÞ þ VðrÞc ðrÞ: (1)

By taking the Fourier transform

�ðpÞ ¼
Z

c ðrÞe�ip�rdr;

c ðrÞ ¼ ð2�Þ�3
Z

�ðpÞeip�rdp;
(2)

the Schrödinger Eq. (1) in momentum space takes the form

E�ðpÞ ¼ p2

2�
�ðpÞ þ 1

ð2�Þ3
Z

VðqÞ�ðp0Þdp0; (3)

where q � p� p0.
The well-known Cornell potential (or the funnel

potential)

V ¼ ��

r
þ �r; (4)

contains the perturbative expectation plus an additional
linear term. In this paper, the screened Cornell potential
is considered

VSC ¼ Vc þ VY þ VL; Vc ¼ C; VY ¼ ��

r
e��r;

VL ¼ �

�
ð1� e��rÞ; (5)

where Vc is the constant potential, VY is the screened
Coulomb potential (or the Yukawa potential) which ap-
proaches the Coulomb potential when � ! 0, VL is the
screened confinement potential which becomes linear
potential as � ! 0, lim�!0VL ¼ �r. � is the screening*chenjk@sxnu.edu.cn
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parameter of the screened Coulomb potential. � is the
screening factor for the screened linear potential which
makes the long-range scalar part of VLðrÞ flat when
r � 1=� and still linearly rising when r � 1=�, � is the
string tension, and � ¼ ð4�sÞ=3, �s being the strong cou-
pling constant of the color Coulomb potential. Sometimes,
the screening parameters � and � are introduced mathe-
matically to avoid the divergence in potential in numerical
calculations, or to regularize the infrared divergence. VSC

approaches the Cornell potential as �, � ! 0.
By the Fourier transform

VðqÞ ¼
Z

V0ðrÞe�iq�rdr;

V 0ðrÞ ¼ ð2�Þ�3
Z

VðqÞeiq�rdq;
(6)

the potentials in (5) read in momentum space

VSC ¼ Vc þ VY þ YL; VcðqÞ ¼ ð2�Þ3C	ðqÞ;
VYðqÞ ¼ � 4��

�2 þ q2
;

VLðqÞ ¼ ð2�Þ3 �
�

�
	ðqÞ þ 1

2�2

@

@�

�
1

�2 þ q2

��
:

(7)

During the derivation of the preceding equations, we have
used the definition of the delta function

	ðqÞ ¼ ð2�Þ�3
Z

e�iq�rdr; 	ðrÞ ¼ ð2�Þ�3
Z

eiq�rdq:

(8)

Then using the expansion formula

1

x� t
¼ X1

l¼0

ð2lþ 1ÞQnðxÞPnðtÞ; (9)

where QnðzÞ is the Legendre polynomial of the second
kind, the orthogonality of the Legendre polynomials

Z 1

�1
PmðxÞPnðxÞdx ¼ 2

2nþ 1
	mn; (10)

the addition of spherical harmonics

Plðcos�Þ ¼ 4�

2lþ 1

Xl
m¼�l

Ylmð�ÞY�
lmð�0Þ; (11)

the orthogonality of spherical harmonics

Z
d�Y�

lmð�ÞYl0m0 ð�Þ ¼ 	l0l	m0m; (12)

the delta function represented in the spherical coordinates

	ðp� p0Þ ¼ 	ðp� p0Þ	ð
� 
0Þ	ð���0Þ
p2sin


; (13)

and

Vlðp; p0Þ ¼
Z

d�Y�
lmð�Þ

Z
d�0Yl0m0 ð�0ÞVðqÞ; (14)

the potentials (7) expanded in partial waves are written as

Vl
SCðp;p0Þ¼Vl

cðp;p0ÞþVl
Yðp;p0ÞþVl

Lðp;p0Þ;

Vl
cðp;p0Þ¼ ð2�Þ3C	ðp�p0Þ

p2
	ll0 ;

Vl
Yðp;p0Þ¼�8�2�

Qlðz0Þ
pp0 ;

Vl
Lðp;p0Þ¼ ð2�Þ3

�
�

�

	ðp�p0Þ
p2

	ll0 þ�

�

Q0
lðzÞ

ðpp0Þ2
�
;

