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The high rates of multiparton interactions at the LHC can provide a unique opportunity to study the

multiparton structure of the hadron. To this purpose high-energy collisions of protons with nuclei are

particularly suitable. The rates of multiparton interactions depend, in fact, both on the partonic multi-

plicities and on the distributions of partons in transverse space, which produce different effects on the

cross section in pA collisions, as a function of the atomic mass number A. Differently with respect to the

case of multiparton interactions in pp collisions, the possibility of changing the atomic mass number thus

provides an additional handle to distinguish the diverse contributions. Some relevant features of double

parton interactions in pD collisions have been discussed in a previous paper. In the present paper we show

how the effects of double and triple correlation terms of the multiparton structure can be disentangled, by

comparing the rates of multiple parton interactions in collisions of protons with D, 3H, and 3He.
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I. INTRODUCTION

The experimental evidence [1–6] and the beginning of
the operations at the LHC have recently triggered a lot of
attention about the problem of multiple parton interactions
(MPI) in high-energy pp collisions. Several papers have
been written on the topic in the last few months and four
international workshops have been organized on the theme
[7–12]. Issues discussed in the literature range from esti-
mates of the contributions of MPI in various reaction
channels of particular interest for the LHC physics
[13–24] to the effects on the global features of the inelastic
event and of the underlying event [25–33], the QCD evo-
lution of the double parton distributions [34–36] and the
general formulation of MPI within QCD [37–50].
Somewhat less attention has been devoted to the study of
MPI in hadron-nucleus collisions, although all effects
of MPI are sizably enhanced in that case as a consequence
of the much larger parton flux [51–53]. In our opinion, a
good reason to pay more attention to pA collisions in this
context is that, when studied jointly with pp, MPI in pA
collisions can provide a unique handle to study some
aspects of the multiparton structure of the hadron [54].

In spite of being directly related to the multiparton
distribution functions, MPI in pp collisions can in fact
provide only partial information on the multiparton distri-
butions. Because of the localization of the large momen-
tum transfer processes, the incoming parton flux and thus
the multiparton distribution functions depend explicitly on
the relative transverse distances between the interacting

parton pairs [55,56]. At the same time, correlations in the
hadron structure will prevent expressing the multiparton
distributions as an uncorrelated product of one-body dis-
tribution functions [57]. The rates of MPI will therefore
depend both on the typical relative transverse parton dis-
tances and also on the moments of the multiparton distri-
bution in multiplicity. In the case of MPI in pp collisions,
the two features are unavoidably linked in the measured
cross section [54,58] and, as a consequence, only partial
information on the multiparton distributions can be ob-
tained by measuring MPI in pp collisions.
On the other hand, MPI in pA collisions can provide a

further handle for a deeper insight into the correlated
multiparton structure [54,58]. In pA collisions the MPI
cross section is a function of the multiplicity of the target
nucleons. In the case of two or more target nucleons, the
dimensional scale factor, characterizing each MPI event, is
provided both by the hadronic parameters, radius and
partonic correlation length, and by the nuclear size. The
hadronic scale measured with the generalized parton dis-
tributions [59] is rather small compared to the nuclear
scale, which thus acquires a dominant role even in the
case of light nuclei. When two or more target nucleons
take part in the hard interaction, the contributions to the
double parton scattering cross section in pA collisions
therefore depend only weakly on the hadronic dimensions.
By studying MPI in pA collisions, one can thus single out
the effects of the moments in multiplicity of the multi-
parton distributions from the effects due to the correlations
in the transverse parton coordinates.
StudyingMPI in pA is simpler in the case of light nuclei,

where the binding is not very strong: in this case the
structure of the nucleon is not much affected by the
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binding, and the nonrelativistic form of the wave function
in the rest frame of the nucleus is appropriate. In such a
case it is simple enough to construct the boost, which
allows us to move from the rest frame of the nucleus,
where the wave function is given, to the hadron-nucleon
rest frame, which is most suitable to describe the collision
and where the relativistic expression of the nuclear wave
function is compulsory [58,60]. Some relevant features of
double parton collisions in proton-deuteron interactions
have been discussed in a previous article [58]. In the
present paper we will extend the analysis to the case of
double and triple parton collisions of protons with deute-
rium, 3H, and 3He; the main results presented in [58] will
be reviewed and completed.

The paper is organized as follows: the processes are
described in a covariant way, using the formalism of
Feynman graphs supplemented by effective vertices for
the nonperturbative dynamics. The resulting expression is
then reduced to a form containing the fractional longitudi-
nal momenta and the transverse coordinates. The use of the
nonrelativistic nuclear wave function in the relativistic
process is justified by the same argument as in our previous
study of double parton interactions in pD collisions [58].
The only difference concerns the technicalities, which are
heavier when considering the three-body dynamics of a
nonrelativistic nuclear bound state (the problem is discus-
sion in detail in Appendix A). Concerning the double and
triple parton distributions, to remain as general as possible,
we have not introduced any explicit expression with cor-
relation parameters. Rather, we have limited our discussion
to the actual relations between the observables (namely, the
MPI cross sections) and nonperturbative quantities, char-
acterizing the double and triple parton distributions,
directly related to the correlated multiparton structure:
namely, the various overlap integrals, with a strong

dependence on the partonic correlations in transverse
space, and the two functions of fractional momenta (one
for the double and one for the triple multiparton distribu-
tions) representing the deviation of the parton population
from an uncorrelated, i.e. Poissonian, distribution. A sim-
ple and fully explicit correlated Gaussian model, where
all quantities are worked out in detail, is presented in
Appendix B.
We anticipate a feature that has no analogy in the case of

MPI in pp collisions. The spread of the momenta of the
bound nucleons will allow one to produce the same initial
partonic configuration in different ways. MPI in pA colli-
sions is thus characterized by quantum interferences be-
tween initial state configurations, which differ in the
nuclear fractional momenta and in the transverse parton
coordinates.
Since our main interest is to recognize the most impor-

tant features of MPI in collisions of protons with light
nuclei, we introduce a drastic simplification in treating
all the particles entering the game as spinless bosons and
the nuclear wave functions as spherical symmetric. In
addition other finer details are neglected from the begin-
ning: the proton and neutron masses are considered equal,
as are the binding energies of 3H and 3He, so p 3H and p
3He collisions will be considered as equal.
In Sec. II the double parton cross sections are worked

out, distinguishing the cases with a different number of
spectator nucleons. In Sec. III the triple parton cross sec-
tions are worked out, distinguishing the cases with the
same procedure. In Sec. IV we discuss the relations be-
tween the accessible experimental information, namely,
the different cross sections, and the unknown quantities
most directly related to the multiparton correlations. The
main points examined and the results obtained are finally
summarized in the last part of the paper.

