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We propose a theoretical framework for analyzing two-body nonleptonicDmeson decays, based on the

factorization of short-distance (long-distance) dynamics into Wilson coefficients (hadronic matrix

elements of four-fermion operators). The parametrization of hadronic matrix elements in terms of several

nonperturbative quantities is demonstrated for the D ! PP decays, P denoting a pseudoscalar meson. We

consider the evolution of Wilson coefficients with energy release in individual decay modes, and the

Glauber strong phase associated with the pion in nonfactorizable annihilation amplitudes, that is attributed

to the unique role of the pion as a Nambu-Goldstone boson and a quark-antiquark bound state

simultaneously. The above inputs improve the global fit to the branching ratios involving the �0 meson

and resolve the long-standing puzzle from the D0 ! �þ�� and D0 ! KþK� branching ratios, respec-

tively. Combining short-distance dynamics associated with penguin operators and the hadronic parameters

determined from the global fit to branching ratios, we predict direct CP asymmetries, to which the

quark loops and the scalar penguin annihilation give dominant contributions. In particular, we predict

�ACP � ACPðKþK�Þ � ACPð�þ��Þ ¼ �1:00� 10�3, lower than the LHCb and CDF data.

DOI: 10.1103/PhysRevD.86.036012 PACS numbers: 11.30.Er, 12.39.St, 13.25.Ft

I. INTRODUCTION

Two-body nonleptonic D meson decays have attracted
great attention recently. The very different data for the
D0 ! �þ�� and D0 ! KþK� branching ratios have
been a long-standing puzzle: the former (latter) is lower
(higher) than theoretical predictions from analyses based on
the topology parametrization [1,2]. The deviation in these
twoD ! PPmodes, P representing a pseudoscalar meson,
stands even after taking into account flavor SUð3Þ symme-
try breaking effects in emission amplitudes [1]. Another
puzzle appears in the difference between the direct CP
asymmetries of theD0 ! KþK� andD0 ! �þ�� decays,

�ACP � ACPðKþK�Þ � ACPð�þ��Þ
¼ ½�0:82� 0:21ðstatÞ � 0:11ðsystÞ�%; (1)

measured by the LHCb Collaboration [3], which is the
first evidence of CP violation in charmed meson decays.
The above result has been confirmed by the CDF
Collaboration [4],1

�ACP ¼ ½�0:62� 0:21ðstatÞ � 0:10ðsystÞ�%: (2)

The quantity �ACP is naively expected to be much smaller
in the Standard Model (SM), since the responsible pen-
guin contributions are suppressed by both the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements and the
Wilson coefficients [6,7],

ACP � jV�
cbVubj

jV�
csVusj

�s

�
� 10�4: (3)

The above two puzzles have triggered intensive
investigations in the literature employing different ap-
proaches. The mechanism responsible for the very differ-
entD0 ! �þ�� andD0 ! KþK� branching ratios is still
unclear. It has been speculated that the long-distance reso-
nant contribution through the nearby resonance f0ð1710Þ
in the W-exchange topology could explain why a D0

meson decays more abundantly to the KþK� than �þ��
final state [1]: it is attributed to the dominance of the scalar
glueball content in f0ð1710Þ and the chiral suppression on
the scalar glueball decay into two pseudoscalar mesons.
This mechanism was systematically formulated in the
single pole-dominance model with additional arbitrary
‘‘Wilson coefficients,’’ and then included in the topology
parametrization for global fits [8]. Unfortunately, the pre-
dicted D0 ! �þ�� (D0 ! KþK�) branching ratio
remains higher (lower) than the data. That is, a systematic
and global understanding of the D ! PP decays has not
existed yet. Because of the high precision of the two data,
even a small deviation deteriorates the global fit. If the
branching ratios are not well explained, some important
decay mechanism may still be missing, and any predictions
for the direct CP asymmetries are not convincing.

1The CDF Collaboration observed the smaller direct CP
asymmetries ACPðD0 ! �þ��Þ ¼ ðþ0:22� 0:24� 0:11Þ%
and ACPðD0 ! KþK�Þ ¼ ð�0:24� 0:22� 0:09Þ% in [5].
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For the second puzzle, a reliable evaluation of the
penguin contributions to two-body nonleptonic D meson
decays is not available so far. In [9,10] the tree amplitudes
were determined by fitting the topology parametrization to
the data of the branching ratios, while the penguin ampli-
tudes were calculated in the QCD-improved factorization
(QCDF) [11,12]. That is, the tree and penguin contribu-
tions were treated in the different theoretical frameworks.
It has been noticed that the penguin amplitudes derived
from QCDF lead to a tiny �ACP of order 10�5 [10].
Allowing the penguin amplitudes to be of the same order
as the tree ones discretionally, �ACP reaches �0:13%�
Oð10�3Þ [10]. In another work [13] also based on the
topology parametrization, the penguin contribution via an
internal b quark was identified as the major source of CP
violation, since it cannot be related to the tree amplitudes.
This penguin contribution, including its strong phase, was
constrained by the LHCb data and then adopted to predict
direct CP asymmetries of other decay modes. In this way it
is difficult to tell whether the large �ACP �Oð10�2Þ in
Eqs. (1) and (2) arise from new physics [14–20]. The
similar comment applies to the analysis in [21]. Viewing
the postulated �ACP ranges from 10�5 to 10�2 in the SM
[22], it is crucial to give precise predictions for the direct
CP asymmetries in the D ! PP decays.

In this paper we aim at proposing a theoretical frame-
work, in which various contributions, such as emission
and annihilation ones, and tree and penguin ones, are all
handled consistently. The only assumption involved is the
factorization of short-distance dynamics and long-distance
dynamics in two-body nonleptonic D meson decays into
Wilson coefficients and hadronic matrix elements of
four-fermion operators, respectively. For the hadronic
matrix elements, including the emission, W-annihilation,
andW-exchange amplitudes, the treatment is similar to the
topology parametrization in the factorization hypothesis.
The quark-loop and magnetic-penguin contributions are
absorbed into the Wilson coefficients for the penguin
operators. As to the scale of the Wilson coefficients, we
set it to the energy release in individual decay modes,
which depends on masses of final states. An important
ingredient is the Glauber strong phase factor [23] associ-
ated with a pion, whose strength has been constrained by
the data of the B ! �K direct CP asymmetries [24].
Briefly speaking, we have improved the topology parame-
trization by taking into account mode-dependent QCD
dynamics, for instance, flavor SUð3Þ symmetry breaking
effects, in two-body nonleptonic D meson decays.

Because of the small charm quark mass mc � 1:3 GeV,
a perturbative theory may not be valid forDmeson decays.
However, with the abundant data, all the above hadronic
parameters can be determined. It will be shown that the
Glauber phase associated with a pion is crucial for under-
standing the D0 ! �þ�� branching ratio very different
from theD0 ! KþK� one. This additional phase modifies

the relative angle and the interference between the
emission and annihilation amplitudes involving pions.
The predicted D0 ! �þ�� branching ratio is then
reduced, while the predicted Dþ ! �þ� branching ratio
is enhanced, such that the overall agreement with the data
is greatly improved. Our scale choice for the Wilson
coefficients impacts the D ! PP decays containing the
�0 meson in the final states: the �0 meson mass about
1 GeV is not negligible compared to the D meson mass,
so the energy release in these modes should be lower.
Once the hadronic parameters are fixed by the measured
branching ratios, the penguin amplitudes, expressed as the
combination of the hadronic parameters and the corre-
sponding Wilson coefficients, are also fixed in our frame-
work. That is, we can predict the direct CP asymmetries of
the D ! PP decays in the SM without ambiguity. In
particular, we obtain �ACP ¼ �1:00� 10�3, which dis-
criminates the opposite postulations on large (small) direct
CP asymmetries in singly Cabibbo-suppressed D meson
decays [25] ([26]). It will be observed that the quark loops
and the scalar penguin annihilation generate large relative
phases between the tree and penguin amplitudes, and are
the dominant sources of the direct CP asymmetries.
In Sec. II we present our parametrization of the tree

contributions to theD ! PP branching ratios based on the
factorization hypothesis with QCD dynamics being imple-
mented. In Sec. III the penguin contributions from the
operators O3–6, from O1;2 through the quark loops, and

from the magnetic penguin O8g are formulated. The direct

CP asymmetries in theD ! PP decays are then predicted.
Section IV is the conclusion. We show the explicit topol-
ogy parametrization for the D0 ! �þ�� and D0 !
KþK� decays in Appendix A. Appendix B collects the
evolution formulas for the Wilson coefficients in the scale
�. The �-�0 mixing formalism and the chiral factors of
their flavor states are given in Appendix C. The form
factors involved in the factorizable scalar penguin annihi-
lation are specified in Appendix D.