(15)

where z0 ¼ ðp2 þ p02 þ �2Þ=ð2p0pÞ, z¼ðp2þp02þ�2Þ=
ð2p0pÞ. Q0

lðzÞ is the first derivative of QlðzÞ with respect

to z.
Expanding the momentum space wave function �ðpÞ in

partial waves,

�ðpÞ ¼ X
nlm

anlm�nlðpÞYlmð�Þ; (16)

where anlm’s are coefficients of the expansion, and then
integrating over the solid angle, the Schrödinger equation
in momentum space (3) is rewritten in partial wave
form as

Enl�nlðpÞ ¼ p2

2�
�nlðpÞ

þ 1

ð2�Þ3
Z

p02dp0Vl
SCðp; p0Þ�nlðp0Þ: (17)

From Eq. (15) and the relations

QlðzÞ ¼ PlðzÞQ0ðzÞ � wl�1ðzÞ; Q0ðzÞ ¼ 1

2
ln
zþ 1

z� 1
;

wl�1ðzÞ ¼
Xl
m¼1

1

m
Pl�mðzÞPm�1ðzÞ; (18)

it is obvious that the singularities of Vl
Yðp; p0Þ and

Vl
Lðp; p0Þ come from the singularities of Q0ðz0Þ, Q0ðzÞ

and Q0
0ðzÞ. Q0ðzÞ has logarithmic singularity as z ! 1,

and Q0
0ðzÞ exhibits a second order pole at p ¼ p0 as

� ! 0. As shown in Ref. [39], the numerical results
obtained by solving numerically the integral Eq. (17) are
still bad even though there is no singularity in the inte-
grands when the factors � and � are small. Therefore, the
Landé subtraction method is necessary not only for the
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Coulomb potential but also for the screened Coulomb
potential, and for the screened Cornell potential.

There are two useful identities

Z �

0

1

p0 Q0ðzÞdp0 ¼ 1

2

�
Li2

�
� i�

�� ip

�
� Li2

�
i�

�� ip

�

þ Li2

�
i�

�þ ip

�
� Li2

�
� i�

�þ ip

��
;

Z �

0
Q0

0ðzÞdp0 ¼ � p

�

�
ðpþ i�Þ arctan �

�� ip

þ ðp� i�Þ arctan �

�þ ip

�
; (19)

where Li2ðzÞ is the Spence’s function (or the dilogarithm),
a particular case of the polylogarithm. As � approaches
infinity, the above equations become [34–37]

Z 1

0

1

p0 Q0ðzÞdp0 ¼ �2

2
� � arctan

�

p
;

Z 1

0
Q0

0ðzÞdp0 ¼ ��p2

�
:

(20)

Employing the identities (20) to subtract out the singular-
ities, and then using the identity P0

lð1Þ ¼ lðlþ 1Þ=2, the
momentum space Schrödinger equation with the screened
Cornell potential (17) is written as

Enl�nlðpÞ¼
�
p2

2�
þC

�
�nlðpÞ�

�
�2

2
��arctan

�

p

�
�

�
p�nlðpÞþ

�
�2

2
��arctan

�

p

�
�

�p

lðlþ1Þ
2

�nlðpÞ

� �

�p

Z 1

0
Plðz0ÞQ0ðz0Þ

p0

�
p02�nlðp0Þ�p2�nlðpÞ

Plðz0Þ
�
dp0 þ �

�p2

Z 1

0
PlðzÞQ0

0ðzÞ
�
�nlðp0Þ��nlðpÞ

PlðzÞ
�
dp0

þ �

�p2

Z 1

0
P0
lðzÞ

Q0ðzÞ
p0

�
p0�nlðp0Þ� lðlþ1Þ

2

p�nlðpÞ
P0
lðzÞ

�
dp0 þ 1

�p2

Z 1

0
½�pp0wl�1ðz0Þ��w0

l�1ðzÞ��nlðp0Þdp0:

(21)

The 	 term in the linear potential Vl
L cancels out the

integral of Q0
0 in Eq. (20). This equation is free of singu-

larities if �> 0. When p ¼ p0, the integrands of the first
integral and of the third integral are zero whether � ¼ 0
and � ¼ 0 or not, while the integrand of the second inte-
gral is left with a principal-value singularity if � ¼ 0, and
is singularity-free if �> 0. The Eq. (21) is free of loga-
rithmic singularity and the sever singularity from double-
pole is weakened by subtraction to be a principal-value
singularity.