FIG. 1 (color online). Double parton scattering in pD interactions. Only single target nucleons interact with large momentum
exchange.
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II. DOUBLE SCATTERING ON DEUTERON
OR TRITIUM

A. Only one bound nucleon interacts with large
momentum transfer

Some aspects of double parton scattering of protons with
deuterium have already been discussed in [58]. The pro-
cess will be reviewed here and the analysis will be ex-
tended to the case of double parton collisions of protons
with 3H and 3He. In double parton scattering on a deuteron
one has two possibilities: either only one nucleon interacts
with large transverse-momentum exchange, or there are

two interacting nucleons. Analogously, in tritium one may
have either one or two spectator nucleons. With minor
adjustments, the case of tritium can thus be reduced to
the case of a deuteron.
The analytical expression for the hard scattering, when

one of the component nucleons interacts twice and there
are one (deuteron) or two (tritium) spectators, is conven-
iently expressed through the discontinuity of the forward
scattering amplitude (see Fig. 1). We start with the dis-
continuity of the amplitude F 2 of double scattering
between two free nucleons:

DiscF 2ðL;L0;N;N0Þ ¼ 1

ð2�Þ18
Z �̂p
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��ðN�a1 �a2 �F1Þ�ðN0 �a01 � a02 �F1Þ�ðl1 þa1 �Q1Þ�ðl01 þ a01 �Q1Þ
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Y
i;j

dð�i=8Þd4aid4a0id4lid4l0id4Fj�ðFj
2 �Mj

2Þd4QidMj
2: (1)

Here and later on, we use the following notation: �i is the
effective vertex for one-parton emission, �̂i is the effective
vertex for two-parton emission, i ¼ p when the nucleon is
the projectile proton, and i ¼ 1, 2 labels the bound nucle-
ons of the target nucleons. Ti is the T matrix for the parton
scattering (the index i labels the corresponding bound
nucleon). The final state momenta are qi, q

0
i, while Qi ¼

qi þ q0i is the overall four-momentum of the final state i.
The final directions are embodied in the angle �i; the
factor 1=8 relates the invariant relative phase space with
the solid angle. We use the fact that the momentum vari-
ables have large and small components, so the plus com-
ponents of L, li, F3 are large and the corresponding minus
variables are small. On the contrary, the minus components
of N, a1, F1 are large and the plus components are small.
The four-momenta of the produced particles can have both
plus and minus large components. More explicitly, large
means / ffiffiffi

s
p

, small means / 1=
ffiffiffi
s

p
, the transverse variables

are constant with respect to center-of-mass energy s, and
the general attitude, as in [58], is to integrate over the small
components.

It is useful to introduce now the fractional plus or minus
momenta in the following way:

x1 ¼ l1þ=Lþ; x2 ¼ l2þ=Lþ;

z1 ¼ a1�=N�; z2 ¼ a2�=N�:

L is the four-momentum of the free proton, N the four-
momentum of the other nucleon, D the four-momentum
of the deuteron, and T the four-momentum of tritium. The
T matrix amplitudes are related to the partonic cross
section by

jTðlþ a ! qq0Þj2 ¼ ð8�Þ2ðlþa�Þd�̂Q=d�

¼ ð8�Þ2xzðLþN�Þd�̂Q=d�: (2)

Hadronization is not included. The cross section is ob-
tained from the discontinuity of the forward amplitude
(L ¼ L0, N ¼ N0), removing the overall four-momentum
conservation and dividing by the incoming flux 2s.
If one of the colliding nucleons is bound, then we define

the fractional momentum of the nucleon as Z ¼ 2N�=D�,
in the case of the deuteron, and Z ¼ 3N�=T�, in the case
of tritium. It is useful to also introduce the variables
�xi, defined as �xi ¼ 2ai�=D� for the deuteron and
�xi ¼ 3ai�=T� for tritium. The fractional momenta of par-
tons with respect to the parent nucleons are thus z1 ¼
�x1=ð2� ZÞ, z2 ¼ �x2=Z for the deuteron and analogously
for tritium. In the expression of the flux N� is substituted
by D� and T�, respectively.
If both interacting nucleons are free, one obviously has

L2 ¼ m2, N2
1 ¼ m2. In the case of a deuteron with a

spectator nucleon, the relevant discontinuity is

DiscAð2;0Þ ¼
Z

dNdN0DiscF 2ðL;L0; N; N0Þ

� �ððD� NÞ � ðD0 � N0ÞÞ �DðNÞ
½N2 �m2�

�D
�ðN0Þ

½N02 �m2�
� �ððD� NÞ2 �m2Þ=ð2�Þ3 (3)

where the deuteron effective vertex �D is introduced and
the condition N2

1 ¼ m2 is substituted by D2 ¼ D02 ¼ M2
D.

In the case of a 3H or 3He target with two spectator
nucleons, the corresponding discontinuity is
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DiscBð2;0;0Þ ¼
Z

dNdN0dN3DiscF 2ðL; L0; N;N0Þ�ðT � N � T0 þ N0Þ�TðN;N3Þ
½N2 �m2�

�T
�ðN0; N3Þ

½N02 �m2�
� �ðN2

3 �m2Þ�ððT � N � N3Þ2 �m2Þ=ð2�Þ6 (4)

where tritium (or 3He) effective vertex �T is introduced and the mass-shell condition is T2 ¼ M2
T .

Following [58], we proceed by defining the amplitude for finding one or two partons in the projectile when the remnant
of the parent nucleon has mass M. The integrated variable is �� ¼ 1

2 ðl1 � l2Þ� and M? is the transverse mass.

c 1;M ¼ �p

l2
¼ �p

x½m2 �M2
?=ð1� xÞ� � l2?

;

c 2;M ¼ 1ffiffiffi
2

p
Z �̂p

l21l
2
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d��
2�i

¼ 1ffiffiffi
2
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�̂

l1?
2x2 þ l2?

2x1 � x1; x2½m2 �M2
?=ð1� x1 � x2Þ�

:

(5)

The one-parton and two-parton amplitudes in the bound
nucleon are defined in the same way. The only difference is
that in the case of the bound nucleon one needs to replace
m2 with m2 þ N2

?. The covariant amplitude for finding a
nucleon in the deuteron is defined in an analogous way:

1ffiffiffi
2

p
Z �D

½ðD� NÞ2 �m2� � ½N2 �m2�
dNþ
2�i

¼ 1ffiffiffi
2

p 1
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¼ �DððD� NÞ�Þ
ðD� NÞ� (6)

with these definitions: �DðN�Þ=N� ¼ �DððD� NÞ�Þ=
ðD� NÞ�. We also have

�DðN�Þ
N�

¼ �ffiffiffi
2

p 1

D�½M2
DZ1Z2=4�m2

?�
;

Z1 þ Z2 ¼ 2 m2
? ¼ m2 þ N2

?:

Finally we define the covariant amplitude for finding two
nucleons in tritium,

1

2ð2�iÞ2
Z �T

½N2
1�m2��½N2

2�m2��½N3
3�m2�

�Y
j

dNjþ�
�
Tþ�X

j

Njþ
�

¼ 9

2T2�

�T

M2
TZ1Z2Z3=3�m2

?;1Z2Z3�m2
?;2Z3Z1�m2

?;3Z1Z2

:

(7)

The expression is evidently symmetrical in (1, 2, 3) and can
thus be identified with �TðN1�; N2�Þ=ðN1�N2�Þ, or with
�TðN2�; N3�Þ=ðN2�N3�Þ, or with �TðN3�; N1�Þ=
ðN3�N1�Þ.

