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We present a detailed analysis of nucleon electromagnetic and axial form factors in a holographic

soft-wall model. This approach is based on an action which describes hadrons with broken conformal

invariance and incorporates confinement through the presence of a background dilaton field. For Nc¼3

we describe the nucleon structure in a superposition of a three-valence quark state with high Fock states

including an adjustable number of partons (quarks, antiquarks and gluons) via studying the dynamics of

5D fermion fields of different scaling dimension in anti-de Sitter space. According to the gauge/gravity

duality the 5D fermion fields of different scaling dimension correspond to the Fock state components with

a specific number of partons. In the present application we restrict to the contribution of 3, 4 and 5 parton

components in the nucleon Fock state. With a minimal number of free parameters (dilaton scale

parameter, mixing parameters of partial contributions of Fock states, coupling constants in the effective

Lagrangian) we achieve a reasonable agreement with data for the nucleon form factors.
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I. INTRODUCTION

Based on the gauge/gravity duality [1], a class of AdS/
QCD approaches which model QCD by using methods of
extradimensional field theories formulated in anti-de Sitter
(AdS) space, was recently successfully developed for de-
scribing the phenomenology of hadronic properties (for a
recent review see e.g., Ref. [2]). One of the popular formal-
isms of this kind is the ‘‘soft-wall’’ model [3–24], which
uses a soft IR cutoff in the fifth dimension. This procedure
can be introduced in the following ways: (i) as a back-
ground field (dilaton) in the overall exponential of the
action (‘‘dilaton’’ soft-wall model), (ii) in the warping
factor of the AdS metric (‘‘metric’’ soft-wall model), and
(iii) in the effective potential of the action. In Ref. [24] we
showed that these three ways of proceeding are equivalent
to each other via a redefinition of the bulk fields and by
inclusion of extra effective potentials in the action. In our
opinion, the ‘‘dilaton’’ form of the soft-wall model is more
convenient in performing the calculations.

Applications of the soft-wall model to baryon physics
have been worked out in Refs. [9,15,18,20,22,24,25],
where the mass spectrum of light and heavy baryons, and
electromagnetic and gravitational form factors have been
calculated. We should stress that during the last few years
significant progress in the understanding of baryon struc-
ture using methods of AdS/QCD has been achieved
[20,26–32]. In particular, different types of hard-wall
models have been suggested and developed in
Refs. [20,26–28]. Solitonic approaches, where stable

solitons arise from an effective mesonic action which are
5D analogues of 4D skyrmions, have been suggested in
Ref. [29]. Direct derivations of holographic solitonic ap-
proaches for baryons from string theories have been pro-
posed in Refs. [30,31]. In reference to the 5D soliton AdS/
QCD models developed in Refs. [29–31] we view our
approach as an effective or phenomenological framework
describing baryons in terms of fermion fields. As stressed
in Ref. [27] this is not in contradiction with basic principles
of QCD, because in 4D QCD the baryons can be described
as skyrmions of the chiral meson Lagrangian or equiva-
lently in terms of separate fermion fields coupled to me-
sons. In our approach the fermion bulk fields are
characterized by the 5D mass � (scaling dimension),
which is holographically dual toN—the number of partons
in baryons. Both quantities scale in the large Nc expansion
as �� N � Nc, which means that the baryon is a bound
state of Nc quarks. This is consistent with large Nc QCD.
On the other hand, keeping in mind that in QCD the
number of colors is equal to Nc ¼ 3, we in physical
applications identify the AdS fermion field of lowest di-
mension with the baryons containing three quarks. We do
not restrict to the three-valence quark picture of baryons
and also include higher Fock states involving nonvalence
degrees of freedom. The latter are dual to the AdS fermion
fields of higher dimension.
Here we present a detailed analysis of the nucleon

electromagnetic form factors in a holographic soft-wall
model considering the inclusion of higher-dimensional
fermion fields. Thus high Fock state contributions are
holographically incorporated in the nucleon. This novel
approach is based on an action which describes hadrons
with broken conformal invariance and which incorporates
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confinement through the presence of a background dilaton
field. Notice that the role of higher Fock components in the
pion, in the context of holographic QCD, was considered
before in Refs. [19,33]. In particular, two Fock components
(q �q and q �qq �q) were included in the expansion of the pion
wave function, which was in turn used in the calculation of
pion electromagnetic and ����0 transition form factors. It
was argued that the components containing gluons (e.g.,
q �qg) are absent in the confinement potential.

In our framework for Nc ¼ 3 nucleons are considered as
a superposition of three-valence quark states and high Fock
states including an adjustable number of partons (quarks,
antiquarks and gluons) by studying the dynamics of the 5D
fermion fields of different scaling dimension in AdS space.
According to the gauge/gravity duality the 5D fermion
fields of different scaling dimension correspond to Fock
state components with a specific number of partons. We
can sum the bulk fermion actions with an adjustable 5D
fermion mass, which is related to the scaling dimension (or
the number of partons in the nucleon). This action is
consistent with C-, P- and T-invariance. Also, electromag-
netic gauge invariance is fulfilled. Therefore, the main
advantage of our approach is that it allows to include
dynamically any adjustable number of higher Fock states
in the nucleon. For this first time we restrict ourselves to
the contribution of 3, 4 and 5 parton components in the
nucleon Fock state.

The paper is structured as follows. First, in Sec. II, we
briefly discuss the basic notions of the approach. In
Sec. III, we consider applications of our approach to the
electromagnetic properties of the nucleon. Finally, in
Sec. IV, we summarize our results.

II. APPROACH

We consider the propagation of a fermion field �ðx; zÞ
with spin J ¼ 1=2 in five-dimensional AdS space, which
contains the contributions of different twist dimensions. In
the language of the AdS/QCD dictionary it corresponds to
the inclusion of the three-quark and higher-parton states in
the nucleon. For this first time we restrict ourselves to the
contribution of 3q, 3qþ g, 3qþ q �q and 3qþ 2g Fock
states, where q, �q and g denote quark, antiquark and gluon,
respectively.

The AdS metric is specified by

ds2 ¼ gMNdx
MdxN ¼ �abe

2AðzÞdxadxb

¼ e2AðzÞð���dx
�dx� � dz2Þ;

��� ¼ diagð1;�1;�1;�1;�1Þ;
(1)

where M and N ¼ 0; 1; � � � ; 4 are the space-time (base
manifold) indices, a ¼ ð�; zÞ and b ¼ ð�; zÞ are the local
Lorentz (tangent) indices, and gMN and �ab are curved and
flat metric tensors, which are related by the vielbein

�aMðzÞ ¼ eAðzÞ�a
M as gMN ¼ �aM�

b
N�ab. Here z is the

holographic coordinate, R is the AdS radius, and g ¼
j detgMNj ¼ e10AðzÞ. In the following we restrict ourselves
to a conformal-invariant metric with AðzÞ ¼ logðR=zÞ.
The main idea for describing the nucleon in AdS/QCD is

based on the correspondence (see detailed discussion in
Refs. [27,28,32]) between the spinor fields propagating in
the bulk space and the QCD interpolating operators creat-
ing the nucleons on the boundary of AdS space. The
appropriate boundary conditions for the bulk field on the
boundary of AdS space ensure that such correspondence is
precise due to the equivalence of the functional integrals of
both the boundary and bulk theories. In particular, in the
boundary theory (QCD) we define the left- and right-
handed chiral doublets of nucleons OL ¼ ðpL; nLÞT and
OR ¼ ðpR; nRÞT , which are fundamental representations of
the chiral SULð2Þ and SURð2Þ subgroups. Since the chiral
symmetry of the boundary theory is equivalent to the gauge
symmetry in the bulk, we need to introduce the pair of bulk
fermion fields ��ðx; zÞ, which are holographic analogues
of the OR=L operators. In particular, the bulk fields