III. NUMERICAL TREATMENT OF THE
SCHRÖDINGER EQUATION IN

MOMENTUM SPACE

A. Nodes of wave functions

From the Eq. (2), we can obtain

�nlðpÞ ¼ ð�1Þl4�il
Z

jlðprÞc nlðrÞr2dr; (22)

where jlðprÞ gives the spherical Bessel function of the first
kind. In the calculation of the preceding equation, the
following formulas are used

eikr cos� ¼ 4�
X1
m¼0

Xm
n¼�m

imjmðkrÞY�
mnð�0ÞYmnð�Þ; (23)

and

Pmð�xÞ ¼ ð�1ÞmPmðxÞ: (24)

It is known that the nodes of thewave functions c nlðrÞ in
coordinate space for the Schrödinger equation with the
Coulomb potential or with the linear potential distribute
over the whole range ð0;1Þ, and the nodes of the corre-
sponding wave functions in momentum space �nlðpÞ [the
counterparts of c nlðrÞ] congregate on the finite range
ð0;MÞ, M is a finite number. Based on the transform
formula (22), we provide a simple, intuitive explanation.
The spherical Bessel function jlðprÞ is an oscillating and
decreasing function, and the wave function c nlðrÞ is a
decreasing function, too. A node of the wave function
�nlðpÞ demands that the negative part of the product of
the function jlðprÞ and the wave function c nlðrÞ cancels
out the positive part of the product at the node point p. As
p is large, the function jlðprÞ will oscillate violently and
decrease quickly. Therefore, it makes the wave function
�nlðpÞ more difficult to be zero. While if p is small, it will
be easier for the wave function �nlðpÞ to be zero. The fact
is the nodes of the wave function �nlðpÞ lie in a finite
interval. Similarly, it is expected that the nodes of the wave
function in momentum space will congregate over the
finite interval for the screened Cornell potential problem.
This is one base on which the truncation method can
be applied.
Because the wave function in momentum space de-

creases quickly and the nodes of it lie in the finite range,
we can truncate the range at a large finite value �. If � is
large enough and the step length for a given quadrature rule
is small enough, we can expect to obtain the numerical
results with enough accuracy. On the contrary, we cannot
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get high accurate numerical results for the same problem in
the coordinate space only by diminishing step size because
some nodes of the wave function c nlðrÞ, especially for the
highly excited states, go outside the finite interval.

B. Truncation method

For the convenience of discussing the truncation
method, the partial wave Schrödinger equation in momen-
tum space (17) is written in the form

E�ðpÞ ¼
Z 1

0
Kðp; p0Þ�ðp0Þp02dp0; (25)

Kðp; p0Þ ¼ 1

2�
	ðp� p0Þ þ 1

ð2�Þ3 V
‘ðp; p0Þ: (26)

It can be rewritten as

E�ðpÞ ¼ E0�ðpÞ þ R� þ R�ðpÞ; (27)

where

E0�ðpÞ ¼
Z �

�
Kðp; p0Þ�ðp0Þp02dp0;

R�ðpÞ ¼
Z �

0
Kðp; p0Þ�ðp0Þp02dp0;

R�ðpÞ ¼
Z 1

�
Kðp; p0Þ�ðp0Þp02dp0:

(28)

Obviously, the following equation [26,40]

~E ~�ðpÞ ¼
Z �

�
Kðp;p0Þ ~�ðp0Þp02dp0; p;p0 2 ð�;�Þ; (29)

is also an eigenvalue integral equation. When � ! 0 and

� ! 1, we can have ~E ! E and ~�ðpÞ ! �ðpÞ. If R�ðpÞ
and R�ðpÞ is small enough, the Eq. (29) will be a good
approximation to Eq. (25).

From Eqs. (27) and (28), we have

�ð�;�Þ¼E�E0

E
¼ðR�

0þ
R1
� ÞKðp;p0Þ�ðp0Þp02dp0R1

0 Kðp;p0Þ�ðp0Þp02dp0 : (30)

There is an expansion theorem [41] for the eigenvalue
integral Eq. (25)

Kðp; p0Þ ¼ X1
i¼1

Ei�iðpÞ�y
i ðp0Þ; (31)

where �iðpÞ is the ith normalized wave function, Ei is the
ith eigenvalue. Substituting the formula (31) into Eq. (30),
we obtain

�jð�;�Þ ¼ Ej � E0
j

Ej

¼ "�j þ "�j; (32)

where

"�j ¼
Z �

0
�y

j ðp0Þ�jðp0Þp02dp0;