We proceed now with the integration on the transverse
variables, in the frame where the external transverse
momenta L? and D? are equal to zero. We take the two-
dimensional Fourier transforms (bi is conjugated to ai, Bj

to Nj, �i to li, and all the variables are two-dimensional

vectors).

c 1 ¼ ð2�Þ�1
Z

~c 1 exp½ilb�db;

c 2 ¼ ð2�Þ�2
Z

~c 2ðb1; b2Þ exp½il1b1 þ il2b2�db1db2;

� ¼ ð2�Þ�1
Z

~�ðBÞ exp½iNB�dB (8)

and analogously for the complex conjugated functions,
with the variables b01, b

0
2, B

0.
The integration over the transverse-momentum variables

gives the diagonal property b1 ¼ b01 and so on. Moreover,
one obtains the geometrical relation: b1 � b2 ¼ �1 � �2.
The one-body and two-body parton densities are defined

by the following integrals on the invariant mass of the
residual hadron fragments:

�ðz; bÞ ¼ 1

2ð2�Þ3
Z

j ~cMðz; bÞj2 z

1� z
dM2;

�ðx1; x2; b1; b2Þ
¼ 1

2ð2�Þ6
Z

j ~cMðx1; x2; b1; b2Þj2 x1; x2
1� x1 � x2

L2þdM2:

(9)

The residual dependence on q1?, q01? is transformed into

an angular dependence on �1, �2.

As an effect of the nucleon motion, j ~�Dðz;bÞj2 is
coupled to the interactions by the integration on the frac-
tional momentum Z, while the integration on the transverse
variable B is decoupled from the other transverse variables.
So the cross section is readily expressed as
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�pD
2;1 ¼ 2

ð2�Þ3
Z

�ðx1; x2;�1; �2Þ d�ðx1x
0
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� �ðb1 � b2 � �1 þ �2Þdx1dx2dx01dx02dZd�1d�2: (10)

It is, however, useful to slightly transform the above expression. From the properties of � we have

j�Dð2� ZÞj2=ð2� ZÞ ¼ ½1þ ð1� ZÞ�j�DðZÞj2=Z2:

The second addendum is odd for the substitution Z ! ð2� ZÞ so that the integration in Zwhich runs from 0 to 2 gives zero
and the cross section is more conveniently expressed by

�pD
2;1 ¼ 2

ð2�Þ3
Z

�ðx1; x2;�1; �2Þd�ðx1x
0
1Þ

d�1

d�ðx2x02Þ
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�ðx01=Z; x02=Z; b1; b2Þj ~�DðZ;BÞj2=Z2dBdb1db2d�1d�2

� �ðb1 � b2 � �1 þ �2Þdx1dx2dx01dx02dZd�1d�2: (11)

B. Two bound nucleons interact with large momentum transfer

In collisions of protons with D or 3H=3He, the presence of the nuclear wave function induces the presence of two kinds
of contributions: ‘‘diagonal terms’’ in direct correspondence with the processes taking place when the nucleons are free,
and a number of nondiagonal or ‘‘interference’’ terms, which are due to the presence of the nuclear wave function.1

The simplest case, where diagonal and nondiagonal terms appear, is the double scattering on a deuteron affecting both
bound nucleons. In this case the ‘‘diagonal’’ discontinuity (see Fig. 2(a)) has the form already given:
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whereas the interference term (Fig. 2(b)) has the form
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The diagonal term was already elaborated in [58], so we are interested in the differences between the two cases. In the
diagonal case the conservation of the large components of momenta implies that they are equal on the two sides of the
diagram lþ ¼ l0þ, a� ¼ a0�, N� ¼ N0�; the transverse variables become diagonal through the Fourier transformation. In
this way the whole expression of the cross section is expressible in terms of densities i.e. the square of the partonic wave
function and the square of the nuclear wave function. The cross section is thus expressed again through the one-body and

two-body partonic densities: �ðz; bÞ, �ðx1; x2;�1; �2Þ, obtained from the effective vertices �, �̂. The nuclear density is
simply given by j�ðZ;BÞj2.

In the interference case the conservation of the large components of momenta still implies the equality on the two sides
of the diagram lþ ¼ l0þ, a� ¼ a0� but for the nuclear variables ðN � a2Þ� ¼ ðN0 � a1Þ�; moreover, the transverse

1The discussion in [58] is limited to the cases where the contribution of the interference term is not relevant.
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variable b?, conjugated to a?, does not become diagonal through the Fourier transformation. The interference term cannot
be expressed only in terms of partonic densities; we need to introduce a more complicated expression:

W1ðZ; Z0; �x1; �x2;b1; b2; BÞ ¼ 1

4ð2�Þ6
Z

dM2
1dM

2
2

�x1 �x2
ðZ� �x1Þð2� Z0 � �x2Þ cM1

ð �x1=Z;b1Þc �
M2
ð �x1=ð2� Z0Þ; b1 � BÞ

� cM2
ð �x2=ð2� ZÞ; b2Þc �

M1
ð �x2=Z0; b2 þ BÞ: (14)

The previous relation for the nuclear variables can also be written as Z� Z0 ¼ �x2 � �x1. It is possible to factor the
expressionW symmetrically into two parts,W1 ¼ HðZ; Z0; �x1; �x2; b1; b2 þ BÞ �Hð2� Z; 2� Z0; �x2; �x1;b2; b1 � BÞ with

HðZ; Z0; �x1; �x2;b1; b2Þ ¼ 1

2ð2�Þ3
Z

dM2
1

ffiffiffiffiffiffiffiffiffi
�x1 �x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðZ� �x1Þð2� Z0 � �x2Þ

p cM1
ð �x1=Z;b1Þc �

M1
ð �x2=Z0;b2Þ:

The part of the cross section coming from the direct term is (as given in [58])

�pD
2;2 jd ¼

1

ð2�Þ3
Z

�ðx1; x2;�1; �2Þd�̂ðx1; �x1Þd�1

d�̂ðx2; �x2Þ
d�2

�ð �x1=Z; b1Þ�ð �x2=ð2� ZÞ; b2Þj ~�DðZ;BÞj2dBdb1db2d�1d�2

� �ðB� b1 þ b2 � �1 þ �2ÞZ�2dx1dx2d �x1d �x2dZd�1d�2: (15)

In Fig. 3 we show the corresponding configuration in transverse space.

FIG. 3 (color online). pD interactions with two target nucleons
involved. We show configurations in transverse space of the
diagonal term.

FIG. 4 (color online). pD interactions with two target nucleons
involved. We show configurations in transverse space of the two
interfering amplitudes. Both configurations generate the same
partonic initial state.

FIG. 2 (color online). Diagonal (a) and off-diagonal (b) contributions to double parton scattering in pD interactions, when both
target nucleons interact with large momentum exchange.
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The part of the cross section coming from the interference term is

�pD
2;2 ji ¼

1

ð2�Þ3
Z

�ðx1; x2;�1; �2Þd�̂ðx1; �x1Þd�1

d�̂ðx2; �x2Þ
d�2

W1ðZ; Z0; �x1; �x2; b1; b2; BÞ ~�DðZ;BÞ ~��
DðZ0; bÞ½ZZ0��1

� �ðB� b1 þ b2 � �1 þ �2Þ�ðZ� Z0 � �x1 þ �x2Þd�1d�2dBdb1db2d�1d�2dx1dx2d �x1d �x2dZdZ
0: (16)

In Fig. 4 we show the configurations in transverse space of
the two interfering amplitudes.