��ðx; zÞ contain important information about the baryon
structure. On one side, their boundary values (non-
normalizable solutions) are analogues of the sources for
the QCD interpolating operators, which then via the evalu-
ation of the Euclidean generating functionals produce the
correlation functions of QCD operators. On the other side,
these fields contain normalizable modes (these are regular
and therefore are vanishing on the boundary)—profiles in
extra dimension, which correspond to the baryon wave
functions or expectation values of QCD operators. In our
approach the conformal and chiral symmetries are sponta-
neously broken via the introduction of the background field
(dilaton) ’ðzÞ in the effective action. We choose the qua-
dratic dependence of the dilaton on the holographic coor-
dinate z, i.e., ’ðzÞ ¼ �2z2 with � being a free scale
parameter, which scales as Oð ffiffiffiffiffiffi

Nc

p Þ in the large Nc expan-
sion. In particular, later we show that the nucleon (baryon)
mass is proportional to the parameter �, which is consistent
with largeNc QCD:MN � �

ffiffiffiffiffiffi
Nc

p � Nc. The dilaton can be
considered as the expectation value of the scalar bulk field
with dimension 2, which is holographically dual to the
dimension-2 gluon operator A2

�. Therefore, �
2 is related to

the vacuum expectation value (VEV) h	sA
2
�i�Nc and

scales as �� ffiffiffiffiffiffi
Nc

p
. Note, the dimension-2 gluon operator A2

�

has been discussed in the literature (see e.g., Refs. [34–38]).
The interpretation of the dilaton as the quantity dual to the
condensate of the dimension-2 operator has been done in
the framework of the soft-wall model [8] where the dilaton
was introduced in the warping factor, breaking the
conformal-invariant background metric. The main advan-
tage of the dilaton with quadratic profile is the possibility
to produce linear Regge-like trajectories for hadron
masses. On the other hand, a quadratic form of the dilaton
profile is not unique. For example, in the Liu-Tseytlin
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model (a type of top-down AdS/QCD approach) [39], the
conformal invariance is violated by the dilaton, taken in the

form e’ðzÞ ¼ 1þ qz4. The parameter q, according to the
AdS/QCD dictionary [40], is related to the matrix element
of a QCD operator: in particular, the scalar h	sG

2
��i � Nc

and pseudoscalar h	sG��
~G��i � Nc gluon condensates.

An additional source for the breaking of chiral and
conformal symmetries is the coupling of the �þðx; zÞ
and ��ðx; zÞ fields, which is an essential basic block of
hard-wall AdS/QCD approaches. In latter models the con-
formal invariance is broken by the introduction of an IR
brane, cutting the AdS geometry in the z direction. In
addition the couplings of the �þðx; zÞ and ��ðx; zÞ fields
with the scalar bulk field of dimension-3 are included. Due
to the existence of a VEVof this scalar field, the chiral and
conformal invariances are broken. In our approach such a
mechanism could in principle be included; however it is a

higher-order effect since it is generated by operators of
dimension higher than 2. In particular, an extra power of
the holographic coordinate gives the extra power of 1=�,
which scales as 1=

ffiffiffiffiffiffi
Nc

p
. In Appendix A we explicitly

demonstrate how the coupling between �þðx; zÞ and
��ðx; zÞ fields modifies our formalism. In the following
consideration (including the physical applications) we ne-
glect such a coupling.
The relevant AdS/QCD action for the description of the

nucleon electromagnetic and axial form factors is con-
structed in terms of the fermion fields ��;
ðx; zÞ with

spin J ¼ 1=2 and scaling dimension 
 (the isospin index
corresponding to the proton and neutron components is
suppressed for simplicity), the vector field VMðx; zÞ with
spin J ¼ 1 (holographic analogue of the electromagnetic
field) and the axial field AMðx; zÞ (holographic analogue of
the axial isovector field) [18,20,22,24]:

S ¼
Z

d4xdz
ffiffiffi
g

p
e�’ðzÞfL�ðx; zÞ þLVþAðx; zÞ þLintðx; zÞg;

L�ðx; zÞ ¼
X

i¼þ;�

X



c
 ��i;
ðx; zÞD̂iðzÞ�i;
ðx; zÞ;

LVþAðx; zÞ ¼ � 1

4
VMNðx; zÞVMNðx; zÞ � 1

4
AMNðx; zÞAMNðx; zÞ;

Lintðx; zÞ ¼
X

i¼þ;�

X



c
 ��i;
ðx; zÞfV̂ iðx; zÞ þ Âiðx; zÞg�i;
ðx; zÞ;

(2)

where

D̂�ðzÞ ¼ i

2
�M@

$
M � ð�þUFðzÞÞ;

V̂�ðx; zÞ ¼ Q�MVMðx; zÞ � i

4
�V½�M;�N�VMNðx; zÞ � gV
3�

Mi�zVMðx; zÞ;

Â�ðx; zÞ ¼ 
3
2

�
��MAMðx; zÞ þ i

4
�A½�M;�N�AMNðx; zÞ þ gA�

Mi�zAMðx; zÞ
�
:

(3)

Here FMN ¼ @MFN � @NFM (F ¼ V, A) is the stress ten-
sor of the vector (axial) field,Q ¼ diagð1; 0Þ is the nucleon
charge matrix, 
3 ¼ diagð1;�1Þ is the Pauli isospin ma-
trix, A@

$
B � Að@BÞ � ð@AÞB, ’ðzÞ ¼ �2z2 is the dilaton

field with � being a free scale parameter. �M ¼ �Ma �
a and

�a ¼ ð��;�i�5Þ are the five-dimensional Dirac matrices
(we use the chiral representation for the �� and �5 matri-
ces; see details in Appendix B). Note that the non-Abelian
part of the action is irrelevant for the results predicted in
the paper: the mass spectrum, the electromagnetic and
axial isovector form factors of nucleons. The quantity �
is the bulk fermion mass related to the scaling dimension 

as m ¼ �R ¼ 
� 3=2. Notice that the scaling dimension
of the AdS fermion field is holographically identified with
the scaling dimension of the baryon interpolating operator

 ¼ N þ L, where N is the number of partons in the
baryon and L ¼ maxjLzj is the maximal value of the z
component of the quark orbital angular momentum in the
light-front wave function [4,7]. In the following we restrict

to the ground state of nucleons with L ¼ 0. UFðzÞ ¼
’ðzÞ=R is the dilaton field dependent effective potential.
Its presence is necessary due to the following reason. The
form of the potential UFðzÞ is constrained in order to get
solutions of the equations of motion (EOMs) for the fer-
mionic Kaluza-Klein (KK) modes of left and right chi-
rality, and to have the correct asymptotics of the nucleon
electromagnetic form factors at large Q2 [18,20,22].
Notice that the fermion masses m and effective poten-

tials UFðzÞ corresponding to the fields �þ and �� have
opposite signs according to the P-parity transformation
(see details in Appendix B). In particular, the absolute
sign of the fermion mass is related to the chirality of the
boundary operator [27,28]. According to our conventions
the QCD operators OR and OL have positive and negative
chirality, and therefore the mass terms of the bulk fields
�þ and �� have absolute signs ‘‘plus’’ and ‘‘minus,’’
respectively. In Refs. [27,28] a different convention for
left- and right-handed Weyl spinors was used, which is of
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course irrelevant for observable properties. In addition to
the minimal coupling of the fermion with the vector and
the axial fields, we also include other possible (nonmini-
mal) couplings. In particular we introduce (1) a nonmini-
mal coupling of fermion and vector fields in order to
generate the Pauli form factors of the nucleon; and (2) a
minimal-type coupling, which is absent in four dimen-
sions, but exists in five dimensions. In Appendix B we
explicitly demonstrate that these couplings are consistent
with P-, C- and T-parity conservation. We will show that
these terms do not renormalize the electric charge of the
bulk fields and contribute only to the Q2 dependence or to
the slopes of the Dirac nucleon form factors. The coupling
gV is a free parameter which is not constrained by gauge
invariance or discrete symmetries (P-, C- or T-parity con-
servation). We will fix these terms by improving the de-
scription of the electromagnetic nucleon radii. The
diagonal matrix �V ¼ diagf�p