"�j ¼
Z 1

�
�y

j ðp0Þ�jðp0Þp02dp0:
(33)

�jð�;�Þ decreases with the decrease of � and with the

increase of �.
Dividing Eq. (29) by Eq. (27), we have

�
1þ ~E� E

E

��
1þ

~���

�

�

¼
�
1þ

R
�
� Kðp; p0Þð ~���Þp02dp0R

�
� Kðp; p0Þ�p02dp0

�

�
�
1þ ðR�

0 þ
R1
� ÞKðp; p0Þ�p02dp0R

�
� Kðp; p0Þ�p02dp0

��1
: (34)

Therefore, it is obtained for small �ð�;�Þ

E� ~E

E
	 ðR�

0 þ
R1
� ÞKðp; p0Þ�ðp0Þp02dp0R

�
� Kðp; p0Þ�ðp0Þp02dp0 ¼ �ð�;�Þ

1� �ð�;�Þ :
(35)

From Eqs. (32) and (35), it is obvious that ~E> E if E< 0,
and ~E< E if E> 0. The Eq. (35) gives the relative error
estimate of ~E for the truncation method.
In Table I, we give the rough estimates of the orders of

"� and "� for the ground state wave function�10ðpÞ of the
hydrogen atom with the Coulomb potential. The variation
of the orders of "� and "� with the principal number n are
listed in Table II.

C. Nyström method

The bound state suggests its wave functions will de-
crease quickly, therefore the truncated method can behave
well, which are consistent with the Eqs. (33) and (35).
Then we apply the Nyström method with the extended

TABLE I. Estimates of the orders of "� and "� for the ground
state �10ðpÞ of the hydrogen atom. (In the atomic units.)

� ¼ 10�1 10�2 10�3 10�5

"�
 10�3 10�6 10�9 10�15

� ¼ 10 50 100 200
"�
 10�5 10�9 10�10 10�12

TABLE II. Variation of the orders of "� and "� with the
principal number n. l ¼ 0, � ¼ 10�5, � ¼ 20. (In the atomic
units.)

n ¼ 1 3 5 10

"�
 10�15 10�12 10�11 10�10

"�
 10�6 10�8 10�8 10�9
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Simpson’s rule to solve the truncated integral Eq. (29).
It is well-known that the extended Simpson rule reads

Z xN

x1

fðxÞdx ¼ h

�
1

3
f1 þ 4

3
f2 þ 2

3
f3 þ 4

3
f4 þ � � �

þ 2

3
fN�2 þ 4

3
fN�1 þ 1

3
fN

�
þOðh4Þ:

(36)

Adopting the extended Simpson’s rule to approximate the
integrals, the truncated form of the integral Eq. (17)
becomes the matrix equation

E�i ¼ Ti�i þ
XN
j¼1

Vij�jwj: (37)

For convenience, ~E is written as E, ~� is written as � in the
above equation and in the following discussions. In Eq. (37),
Ti ¼ p2

i =ð2�Þ, �j is shorthand notation for �nlðpjÞ, N is

the number of points; p1 ¼ �, pN ¼ �; pi and wi are the
abscissas and the corresponding weights for a given quad-
rature rule; and Vij is defined as

Vij ¼
�
Cþ �

�

�
	ij � �

�

p0
j

pi

Qlðz0ijÞ þ
�

�p2
i

Q0
lðzijÞ: (38)

For the screened potential, the factors � and � can be
small but finite, there will be no singularities in Vij at point

p ¼ p0. When the screening parameters � and � are large,
the obtained numerical results are good, while when they
become small, the numerical results are unexpected. The
obtained eigenfunctions divide into two branches as p
is small. The two branches approach each other as p in-
creases and converge at one point into one line, see Fig. 1.
And the first points of the obtained eigenfunctions are
smaller than expected. These two peculiar phenomena arise
from the bad behaviors of the potentials, i.e., the integrals
cannot be well approximated by the extended Simpson’s
rule when � and � are small. Therefore, the subtraction
method is needed to remove the singularities at p ¼ p0.