Here we give a comparison between the two expres-
sions: As far as the longitudinal variables are concerned the
interference term requires the nuclear wave function to be
taken at different values of Z, so it is depressed with respect
to the diagonal term. It must be taken into account that the
width of the nuclear wave function is determined by the
binding energy, while the mismatch of the Z terms depends
on the difference in fractional momentum of the partons.
At large total energies (beyond the TeV) the values of �x can
be small, still maintaining the process within the limits of
perturbative dynamics, so the depression is not necessarily
very strong. For what concerns the transverse variables one
has two different nonperturbative scales, the hadron scale,
provided by the generalized parton distributions, and
the nuclear size. The first scale sets the size of the variables
bi, �i; the second characterizes the size of B. After
integrating over B with the � function, one has B ¼
ðb1 � b2 þ �1 � �2Þ. A simplified form for the interfer-
ence term is thus obtained when neglecting the hadronic
size as compared with the nuclear size by setting B ¼ 0 in
nuclear wave function �. Note that the effect depends on
the transverse degrees of freedom, while the dependence

on the total energy is weak once the region of perturbative
dynamics is reached. A quantitative but model dependent
discussion of this feature can be found in Appendix B.
Conversely, the denominators Z, Z0 could be set equal to

1 in the factors � since the range of variation of �xi is large,
as compared with the variation of Z, allowed by the nuclear
function �. From the previous treatment we learned that
the presence of a spectator has a modest influence on the
process, so the double scattering on tritium has only minor
differences in comparison with the scattering on a deu-
teron. The property holds also in the next cases to be
considered, with the exception of those processes which
are possible in the presence of tritium but not of deuteron.

III. TRIPLE SCATTERING ON DEUTERON OR
TRITIUM

A. Only one bound nucleon interacts with
large momentum transfer

The analytical expression for the hard scattering, where
one of the component nucleons interacts three times and
there are one (deuteron) or two (tritium) spectators, is
again related to the amplitude F 3 for the triple hard
scattering between two free nucleons:

DiscF 3 ¼ 1

ð2�Þ32
Z ��p

l21l
2
2l

2
3

���
p

l021l022l023

��1

a21a
2
2a

2
3

���
1

a021a022a023
T1ðl1a1 ! q1q

0
1ÞT1

�ðl01a01 ! q1q2ÞT2ðl2a2 ! q2q
0
2Þ

� T2
�ðl02a02 ! q2q

0
2ÞT3ðl3a3 ! q3q

0
3ÞT1

�ðl03a03 ! q3q
0
3Þ�

�
L�X

l� F4

�
�

�
L�X

l0 � F4

�

� �

�
N1 �

X
a� F1

�
�

�
N0

1 �
X

a0 � F1

�
�ðl1 þ a1 �Q1Þ�ðl01 þ a01 �Q1Þ

� �ðl2 þ a2 �Q2Þ�ðl02 þ a02 �Q2Þ�ðl3 þ a3 �Q3Þ�ðl03 þ a03 �Q3Þ�ðN1 � N0
1Þ

�Y
i;j

dð�i=8Þd4aid4a0id4lid4l0id4Fj�ðFj
2 �Mj

2Þd4N1d
4QidMj

2: (17)

Analogously to the case of double scattering, for the calculations of F 3 we also use the property that, in the regime of
interest, the momentum variables have large and small components; the term �� represents the vertex for emission of three
partons from a nucleon.

The factor 1=ðl21l22l23Þ is thus integrated in l1� and l2� independently from the rest of the diagram; in fact in all other

conservation relations, the small terms l1� and l2� enter together with large components e.g. of ai and can thus be
neglected. Implementing the conservation ðL� F4Þ ¼ l1 þ l2 þ l3, the integration gives

c 3;M ¼ 1

ð2�iÞ2
Z 1

2
dl1�dl2�

��

l21l
2
2l

2
3

¼ � 1

2

��

l1þl2þl3þðL� F4Þ� � l1þl2þl3?
2 � l2þl3þl1?

2 � l3þl1þl2?
2
:

Here we also use the fractional momenta xi ¼ liþ=Lþ ’ Qiþ=Lþ and, through the conservation for the plus components,
we obtain
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c 3;MðlÞ ¼ 1

2Lþ2

��

x1x2l3?
2 þ x2x3l1?

2 þ x3x1l2?
2 þ ½M2

?=ð1�
P

xiÞ �m2�x1; x2; x3
: (18)

M? is the transverse mass of the remnants: M?
2 ¼ MF

2 þ F?
2, F? ¼ �P

li?.
The factor ��=ða21a22a23Þ can be integrated in the same way. One needs only to take into account that we are interested in a

situation where N1 is a generic timelike four-vector, with positive energy, no longer subjected to the condition N2
1 ¼ m2.

Even when Ni enters in a wave function, it is still almost on shell, as we are dealing with a weakly bound systems (it
nevertheless has a transverse momentum Ni?). Let F be the four-momentum of the remnants; then in strict analogy with
the previous result we get

c 3;MðaÞ ¼ 1

2N�2

��

z1z2a3?
2 þ z2z3a1?

2 þ z3z1a2?
2 þ ½M2

?=ð1�
P

ziÞ �m2
N�z1z2z3

: (19)

M? is again the transverse mass of the remnants;
here the conservation of the minus component is used.
The integration on the remnants F can be treated as in
the double scattering case:

R
d4F�ðF2 �M2ÞdM2 ¼R

dF�=F�d2F?. The longitudinal integration is then per-
formed by means of the � functions with the results
1=F1� ¼ 1=½N�ð1�P

zÞ�, 1=F4þ ¼ 1=½Lþð1�P
xÞ�.

Looking at the cut diagram in Fig. 5, we see that the
equality of N2 and of N3 also forces N1 to be the same on
the right- and left-hand sides of the diagram. Concerning
the produced pairs, a quick inspection of the kinematics
shows that the component Qþ comes from lþ and the
component Q� comes from a�, which, neglecting terms
of order 1=

ffiffiffi
s

p
, implies liþ ¼ l0iþ and ai� ¼ a0i�. In terms

of the fractional momenta xi ¼ x0i, zi ¼ z0i and, according
to the definitions,

Y
dlþda� ¼ ðLþN�Þ3

Y
dxdz:

Using the already defined c 3ðlÞc 3ðaÞ and analogously
for the factors depending on l0i, a0i, we perform a Fourier
transform on the transverse momenta;� is the conjugate of
l and b is the conjugate of a.
The subsequent integrations involve the nuclear varia-

bles. The longitudinal variables Z are common to both
sides of the cut diagram; the transverse variables are differ-
ent. In the case of the deuteron one has to integrate over
one spectator (which is on shell), so we have integrations
in dZi=Zi and in dNi? (note that N1? ¼ �N2? and Z1 ¼
2� Z2). In tritium (3He) case we have two
transverse variables and the longitudinal integration,
which may be expressed as