II. BRANCHING RATIOS

In this section we formulate the tree contributions,
which dominate the branching ratios of charm decays.
The relevant weak effective Hamiltonian is written as

H eff ¼ GFffiffiffi
2

p VCKM½C1ð�ÞO1ð�Þ þ C2ð�ÞO2ð�Þ� þ H:c:;

(4)

whereGF is the Fermi coupling constant, VCKM denotes the
corresponding CKM matrix elements, C1;2 are the Wilson

coefficients, and the current-current operators are

O1 ¼ ð �u�q2�ÞV�Að �q1�c�ÞV�A;

O2 ¼ ð �u�q2�ÞV�Að �q1�c�ÞV�A;
(5)
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with �, � being color indices, and q1;2 being the d or s
quark. There are four types of topologies dominantly con-
tributing to the branching ratios of D ! P1P2 decays [27],
where P2 represents the meson emitted from the weak
vertex: the color-favored tree amplitude T, the color-
suppressed amplitude C, the W-exchange amplitude E,
and the W-annihilation amplitude A, shown in Fig. 1.
Penguin contributions are neglected for branching ratios
due to the suppression of the CKM matrix elements
V�
cbVub. Besides, there exist flavor-singlet amplitudes, in

which a quark-antiquark pair produced from vacuum gen-

erates color- and flavor-singlet states like �ð0Þ. However,
they are also neglected in this work, since the current data
do not suggest significant flavor-singlet contributions [1,2].

It is known that the heavy quark expansion does not
work well for charm decays because of the small mc, so
that nonfactorizable contributions, such as vertex correc-
tions, final-state interaction (FSI), and resonance effects,
cannot be ignored, especially in the amplitude C. We
parametrize these contributions into a factor �nf. For

simplicity, we drop nonfactorizable contributions in the
amplitude T, which is dominated by factorizable ones. In
general, there exists a relative strong phase � between T
and C, which may arise from inelastic FSI or other long-
distance dynamics inDmeson decays [1,8]. Therefore, the
emission amplitudes T and C are parametrized as

hP1P2jH eff jDiT;C ¼ GFffiffiffi
2

p VCKMa1;2ð�ÞfP2
ðm2

D �m2
P1
Þ

� FDP1

0 ðm2
P2
Þ; (6)

with the P1 (P2) meson mass mP1
(mP2

), the P2 meson

decay constant fP2
, and the D ! P1 transition form factor

FDP1

0 . The scale-dependent Wilson coefficients are

given by

a1ð�Þ ¼ C2ð�Þ þ C1ð�Þ
Nc

;

a2ð�Þ ¼ C1ð�Þ þ C2ð�Þ
�
1

Nc

þ �nfe
i�

�
;

(7)

for T and C, respectively, withNc ¼ 3 being the number of
colors.
The flavor SUð3Þ symmetry breaking effects have been

known to be significant in the D ! PP decays, especially
in the singly Cabibbo-suppressed modes [1,8,28]. In addi-
tion to the different decay constants fP2

and form factors

FDP1

0 , the mass ratios mK;�ð0Þ=mD should be distinguished

too, with mK, m�ð0Þ , and mD being the masses of the kaon,

the �ð0Þ meson, and the D meson, respectively. As sug-
gested in the perturbative QCD (PQCD) approach [29], the
scale � is set to the energy release in individual decay
processes, which depends on final-state masses. We pro-
pose the choice

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mDð1� r22Þ

q
; (8)

where r2 ¼ m2
P2
=m2

D is the mass ratio of the P2 meson over

the D meson, and �, representing the momentum of soft
degrees of freedom in the D meson, is a free parameter.
The evolution of the Wilson coefficients in the scale � is
shown in Appendix B. The above choice further takes into
account the SUð3Þ breaking effect in the Wilson coeffi-
cients for the emission amplitudes. It is then legitimate to
regard �nf, �, and � as being universal to all modes,

which will be determined by experimental data.
The D0 ! K0 �K0 branching ratio through the pure

W-exchange channel vanishes in the SUð3Þ limit due to
the cancellation of the CKM matrix elements [1,30].
Hence, the large observed branching ratio of this mode
manifests the breaking of the flavor SUð3Þ symmetry in
the W-exchange contribution, which becomes almost of
the same order as the emission one. Both the W-exchange
topology for neutral D meson decays and the
W-annihilation topology for charged D meson decays
will be included in our framework. Since the factorizable
contributions to these amplitudes are down by the helicity
suppression, we consider only the nonfactorizable contri-
butions. Then the former (latter) is proportional to the
Wilson coefficient C2 (C1). Based on the above reasoning,
we parametrize the amplitudes E and A as

hP1P2jH eff jDiE;A ¼ GFffiffiffi
2

p VCKMb
E;A
q;s ð�ÞfDm2

D

�
fP1

fP2

f2�

�
;

(9)

with the factors

FIG. 1. Four topological diagrams contributing to D ! PP
decays: (a) the color-favored tree amplitude T, (b) the color-
suppressed tree amplitude C, (c) the W-exchange amplitude E,
and (d) theW-annihilation amplitude A. The thick line represents
the charm quark.
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bEq;sð�Þ ¼ C2ð�Þ�E
q;se

i�E
q;s ; bAq;sð�Þ ¼ C1ð�Þ�A

q;se
i�A

q;s :

(10)

The dimensionless parameters �E;A
q;s and �E;A

q;s describe the
strengths and the strong phases of the involved matrix
elements, where the superscripts q, s differentiate the light
quarks and the strange quarks strongly produced in pairs.
The b’s are defined for the �� final states, to which those
for other final states are related via the ratio of the decay
constants fP1

fP2
=f2�. That is, the flavor SUð3Þ breaking

effects from the strongly produced quark pairs and from
the decay constants have been taken into account. The

parameters �E;A
q;s and �E;A

q;s are then assumed to be universal
and will be determined from data. Similarly, we consider
the SUð3Þ breaking effect in the energy release, which
defines the scale of the Wilson coefficients C1;2ð�Þ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mDð1� r21Þð1� r22Þ

q
; (11)

with the mass ratios r1;2 ¼ mP1;P2
=mD.