V; �
n
Vg contains the coupling

constrained by the anomalous magnetic moments kp;n of

the nucleons (kp ¼ 1:793 and kn ¼ �1:913 are given in

units of nucleon magnetons or n.m.) as �p;n
V � kp;n � �=mN

where mN is the nucleon mass.
In the case of the axial field we additionally include

(1) the nonminimal coupling of fermion and axial fields,
which does not renormalize the axial charge, but gives a
nontrivial contribution to the Q2 dependence and to the
slope of the corresponding axial isovector form factor of
the nucleon; (2) the axial-type coupling proportional to the
nucleon charge, which defines the leading contribution to
the isovector axial form factor of the nucleon.

The fields�
 describe the AdS fermion field with differ-
ent scaling dimension 
, which in the large Nc expansion
scales as 
� Nc. Restricting to a finite number of colors
Nc ¼ 3, we use 
 ¼ 3, 4, 5, etc. In this paper we restrict to
the three leading contributions 
 ¼ 3, 4 and 5. According
to the AdS/QCD dictionary the fermion field �
¼3 is the
holographic analogue of the nucleon interpolating operator
with twist dimension 3, which means that the correspond-

ing nucleon Fock state contains three valence quarks. The
fermion field�
¼4 effectively models the nucleon operator
with twist-4 (the corresponding Fock state contains 4
partons—3 valence quarks plus a gluon field). Finally,
the fermion field �
¼5 models the nucleon operators
with twist-5. The corresponding Fock states contain 5
partons: (1) 3 valence quarks plus a q �q pair of sea quarks
or (2) 3 valence quarks plus 2 gluons. Therefore, the
coefficients c
 are a set of parameters which take into
account the mixing of AdS fermion fields with different
scaling dimension 
. The set of mixing parameters c
 is
constrained by the correct normalization of the kinetic term
of the four-dimensional spinor field and by charge conser-
vation as

P

c
 ¼ 1 (see details below). In the considera-

tion of the vector (axial) field we apply the axial gauge
VðAÞzðx; zÞ ¼ 0.
In Figs. 1–3 we give an illustration for the inclusion of

twist-3 (Fig. 1), twist-4 (Fig. 2) and twist-5 (Fig. 3) par-
tonic Fock states in the description of electromagnetic
transition between nucleons. Due to the gauge/gravity
duality we identify the respective sets of QCD diagrams
to the corresponding vector-current transition matrix ele-
ments involving the fermion field of corresponding twist
dimension. One should stress that AdS/QCD gives a
unique possibility to describe a set of QCD diagrams just
by one graph (for each partonic content of the nucleon) and
obtain predictions for hadronic observables in analytical
form.
Finalizing our discussion of the 5D effective action (2)

we would like to point out again that it obeys P-, C- and
T-invariance. This action further contains new terms de-
scribing the interaction of vector and axial fields with
fermions, which were not considered before in the context
of AdS/QCD. These new terms do not renormalize the
charge (i.e., vanish at Q2 ¼ 0), but they contribute to the
Q2 dependence and the slopes of the corresponding form
factors. Their relevance for giving a sufficient description
of the data will be shown further on.

FIG. 1 (color online). Gauge/gravity duality between the vector-current transition matrix element involving twist dimension-3
fermion fields in AdS and the electromagnetic matrix elements involving twist-3 partonic Fock states in nucleons.
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A. Mass spectrum

One advantage of the soft-wall AdS/QCD model is that
most of the calculations can be done analytically. In a first
step, we show how in this approach the baryon spectrum
and wave functions are generated. We follow the procedure
pursued in Refs. [18,20,22,24]. Dropping the vector and
axial fields, and rescaling the fermionic fields as

�i;
ðx; zÞ ¼ e’ðzÞ=2c i;
ðx; zÞ; (4)

we remove the dilaton field from the overall exponential. In
terms of the field c 
ðx; zÞ the modified action in the
Lorentzian signature reads as

S0 ¼
Z

d4xdze4AðzÞ
X

i¼þ;�

X



c
 �c i;
ðx; zÞ
�
i6@þ �5@z

þ 2A0ðzÞ�5 � �i

eAðzÞ

R
ðmþ ’ðzÞÞ

�
c i;
ðx; zÞ; (5)

where 6@ ¼ ��@�, �� ¼ �1 and the fermion field

c i;
ðx; zÞ satisfies the following EOM [18,20,22,24]:

�
i6@þ �5@z þ 2A0ðzÞ�5 � eAðzÞ

R
ðmþ’ðzÞÞ

�
c�;
ðx; zÞ ¼ 0:

(6)

Based on these solutions the fermionic action should be
extended by an extra term in the UV boundary (see details
in Refs. [20,32]) in order to guarantee the gauge/gravity
correspondence—equivalence between the AdS functional
integral and the generating functional for correlation func-
tions in QCD.
Next we split the fermion field into left- and right-

chirality components

c i;
ðx; zÞ ¼ c L
i;
ðx; zÞ þ c R

i;
ðx; zÞ;

c L=R
i;
 ðx; zÞ ¼ 1� �5

2
c i;
ðx; zÞ;

�5c L=R
i;
 ðx; zÞ ¼ �c L=R

i;
 ðx; zÞ:
(7)

and perform a KK expansion for the c L=R
i;
 ðx; zÞ fields:

FIG. 2 (color online). Gauge/gravity duality between the vector-current transition matrix element involving twist dimension-4
fermion fields in AdS and the electromagnetic matrix elements involving twist-4 partonic Fock states in nucleons.

FIG. 3 (color online). Gauge/gravity duality between the vector-current transition matrix element involving twist dimension-5
fermion bulk fields in AdS and the electromagnetic matrix elements involving twist-5 partonic Fock states in nucleons.
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c L=R
i;
 ðx; zÞ ¼ 1ffiffiffi

2
p X

n

c L=R
n ðxÞFL=R

i;
;nðzÞ; (8)

where c L=R
n ðxÞ are the four-dimensional boundary fields

(KK modes). These are Weyl spinors forming the Dirac

bispinors c nðxÞ ¼ c L
n ðxÞ þ c R

n ðxÞ, and FL=R
i;
;nðzÞ are the

normalizable profile functions. Due to four-dimensional
P- and C-parity invariance the bulk profiles are related as
(see details in Appendix B)

FR�;
;nðzÞ ¼ �FL�;
;nðzÞ: (9)

Using this constraint in the following we use the simplified
notations

FR

;nðzÞ � FRþ;
;nðzÞ ¼ �FL�;
;nðzÞ;

FL

;nðzÞ � FLþ;
;nðzÞ ¼ FR�;
;nðzÞ:

(10)