Employing the truncation method and the extended
Simpson’s rule, the less singular integral Eq. (21) can be
approximated by the matrix equation

E�i ¼ Ti�i þ Vii�i þ
XN
j�i

Vij�jwj; (39)

where Ti ¼ p2
i =ð2�Þ. The potential term Vij is defined as

Vij ¼ ��

�

p0
j

pi

Plðz0ijÞQ0ðz0ijÞ þ
�

�p2
i

PlðzijÞQ0
0ðzijÞ

þ 1

�p2
i

½�pip
0
jwl�1ðz0ijÞ � �w0

l�1ðzijÞ�

þ �

�p2
i

P0
lðzijÞQ0ðzijÞ if i � j; (40)

and

Vii¼C	iiþ�

�
	ii��

�
piAið�Þþ�lðlþ1Þ

2pi

Aið�Þþ �

�p2
i

Bi

þXN
j�i

�
�

�

pi

p0
j

Q0ðz0ijÞ�
�lðlþ1Þ

2�

Q0ðzijÞ
pip

0
j

� �

�p2
i

Q0
0ðzijÞ

�
wj; (41)

FIG. 1. The comparison between the ground state eigen-
functions for the subtracted equation (the solid line) (39) and
for the original equation (the circles) (37) with the screened
Coulomb potential. The extended Simpson’s rule is applied
to solve numerically the eigenvalue equations. b ¼ �=ð��Þ,
x ¼ p=ð��Þ, � ¼ 0.
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where

Aið�Þ ¼ 1

2

�
Li2

�
� i�

�� ipi

�
� Li2

�
i�

�� ipi

�

þ Li2

�
i�

�þ ipi

�
� Li2

�
� i�

�þ ipi

��
;

Bi ¼ �pi

�

�
ðpi þ i�Þ arctan �

�� ipi

þ ðpi � i�Þ arctan �

�þ ipi

�
:

In Eq. (41), the formula (19) for a finite interval ð0;�Þ
is used instead of the formula (20) for an infinite in-
terval ð0;1Þ.

D. Effects of parameters on eigenvalues

In coordinate space, the Hamiltonian for a central
potential problem is given by

H ¼ T � �

r
e��r þ �

�
ð1� e��rÞ; (42)

where

T ¼ � 1

2�

d2

dr2
þ lðlþ 1Þ

2�r2
:

Applying the Hellmann-Feynman theorem, we have

@En

@�
¼

�
nlm

��������
@H

@�

��������nlm
	
< 0;

@En

@�
¼

�
nlm

��������
@H

@�

��������nlm
	
> 0;

@En

@�
¼

�
nlm

��������
@H

@�

��������nlm
	
> 0;

@En

@�
¼

�
nlm

��������
@H

@�

��������nlm
	
< 0:

(43)

From the preceding relations, it is obvious that the eigen-
values will increase with the increases of � and �, and with
the decreases of � and �. The numerical results are in
agreement with this conclusion.

When � is very small, the wave function for the
screened Coulomb potential will approximate the wave
function for the Coulomb potential whose analytical form
is well known. Then using the second formula in Eq. (43),
we have the eigenvalues for the ground state and for the
first radial excited state for the screened Coulomb potential

E1 ¼ ���2

2
þ

�
��� 4�3�3

ð�þ 2��Þ2
�
;

E2 ¼ ���2

8
þ

�
��

4
��3�3ð2�2 þ�2�2Þ

4ð�þ��Þ4
�
:

(44)

The similar formula for higher excited states can be
obtained in the same way. Constructing a power series
expansion for the above two formula to order �2, we have

E1 	 ���2

2
þ �� 3�2

4��
;

E2 	 ���2

8
þ �� 3�2

��
:

IV. NUMERICAL RESULTS

As noted in the preceding section, the wave function in
momentum space decreases quickly and the nodes of the
wave functions lie in a finite range. Therefore, we rewrite
the singular integral Eq. (17) and the subtracted integral
Eq. (21) in the form of Eq. (29), respectively, by truncating
the infinite range at a lower limit � and an upper limit�, then
transform the truncated integral equations into the matrix
Eqs. (37) and (39) by employing the Nyström method with
the Simpson’s rule. Equations (37) and (39) are standard
algebraic eigenvalue problems and can be solved easily. In
this paper, the Schrödinger equations with the screened
Coulomb potential, the screened linear potential, and the
screened Cornell potential are numerically solved. Two
peculiar phenomena, furcation and deviation of the first
point, are observed in the obtained eigenfunctions.