As pointed out in [24], a special type of soft gluons,
called the Glauber gluons, may introduce an additional
strong phase to a nonfactorizable amplitude in two-body
heavy-meson decays. The Glauber phase associated with a
pion is more significant, because of its simultaneous role
as a Nambu-Goldstone boson and a q �q bound state: the
valence quark and antiquark of the pion are separated by a
short distance in order to reduce the confinement potential
energy, while the multiparton states of the pion spread over
a huge space-time in order to meet the role of a massless
Nambu-Goldstone boson [31]. The relatively larger soft
effect from the multiparton states in the pion results in the
Glauber phase. Hence, we assign a phase factor expðiS�Þ
for each pion involved in the nonfactorizable amplitudes E
and A. The phase factor associated with the �� final
states is then given by expð2iS�Þ as explicitly shown in
Appendix A. The reason we do not introduce the Glauber
phase into the nonfactorizable emission diagrams but only
into the W-exchange and W-annihilation diagrams is that
the emission topology mainly receives factorizable contri-
butions in most of the decay modes. Since the Glauber
phase appears only in nonfactorizable amplitudes, we will
not include it in the emission topology in the present work.

In summary, our parametrization for the emission am-
plitudes in Eq. (6) and theW-exchange andW-annihilation
ones in Eq. (9) contains 12 free parameters. The global fit
to all the data of 28 D ! PP branching ratios leads to the
outcomes

� ¼ 0:56 GeV; �nf ¼ �0:59; �E
q ¼ 0:11;

�E
s ¼ 0:18; �A

q ¼ 0:12; �A
s ¼ 0:17;

S� ¼ �0:50; � ¼ �0:62; �E
q ¼ 4:80;

�E
s ¼ 4:23; �A

q ¼ 4:06; �A
s ¼ 3:48;

(12)

with the fitted �2 ¼ 6:9 per degree of freedom, which
marks a great improvement compared to �2 ¼ 87 in [1].
The parameter � ¼ 0:56 GeV indeed corresponds to the
soft momentum involved in the D meson, implying the
typical energy release �� 1 GeV. This scale, which is
not very low, indicates that the PQCD factorization formu-
las [32] might provide a useful guideline for formulating
various contributions to the D ! PP decays in our frame-
work. Since the fermion flows of the amplitudes E and A
can be converted into each other through the Fierz trans-
formation, the relations �E

q � �A
q , �

E
s � �A

s , and the similar

relations for the strong phases are expected. The satisfac-
tory fit also confirms our postulation that the helicity sup-
pression works well, and the nonfactorizable contributions
dominate the W-exchange and W-annihilation amplitudes.
A large SUð3Þ breaking effect has been revealed by the

inequality �EðAÞ
q � �EðAÞ

s . The values in Eq. (12) support
E> A in [1,8] according to Eq. (10), consistent with the
fact that theD0 meson lifetime is shorter than theDþ meson
lifetime. The Glauber phase S� ¼ �0:50 is in agreement
with that extracted in [24], which resolves the puzzle from
the dramatically different data for the direct CP asymme-
tries ACPðB0 ! �	K�Þ and ACPðB� ! �0K�Þ.
Our results for the D ! PP branching ratios are pre-

sented in Tables I, II, and III for the Cabibbo-favored, singly
Cabibbo-suppressed, and doubly Cabibbo-suppressed
decays, respectively. The experimental data, as well as the
predictions from other approaches, such as the topological-
diagram approach [1], the factorization approach combined
with the pole-dominant model for the W-exchange and
W-annihilation contributions [8], and an analysis with FSI
effects from nearby resonances [26], are also listed for
comparison. It is obvious that the predictions for the singly
Cabibbo-suppressed decays, including the D0 ! �þ��,
KþK�, and K0 �K0 modes, are consistent with the data:
the known large SUð3Þ breaking effects in these decays
have been properly described in our parametrization. The
major sources to �2 of our fit come from the D0 ! �0�0

(��2 ¼ 23) and Dþ ! �þ�0 (��2 ¼ 17) decays. These
modes are exceptional in the sense that they involve the
color-suppressed emission amplitudes C, which are domi-
nated by the nonfactorizable contributions. To reduce �2,
more SUð3Þ breaking effects, such as the Glauber phase in
C [24], need to be introduced.
TheWilson coefficients for theD0 ! �þ�� andKþK�

decays,

a1ð��Þ ¼ 1:09; a2ð��Þ ¼ 0:81ei147:8


;

a1ðKKÞ ¼ 1:10; a2ðKKÞ ¼ 0:83ei148:2


;

(13)

similar to those obtained in [1,8], and

C2ð��Þ ¼ 1:26; C2ðKKÞ ¼ 1:27; (14)

for the W-exchange and W-annihilation amplitudes indi-
cate minor SUð3Þ breaking effects from the scale running.
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TABLE II. Same as Table I except for singly Cabibbo-suppressed D ! PP decays in units of
10�3.

Modes Br(FSI) Br(diagram) Br(pole) Br(exp) Br(this work)

D0 ! �þ�� 1.59 2:24� 0:10 2:2� 0:5 1:45� 0:05 1.43

D0 ! KþK� 4.56 1:92� 0:08 3:0� 0:8 4:07� 0:10 4.19

D0 ! K0 �K0 0.93 0 0:3� 0:1 0:320� 0:038 0.36

D0 ! �0�0 1.16 1:35� 0:05 0:8� 0:2 0:81� 0:05 0.57

D0 ! �0� 0.58 0:75� 0:02 1:1� 0:3 0:68� 0:07 0.94

D0 ! �0�0 1.7 0:74� 0:02 0:6� 0:2 0:91� 0:13 0.65

D0 ! �� 1.0 1:44� 0:08 1:3� 0:4 1:67� 0:18 1.48

D0 ! ��0 2.2 1:19� 0:07 1:1� 0:1 1:05� 0:26 1.54

Dþ ! �þ�0 1.7 0:88� 0:10 1:0� 0:5 1:18� 0:07 0.89

Dþ ! Kþ �K0 8.6 5:46� 0:53 8:4� 1:6 6:12� 0:22 5.95

Dþ ! �þ� 3.6 1:48� 0:26 1:6� 1:0 3:54� 0:21 3.39

Dþ ! �þ�0 7.9 3:70� 0:37 5:5� 0:8 4:68� 0:29 4.58

Dþ
S ! �0Kþ 1.6 0:86� 0:09 0:5� 0:2 0:62� 0:23 0.67

Dþ
S ! �þK0 4.3 2:73� 0:26 2:8� 0:6 2:52� 0:27 2.21

Dþ
S ! Kþ� 2.7 0:78� 0:09 0:8� 0:5 1:76� 0:36 1.00

Dþ
S ! Kþ�0 5.2 1:07� 0:17 1:4� 0:4 1:8� 0:5 1.92

TABLE I. Branching ratios in units of percentages for Cabibbo-favored D ! PP decays. Our
results are compared to those from the analysis including FSI effects [26], the topological-
diagram approach [1], the pole-dominant model [8], and the experimental data [33].

Modes Br(FSI) Br(diagram) Br(pole) Br(exp) Br(this work)

D0 ! �0 �K0 1.35 2:36� 0:08 2:4� 0:7 2:38� 0:09 2.41

D0 ! �þK� 4.03 3:91� 0:17 3:9� 1:0 3:891� 0:077 3.70

D0 ! �K0� 0.80 0:98� 0:05 0:8� 0:2 0:96� 0:06 1.00

D0 ! �K0�0 1.51 1:91� 0:09 1:9� 0:3 1:90� 0:11 1.73

Dþ ! �þ �K0 2.51 3:08� 0:36 3:1� 2:0 3:074� 0:096 3.22

Dþ
S ! Kþ �K0 4.79 2:97� 0:32 3:0� 0:9 2:98� 0:08 3.00

Dþ
S ! �þ� 1.33 1:82� 0:32 1:9� 0:5 1:84� 0:15 1.65

Dþ
S ! �þ�0 5.89 3:82� 0:36 4:6� 0:6 3:95� 0:34 3.44

Dþ
S ! �þ�0 0 0 <0:06 0

TABLE III. Same as Table I except for doubly Cabibbo-suppressed D ! PP decays in
units of 10�4.