Note that the profiles FL=R

;n ðzÞ are the holographic ana-

logues of the nucleon wave functions with specific radial
quantum number n and twist dimension 
 (the latter cor-
responds to the specific partonic content of the nucleon
Fock component), which satisfy the two coupled one-
dimensional EOMs [18,20,22]:�
@z�eA

R
ðmþ’Þþ2A0

�
FL=R

;n ðzÞ¼�Mn
F

R=L

;n ðzÞ: (11)

Therefore, our main idea is to find the solutions for the bulk
profiles of the AdS field in the z direction, and then
calculate the physical properties of hadrons. After straight-
forward algebra one can obtain the decoupled EOMs:�
�@2z � 4A0@z þ e2A

R2
ðmþ ’Þ2 � eA

R
ðA0ðmþ ’Þ þ ’0Þ

� 4A02 � 2A00
�
FL=R

;n ðzÞ ¼ M2

n
F
L=R

;n ðzÞ: (12)

Doing the substitution

FL=R

;n ðzÞ ¼ e�2AðzÞfL=R
;n ðzÞ (13)

we derive the Schrödinger-type EOM for fL=R
;n ðzÞ�
�@2z þ e2A

R2
ðmþ ’Þ2 � eA

R
ðA0ðmþ ’Þ þ ’0Þ

�
fL=R
;n ðzÞ

¼ M2
n
f

L=R

;n ðzÞ: (14)

For AðzÞ ¼ logðR=zÞ, ’ðzÞ ¼ �2z2 we get�
�@2z þ �4z2 þ 2�2

�
m� 1

2

�
þmðm� 1Þ

z2

�
fL=R
;n ðzÞ

¼ M2
n
f

L=R

;n ðzÞ; (15)

where

fL
;nðzÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðnþ1Þ
�ðnþ
Þ

s
�
z
�1=2e��2z2=2L
�1

n ð�2z2Þ; (16)

fR
;nðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðnþ 1Þ

�ðnþ 
� 1Þ

s
�
�1z
�3=2e��2z2=2L
�2

n ð�2z2Þ
(17)

and

M2
n
 ¼ 4�2ðnþ 
� 1Þ (18)

with

Z 1

0
dzfL=R
;n1 ðzÞfL=R
;n2 ðzÞ ¼ �n1n2 : (19)

Here

L

nðxÞ ¼ x�
ex

n!

dn

dxn
ðe�xx
þnÞ (20)

are the generalized Laguerre polynomials. In above for-
mulas we substituted m ¼ 
� 3=2.

One can see that the functions FL=R

;n ðzÞ ¼ e�2AðzÞfL=R
;n ðzÞ

have the correct scaling behavior for small z

FL

;nðzÞ � z
þ3=2; FR


;nðzÞ � z
þ1=2 (21)

when identified with the corresponding nucleon wave
functions with twist 
, and vanish at large z (confinement).
Below, in the discussion of the electromagnetic properties
of the nucleon, we explicitly demonstrate that the Dirac
and Pauli form factors have the correct scaling dependence
at large Q2.
The nucleon mass is identified with the expression

Mn ¼
X



c
Mn
 ¼ 2�
X



c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 
� 1

p
: (22)

Due to the dilaton the chiral and conformal symmetries are
spontaneously broken in our approach. Switching off the
dilaton field (which corresponds to the limit � ¼ 0) leads
to the restoration of the chiral and conformal symmetries.

In particular, the masses of the bulk profiles fL=R
;n ðzÞ and the
nucleon mass vanish in this limit. As we stressed before,
the nucleon (baryon) mass is proportional to the parameter
� and this is consistent with large Nc QCD: MN � �

ffiffiffi



p �
Nc, where 
� Nc. On the other hand, it is known that the
nucleon (baryon) mass is proportional to the quark con-
densate jh �qqij (so-called Ioffe formula) [41]. It means that
our soft-wall model indicates that there could be a relation
between condensates of the dimension-2 gluon operator
OA2 ¼ A2

� and dimension-3 scalar quark-antiquark opera-

torO �qq ¼ �qq. As we show in Appendix A the contribution

of the condensate of the dimension-3 scalar bulk field into
the nucleon mass is suppressed by one order of Nc. It
means that in the dilaton type of the soft-wall model the
dilaton gives the leading contribution to the spontaneous
breaking of chiral symmetry (and therefore to the nucleon
mass) in comparison with the dimension-3 scalar bulk
field.
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Integration over the holographic coordinate z, with the
use of the normalization condition (19) for the profile

functions fL=R
;n ðzÞ, gives a four-dimensional action for the
fermion field c nðxÞ ¼ c L

n ðxÞ þ c R
n ðxÞ:

S0 ¼
X
n

Z
d4x �c nðxÞ½i6@�Mn�c nðxÞ: (23)

This last equation is a manifestation of the gauge-gravity
duality. It explicitly demonstrates that effective actions for
conventional hadrons in four dimensions can be generated
from actions for bulk fields propagating in five-
dimensional AdS space. The effect of the extra dimension
is encoded in the hadronic mass squared (in our case in the
nucleon mass Mn, where n is the radial quantum number),
which is the superposition of the solutions of the
Schrödinger equation (14) for the KK profiles in the extra
dimension. Notice that the constraint

P

c
 ¼ 1 for the

mixing parameters c
 was essential in order to get the
correct normalization of the kinetic term �c nðxÞi6@c nðxÞ
of the four-dimensional spinor field.

B. Electromagnetic structure of nucleons

The nucleon electromagnetic form factors FN
1 and FN

2

(N ¼ p, n correspond to proton and neutron) are conven-
tionally defined by the matrix element of the electromag-
netic current as

hp0jJ�ð0Þjpi ¼ �uðp0Þ½��FN
1 ðtÞ þ

i

2mN

���q�F
N
2 ðtÞ�uðpÞ;

(24)

where q ¼ p0 � p is the momentum transfer and t ¼ q2;
mN is the nucleon mass; and FN

1 and FN
2 are the Dirac and

Pauli form factors, which are normalized to the electric
charge eN and anomalous magnetic moment kN of the
corresponding nucleon: FN

1 ð0Þ ¼ eN and FN
2 ð0Þ ¼ kN .

In our approach the nucleon form factors are generated
by the action

SVint ¼
Z

d4xdz
ffiffiffi
g

p
e�’ðzÞLV

intðx; zÞ (25)

containing the minimal and nonminimal couplings of fer-
mion and vector AdS fields. The expressions for the Dirac
and Pauli nucleon form factors are given by

Fp
1 ðQ2Þ ¼ C1ðQ2Þ þ gVC2ðQ2Þ þ �p

VC3ðQ2Þ;
Fp
2 ðQ2Þ ¼ �p

VC4ðQ2Þ;
Fn
1 ðQ2Þ ¼ �gVC2ðQ2Þ þ �n

VC3ðQ2Þ;
Fn
2 ðQ2Þ ¼ �n

VC4ðQ2Þ;

(26)

where Q2 ¼ �t and CiðQ2Þ are the structure integrals:

C1ðQ2Þ¼1

2

Z 1

0
dzVðQ;zÞX




c
ð½fL
 ðzÞ�2þ½fR
 ðzÞ�2Þ;

C2ðQ2Þ¼1

2

Z 1

0
dzVðQ;zÞX




c
ð½fR
 ðzÞ�2�½fL
 ðzÞ�2Þ;

C3ðQ2Þ¼1

2

Z 1

0
dzz@zVðQ;zÞX




c
ð½fL
 ðzÞ�2�½fR
 ðzÞ�2Þ;

C4ðQ2Þ¼2mN

Z 1

0
dzzVðQ;zÞX




c
f
L

 ðzÞfR
 ðzÞ: (27)