A. Screened Coulomb potential

1. Eigenfunctions

Applying the truncation method and the Nyström
method with the extended Simpson’s rule, solving numeri-
cally the integral Eq. (17), i.e., solving the matrix Eq. (37),
the numerical results are obtained. When � is large, the
results are good and reliable; when � becomes small, two
peculiar phenomena emerge. One is furcation [39] that the
eigenfunctions divide into two branches at small x and
converge into one as x increases. The points of the furcated
solution lie above and under the subtracted equation solu-
tion alternatively and form two forks, that is to say, the
furcated solution oscillates around the subtracted equation
solution. The furcated wave function is one solution and
not two solutions close to each other; hence there is not
artificial degeneracy. Another is the deviation of the first
point of the eigenfunctions, i.e., the first point is smaller
than expected.
As displayed in Fig. 1, there occur the furcation phe-

nomenon and the deviation of the first point as b (or �),
which is small when the extended Simpson’s rule is
adopted. The furcation and the deviation of the first point
are weakened as b increases and will disappear if b is large
enough. The peculiar phenomenon arise from both the
singularities of the integrands and the extended Simpson’s
rule. When b is small, the integrands have stronger singu-
larities and the integrals cannot bewell approximated by the
extended Simpson’s rule, and the furcation occurs; when b
is large, the integrands are less singular so that the integrals
can be well approximated by the extended Simpson’s rule,
and the peculiar phenomena disappear.
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If the extended trapezoidal rule instead of the extended
Simpson’s rule is applied to solve the matrix Eq. (37), there
is not furcation phenomenon in the obtained eigen-
functions, see Fig. 2. Different weights for the extended
Simpson’s rule and for the extended trapezoidal rule make
them different. We find the unequal repeated weights and
the bad behavior of the integrands give rise to the furcation
phenomenon. Therefore, the furcation phenomenon is an
indicator whether the integrals can be well approximated

by the extended Simpson’s rule, so, in this sense, the
extended Simpson’s rule gets an advantage over the
extended trapezoidal rule.
The deviations of the first points in the obtained eigen-

functions emerge in both the extended Simpson’s rule and
the extend trapezoidal rule, see Figs. 1 and 2. It arise also
from the singularities of the integrands. The smaller is b,
the more singular are the integrands; therefore, the inte-
grands will behave worse and cannot be well approxi-
mated; as a result, the peculiar phenomena occur.
We adopt the Landé subtraction method to remove the

logarithmic singularity and then solve the subtracted inte-
gral Eq. (21), i.e., solve the matrix Eq. (39). The obtained
eigenfunctions are free of furcation, and the deviation is
alleviated. As shown in Figs. 1 and 2, the solid lines
representing the results for the subtracted integral equation
have no branches, and the deviation of the first point is
relieved.
The furcation phenomenon and the deviation phenome-

non not only emerge in the eigenfunction for the ground
state but also in the eigenfunctions for the excited states.
The subtraction method works for them all.

2. Eigenvalues

The eigenvalues obtained by the extended Simpson’s
rule and by the extended trapezoidal rule are listed in
Table III. As b (or �) is large, the eigenvalues of the matrix
Eq. (37) agree well with the eigenvalues of the matrix
Eq. (39), so the subtraction method is not necessary. As
b decreases, the error will be large because of the bad
behaviors of the integrands, the subtraction method is
required.
The eigenvalues with different screening parameter b

and different truncation parameter xN (or �) are listed in
Table IV. It is obvious that the eigenvalues converge
quickly to reach the stable results for increasing xN .
Clearly, the obtained results are calculated with very high
accuracy and so reliable. The Landé subtraction method
employed in the calculations can be easily extended to
other cases.

B. Screened linear potential

Employing the Nyström method with the extended
Simpson’s rule, the furcation in the obtained eigenfunc-
tions for the screened linear potential are stronger than for
the screened Coulomb potential, see Fig. 3. This is because
the linear potential has a double-pole singularity, while the
Coulomb potential is logarithmically singular. Similarly,
the furcation phenomenon disappears when the subtraction
method is applied. There is no deviation phenomenon in
the eigenfunctions for the screened linear potential due to
the delta function in the linear potential. We also note
another interesting result that the left principal-value
singularity does not induce the furcation phenomenon
when the extended Simpson’s rule is employed.

FIG. 2. The comparison between the ground state eigenfunc-
tions for the subtracted equation (the solid line) (39) and for
the original equation (the circles) (37) with the screened
Coulomb potential. The extended trapezoidal rule is applied
to solve numerically the eigenvalue equations. b ¼ �=ð��Þ,
x ¼ p=ð��Þ, � ¼ 0.
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The obtained eigenvalues are good, see Table V. The
errors of the eigenvalues are about 0.3% for the first several
states and increase with n. These errors cannot be reduced
by decreasing �, increasing�, or deceasing the step size h.
The errors arise from the principal-value singularity left
after subtraction.