Modes Br(diagram) Br(pole) Br(exp) Br(this work)

D0 ! �0K0 0:67� 0:02 0:6� 0:2 0.69

D0 ! ��Kþ 1:12� 0:05 1:6� 0:4 1:48� 0:07 1.67

D0 ! K0� 0:28� 0:02 0:22� 0:05 0.29

D0 ! K0�0 0:55� 0:03 0:5� 0:1 0.50

Dþ ! �þK0 1:98� 0:22 1:7� 0:5 2.38

Dþ ! �0Kþ 1:59� 0:15 2:2� 0:4 1:72� 0:19 1.97

Dþ ! Kþ� 0:98� 0:04 1:2� 0:2 1:08� 0:17a 0.66

Dþ ! Kþ�0 0:91� 0:17 1:0� 0:1 1:76� 0:22b 1.14

Dþ
S ! KþK0 0:38� 0:04 0:7� 0:4 0.63

aData from [34].
bData from [34].
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As pointed out in [10], to account for theD0 ! �þ�� and
D0 ! KþK� branching ratios, their W-exchange ampli-
tudes must be different in both the magnitudes and the
strong phases. In our parametrization, the distinction in the
magnitudes is achieved by differentiating �q from �s and

the decay constant f� from fK, while the distinction in the
strong phases is achieved by the Glauber phase S�.
Another significant improvement appears in the prediction
for theDþ ! �þ� branching ratio as indicated in Table II.
The branching ratios obtained in [1,8] are small, because
the emission and annihilation amplitudes extracted from
the Cabibbo-favored processes lead to a destructive inter-
ference in this Cabibbo-suppressed mode. In our frame-
work the additional Glauber phase associated with the pion
changes the destructive interference into a constructive
one. This provides another support for the SUð3Þ breaking
effect caused by the Glauber phase.

The scale-dependent Wilson coefficients do improve the
overall agreement between the theoretical predictions and
the data involving the �0 meson. Taking the Dþ ! �þ�0
decay as an example, the corresponding parameters are
given by a1ð��0Þ ¼ 1:12 and a2ð��0Þ ¼ 0:89ei149:6



for

the emission amplitudes with the �0 meson emitted from
the weak vertex, and C2ð��0Þ ¼ 1:32 for the annihilation
amplitudes. Compared to Eqs. (13) and (14), it is clear that
the lower energy release involved in the Dþ ! �þ�0
decay with heavier final states increases the Wilson
coefficients. Benefited from the scale-dependent Wilson
coefficients, �2 from all the �0 involved modes is reduced
by nearly 10, relative to �2 in the previous fits in the pole
model [8].

III. DIRECT CP ASYMMETRIES

In this section we predict the direct CP asymmetries
in the D ! PP decays by combining the short-distance
dynamics associated with the penguin operators and the
long-distance parameters in Eq. (12). The direct CP asym-
metry, defined by

ACPðfÞ ¼ �ðD ! fÞ � �ð �D ! �fÞ
�ðD ! fÞ þ �ð �D ! fÞ ; (15)

exists only in singly Cabibbo-suppressed modes.

A. Tree-level CP violation

A D ! PP mode, receiving contributions proportional
to both �d and �s, has the decay amplitude

A ¼ �dAd þ �sAs: (16)

The interference between the two terms in A leads to the
tree-level direct CP asymmetry

ACP � �2
Imð��

d�sÞ
j�dj2

ImðA�
dAsÞ

jAd �Asj2
; (17)

where the relation �d þ �s � 0 has been inserted into the

denominator. Except for the final states with the �ð0Þ me-
son, which contains both the q �q and s�s components, four
other channels D0 ! K0 �K0, Dþ ! Kþ �K0, Dþ

s ! �þK0,
and Dþ

s ! �0Kþ also exhibit the tree-level CP violation,
though their values have been found to be small [10]. We
can predict the tree-level CP violation in the D0 ! K0 �K0

decay as indicated in Table IV, which is not attainable in
the diagrammatic approach in the SUð3Þ limit [10]. This is
one of the advantages of our formalism that has taken into
account most of the SUð3Þ breaking effects. The CP
asymmetries in this mode, including the CP violation in
the K0- �K0 mixing, would possibly be measured.

B. Penguin-induced CP violation

We extend our formalism to the penguin contributions
to the D ! PP decays. For this purpose, the effective
Hamiltonian for singly Cabibbo-suppressed charm decays,

H eff ¼ GFffiffiffi
2

p
� X
q¼d;s

V�
cqVuqðC1ð�ÞOq

1ð�Þ þ C2ð�ÞOq
2ð�ÞÞ

� V�
cbVub

�X6
i¼3

Cið�ÞOið�Þ þ C8gð�ÞO8gð�Þ
��

;

(18)

is considered, with the QCD-penguin operators

TABLE IV. Direct CP asymmetries in D ! PP decays in the
units of (10�3). Atree

CP denotes the tree-level CP asymmetry and

Atot
CP denotes the CP asymmetry arising from the interference

between the total tree and penguin amplitudes. Results from the
analysis, including FSI effects [26], and from the topological-
diagram approach [10] are presented for comparison.

Modes ACP(FSI) ACP(diagram) Atree
CP Atot

CP

D0 ! �þ�� 0:02� 0:01 0.86 0 0.58

D0 ! KþK� 0:13� 0:8 �0:48 0 �0:42
D0 ! �0�0 �0:54� 0:31 0.85 0 0.05

D0 ! K0 �K0 �0:28� 0:16 0 1.11 1.38

D0 ! �0� 1:43� 0:83 �0:16 �0:33 �0:29

D0 ! �0�0 �0:98� 0:47 �0:01 0.53 1.53

D0 ! �� 0:50� 0:29 �0:71 0.29 0.18

D0 ! ��0 0:28� 0:16 0.25 �0:30 �0:94

Dþ ! �þ�0 0 0 0

Dþ ! Kþ �K0 �0:51� 0:30 �0:38 �0:13 �0:93

Dþ ! �þ� �0:65 �0:54 �0:26

Dþ ! �þ�0 0.41 0.38 1.18

Dþ
S ! �0Kþ 0.88 0.32 0.39

Dþ
S ! �þK0 0.52 0.13 0.84

Dþ
S ! Kþ� �0:19 0.80 0.70

Dþ
S ! Kþ�0 �0:41 �0:45 �1:60
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O3 ¼
X

q0¼u;d;s

ð �u�c�ÞV�Að �q0�q0�ÞV�A;

O4 ¼
X

q0¼u;d;s

ð �u�c�ÞV�Að �q0�q0�ÞV�A;

O5 ¼
X

q0¼u;d;s

ð �u�c�ÞV�Að �q0�q0�ÞVþA;

O6 ¼
X

q0¼u;d;s

ð �u�c�ÞV�Að �q0�q0�ÞVþA;

(19)

and the chromomagnetic penguin operator,

O8g ¼ g

8�2
mc �u	�
ð1þ �5ÞTaGa�
c; (20)

Ta being a color matrix. The explicit expressions for the
Wilson coefficients C3–6ð�Þ in terms of the running cou-
pling constant �sð�Þ are given in Appendix B. Four types
of penguin topologies are shown in Fig. 2

Below we sort out the short-distance dynamics associ-
ated with the above penguin operators. The contributions
from the ðV � AÞðV � AÞ current in the operators O3;4 can

be directly related to those from the tree operators by
replacing the Wilson coefficients. The relations between
the hadronic matrix elements from the ðV � AÞðV þ AÞ or
ðSþ PÞðS� PÞ current and from the ðV � AÞðV � AÞ cur-
rent are subtler. For the penguin color-favored emission
amplitudes, we have