The functions fR=L
 ðzÞ � fR=L
;n¼0ðzÞ are the bulk profiles of

fermions with n ¼ 0 (corresponding to the ground-state
nucleon with radial quantum number n ¼ 0) found in the
previous subsection:

fL
 ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2

�ð
Þ

s
�
z
�1=2e��2z2=2; (28)

fR
 ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�ð
� 1Þ

s
�
�1z
�3=2e��2z2=2: (29)

VðQ; zÞ is the bulk-to-boundary propagator of the trans-
verse massless vector bulk field (the holographic analogue
of the electromagnetic field) defined as

V�ðx; zÞ ¼
Z d4q

ð2�Þ4 e
�iqxV�ðqÞVðq; zÞ (30)

and obeys the following EOM:

@z

�
e�’ðzÞ

z
@zVðq; zÞ

�
þ q2

e�’ðzÞ

z
Vðq; zÞ ¼ 0; (31)

which is derived from the action

SV ¼
Z

d4xdz
ffiffiffi
g

p
e�’ðzÞLVðx; zÞ: (32)

In the soft-wall model the solution for VðQ; zÞ is given in
analytical form in terms of the Gamma �ðnÞ and Tricomi
Uða; b; zÞ functions:

VðQ; zÞ ¼ �

�
1þ Q2

4�2

�
U

�
Q2

4�2
; 0; �2z2

�
: (33)

The bulk-to-boundary propagator VðQ; zÞ obeys the nor-
malization condition Vð0; zÞ ¼ 1 consistent with gauge
invariance and fulfills the following ultraviolet (UV) and
infrared (IR) boundary conditions:

VðQ; 0Þ ¼ 1; VðQ;1Þ ¼ 0: (34)

The UV boundary condition corresponds to the local
(structureless) coupling of the electromagnetic field to
matter fields, while the IR boundary condition implies
that the vector field vanishes at z ¼ 1.
In order to obtain analytical expressions for the func-

tions CiðQ2Þ (see Appendix C) it is convenient to use the
integral representation for VðQ; zÞ introduced in Ref. [11]
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VðQ; zÞ ¼ �2z2
Z 1

0

dx

ð1� xÞ2 x
ðQ2=4�2Þe�ðð�2z2x=ð1�xÞÞ; (35)

where the variable x is equivalent to the light-cone mo-
mentum fraction [5].

There are a few very important properties of the CiðQ2Þ
functions. At Q2 ¼ 0 they are normalized as

C1ð0Þ ¼ 1; C2ð0Þ ¼ C3ð0Þ ¼ 0;

C4ð0Þ ¼ 2mN

�

X



c

ffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p
:

(36)

The normalizations of Ci (i ¼ 1, 2, 3) are consistent with
gauge invariance (the charge normalization for nucleons).
In particular, this means that the proton and neutron Dirac
form factors are normalized accordingly:

Fp
1 ð0Þ ¼ 1; Fn

1 ð0Þ ¼ 0: (37)

Here we take into account the constraint
P


c
 ¼ 1 of the
mixing parameters c
, which is also essential to get the
correct normalization of the kinetic term of the four-
dimensional spinor field on the boundary of AdS space.
The anomalous magnetic moments of the nucleons N ¼ p,
n are given by

�N ¼ �N
VC4ð0Þ ¼ 2�N

VmN

�

X



c

ffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p
: (38)

In the analysis of the electromagnetic form factors we will
use the dipole formula

GDðQ2Þ ¼ 1

ð1þQ2=�2Þ2 ; (39)

where �2 ¼ 0:71 GeV2.

C. Axial isovector form factor of nucleons

The nucleon isovector axial form factorGAðtÞ is conven-
tionally defined by the matrix element of the axial isovec-
tor current as

hp0jA�
3 ð0Þjpi ¼ �uðp0Þ

�
��GAðtÞ þ q�

2mN

GPðtÞ
�
�5 
3

2
uðpÞ;
(40)

which is normalized to the nucleon axial charge
GAð0Þ ¼ gA.

In our approach the GAðQ2Þ form factor is generated
by the action

SAint ¼
Z

d4xdz
ffiffiffi
g

p
e�’ðzÞLA

intðx; zÞ (41)

containing the minimal and nonminimal couplings of
fermion and axial-vector AdS fields. The expression for
the axial isovector nucleon form factor is given by

GAðQ2Þ ¼ gAD1ðQ2Þ þD2ðQ2Þ þ �AD3ðQ2Þ; (42)

where DiðQ2Þ are the structure integrals:

D1ðQ2Þ ¼ 1

2

Z 1

0
dzAðQ; zÞX




c
ð½fL
 ðzÞ�2 þ ½fR
 ðzÞ�2Þ;

D2ðQ2Þ ¼ 1

2

Z 1

0
dzAðQ; zÞX




c
ð½fL
 ðzÞ�2 � ½fR
 ðzÞ�2Þ;

D3ðQ2Þ ¼ � 1

2

Z 1

0
dzz@zAðQ; zÞX




c
ð½fL
 ðzÞ�2 þ ½fR
 ðzÞ�2Þ:

(43)

Now AðQ; zÞ is the bulk-to-boundary propagator of the
transverse massless axial bulk field (the holographic ana-
logue of the axial isovector field). In our approximation it
coincides with VðQ; zÞ. The functions DiðQ2Þ at Q2 ¼ 0
are normalized as

D1ð0Þ ¼ 1; D2ð0Þ ¼ D3ð0Þ ¼ 0: (44)

As in the case of the Ci functions these results are based on

the normalization properties of the bulk profiles fR=LðzÞ
and the constraint condition

P

c
 ¼ 1.

Our prediction for the form factor GAðQ2Þ will be com-
pared to the dipole fit formula

GD
A ðQ2Þ ¼ gA

ð1þQ2=M2
AÞ2

(45)

extracted from neutrino scattering experiments, where
MA ¼ 1:026� 0:021 GeV [42].

III. RESULTS

In this section we present the related numerical analysis
of nucleon properties: magnetic moments (�p ¼ 1þ �p,

�n ¼ �n), electromagnetic and axial radii (rpE, hr2Ein, rpM,
rnM, rA), isovector axial and electromagnetic Dirac, Pauli,
and Sachs form factors and their ratios in the Euclidean
region.
We first want to recall the definitions of the Sachs form

factors GE=MðQ2Þ, the electromagnetic hr2E=MiN and iso-

vector axial hr2Ai radii:

GN
E ðQ2Þ ¼ FN

1 ðQ2Þ � Q2

4m2
N

FN
2 ðQ2Þ;

GN
MðQ2Þ ¼ FN

1 ðQ2Þ þ FN
2 ðQ2Þ;

hr2EiN ¼ �6
dGE

NðQ2Þ
dQ2

��������Q2¼0
;

hr2MiN ¼ � 6

GN
Mð0Þ

dGN
MðQ2Þ
dQ2

��������Q2¼0
;

hr2Ai ¼ � 6

GAð0Þ
dGAðQ2Þ
dQ2

��������Q2¼0
;

(46)

with GN
Mð0Þ � �N and GAð0Þ � gA.