R
�ðZ1 þ Z2 þ Z3 � 3Þ�

dZ1dZ2=Z2dZ3=Z3. In conclusion, in both cases only one
nuclear variable survives, and we need to perform the
Fourier transform of the transverse components: we call
the corresponding coordinates B, B0.
The integrations which take care of the conservation con-

ditions give two kinds of results: the diagonalization in the
impact parameters given as B ¼ B0, �i ¼ �0

i, bi ¼ b0i, and
thegeometrical conditions�1 � �2 ¼ b1 � b2,�2 � �3 ¼
b2 � b3, which also imply �3 � �1 ¼ b3 � b1.
In more detail, the derivation of the condition on the

transverse variables is obtained as follows (to simplify
the notation, the transverse index, like l?, is understood
everywhere).
The Fourier transform of the wave function is

c 3ðl1; l2; l3Þ ¼
R
~c 3ð�iÞ exp½i

P
li�i�

Q
d� and analo-

gously for the functions in a and for the conjugate. The
conservation relations involving theproducedpairs, integrated
over the final states, give the two-dimensional constraints

�ðli þ ai � l0i � a0iÞ
¼ 1

ð2�Þ2
Z

d�i exp½i�iðli þ ai � l0i � a0iÞ�:
The conservation between the incoming momenta and the
momenta of the remnants gives a factor �ðP l�P

l0Þ. A
similar condition holds for the ai’s. The two �-functions can
be transformed into a �-function with the sum and one with
the difference of the arguments. The condition given from
the sum is redundant, as it is already contained in the
previous relations; the difference gives a new condition
�ðP l�P

l0 �P
aþP

a0Þ. In exponential form,

FIG. 5 (color online). Triple parton scattering in pT or p 3He
interactions. Only a single target nucleon interacts with large
momentum exchange.
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1

ð2�Þ2
Z

d� exp

�
�i�

�X
l�X

l0 �X
aþX

a0
��

:

The integrations over the internal variables l, l0, a, a0 give

�ð�i þ �i � �Þ; �ð�0
i þ �i � �Þ;

�ðbi þ �i � �Þ; �ðb0i þ �i � �Þ

which in turn implies�i ¼ �0
i, bi ¼ b0i. One thus obtains the

diagonalization in the impact parameter. Moreover, one is left
with �ð�i � bi � 2�Þ, which represents a geometrical con-
straint: the difference �i � bi is independent of the index i.
In analogy with the previous definitions [55,58], the

three-body densities are defined by partially reabsorbing
the factors Lþ, N�,

�ðx1; x2; x3;�1; �2; �3Þ ¼ 1

2ð2�Þ9
Z

j ~c ðx1; x2; x3;�1; �2; �3Þj2 x1; x2; x3
1� x1 � x2 � x3

Lþ4dM2
4;

�ðz1; z2; z3; b1; b2; b3Þ ¼ 1

2ð2�Þ9
Z

j ~c ðz1; z2; z3;b1; b2; b3Þj2 z1z2z3
1� z1 � z2 � z3

N�4dM2
1:

(20)

In this way the densities � are such that they are neither vanishing nor growing indefinitely when Lþ, N� ! 1. The last
expression could be recast in terms of the external variables �xi as

�ð �x1=Z; �x2=Z; �x3=Z; b1; b2; b3Þ ¼ 1

25ð2�Þ9
1

Z2

Z
j ~c ð �x1=Z; �x2=Z; �x3=Z;b1; b2; b3Þj2 �x1 �x2 �x3

Z� �x1 � �x2 � �x3
D�4dM2

1: (21)

The contribution to the triple scattering cross section on a deuteron, where one of the bound nucleons suffers three hard
collisions, while the other is a spectator, is hence given by

�pD
3;1 ¼

2

ð2�Þ3
Z
�ðx1;x2;x3;�1;�2;�3Þ�ðx01=Z;x02=Z;x03=Z;b1;b2;b3Þ

d�

d�1

d�

d�2

d�

d�3

j ~�DðZ;BÞj2

�Z�2dBdb1db2db3d�1d�2d�3�ðb1�b2��1þ�2Þ�ðb1�b3��1þ�3Þdx1dx2dx3dx01dx02dx03dZd�1d�2d�3:

(22)

When only a single target nucleon interacts with large momentum exchange, nuclear dynamics completely takes care of
the difference between a deuteron and tritium (or 3He). There are some minor differences: the total four-momentum of the
interacting nucleons can have a transverse component.

B. Two different target nucleons interact with large transverse-momentum exchange

1. General features and diagonal terms

As already seen, when two or more target nucleons interact with large transverse-momentum exchange, nuclear and
partonic dynamics are interconnected. The presence of the nuclear wave function induces, in fact, the presence of two
kinds of contributions: a diagonal term and a number of nondiagonal or interference terms. The diagonal discontinuity for
the triple scattering is shown in Fig. 6(a), and its analytical expression is

DiscAð2;1Þjd ¼ 1

ð2�Þ35
Z ��p

l21l
2
2l

2
3

���
p

l021l
02
2l

02
3

�̂1

a21a
2
2

�2

a23

�̂�
1

a021a
02
2

�2
�

a23
T1ðl1a1 ! q1q

0
1ÞT2ðl2a2 ! q2q

0
2ÞT3ðl3a3 ! q3q

0
3Þ

� T1
�ðl01a01 ! q1q

0
1ÞT�

2ðl2a2 ! q2q
0
2ÞT3

�ðl03a03 ! q3q
0
3Þ

�DðN1; N2Þ
½N2

1 �m2�½N2
2 �m2�

�D
�ðN0

1; N
0
2Þ

½N02
1 �m2�½N02

2 �m2�
� �

�
L�X

l� F4

�
�ðN1 � a3 � F1Þ�ðN2 � a1 � a2 � F2Þ�

�
L�X

l0 � F4

�

� �ðN0
1 � a03 � F1Þ�ðN0

2 � a01 � a02 � F2Þ�ðl1 þ a1 �Q1Þ�ðl01 þ a01 �Q1Þ
� �ðl2 þ a2 �Q2Þ�ðl02 þ a02 �Q2Þ�ðl3 þ a3 �Q3Þ�ðl03 þ a03 �Q3Þ
� �ðD� N1 � N2Þ�ðD� N0

1 � N0
2Þ
Y

dð�=8Þdada0dldl0dFdNdN0dQi (23)

with the mass-shell condition D2 ¼ M2
D.
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In the case of tritium or 3He (with four-momentum T)
the corresponding discontinuities DiscBð2;1;0Þ are obtained
from DiscAð2;1Þ by substituting the factor

�DðN1; N2Þ
½N2

1 �m2�½N2
2 �m2�

�D
�ðN0

1; N
0
2Þ

½N02
1 �m2�½N02

2 �m2�
� �ðD� N1 � N2Þ�ðD� N0

1 � N0
2Þ (24)

with

�TðN1; N2; N3Þ
½N2

1 �m2�½N2
2 �m2�½N2

3 �m2�
� �T

�ðN0
1; N

0
2; N3Þ

½N02
1 �m2�½N02

2 �m2�½N02
3 �m2�

� �ðT � N1 � N2 � N3Þ�ðT � N0
1 � N0

2 � N3Þ
� �ðN2

3 �m2Þ: (25)

The integration runs over dNi, with i ¼ 1, 2, 3, and the
mass-shell condition is T2 ¼ M2

T .
For the incoming proton the situation and the subsequent

manipulations are the same as in the previous case; they
give rise to the factor c 3. For the nucleus we find different
structures: the one-body and two-body parton vertices and
the singularities which put a nucleon on mass shell or the
partons on mass shell.