PT ¼ a3ð�ÞhP2jð �qqÞV�Aj0ihP1jð �ucÞV�AjDi
þ a5ð�ÞhP2jð �qqÞVþAj0ihP1jð �ucÞV�AjDi;

¼ ½a3ð�Þ � a5ð�Þ�fP2
ðm2

D �m2
P1
ÞFDP1

0 ðm2
P2
Þ; (21)

with the Wilson coefficients

a3ð�Þ ¼ C3ð�Þ þ C4ð�Þ
Nc

; a5ð�Þ ¼ C5ð�Þ þ C6ð�Þ
Nc

;

(22)

where the minus sign in front of the Wilson coeffi-
cient a5 arises from the equality hP2jð �qqÞVþAj0i ¼
�hP2jð �qqÞV�Aj0i.
We write the penguin color-suppressed emission ampli-

tude as

PC¼a4ð�ÞhP2jð �uqÞV�Aj0ihP1jð �qcÞV�AjDi
�2a6ð�ÞhP2jð �uqÞSþPj0ihP1jð �qcÞS�PjDi

¼½a4ð�Þþa6ð�Þr��fP2
ðm2

D�m2
P1
ÞFDP1

0 ðm2
P2
Þ; (23)

with the Wilson coefficients

a4ð�Þ ¼ C4ð�Þ þ C3ð�Þ
�
1

Nc

þ �nfe
i�

�
;

a6ð�Þ ¼ C6ð�Þ þ C5ð�Þ
�
1

Nc

þ �nfe
i�

�
:

(24)

The chiral factor

r� ¼ 2m2
P2

mcðmu þmqÞ ; (25)

with the u-quark (q-quark) mass mu (mq), exhibits formal

suppression by a power of 1=mc, but takes a value of order
unity actually. Note that the ðS� PÞðSþ PÞ nonfactoriz-
able amplitude cannot be simply related to the ðV � AÞ�
ðV � AÞ nonfactorizable amplitude. However, the PQCD
factorization formulas for heavy-meson decays [32] reveal
strong similarity between them in the dominant small
parton momentum region, which supports the parametri-

zation in Eq. (24). The chiral factor for the �ð0Þ meson
receives an additional contribution from the axial anomaly,
as illustrated in Appendix C.
The treatment of the penguin exchange amplitude PE

and the penguin annihilation amplitude PA demands a
more careful formulation. It is obvious that the matrix
elements of the operator O3 (O4) are similar to those of
O2 (O1). As discussed in Sec. II, the factorizable contri-
butions to the above matrix elements vanish in the SUð3Þ
limit because of the helicity suppression and have been
neglected. Considering only the nonfactorizable contribu-
tions, O4 gives rise to part of PA. The operator O6 also
contributes to PA, to which the helicity suppression
applies. Therefore, its matrix elements can be combined
with those of O4 under the equality

hP1ðq �q0ÞP2ðq0 �qÞjð �ucÞV�Að �q0q0ÞVþAjDðc �uÞi
¼ hP1ðq �q0ÞP2ðq0 �qÞjð �ucÞV�Að �q0q0ÞV�AjDðc �uÞi; (26)

which has been verified by the PQCD factorization for-
mulas [32]. Equation (26) is attributed to the fact that only
the vector piece V in the ð �q0q0ÞV�A currents contributes to

FIG. 2. Four topological penguin diagrams contributing to
D ! PP decays: (a) the penguin color-favored emission ampli-
tude PT , (b) the penguin color-suppressed emission amplitude
PC, (c) the penguin exchange amplitude PE, and (d) the penguin
annihilation amplitude PA. Note that PTðPCÞ is not truly color-
favored (color-suppressed), but possesses the same topology
as TðCÞ.
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the production of two pseudoscalar mesons. Thus the
QCD-penguin annihilation amplitude is parametrized as

PA ¼ ½C4ð�Þ þ C6ð�Þ��A
q;se

i�A
q;sfDm

2
D

�
fP1

fP2

f2�

�
: (27)

For the amplitude PE, the helicity suppression does not
apply to the matrix elements of O5;6, so the factorizable

contributions exist. The nonfactorizable contribution
from O5 vanishes in the SUð3Þ limit, as verified by the
PQCD factorization formulas [32], and will be neglected.
We then apply the Fierz transformation and the factoriza-
tion hypothesis to

hP1ðq0 �qÞP2ðu �q0Þjð �ucÞV�Að �q0q0ÞVþAjDðc �qÞi
¼ �2hP1ðq0 �qÞP2ðu �q0Þjð �uq0ÞSþPj0ih0jð �q0cÞS�PjDðc �qÞi:

(28)

The scalar form factor involved in the matrix element
hP1ðq0 �qÞP2ðu �q0Þjð �uq0ÞSþPj0i has been assumed to be domi-
nated by scalar resonances, and fixed in [35]. It has been
demonstrated that the similar formalism works for the
analysis of the � ! K�
� decay [35]. Combining the
nonfactorizable contribution from O3, PE is written as

PE¼C3ð�Þ�E
q;se

i�E
q;sfDm

2
D

�
fP1

fP2

f2�

�

þ2

�
C6ð�ÞþC5ð�Þ

Nc

�
gSBSðm2

DÞmS
�fSfD

m2
D

mc

; (29)

where gS is an effective strong coupling constant, �fS and
mS are the decay constant and the mass of the scalar
resonance particle S, respectively, and the function BS

represents the Breit-Wigner propagator of the scalar
resonance,

BSðq2Þ ¼ 1

q2 �m2
S þ imS�Sðq2Þ

: (30)

In the above expression q2 denotes the invariant mass
squared of the P1P2 final state, and the strong phase
from the width �Sðq2Þ provides a major source to direct
CP asymmetries. More detail for the treatment of the scalar
matrix element hP1ðq0 �qÞP2ðu �q0Þj �uq0j0i can be found in
Appendix D.

C. Quark loops and magnetic penguin

To complete the penguin contributions to the D ! PP
decays, we include the quark loops from the tree operators
and the magnetic penguin as displayed in Fig. 3. The
former up to next-to-leading order in the coupling constant
can be absorbed into the Wilson coefficients [11]

C3;5ð�Þ ! C3;5ð�Þ � �sð�Þ
8�Nc

X
q¼d;s

�q

�b

CðqÞð�; hl2iÞ;

C4;6ð�Þ ! C4;6ð�Þ þ �sð�Þ
8�

X
q¼d;s

�q

�b

CðqÞð�; hl2iÞ;
(31)

with hl2i being the averaged invariant mass squared of the
virtual gluon emitted from the quark loop. The function

CðqÞ is written as

CðqÞð�; hl2iÞ ¼
�
GðqÞð�; hl2iÞ � 2

3

�
C2ð�Þ; (32)

with the function

GðqÞð�; hl2iÞ ¼ �4
Z 1

0
dxxð1� xÞ lnm

2
q � xð1� xÞhl2i

�2
:

(33)

Because of the smallness of the associated CKM matrix
elements, we have ignored the quark loops from the pen-
guin operators.
Using the unitarity relation of the CKM matrix, we

reexpress the second term in Eq. (31) as

�sð�Þ
8�

�dC
ðdÞ þ �sC

ðsÞ

�b

¼ �sð�Þ
8�

�
�d

�b

ðCðdÞ � CðsÞÞ � CðsÞ
�
:

(34)

The term proportional to �d contributes to the tree
amplitudes, which is, however, numerically negligible,

ð�s=8Þ�ðCðdÞ � CðsÞÞ �Oð10�4Þ � C1;2. It is the reason

we did not include the quark loops in the analysis of
the branching ratios. Keeping only the second term in
Eqs. (34) and (31) reduces to

C3;5ð�Þ ! C3;5ð�Þ þ �sð�Þ
8�Nc

CðsÞð�; hl2iÞ;

C4;6ð�Þ ! C4;6ð�Þ � �sð�Þ
8�

CðsÞð�; hl2iÞ:
(35)

We have confirmed that not much numerical difference

arises from replacing CðsÞ by CðdÞ.
The magnetic-penguin contribution can be included in

the Wilson coefficients for the penguin operators following
the substitutions [11]

FIG. 3. Quark-loop and magnetic-penguin contributions to
D ! PP decays.
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C3;5ð�Þ ! C3;5ð�Þ þ �sð�Þ
8�Nc

2m2
c

hl2i C
eff
8g ð�Þ;

C4;6ð�Þ ! C4;6ð�Þ � �sð�Þ
8�

2m2
c

hl2i C
eff
8g ð�Þ;

(36)

with the effective Wilson coefficient Ceff
8g ¼ C8g þ C5.