The five free parameters �, c3, c4, gV and �A are fixed to
the values
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� ¼ 383 MeV; c3 ¼ 1:25; c4 ¼ 0:16;

gV ¼ 0:3; �A ¼ 0:5:
(47)

Note that the parameter c5 is expressed through c3
and c4 as

c5 ¼ 1� c3 � c4 ¼ �0:41: (48)

Here the parameters c3, c4 are constrained by the nucleon
mass. The parameter � is fixed by the nucleon mass and the
electromagnetic radii. The parameters gV and �A are fitted
by fine-tuning of the neutron electromagnetic and nucleon
axial radius, respectively. Notice also that the other pa-
rameters are fixed by the magnetic moments and the axial
charge of nucleons and should not be counted as free
parameters:

gA ¼ 1:270; �p
V ¼ �ð�p � 1Þ

2mNC0

¼ 0:30;

�n
V ¼ ��n

2mNC0

¼ �0:32; C0 ¼
ffiffiffi
2

p
c3 þ

ffiffiffi
3

p
c4 þ 2c5:

(49)

In Table I we present the results for the nucleon mass and
the electroweak properties of nucleons. Results for the
nucleon electromagnetic form factors in comparison to
known data are shown in Figs. 4–14. In particular, in
Figs. 4, 6, and 7 we present the ratios of proton charge
and nucleon magnetic form factors to the dipole form
factor GD. In Fig. 5 we present the results for the ratio
�pG

p
EðQ2Þ=Gp

MðQ2Þ. In Figs. 8 and 9 we present the pre-

diction for the charge neutron form factor and the ratio
Gn

EðQ2Þ=Gn
MðQ2Þ. In Figs. 10 and 11 we present the pre-

dictions for the Dirac nucleon form factors multiplied by
Q4. Figures 12 and 13 show the ratios of the Pauli and
Dirac form factors of the proton multiplied with Q2 and
with Q2=log2ðQ2=�2Þ, where � ¼ 0:3 GeV. Finally, in
Fig. 14 we present the predictions for the ratio of the
nucleon axial isovector form factor to the dipole form
factor GD

A ðQ2Þ.
We demonstrated that the soft-wall holographic model

in the semiclassical approximation reproduces the main
features of the electromagnetic structure of the nucleon. In

particular, we achieved the following results: the analytical
power scaling of the elastic nucleon form factors at large
momentum transfers in accordance with quark-counting
rules; reproduction of experimental data for magnetic mo-
ments and electromagnetic radii.
One can see that with a minimal number of free parame-

ters (five parameters) we obtain a reasonable description of

TABLE I. Mass and electromagnetic properties of nucleons.

Quantity Our results Data [42]

mp (GeV) 0.938 27 0.938 27

�p (in n.m.) 2.793 2.793

�n (in n.m.) �1:913 �1:913
gA 1.270 1.2701

rpE (fm) 0.840 0:8768� 0:0069
hr2Ein (fm2) �0:117 �0:1161� 0:0022
rpM (fm) 0.785 0:777� 0:013� 0:010
rnM (fm) 0.792 0:862þ0:009

�0:008

rA (fm) 0.667 0:67� 0:01

FIG. 4. Ratio Gp
EðQ2Þ=GDðQ2Þ. Experimental data are taken

from Refs. [44–51].

FIG. 5. Ratio �pG
p
EðQ2Þ=Gp

MðQ2Þ in comparison to the experi-
mental data taken from Refs. [51–55].
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the nucleon electromagnetic and axial-vector form factors
including the correct power scaling at large Q2. It demon-
strates that the soft-wall model successfully describes nu-
cleon structure at any resolution scale. In a next step, one
can include effects of quark masses and extend the ap-
proach to nucleon resonances, light baryons with higher
spins, strange and heavy baryons.

IV. SUMMARY

We presented a soft-wall model which allows us to
include higher Fock states in the analysis of the nucleon
structure. This approach is based on an action which
describes hadrons with broken conformal invariance and
incorporates confinement through the presence of a back-
ground dilaton field. For Nc ¼ 3 the nucleon is described

FIG. 6. Ratio Gp
MðQ2Þ=ð�pGDðQ2ÞÞ. Experimental data are

taken from Refs. [51–53].

FIG. 7. Ratio Gn
MðQ2Þ=ð�nGDðQ2ÞÞ. Experimental data are

taken from Refs. [56–65].

FIG. 8. The charge neutron form factor Gn
EðQ2Þ. Experimental

data are taken from Refs. [66–74].

FIG. 9. Ratio Gn
EðQ2Þ=Gn

MðQ2Þ. Experimental data are taken
from Refs. [75].
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in terms of a superposition of the three-valence quark state
with high Fock states with an adjustable number of partons
(quarks, antiquarks and gluons). Its structure is determined
by studying the dynamics of 5D fermion fields of different
scaling dimension in AdS space. According to the gauge/
gravity duality the 5D fermion fields of different scaling

dimension correspond to Fock state components with a
specific number of partons. For the first application we
restrict ourselves to the contribution of 3, 4, and 5 parton
components in the nucleon Fock state. The role of higher

FIG. 10. Proton Dirac form factor multiplied with Q4.
Experimental data are taken from Ref. [76].

FIG. 11. Neutron Dirac form factor multiplied with Q4.
Experimental data are taken from Ref. [76].

FIG. 12. Results for Q2Fp
2 ðQ2Þ=Fp

1 ðQ2Þ. The solid line is the
prediction of the soft-wall AdS/QCD model and the dashed line
is the approximation of data suggested in Ref. [77].
Experimental data are taken from Refs. [48,50,53,55,78–82].

FIG. 13. Results for Q2Fp
2 ðQ2Þ=Fp

1 ðQ2Þ=log2ðQ2=�2Þ at
� ¼ 0:3 GeV. Experimental data are taken from
Refs. [48,50,53,55,78–82].
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Fock components in the context of holographic QCD has
been already considered in the case of the pion [19,33]. In
particular, two components (q �q and q �qq �q) were included
in the expansion of the pion wave function, which was then
used in the calculation of pion electromagnetic and ����0

transition form factors. It was further argued that the
components containing gluons (e.g., q �qg) are absent in
the confinement potential. In our case the contribution of
the twist-4 component containing three constituent quarks
and a single gluon is not zero, but is suppressed, which is
partially in line with the conclusion of Refs. [19,33]. On
the other hand, our mechanism generating the inclusion of
higher Fock states is different from the one suggested in
Refs. [19,33]. Additionally, the pion and the nucleon are
quite different hadronic bound states, and therefore, the
role of Fock states containing gluons could be different.
We think that this issue requires further investigation.

We presented a detailed analysis of nucleon electro-
magnetic and axial form factors. With a minimal number
of free parameters (dilaton scale parameter, mixing pa-
rameters of the partial contributions of Fock states, and a
few coupling constants in the effective Lagrangian) we
achieved a reasonable agreement with data for the nu-
cleon electromagnetic and axial isovector form factors.
Note that all form factors have the correct scaling at large
Q2. As next applications we plan to extend our approach
to nucleon resonances (e.g., Roper) and baryons with
strangeness. There is also a possibility to study nuclear
systems using methods of AdS/QCD via studying dynam-
ics of 5D fields of higher dimensions, which holograph-
ically correspond to nuclei with a specific number of
nucleons and electrons.
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APPENDIX A: COUPLING OF �þðx; zÞAND
��ðx; zÞ FERMION FIELDS

Following Ref. [27] we introduce the Yukawa-type
coupling of �þðx; zÞ and ��ðx; zÞ fields with the bulk
scalar field Xðx; zÞ dual to the dimension-3 quark operator
Oq ¼ �qq:

L Yðx; zÞ ¼ � g

R
ð ���ðx; zÞXðx; zÞ�þðx; zÞ

þ ��þðx; zÞXyðx; zÞ��ðx; zÞÞ; (A1)

where g is the coupling constant, which scales in large Nc

expansion as g� ffiffiffiffiffiffi
Nc

p
. As originally was shown, the VEV

of the scalar bulk field X0ðzÞ is the linear combination of
two solutions (see e.g., Ref. [3]), which for asymptotically
small z behaves as