Here we need the one-parton and the two-parton wave
functions; they were already defined and an explicit form
was given in Eq. (5). The longitudinal integration of the

remnants is performed as in the previous case. We now
have three F�, and we get

1=F1� ¼ 1=½N�ð1� z1 � z2Þ�;
1=F2� ¼ 1=½N�ð1� z3Þ�;

1=F4þ ¼ 1=

�
Lþ

�
1�X

xi

��
:

Concerning the nuclear variables, since the binding
energy is small, the most important singularities are those
corresponding to the nucleons’ mass-shell condition. For
the deuteron one must thus evaluate 1=ðN2

1 �m2Þ with
the other propagator on mass shell, i.e. N2

2 ¼ m2, with
N1þN2¼D. One obtains the expression of �DðN�Þ=N�
as given in Eq. (6). For tritium or 3He, the condition
N1 þ N2 þ N3 ¼ T and the mass-shell constraint for the
spectator lead to the expression in Eq. (7). The multiparton
densities, together with their Fourier transform in the
transverse plane �ðxi; biÞ, have already been defined and
discussed.
Neglecting terms of order 1=

ffiffiffi
s

p
, the conservation of the

large components gives again liþ ¼ l0iþ, a1� ¼ a01�, and
the complete expression is brought into a diagonal form by
Fourier transforming the transverse variables. In this case,
however, the geometrical relations are different. One finds
�2 � �3 ¼ b2 � b3, �1 � �2 ¼ b1 � b2 � B1 þ B2. The
corresponding configuration in transverse space is shown
in Fig. 7(a).
The diagonal contribution to the triple parton scattering

cross sections on a deuteron and on tritium or 3He, when
one nucleon interacts twice and another once, setting
B ¼ B1 � B2, B0 ¼ B1 � B3, Z ¼ Z1 � Z2, is thus ex-
pressed as

FIG. 6 (color online). Different contributions to the triple
parton scattering in pD interactions. Both target nucleons inter-
act with large transverse-momentum exchange.

FIG. 7 (color online). Configurations in transverse space of the
four amplitudes in Fig. 6, in the right-hand side of the cut.
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�pD
3;2 jd ¼

2

ð2�Þ3
Z

�ðx1; x2; x3;�1; �2; �3Þ�ðz1; z2;b1; b2Þ�ðz3; b3Þ d�̂

d�1

d�̂

d�2

� d�̂

d�3

j�DðZ;BÞj2dBd�1d�2d�3db1db2db3�ðb3 � b2 þ �2 � �3Þ�ðb1 � b2 � �1 þ �2 � BÞ
� dx1dx2dx3dz1dz2dz3d�1d�2d�3�ðZ1 þ Z2 � 2ÞdZ1dZ2=ðZ1Z2Þ;

�pT
3;2jd ¼

6

ð2�Þ3
Z

�ðx1; x2; x3;�1; �2; �3Þ�ðz1; z2;b1; b2Þ�ðz3; b3Þ d�̂

d�1

d�̂

d�2

d�̂

d�3

� j�TðZi;B; B
0Þj2dBdB0d�1d�2d�3db1db2db3�ðb3 � b2 þ �2 � �3Þ�ðb1 � b2 � �1 þ �2 � BÞ

� dx1dx2dx3dz1dz2dz3d�1d�2d�3�ðZ1 þ Z2 þ Z3 � 3ÞdZ1dZ2dZ3=ðZ1Z2Z3Þ: (26)

2. Interference terms

As it appears from the graphs in Fig. 6, there are three kinds of interference terms which differ from one another for the
different relations between the partons and the parent nucleon.

This difference takes, therefore, the form of the difference in the � functions. The discontinuities corresponding to three
terms are explicitly given for the case of the deuteron; they can be summarized in the following form:

DiscAð2;1Þjin ¼ 1

ð2�Þ35
Z ��p

l21l
2
2l

2
3

���
p

l021l
02
2l

02
3

�̂1

a21a
2
2

�2

a23

�1
�

a021

�̂�
2

a022a
02
3

T1ðl1a1 ! q1q
0
1ÞT2ðl2a2 ! q2q

0
2ÞT3ðl3a3 ! q3q

0
3Þ

� T1
�ðl01a01 ! q1q

0
1ÞT�

2ðl2a2 ! q2q
0
2ÞT3

�ðl03a03 ! q3q
0
3Þ

�DðN1; N2Þ
½N2

1 �m2�½N2
2 �m2�

�D
�ðN0

1; N
0
2Þ

½N02
1 �m2�½N02

2 �m2�
� �

�
L�X

l� F4

�
�

�
L�X

l0 � F4

�
� 	ðNi; ajÞ�ðl1 þ a1 �Q1Þ�ðl01 þ a01 �Q1Þ�ðl2 þ a2 �Q2Þ

� �ðl02 þ a02 �Q2Þ�ðl3 þ a3 �Q3Þ�ðl03 þ a03 �Q3Þ�ðD� N1 � N2Þ�ðD� N0
1 � N0

2Þ
�Y

d�dada0dldl0dFdNdN0dQ: (27)

The three relevant realizations of the factor 	, as can be seen from the graphs, are

	2;1ðNi; ajÞ ¼ �ðN1 � a3 � F1Þ�ðN2 � a1 � a2 � F2Þ�ðN0
1 � a02 � F1Þ�ðN0

2 � a01 � a03 � F2Þ;
	2;2ðNi; ajÞ ¼ �ðN1 � a3 � F1Þ�ðN2 � a1 � a2 � F2Þ�ðN0

1 � a01 � a03 � F1Þ�ðN0
2 � a02 � F2Þ;

	2;3ðNi; ajÞ ¼ �ðN1 � a3 � F1Þ�ðN2 � a1 � a2 � F2Þ�ðN0
1 � a01 � a02 � F1Þ�ðN0

2 � a03 � F2Þ:
(28)

The corresponding expressions for the case of tritium are obtained by the same substitutions that were used in the
diagonal term.

The configurations produced by the factors 	2;j are similar to the configuration described by the crossed diagram in the

double scattering; however, the factors are more strictly interlocked so that it is necessary to introduce other auxiliary
terms,

W2;1ð �x1; �x2; �x3;Z1; Z2; b1; b2; b3;BÞ ¼ 1

4ð2�Þ9
�x1 �x2 �x3

ðZ1 � �x1ÞðZ2 � �x2 � �x3Þ
Z

~c 1;M1
ð �x1=Z1; b1Þ ~c 2;M2

ð �x2=Z2; �x3=Z2;b2; b3Þ

� ~c �
2;M2

ð �x1=Z0
2; �x3=Z

0
2; b3; b2 þ BÞ ~c �

1;M1
ð �x2=Z0

1;B� b1ÞdM2
1dM

2
2: (29)

The nuclear factors formally have the same expression as in the diagonal case, but the values of Z are different on the two
sides, while keeping the constraints Z1 þ Z2 ¼ Z0

1 þ Z0
2 ¼ 2. We have, in fact, Z1 � �x1 ¼ Z0

1 � �x2, Z2 � �x2 ¼ Z0
2 � �x1.