To predict the direct CP asymmetries, we adopt hl2i �
ðP1=2þ P2=2Þ2 � m2

D=4. This choice of hl2i corresponds
to the kinematic configuration, where the spectator in the
decay takes half of the P1 meson momentum, consistent
with the scale parametrization in Eq. (8), and a valence
quark in the P2 meson also carries half of its momentum.
We have varied hl2i between m2

D=2 and m2
D=10, and

observed only a slight change in our predictions for the
direct CP asymmetries. The contribution from the mag-
netic penguin is much smaller than that from the quark

loops, Ceff
8g � CðqÞð�; hl2iÞ. It turns out that the integral

in Eq. (33) generates a large imaginary part as m2
q � hl2i

and a sizable shift of the strong phases in the penguin
amplitudes.

It is seen that all the important penguin amplitudes have
been formulated without introducing additional free
parameters. Compared with [9], the similarity is that the
effective Wilson coefficients in Eqs. (35) and (36) have
been employed. The difference appears in the derivation
of the involved hadronic matrix elements. Both the
leading-power and subleading-power penguin contribu-
tions, including their strengths and strong phases, are
determined in our formalism. The leading-power penguin
contributions were calculated in QCDF, but the
subleading-power ones were estimated in the large Nc

assumption in [9]. This is the reason why only the strengths
of the penguin contributions were obtained in [9].

D. Numerical results

We adopt mu ¼ md ¼ �mq ¼ 5:3 MeV and ms ¼
136 MeV for the quark masses at the scale 1 GeV in the
numerical analysis. The inputs for the involved decay
constants and transition form factors are taken to be the
same as in [8]. In most modesPC, which is enhanced by the
chiral factor, and PE from the ðS� PÞðSþ PÞ current are
the major QCD-penguin amplitudes. Our predictions for
the directCP asymmetries in theD ! PP decays are listed
in Table IV, which differ from those derived in other
approaches, and can be confronted with future data. The
result for D0 ! K0 �K0 is dominated by the tree-level CP
violation, because of smallness of the involved penguin
annihilation contribution. If considering the isospin sym-
metry breaking from unequal u and d quark masses, the
chiral factors for the u �u and d �d components of the �0

meson will be different. The corresponding penguin con-
tributions then do not cancel exactly, and a nonzero direct
CP asymmetry would appear in the Dþ ! �þ�0 decay. If
turning off the Glauber phase in the D0 ! �þ�� decay,

the direct CP asymmetry Atot
CPð�þ��Þ decreases from

0:58� 10�3 to 0:49� 10�3. The 30% change in the
branching ratio (see Table II) and the 15% change in the
direct CP asymmetry indicate that the Glauber phase is not
a negligible mechanism.
We predict the difference between the direct CP asym-

metries in the D0 ! KþK� and D0 ! �þ�� decays,

�ACP ¼ �1:00� 10�3; (37)

which is in the same sign as the data, but an order of
magnitude smaller than the central value of the LHCb
data in Eq. (1), and lower than the CDF data in Eq. (2).
To check whether our prediction makes sense, we write
�ACP as

�ACP ¼ �2r sin�

�jPKKj
jT KKj sin


KK þ jP��j
jT ��j sin


��

�
;

(38)

with r ¼ j�bj=j�dj ¼ j�bj=j�sj, �q ¼ V�
cqVuq, � being the

CP violating weak phase, and 
KK (
��) being the relative
strong phase between the tree amplitude T KK (T ��) and
the penguin amplitude PKK (P��) for the D0 ! KþK�
(D0 ! �þ��) mode. It is easy to find r � 0:7� 10�3 and
� ¼ ð73þ22

�25Þ
 from the Particle Data Group 2010 [36], i.e.,

2r sin� � 1:3� 10�3. For jP j=jT j �Oð1Þ and sin
� 1,
�ACP could reach only a few times of 10�3. The topologi-
cal amplitudes for the D0 ! �þ�� and KþK� modes
obtained in this work are given, in units of 10�6 GeV, by

T�� ¼ 2:73; E�� ¼ 0:82e�i142
 ;

TKK ¼ 3:65; EKK ¼ 1:2e�i85
 ;
(39)

P��
C ¼ 0:87ei134



; P��

E ¼ 0:81ei111


;

P��
A ¼ 0:25e�i43
 ; PKK

C ¼ 1:21ei135


;

PKK
E ¼ 0:87ei111



; PKK

A ¼ 0:45e�i5
 ;

(40)

which lead to the total tree and penguin amplitudes and
their ratios

T �� ¼ 2:14e�i14
 ; P�� ¼ 1:40ei121


;

P��

T ��
¼ 0:66ei134



; T KK ¼ 3:94e�i18
 ;

PKK ¼ 1:79ei114


;

PKK

T KK
¼ 0:45ei131



:

(41)

It is a concern for our formalism whether all the impor-
tant nonperturbative sources in D meson decays have been
identified. If not, the simple replacement of the Wilson
coefficients may not work for estimating the penguin
contributions. As explained in the previous section, the
outcomes in Eq. (12) are all reasonable, so most of the
important nonperturbative sources should have been taken
into account. The uncertainty of our formalism arises
mainly from the parametrization of the scalar form factors
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in PE. The difference of the direct CP asymmetries
changes from �1:0� 10�3 to �1:6� 10�3, when the
effective strong coupling gS ¼ gK�K� is increased by a
factor of 2. If varying the strong phases in the penguin
amplitudes arbitrarily, �ACP would be at most �1:4�
10�3. Varying the input parameters, such as the quark
masses �mq ¼ 4:0–6:5 MeV and ms ¼ 108–176 MeV,

the mass Mf0ð1370Þ ¼ 1200–1500 MeV, and the width

�f0ð1370Þ ¼ 200–500 MeV of the dominant scalar

resonance f0ð1370Þ, and the CKM matrix elements
jVubj ¼ ð3:89� 0:44Þ � 10�3 and � ¼ ð73þ22

�25Þ
, we

have �ACP ¼ ð�0:57–� 1:87Þ � 10�3. In conclusion, if
the central values of the LHCb and CDF data persist, they
can be regarded as a signal of new physics. At this moment,
there is plenty of room for accommodating the LHCb and
CDF data by means of models extended beyond the SM.
Those models with additional sources of CP violation are
all suitable candidates, like supersymmetry models, left-
right models, models with the leptoquark, the fourth gen-
eration, or the diquark, and so on. New-physics effects on
the direct CP asymmetries in D ! PP decays can be
explored by combining corresponding short-distance
Wilson coefficients with the long-distance parameters de-
termined in this work.