X0ðzÞ ! 1

2
m̂zþ 1

2
�z3; (A2)

where m̂ is the current quark mass and � ¼ jh �qqij is quark
condensate in the chiral limit m̂ ! 0. On the other hand, in
the original soft-wall model the IR asymptotics z ! 1
dictates that � is simply proportional to m̂ which is in
contradiction with QCD. It was suggested to include in the
effective action the potential containing higher-order terms
in the scalar field to resolve the problem �� m̂. Later in
Ref. [13] this idea was realized by adding a quartic term
�X4ðx; zÞ in the effective action. At the same time in
Ref. [43] it was noticed that the scalar operator Oq and

its source Jq can always be rescaled by a constant a

O q ! aOq; Jq ! Jq=a (A3)

keeping the product JqOq unchanged. Then using the

arguments of large Nc QCD it was shown that the constant
a must scale as a� 1=

ffiffiffiffiffiffi
Nc

p
. Therefore, according to the

large Nc QCD the VEV of the scalar field must obey the
following expansion:

X0ðzÞ !
ffiffiffiffiffiffi
Nc

p
2

m̂zþ 1

2
ffiffiffiffiffiffi
Nc

p �z3; (A4)

FIG. 14. Results for GAðQ2Þ=GD
A ðQ2Þ.
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where �� Nc. It means that the contribution of the VEV
of the scalar field gX0ðzÞ scales as OðNcÞ. Inclusion of
cþ and c� mixing modifies the EOM for the fermion
fields (6) as�
i6@þ �5@z þ 2A0ðzÞ�5 � eAðzÞ

R
ðmþ ’ðzÞÞ

�
c�;
ðx; zÞ

¼ gX0ðzÞc�;
ðx; zÞ: (A5)

After straightforward calculations we get the following

EOMs for the fL=R
;n ðzÞ profiles:�
�@2z þ e2A

R2
ðmþ ’Þ2 � eA

R
ðA0ðmþ ’Þ þ ’0Þ

� gX0ðzÞ
~Mn
 � gX0ðzÞ

þ g2X2
0ðzÞ

�
~fL=R
;n ðzÞ ¼ ~M2

n

~fL=R
;n ðzÞ:

(A6)

Here the symbol ‘‘tilde’’ on the top of the solutions ~fL=R
;n ðzÞ
and ~Mn
 means that they differ from the set fL=R
;n ðzÞ and
Mn
 in the case when we neglect the mixing of�þ and��
fermion fields. One can see that inclusion of the gX0ðzÞ
term gives a deviation of the mass spectra from a Regge-
like trajectory. Let us estimate the contribution of the
gX0ðzÞ term perturbatively using the solutions obtained
for the case of a pure dilaton contribution [see Eq. (16)].
In particular, the nucleon mass shift�MN due to the gX0ðzÞ
term is given by

�MN ¼X



c
�Mn
; (A7)

where

�Mn
 ¼g

2

Z 1

0

dz

z
X0ðzÞ½ðfL
;nðzÞÞ2�ðfR
;nðzÞÞ2�¼ gffiffiffiffiffiffi

Nc

p �

4�2
:

(A8)

One can see that the term with current quark mass exactly
vanishes and �Mn
 does not depend on twist 
. Therefore,
using our condition

P

c
 ¼ 1 we get for the shift of the

nucleon mass

�MN ¼ gffiffiffiffiffiffi
Nc

p �

4�2
� N0

c : (A9)

As we stressed before, the contribution of the VEV scalar
field with dimension 3 is suppressed in comparison to the

dilaton contribution encoding the VEV of the scalar field
with dimension 2 by a factor 1=Nc.
Using a typical value for the quark condensate � ¼

ð0:225 GeVÞ3 and the value of � ¼ 0:383 GeV we get
the estimate of

�MN ¼ gffiffiffiffiffiffi
Nc

p 0:02 GeV: (A10)

Then taking the typical values of the coupling g ’ 10 used
in hard-wall approaches [27] we finally get �MN ’
115 MeV for Nc ¼ 3.

APPENDIX B: P-, C- AND T-PARITY
TRANSFORMATIONS OF BULK FIELDS

IN ADS SPACE

We use the chiral representation for the four-
dimensional Dirac matrices �� and �5:

�0 ¼ 0 1

1 0

 !
; �i ¼ 0 �i

��i 0

 !
;

�5 ¼ �1 0

0 1

 !
:

(B1)

The ð12 ; 0Þ left- and ð0; 12Þ right-handed Weyl spinors

c L=RðxÞ ¼ 1��5

2 c ðxÞ are eigenstates of the chirality

operator

�5c L=R ¼ �c L=R (B2)

and they form the ð12 ; 0Þ 	 ð0; 12Þ Dirac bispinor c ¼
ðc L; c RÞT .
The P-parity transformations of the fermion fields c L=R,

c are defined as (hereUP stands for the unitary operator of
P-parity transformation):

U�1
P c L=Rðt; ~xÞUP ¼ �0c R=Lðt;� ~xÞ and

U�1
P c ðt; ~xÞUP ¼ �0c ðt;� ~xÞ;

U�1
P

�c L=Rðt; ~xÞUP ¼ �c R=Lðt;� ~xÞ�0 and

U�1
P

�c ðt; ~xÞUP ¼ �c ðt;� ~xÞ�0:

(B3)

Next we define the P-parity transformations of the five-
dimensional bulk fields (1=2-fermion, vector and axial
fields; in case of 1=2-fermion fields we drop the summation
over radial quantum number):

U�1
P �
;�ðt; ~x; zÞUP ¼ ��0�5�
;�ðt;� ~x; zÞ;

U�1
P

��
;�ðt; ~x; zÞUP ¼ � ��
;�ðt;� ~x; zÞ�0�5;

U�1
P ðV0ðt; ~x; zÞ; Viðt; ~x; zÞ; 0ÞUP ¼ ðV0ðt;� ~x; zÞ;�Viðt;� ~x; zÞ; 0Þ;

U�1
P ðA0ðt; ~x; zÞ; Aiðt; ~x; zÞ; 0ÞUP ¼ �ðA0ðt;� ~x; zÞ;�Aiðt;� ~x; zÞ; 0Þ:

(B4)

From the above equations we get the following conditions between the bulk profiles of fermion fields:

NUCLEON STRUCTURE INCLUDING HIGH FOCK STATES . . . PHYSICAL REVIEW D 86, 036007 (2012)

036007-13



FR�ðzÞ ¼ �FL�ðzÞ: (B5)

Using the transformation of bulk fields it is easy to demonstrate that the effective Lagrangian/action of our model is
P-parity invariant (some terms transform among themselves). In particular, we get

U�1
P

���;
ðt; ~x; zÞ��;
ðt; ~x; zÞUP ¼ � ���;
ðt;� ~x; zÞ��;
ðt; ~x; zÞ;
U�1

P
���;
ðt; ~x; zÞD̂�ðzÞ��;
ðt; ~x; zÞUP ¼ ���;
ðt;� ~x; zÞD̂�ðzÞ��;
ðt; ~x; zÞ;

U�1
P

���;
ðt; ~x; zÞV̂�ðt; ~x; zÞ��;
ðt; ~x; zÞUP ¼ ���;
ðt;� ~x; zÞV̂�ðt;� ~x; zÞ��;
ðt;� ~x; zÞ;
U�1

P
���;
ðt; ~x; zÞÂ�ðt; ~x; zÞ��;
ðt; ~x; zÞUP ¼ ���;
ðt;� ~x; zÞÂ�ðt;� ~x; zÞ��;
ðt;� ~x; zÞ;

(B6)

and therefore

U�1
P L�ðt; ~x; zÞUP ¼ L�ðt;� ~x; zÞ; U�1

P LVþAðt; ~x; zÞUP ¼ LVþAðt;� ~x; zÞ;
U�1

P Lintðt; ~x; zÞUP ¼ Lintðt;� ~x; zÞ; U�1
P SUP ¼ S;

(B7)

where S is the effective action of our approach. Note, in the consideration of the vector (axial) field we apply the axial
gauge VðAÞzðx; zÞ ¼ 0.