W2;2ð �x1; �x2; �x3;Z1; Z2; b1; b2; b3;BÞ ¼ 1

4ð2�Þ9
�x1 �x2 �x3

ðZ1 � �x1ÞðZ2 � �x2 � �x3Þ
Z

~c 1;M1
ð �x1=Z1; b1Þ ~c 2;M2

ð �x2=Z2; �x3=Z2;b2; b3Þ

� ~c �
2;M1

ð �x1=Z0
1; �x3=Z

0
1;b2 þ B; b1Þ ~c �

1;M2
ð �x2=Z0

2;b3ÞdM2
1dM

2
2: (30)

Beyond the constraints Z1 þ Z2 ¼ Z0
1 þ Z0

2 ¼ 2 we have the relations Z1 ¼ Z0
1 � �x3, Z2 ¼ Z0

2 þ �x3.
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W2;3ð �x1; �x2; �x3;Z1; Z2; b1; b2; b3;BÞ ¼ 1

4ð2�Þ9
�x1 �x2 �x3

ðZ1 � �x1ÞðZ2 � �x2 � �x3Þ
Z

~c 1;M1
ð �x1=Z1; b1Þ ~c 2;M2

ð �x2=Z2; �x3=Z2;b3Þ

� ~c �
2;M1

ð �x2=Z0
1; �x3=Z

0
1;b2 þ B; b3 þ BÞ ~c �

1;M1
ð �x1=Z0

2;B� b1ÞdM2
1dM

2
2: (31)

Beyond the constraints Z1 þ Z2 ¼ Z0
1 þ Z0

2 ¼ 2 we

have the relations Z1 � �x1 ¼ Z0
1 � �x2 � �x3, Z2 � �x2 �

�x3 ¼ Z0
2 � �x1.

We see that the nuclear factors formally have the same
expression as in the diagonal part, but the values of Z are
different on the two sides. This feature was already found
in the cross diagram for double scattering, and so the
qualitative considerations are also of the same kind.
Precisely, the longitudinal variables on one side are Z1

and Z2, whereas on the other side they are Z0
1 and Z0

2. In

the nonrelativistic conditions of the internal motion, in
particular, N2

? � m2, which are the actual conditions

in the deuteron, the typical width of the nuclear wave
function, in dimensionless variables, is of the orderffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4m2 �M2

DÞ=ðM2
DÞ

q
, while the differences Z� Z0 are of

the order of the fractional momenta �x.
Now we see that the cross sections for these particular

processes can be obtained from the expression of the
diagonal term [Eq. (25)] by substituting the factors
�ðz1; z2;b1; b2Þ�ðz3; b3Þ with the corresponding W2;j

term, after solving the constraints which give Z0
1, Z

0
2 in

terms of Z1, Z2.
In comparing the diagonal term with the interference

terms, one can repeat the same qualitative considerations
made for the double scattering case; i.e. in the partonic
amplitudes the denominators Z, Z0 could be set equal to 1,
while the scale of the transverse variables is provided by
the generalized parton distributions and is relatively small
as compared with the nuclear size.

C. Three different target nucleons interact with large
transverse-momentum exchange

1. General features and diagonal terms

This kind of process can evidently happen only with a
three-body nucleus (at least). Also, here the presence of the
nuclear wave function induces the presence of two kinds of
contributions: a diagonal term and a number of nondiago-
nal or interference terms.
The diagonal discontinuity (Fig. 8(a)) for the triple

scattering is

DiscBð1;1;1Þjd ¼ 1

ð2�Þ38
Z ��p

l21l
2
2l

2
3

���
p

l021l
02
2l

02
3

�1

a21

�2

a22

�3

a23

�̂�
1

a021a
02
2

�3
�

a23
T1ðl1a1 ! q1q

0
1ÞT2ðl2a2 ! q2q

0
2ÞT3ðl3a3 ! q3q

0
3Þ

� T1
�ðl01a01 ! q1q

0
1ÞT�

2ðl2a2 ! q2q
0
2ÞT3

�ðl03a03 ! q3q
0
3Þ

� �TðN1; N2; N3Þ
½N2

1 �m2�½N2
2 �m2�½N2

3 �m2�
�T

�ðN0
1; N

0
2; N

0
3Þ

½N02
1 �m2�½N02

2 �m2�½N02
3 �m2��

�
L�X

l� F4

�

� �ðN1 � a1 � F1Þ�ðN2 � a2 � F2Þ�ðN3 � a3 � F3Þ�
�
L�X

l0 � F4

�
�ðN0

1 � a01 � F1Þ

� �ðN0
2 � a02 � F2Þ�ðN0

3 � a03 � F3Þ�ðl1 þ a1 �Q1Þ�ðl01 þ a01 �Q1Þ�ðl2 þ a2 �Q2Þ
� �ðl02 þ a02 �Q2Þ�ðl3 þ a3 �Q3Þ�ðl03 þ a03 �Q3Þ
� �ðT � N1 � N2 � N3Þ�ðT � N0

1 � N0
2 � N0

3Þ
Y

dð�=8Þdada0dldl0dFdNdN0dQ (32)

and the mass-shell condition is T2 ¼ M2
T .

From the projectile side we have the three-parton densities, which have already been defined and used. On the tritium
side we must use the full three-body structure of the nuclear wave function; the conservation Ni ¼ ai þ Fi gives a

2
i ¼

ðNi � FiÞþai� � ai?
2. The integral to be performed may thus be written as

Ya ¼
Z

dN1þdN2þdN3þ�
� X
i¼1;2;3

Niþ � Tþ
� Y
i¼1;2;3

1

NiþNi�m?i
2

1

ðN � FÞiþai� � ai?
2
:

As in the previous cases there are two kinds of singularities in the integrand: one kind puts a nucleon on mass shell, and the
other one puts the parton on mass shell. Also, here the singularities putting the nucleons on mass shell are the most
important ones. So we approximate Ya as
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Ya � �ð2�Þ2 1

Tþ � I1 � I2 � I3

Y
i¼1;2;3

1

½ðm2
? � N�FþÞiai� � ðN�a2?Þi�

; Ij ¼ m?j
2=N�j: (33)

When considering the complete cut diagram we find that the relation between l, a, Q again yields the equalities lþ ¼
l0þ, a� ¼ a0�, whereas the equality of the remnants yieldsN� ¼ N0�; these can be converted into the fractional momenta
Z, with the constraint Z1 þ Z2 þ Z3 ¼ 3. Here it is also convenient to go from transverse momenta to transverse
coordinates.

The factors c and � are defined as before. Since in Ya the dependences on a? and on N? are interlocked, the Fourier
transform must be performed with respect to both sets of transverse variables a? and N?.

As before,�i are conjugated to li, bi are conjugated to ai, and Bi are conjugated toNi. The conservations, which will again
be conveniently expressed in exponential form, are li þ ai ¼ l0i þ a0i,

P
li¼

P
l0i, Ni þ ai ¼ N0

1 þ a0i,
P
Ni¼

P
N0

i¼T.
The integrations over the transverse momenta yield the equalities �i ¼ �0

i, bi ¼ b0i, Bi ¼ B0
i and the geometrical conditions

bi þ Bi � �i ¼ const that can be expressed also as bi þ Bi � �i ¼ bj þ Bj � �j; i � j.