IV. CONCLUSION

In this paper we have proposed a theoretical framework
for analyzing two-body nonleptonic D meson decays,
based on the factorization of short-distance (long-distance)
dynamics into Wilson coefficients (hadronic matrix ele-
ments of four-fermion operators). Because of the small
charm quark mass just above 1 GeV, a perturbative theory
for the hadronic matrix elements may not be valid. Our
idea is to identify as completely as possible the important
sources of nonperturbative dynamics in the decay ampli-
tudes and parametrize them in the framework of the facto-
rization hypothesis: we have considered the evolution of
the Wilson coefficients with the energy release in individ-
ual decay modes, which depends on the scale � of the soft
degrees of freedom in the D meson. The hadronic matrix
elements of the four-fermion operators have been parame-
trized into the strengths �’s and the strong phases �’s. It is
crucial to introduce the Glauber strong phase S� associated
with a pion in the nonfactorizable annihilation amplitudes,
which is due to the unique role of the pion as a Nambu-
Goldstone boson and a quark-antiquark bound state simul-
taneously. The flavor SUð3Þ symmetry breaking effects
have been taken into account in the above framework
appropriately. Fitting our parametrization to the abundant
data of the D ! PP branching ratios, all the nonperturba-
tive parameters have been determined.

It has been shown that our framework greatly improves
the global fit to the measured D ! PP branching ratios:
the evolution of the Wilson coefficients improves the over-
all agreement with the data involving the�0 meson, and the

Glauber phase resolves the long-standing puzzle from
the D0 ! �þ�� and D0 ! KþK� branching ratios.
The Glauber phase has also enhanced the predicted
Dþ ! �þ� branching ratio, giving much better consis-
tency with the data. The value of� is in the correct order of
magnitude for characterizing the soft degrees of freedom in
the D meson, and the Glauber phase S� agrees with that
extracted from the data for the direct CP asymmetries in
the B ! �K decays. The similarity of the � values for the
W exchange and for the W annihilation confirms our
expectation, because these two topologies can be converted
to each other via the Fierz transformation. The difference
between the � values for the strongly produced light-quark
and strange-quark pairs implies the significant SUð3Þ
breaking effects in the D ! PP decays.
Once having determined the nonperturbative parameters

from the fit to the branching ratios, the replacement of the
Wilson coefficients works for estimating the penguin con-
tributions. For those penguin amplitudes, which cannot be
related to tree amplitudes through the above replacement,
we have shown that they are either factorizable or sup-
pressed by the helicity conservation. If they are factoriz-
able, such as the scalar penguin annihilation contribution,
data from other processes can be used for their determi-
nation. We are then able to predict the direct CP asymme-
tries in D ! PP decays without ambiguity. It has been
found that the strong phases from the quark loops and the
scalar penguin annihilation dominate the direct CP asym-
metries. Many of our predictions in Table IV can be con-
fronted with future data. In particular, we have predicted
�ACP ¼ �1:00� 10�3, which is lower than the LHCb
and CDF data. As pointed out at the end of the previous
section, the uncertainty of our formalism arises mainly
from the parametrization of the scalar form factors in PE.
However, even increasing the associated effective strong
coupling by a factor of 2, �ACP remains of order 10�3. We
conclude that the LHCb and CDF data will reveal a new-
physics signal, if their central values persist.
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APPENDIX A: AMPLITUDES

Different decay modes receive contributions from
different topological amplitudes. Take the D0 ! �þ��
and D0 ! KþK� modes as examples, whose expressions
are given by

HSIANG-NAN LI, CAI-DIAN LU, AND FU-SHENG YU PHYSICAL REVIEW D 86, 036012 (2012)

036012-10



AðD0 ! �þ��Þ ¼ GFffiffiffi
2

p ½�dðT þ EÞ � �bðPC þ 2Pd
A þ Pd

EÞ�;

¼ GFffiffiffi
2

p fV�
cdVud½a1ð�Þðm2

D �m2
�Þf�FD�

0 ðm2
�Þ þ C2ð�Þeið�E

qþ2S�Þ�E
qfDm

2
D�

� V�
cbVub½aPC

ð�Þðm2
D �m2

�Þf�FD�
0 ðm2

�Þ þ 2aPA
ð�Þeið�A

qþ2S�Þ�A
qfDm

2
D þ C3ð�Þeið�E

qþ2S�Þ�E
qfDm

2
D

þ 2a06ð�ÞgSfD m2
D

mc

X
f0

Bf0ðm2
DÞmf0

�ff0�g;

AðD0 ! KþK�Þ ¼ GFffiffiffi
2

p ½�sðT þ EÞ � �bðPC þ Pu
A þ Ps

A þ Ps
EÞ�;

¼ GFffiffiffi
2

p
�
V�
csVus

�
a1ð�Þðm2

D �m2
KÞfKFDK

0 ðm2
KÞ þ C2ð�Þei�E

q�E
qfDm

2
D

f2K
f2�

�

� V�
cbVub

�
aPC

ð�Þðm2
D �m2

KÞfKFDK
0 ðm2

KÞ þ aPA
ð�Þei�A

q�A
qfDm

2
D

f2K
f2�

þ aPA
ð�Þei�A

s �A
s fDm

2
D

f2K
f2�

þ C3ð�Þei�E
s �E

s fDm
2
D

f2K
f2�

þ 2a06ð�ÞgSfD m2
D

mc

X
f0

Bf0ðm2
DÞmf0

�ff0

��
; (A1)

with the coefficients

aPC
ð�Þ ¼ ½a4ð�Þ þ a6ð�Þr��; aPA

ð�Þ ¼ C4ð�Þ þ C6ð�Þ; a06ð�Þ ¼ C6ð�Þ þ C5ð�Þ
Nc

: (A2)

Notice the Glauber phase factors ei2S� associated with the nonfactorizable amplitudes �E
q and �A

q in Eq. (A1).

APPENDIX B: WILSON COEFFICIENTS

In this Appendix we present the evolution of the Wilson coefficients in the scale �<mc [37],

C1ð�Þ ¼ 0:2334�1:444 þ 0:0459�0:7778 � 1:313�0:4444 þ 0:3041��0:2222; (B1)

C2ð�Þ ¼ �0:2334�1:444 þ 0:0459�0:7778 þ 1:313�0:4444 þ 0:3041��0:2222; (B2)

C3ð�Þ ¼ 0:0496��0:2977 � 0:0608��0:2222 þ 0:0025��0:1196 � 1:23�0:4173 þ 1:313�0:4444 � 0:0184�0:7023

� 0:0076�0:7778 � 0:0188�0:8025 þ 0:0018�0:8804 þ 0:2362�1:417 � 0:1986�1:444 þ 0:0004�1:802; (B3)

C4ð�Þ ¼ 0:075��0:2977 � 0:0608��0:2222 þ 0:0012��0:1196 þ 1:179�0:4173 � 1:313�0:4444 þ 0:0175�0:7023

� 0:014�0:7778 þ 0:0267�0:8025 þ 0:0006�0:8804 � 0:1807�1:417 þ 0:129�1:444 � 0:002�1:802; (B4)

C5ð�Þ ¼ �0:0252��0:2977 þ 0:0227��0:1196 þ 0:0309�0:4173 þ 0:0251�0:7023 þ 0:0016�0:7778 � 0:0045�0:8025

� 0:0058�0:8804 � 0:0338�1:417 þ 0:0348�1:444 � 0:026�1:802; (B5)

C6ð�Þ ¼ 0:019��0:2977 � 0:0081��0:1196 þ 0:0821�0:4173 � 0:0624�0:7023 � 0:0048�0:7778 � 0:1241�0:8025