C. Screened Cornell potential

In the case of the screened Cornell potential, the
logarithmic singularity is removed by the Landé subtrac-
tion method while the double-pole singularity is relieved
to be a principal-value singularity. As discussed in the
preceding subsections, there will be no furcation phe-
nomenon and the deviation is weakened in the obtained
eigenfunctions when the extended Simpson’s rule is
applied to solve the truncated Eq. (39) as the screening
parameters � and � are small. When � and � are large,
the integrands can be well approximated by the extended

Simpson’s rule, and therefore the two peculiar phe-
nomena disappear.
The obtained eigenvalues for the screened Cornell

potential are listed in Table VI. The momentum-space
results are compared with the coordinate-space results,
and they agree well. Clearly, the results in momentum-
space obtained by the Nyström method with the extended
Simpson’s rule are very accurate, especially when the
screening parameters � and � are large.

D. Discussions

The furcation phenomenon can be used as an indicator
for the bad behavior of the bad solutions and implies the
bad behavior of the integrands. As discussed in the above
subsections, the furcation effects appear in the solutions of
different equations, such as the Schrödinger equation and
the spinless Salpeter equation [39] with different poten-
tials, such as the screened Coulomb potential, the screened

TABLE IV. The ratios En=ð��2Þ for the screened Coulomb potential with l ¼ 0.
b ¼ �=ð��Þ, x ¼ p=ð��Þ, � ¼ 0. x1 ¼ 10�6, h ¼ 0:01. The subtracted Eq. (39) is solved
by using the extended Simpson’s rule.

xN n b ¼ 0 b ¼ 10�6 b ¼ 10�3 b ¼ 10�1

1 �0:490211 �0:49021 �0:489212 �0:397414
5 2 �0:123749 �0:123748 �0:122752 �0:0488922

3 �0:0551947 �0:0551937 �0:054201 �0:00307324
1 �0:498529 �0:498528 �0:497529 �0:405607

10 2 �0:12482 �0:124819 �0:123823 �0:0497771
3 �0:0555123 �0:0555113 �0:0545186 �0:00318862
1 �0:499805 �0:499804 �0:498806 �0:406866

20 2 �0:124979 �0:124978 �0:123982 �0:049909
3 �0:0555589 �0:0555579 �0:0545652 �0:00320576
1 �0:499943 �0:499942 �0:498943 �0:407001

30 2 �0:124996 �0:124995 �0:123999 �0:0499229
3 �0:0555638 �0:0555628 �0:0545701 �0:00320755
1 �0:5

Exact 2 �0:125
3 �0:0555556

TABLE III. The ratios En=ð��2Þ for the screened Coulomb potential with l ¼ 0.
b ¼ �=ð��Þ, x ¼ p=ð��Þ, � ¼ 0. x1 ¼ 10�6, xN ¼ 5, h ¼ 0:01. TR denotes the extended
trapezoidal rule, and SR represents the extended Simpson’s rule; C represents the subtracted
Eq. (39), and NC the original Eq. (37).

b n TR(C) TR(NC) SR(C) SR(NC)

1 �0:397455 �0:397331 �0:397414 �0:397331
10�1 2 �0:0489009 �0:0488742 �0:0488922 �0:0488742

3 �0:00307495 �0:00306958 �0:00307324 �0:00306958
1 �0:489253 �0:491555 �0:489212 �0:492217

10�3 2 �0:122762 �0:125155 �0:122752 �0:125835
3 �0:0542015 �0:0566106 �0:054201 �0:0573194
1 �0:490251 �0:513594 �0:49021 �0:51679

10�6 2 �0:123758 �0:147192 �0:123748 �0:150749
3 �0:0551941 �0:0786442 �0:0551937 �0:0827475
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linear potential, and the screened Cornell potential.
Therefore, we expect the furcation phenomenon is
system-independent.

The emergence of the furcation phenomenon indicates
that the potential is singular and the numerical results are
bad to some extent. That the furcation phenomenon does
not occur does not mean the potential is free of singularity,
for example, the furcation disappears in the eigenfunctions
for the subtracted screened linear potential which has a
principal-value singularity. As a result, the furcation phe-
nomenon is only an indicator suggesting that the potential
is singular and it does not represent singular potentials.