Charge conjugation of four-dimensional spinors, vector and axial fields is defined with the use of the corresponding
unitary operator UC as

U�1
C c ðxÞUC ¼ C �c TðxÞ; U�1

C
�c ðxÞUC ¼ c TðxÞC; U�1

C c L=RðxÞUC ¼ C �c T
R=LðxÞ;

U�1
C

�c L=RðxÞUC ¼ c T
R=LðxÞC; U�1

C V�ðxÞUC ¼ �V�ðxÞ; U�1
C A�ðxÞUC ¼ A�ðxÞ;

(B8)

where

C ¼ i�0�2; CT ¼ Cy ¼ C�1 ¼ �C: (B9)

C transformations of AdS fields read as

U�1
C c�ðx; zÞUC ¼ �C�5 �c T�ðx; zÞ; U�1

C
�c�ðx; zÞUC ¼ �c T�ðx; zÞ�5C;

U�1
C VMðx; zÞUC ¼ �VMðx; zÞ; U�1

C AMðx; zÞUC ¼ AMðx; zÞ:
(B10)

Therefore, one can straightforwardly prove that all terms of the effective action are C-invariant when the relation for the
bulk profiles (B5) holds, e.g.,

U�1
C

�c�ðx; zÞc�ðx; zÞUC ¼ � �c�ðx; zÞc�ðx; zÞ;
U�1

C
�c�ðx; zÞ�MVMðx; zÞc�ðx; zÞUC ¼ �c�ðx; zÞ�MVMðx; zÞc�ðx; zÞ;

U�1
C

�c�ðx; zÞ�MAMðx; zÞc�ðx; zÞUC ¼ � �c�ðx; zÞ�MAMðx; zÞc�ðx; zÞ;
U�1

C
�c�ðx; zÞ�Mi�zVMðx; zÞc�ðx; zÞUC ¼ � �c�ðx; zÞ�Mi�zVMðx; zÞc�ðx; zÞ;

U�1
C

�c�ðx; zÞ�Mi�zAMðx; zÞc�ðx; zÞUC ¼ �c�ðx; zÞ�Mi�zAMðx; zÞc�ðx; zÞ;

(B11)

etc. We therefore have U�1
C SUC ¼ S.

The T-parity transformation of four-dimensional spinors, vector and axial fields is defined with the use of corresponding
antiunitary operator UT as

U�1
T c ðt; ~xÞUT ¼ Tc ð�t; ~xÞ; U�1

T
�c ðt; ~xÞUT ¼ � �c ð�t; ~xÞT;

U�1
T c L=Rðt; ~xÞUT ¼ Tc L=Rð�t; ~xÞ; U�1

T
�c L=Rðt; ~xÞUT ¼ � �c L=Rð�t; ~xÞT;

U�1
T ðV0ðt; ~xÞ; Viðt; ~xÞÞUT ¼ ðV0ð�t; ~xÞ;�Við�t; ~xÞÞ; U�1

T ðA0ðt; ~xÞ; Aiðt; ~xÞÞUT ¼ ðA0ð�t; ~xÞ;�Aið�t; ~xÞÞ;
(B12)

where

T ¼ ��1�3; TT ¼ Ty ¼ T�1 ¼ �T: (B13)

The T transformations of the AdS fields read as
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U�1
T c�ðt; ~x; zÞUT ¼ Tc�ð�t; ~x; zÞ; U�1

T
�c�ðt; ~x; zÞUT ¼ � �c�ð�t; ~x; zÞT;

U�1
T ðV0ðt; ~x; zÞ; Viðt; ~xÞ; 0ÞUT ¼ ðV0ð�t; ~x; zÞ;�Við�t; ~x; zÞ; 0Þ;

U�1
T ðA0ðt; ~x; zÞ; Aiðt; ~x; zÞ; 0ÞUT ¼ ðA0ð�t; ~x; zÞ;�Aið�t; ~x; zÞ; 0Þ:

(B14)

Therefore, one can straightforwardly prove that all terms of the effective action are separately T-invariant and
U�1

T SUT ¼ S.
APPENDIX C: STRUCTURE INTEGRALS IN THE ADS/QCD MODEL

The Ci and Di functions defining the nucleon form factors are given by

C1ðQ2Þ¼D1ðQ2Þ¼X



c
Bðaþ1;
Þ
�

þa

2

�
; C2ðQ2Þ¼�D2ðQ2Þ¼a

2

X



c
Bðaþ1;
Þ;

C3ðQ2Þ¼a
X



c
Bðaþ1;
þ1Það
�1Þ�1



; C4ðQ2Þ¼2mN

�

X



c
ðaþ1þ
ÞBðaþ1;
þ1Þ ffiffiffiffiffiffiffiffiffiffiffi

�1

p
;

D3ðQ2Þ¼a
X



c
Bðaþ1;
þ1Það
�1Þþ2
2�1



;

(C1)

where a ¼ Q2=ð4�2Þ and

Bðm; nÞ ¼ �ðmÞ�ðnÞ
�ðmþ nÞ (C2)

is the Beta function.
The slopes

CðDÞ0ið0Þ ¼
dCðDÞiðQ2Þ

dQ2

��������Q2¼0
(C3)

of the CðDÞi functions are given by

C0
1ð0Þ¼D0

1ð0Þ¼� 1

8�2

X



c


�
1



þ2ðc ð
Þ�c ð1ÞÞ

�
; C0

2ð0Þ¼�D0
2ð0Þ¼

1

8�2

X



c



; C0

3ð0Þ¼� 1

4�2

X



c


ð
þ1Þ ;

C0
4ð0Þ¼�mN

2�3

X



c

ffiffiffiffiffiffiffiffiffiffiffi

�1

p �
1



þc ð
Þ�c ð1Þ

�
; D0

3ð0Þ¼
1

4�2

X



c

2
2�1


ð
þ1Þ ;
(C4)

where

c ð
Þ ¼ d logð�ð
ÞÞ
d


¼ 1

�ð
Þ
d�ð
Þ
d


(C5)

is the Digamma function obeying the recurrence formula c ð
þ 1Þ ¼ c ð
Þ þ 1=
.
It is easy to see that the functions CiðQ2Þ and DiðQ2Þ scale at Q2 ! 1 as

C
asym
1 ðQ2Þ ¼ C

asym
2 ðQ2Þ ¼ D

asym
1 ðQ2Þ ¼ �D

asym
2 ðQ2Þ ¼ 1

2

X



c

�ð
Þ
a
�1

; C
asym
3 ðQ2Þ ¼ D

asym
3 ðQ2Þ ¼ �X




c

�ð
Þð
� 1Þ

a
�1
;

Casym
4 ðQ2Þ ¼ 2mN

�

X



c

�ð
þ 1Þ

a

ffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p
: (C6)

From these considerations it is clear that the leading twist 
 ¼ 3 contributions to the nucleon form factors scale as

FN
1 ðQ2Þ� 1

Q4
; FN

2 ðQ2Þ� 1

Q6
; GAðQ2Þ� 1

Q4
: (C7)
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