� 0:0038�0:8804 þ 0:0979�1:417 � 0:1045�1:444 � 0:0486�1:802; (B6)

in terms of the running coupling constant

� ¼ �sð�Þ ¼ 4�

�0 lnð�2=�2
MS

Þ
�
1� �1

�2
0

lnlnð�2=�2
MS

Þ
lnð�2=�2

MS
Þ
�
; (B7)

with the coefficients
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�0 ¼ 33� 2f

3
; �1 ¼ 102� 38

3
Nf: (B8)

For the active flavor number Nf ¼ 3 and the QCD scale
�MS ¼ �ð3Þ

MS
¼ 375 MeV, we have �sðmcÞ ¼ 0:407. The

initial conditions of the Wilson coefficients at � ¼ mc are
given, in the naı̈ve dimensional regularization scheme, by

C1ðmcÞ ¼ �0:43; C2ðmcÞ ¼ 1:22;

C3ðmcÞ ¼ 0:018; C4ðmcÞ ¼ �0:046;

C5ðmcÞ ¼ 0:013; C6ðmcÞ ¼ �0:044:

(B9)

Another useful set of values contains

C1ð1GeVÞ¼�0:51; C2ð1GeVÞ¼1:27;

C3ð1GeVÞ¼0:028; C4ð1GeVÞ¼�0:065;

C5ð1GeVÞ¼0:021; C6ð1GeVÞ¼�0:058;

(B10)

which are evaluated at the typical energy release in two-
body nonleptonic D meson decays.

The effective Wilson coefficient Ceff
8g for the magnetic-

penguin operator is known only to the leading-logarithm
accuracy. Because of its smallness, we shall not consider
the evolution of Ceff

8g ð�Þ, but approximate it by the constant

Ceff
8g ðmcÞ ¼ �0:11: (B11)

APPENDIX C: CHIRAL FACTOR

The chiral factor in Eq. (25) comes from the relation
between the matrix elements of the scalar (pseudoscalar)
current and of the vector (axial vector) current. Using the
equations of motion, we derive

hP2j �u�5qj0i ¼
�i@�hP2j �u���5qj0i

mu þmq

¼ �i
fP2

m2
P2

mu þmq

;

(C1)

hP1j �qcjDi ¼ �i@�hP2j �q��cj0i
mc

¼ m2
D �m2

P1

mc

FDP1

0 ðm2
P2
Þ;

(C2)

where the light-quark mass has been neglected in the
second expression.

For the �ð0Þ meson, the chiral factor receives an addi-
tional contribution from the axial anomaly in the following
equation of motion: [38]

@�ð �q���5qÞ ¼ 2mqð �qi�5qÞ þ �s

4�
G ~G; (C3)

in which G represents the gluon field tensor, ~G is its dual,
and q denotes the quark fields u, d, and s. In the present
analysis only the u quark contributes to the amplitude PC.
We express the physical states � and �0 as the linear
combinations of the flavor states �q and �s via a mixing

angle �,

�

�0

 !
¼ cos� � sin�

sin� cos�

 !
�q

�s

 !
: (C4)

The KLOE Collaboration has extracted the value � ¼
ð40:4� 0:6Þ
 recently [39], which is consistent with the
phenomenological result in [38].
Equations (C3) and (C4) then lead to the matrix elements

h�j �ui�5uj0i¼ 1

2mu

�
1ffiffiffi
2

p m2
�fqcos��cos�h�qj�s

4�
G ~Gj0i

þsin�h�sj�s

4�
G ~Gj0i

�
; (C5)

h�0j �ui�5uj0i¼ 1

2mu

�
1ffiffiffi
2

p m2
�0fq sin��sin�h�qj�s

4�
G ~Gj0i

�cos�h�sj�s

4�
G ~Gj0i

�
; (C6)

with the �q decay constant fq. For the expressions of the

anomalies

h�qj �s

4�
G ~Gj0i ¼ ffiffiffi

2
p

fqa
2; h�sj �s

4�
G ~Gj0i ¼ yfqa

2;

(C7)

the involved parameters have been determined to be
fq ¼ 1:07f�, a

2 ¼ 0:265 GeV2, and y ¼ 0:81 [38].

APPENDIX D: SCALAR MATRIX ELEMENTS

In this Appendix we fix the scalar matrix element
hP1P2j �q1q2j0i appearing in Sec. III C, which is dominated
by the contribution from the lowest scalar resonance [35],

hP1P2j �q1q2j0i ¼ hP1P2jSihSj �q1q2j0i ¼ gSBSðq2ÞmS
�fS;

(D1)

as shown in Eq. (30). The scalar decay constant �fS is
defined via hSj �q2q1j0i ¼ mS

�fS [40]. Many scalar mesons
have been observed. It is still controversial whether the
lightest scalar nonets with the mass smaller than or close to
1 GeV are primarily the four-quark or two-quark bound
states. Since �, a0ð980Þ, and f0ð980Þmay be the four-quark
states, we consider the scalar resonances a0ð1450Þ for the
��, ��0, and ðKKÞ� final states, f0ð1370Þ, f0ð1500Þ, and
f0ð1710Þ for the �0�0, �þ��, K0 �K0, KþK�, and ��ð0Þ

final states, and K�
0ð1430Þ for the K� and K�ð0Þ final

states due to the symmetries of strong interaction.
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ are the mixtures of

n �n � ðu �uþ d �dÞ= ffiffiffi
2

p
, s�s, and glueball, but there still exists

controversy on the components of each scalar meson. We
employ the mixing matrix obtained in [41] in this work.
Note that there are no s-wave isospin-1 resonances for the
���0 system under the isospin symmetry.
We derive hK�j�suj0i as an example. Inserting K�

0ð1430Þ
as the intermediate resonance, the matrix element is writ-
ten as
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hK�j�suj0i ¼ hK�jK�
0ð1430ÞihK�

0ð1430Þj�suj0i
¼ gK�

0
K�BK�

0
ðq2ÞmK�

0

�fK�
0
; (D2)

where the effective strong coupling constant gK�
0
K� ¼

3:8 GeV can be obtained directly from the measured
K�

0ð1430Þ ! K� decay [42], and BK�
0
is the K�

0ð1430Þ
propagator in the Breit-Wigner form [35]

BK�
0
ðq2Þ ¼ 1

q2 �m2
K�

0
þ imK�

0
�K�

0
ðq2Þ ; (D3)

with the momentum-dependent width

�K�
0
ðq2Þ ¼ �K�

0
DK�

0
ðq2Þ; DK�

0
ðq2Þ¼ mK�

0ffiffiffiffi
q2

p PKðq2Þ
PKðm2

K�
0

Þ ;

PKðq2Þ ¼ 1

2
ffiffiffiffiffi
q2

p �1=2ðq2; m2
�;m

2
KÞ;

�ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2xy� 2yz� 2xz:

(D4)

The values of the massmK�
0
and the decay width �K�

0
for the

scalar resonance K�
0ð1430Þ are taken from the Particle Data

Group 2010 [36].
The relevant scalar decay constants are given, in QCD

sum rules, by [40]

�fn �nð1 GeVÞ ¼ ð460� 50Þ MeV;

�fs�sð1 GeVÞ ¼ ð490� 50Þ MeV;

�fK�
0
ð1430Þð1 GeVÞ ¼ ð445� 50Þ MeV;

(D5)

where �fn �n is the scalar decay constant for a0ð1450Þ and for
the n �n components of the three isosinglet scalars, and �fs�s
for the s�s components of the three isosinglet scalars. We
assume that the quark, but not glueball, components of
scalars dominate the D meson decays. With a lack of
experimental data, the effective coupling constant gS in
Eq. (D1) is approximated by gS ¼ gK�

0
K� in the flavor

SUð3Þ limit.
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