As discussed in the previous subsections, the deviation
of the first point varies with the screening parameters �, �
and the step h. If �, � are large enough, the integrals

behave well and can be well approximated by the
Simpson’s rule and then the deviation disappears, see
Figs. 1 and 2. The numerical results show that the deviation
becomes weaker when the step h is smaller. Based on the
numerical results obtained, we find the first point problem
does not relate to the truncation, that is to say, the deviation
does not vary with the upper limit �. Being a contrast to
the weakened deviation for the screened Coulomb poten-
tial problem, it is interesting that the deviation disappears
in the eigenfunctions for the subtracted equation with the
screened linear potential. The method of completely solv-
ing the first point problem remains unknown to us, and
further analysis is indeed planned.

V. CONCLUSIONS

In this paper, we solve numerically the Schrödinger
equations in momentum space with the screened
Coulomb potential, the screened linear potential, and the
screened Cornell potential, respectively, by employing the
Nyström method with the extended Simpson’s rule.
Because of the bad behavior of the integrands arising
from the singularities when the screening parameters �
and � are small and the chosen quadrature rule with
repeated unequal weights, the furcation phenomenon and
deviation phenomenon emerge in the obtained eigenfunc-
tions. The seeming drawback of the method is its merit in
fact. We propose to use the furcation effect as an indicator
for the bad behavior of the integrals and for the unreli-
ability of the obtained numerical results.
We have shown that by using relatively simple mathe-

matical structure, the Nyström method with the extended
Simpson’s rule, good precision in eigenvalues and eigen-
vectors can be obtained. Using the Landé subtraction
method, the logarithmic singularity is removed and the
singularity of the second order is weakened to be a
principal-value singularity. In consequence, the furcation
phenomenon vanishes, the deviation of the first point dis-
appears or is weakened in the obtained eigenfunctions,
the eigenvalues are obtained with very high accuracy,
and the accuracy can be improved by adjusting the input
parameters.

TABLE VI. Energy eigenvalues (in GeV) for the screened
Cornell potential with l ¼ 0 are calculated in momentum space
(MS) and in coordinate space (CS) respectively. � ¼ 0:625GeV,
C ¼ 0 GeV, � ¼ 0:3, � ¼ 0 GeV, � ¼ 0:18 GeV2. p1 ¼
10�6 GeV, h ¼ 0:01 GeV, pN ¼ 20 GeV. � is in GeV.

Numerical (MS) Numerical (CS)

n � ¼ 10�3 � ¼ 10�1 � ¼ 10�3 � ¼ 10�1

1 0.52622 0.47236 0.52774 0.47236

2 1.0929 0.90813 1.0982 0.90813

3 1.5322 1.1852 1.5421 1.1852

4 1.9121 1.3823 1.9274 1.3823

5 2.2549 1.5265 2.2762 1.5273

FIG. 3. The comparison between the ground state eigenfunc-
tions for the subtracted equation (the solid line) (39) and for
the original equation (the circles) (37) with the screened
linear potential. The extended Simpson’s rule is applied to
solve numerically the eigenvalue equations. x ¼ pð��Þ�1=3,
b ¼ �ð��Þ�1=3, � ¼ 0.

TABLE V. The ratios En=ð�2=3��1=3Þ for the screened linear
potential with l ¼ 0. b ¼ �ð��Þ�1=3, x ¼ pð��Þ�1=3, � ¼ 0.
x1 ¼ 10�6, h ¼ 0:01. The extended Simpson’s rule is applied to
solve the subtracted Eq. (39). The exact results with b ¼ 0 are
1.85576, 3.24461 and 4.38167 for n ¼ 1, n ¼ 2 and n ¼ 3,
respectively.

xN n b ¼ 10�6 b ¼ 10�3 b ¼ 10�1

1 1.85235 1.85226 1.76429

5 2 3.23451 3.23423 2.96638

3 4.36338 4.36288 3.87607

1 1.85246 1.85237 1.7644

10 2 3.2346 3.23433 2.96649

3 4.36345 4.36294 3.87618

1 1.85249 1.8524 1.76443

20 2 3.23464 3.23436 2.96653

3 4.36348 4.36298 3.87621

1 1.8525 1.85241 1.76444

30 2 3.23464 3.23437 2.96653

3 4.36349 4.36298 3.87622
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