We can write, for the diagonal term,

�pT
3;3jd ¼

3

ð2�Þ3
Z

�ðx1; x2; x3;�1; �2; �3Þ�ðz1; b1Þ�ðz2;b2Þ�ðz3;b3Þ d�̂

d�1

d�̂

d�2

d�̂

d�3

j�TðZi;B; BÞj2

� dBdBd�1d�2d�3db1db2db3�ðb1 � b3 � �1 þ �3 þ BÞ�ðb1 � b2 � �1 þ �2 þ BÞ
� dx1dx2dx3dz1dz2dz3d�1d�2d�3�ðZ1 þ Z2 þ Z3 � 3ÞdZ1dZ2dZ3=ðZ1Z2Z3Þ: (34)

In the vertex function only the differences Bi � Bj are relevant; therefore the integration variables B, B represent a pair

of these differences, e.g. B ¼ B1 � B2, B ¼ B1 � B3.

2. Interference terms

The discontinuity for the interference terms in triple scattering can be written as in the previous section:

DiscBð1;1;1Þji ¼ 1

ð2�Þ38
Z ��p

l21l
2
2l

2
3

���
p

l021l022l023

�1

a21

�2

a22

�3

a23

�̂�
1

a021a022

�3
�

a23
T1ðl1a1 ! q1q

0
1ÞT2ðl2a2 ! q2q

0
2ÞT3ðl3a3 ! q3q

0
3Þ

� T1
�ðl01a01 ! q1q

0
1ÞT�

2ðl2a2 ! q2q
0
2ÞT3

�ðl03a03 ! q3q
0
3Þ

� �TðN1; N2; N3Þ
½N2

1 �m2�½N2
2 �m2�½N2

3 �m2�
�T

�ðN0
1; N

0
2; N

0
3Þ

½N02
1 �m2�½N02

2 �m2�½N02
3 �m2��

�
L�X

l� F4

�

� �

�
L�X

l0 � F4

�
	ðNi; aiÞ�ðl1 þ a1 �Q1Þ�ðl01 þ a01 �Q1Þ�ðl2 þ a2 �Q2Þ�ðl02 þ a02 �Q2Þ

� �ðl3 þ a3 �Q3Þ�ðl03 þ a03 �Q3Þ�ðT � N1 � N2 � N3Þ�ðT � N0
1 � N0

2 � N0
3Þ

�Y
dð�=8Þdada0dldl0dFdNdN0dQi: (35)

Here we find two essentially different realizations of the factors 	,

	3;1ðNi; aiÞ ¼ �ðN1 � a1 � F1Þ�ðN2 � a2 � F2Þ�ðN3 � a3 � F3Þ�ðN0
1 � a03 � F1Þ�ðN0

2 � a02 � F2Þ�ðN0
3 � a01 � F3Þ;

	3;2ðNi; aiÞ ¼ �ðN1 � a1 � F1Þ�ðN2 � a2 � F2Þ�ðN3 � a3 � F3Þ�ðN0
1 � a02 � F1Þ�ðN0

2 � a03 � F2Þ�ðN0
3 � a01 � F3Þ;

(36)

and this leads to the definition of two more auxiliary functions W.

W3;1ð �x1; �x2; �x3;Z1;Z2;Z3;b1;b2;b3;B;BÞ¼ 1

4ð2�Þ9
�x1 �x2 �x3

ðZ1� �x1ÞðZ2� �x2� �x3Þ
~c 1;M1

ð �x1=Z1;b1Þ ~c 1;M2
ð �x2=Z2;b2Þ

� ~c 1;M3
ð �x3=Z3;b3Þ ~c �

1;M3
ð �x1=Z1;b1þBÞ ~c �

1;M2
ð �x2=Z2;b2Þ ~c �

1;M1
ð �x3=Z3;b3�BÞ:

(37)

Beyond the constraints Z1 þ Z2 þ Z3 ¼ Z0
1 þ Z0

2 þ Z0
3 ¼ 3 we have the relations Z1 � �x1 ¼ Z0

1 � �x3, Z2 ¼ Z0
2,

Z3 � �x3 ¼ Z0
3 � �x1.
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W3;2ð �x1; �x2; �x3;Z1; Z2; Z3; b1; b2; b3;B; BÞ ¼ 1

4ð2�Þ9
�x1 �x2 �x3

ðZ1 � �x1ÞðZ2 � �x2 � �x3Þ
~c 1;M1

ð �x1=Z1;b1Þ ~c 1;M2
ð �x2=Z2; b2Þ

� ~c 1;M3
ð �x3=Z3;b3Þ ~c �

1;M3
ð �x1=Z1; b3 ��1Þ ~c �

1;M2
ð �x2=Z2; b2 ��2Þ

� ~c �
1;M1

ð �x3=Z3;b1 þ �2 þ�1Þ: (38)

Beyond the constraints Z1 þ Z2 þ Z3 ¼ Z0
1 þ Z0

2 þ
Z0
3 ¼ 3 we have the relations Z1 � �x1 ¼ Z0

1 � �x2,
Z2 � �x2 ¼ Z0

2 � �x3, Z3 � �x3 ¼ Z0
3 � �x1.

Finally, the cross sections for these particular
processes can be obtained from the expression of the
diagonal term, Eq. (77), by substituting the factors
�ðz1; b1Þ�ðz2;b2Þ�ðz3;b3Þ by the corresponding W3;j

term, after solving the constraints which give Z0
1, Z

0
2, Z

0
3

in terms of Z1, Z2, Z3. The transverse configurations are
shown in Fig. 9.

Clearly, the qualitative considerations made previously
for the ratio of the diagonal and the interference terms hold
here also, since they depend on the existence of two scales
(hadronic and nuclear) always playing the same role.

IV. SIMPLEST ESTIMATES OF THE
DOMINANT CONTRIBUTIONS

The nonperturbative component of MPI in pA collisions
is characterized by the hadronic and nuclear scales. In MPI,
the relevant hadronic scale is the transverse dimension R of

the generalized parton distributions, which is smaller as
compared with the hadron radius; it may be roughly a
factor 4 smaller as compared with the radii of D, 3H, and
3He. Even with light nuclei, one may thus obtain a simple
estimate of the dominant contributions to the MPI cross
sections by neglecting the hadronic scale when compared
to the nuclear scale. In the same spirit one may obtain a
further simplification by evaluating the integrals on the
fractional momenta of the bound nucleons, Zi, by taking
into account the dependence on Zi only in the nuclear wave
function and replacing Zi with 1 everywhere else.

A. Double scattering

The double parton scattering cross sections, for pD
and p 3H (or p 3He) collisions, are given by the sum of
two contributions. In the first one only a single bound
nucleon participates and in the second two bound nucleons
participate in the hard interaction:

�pD
2 ðxi; �xiÞ ¼ �pD

2;1 ðxi; �xiÞ þ �pD
2;2 ðxi; �xiÞ;

�pT
2 ðxi; �xiÞ ¼ �pT

2;1ðxi; �xiÞ þ �pT
2;2ðxi; �xiÞ:

(39)

With the simplifying assumptions above, the contribu-
tions where only a single bound nucleon participates are
given by

�pD
2;1 ’ 2�D and �pT

2;1 ’ 3�D (40)

where �D is the double parton scattering inclusive cross
section on an isolated nucleon. One may define

�ðx1; x2;�1; �2Þ 	 Kx1;x2Gðx1ÞGðx2Þfx1;x2ð�1; �2Þ withZ
fx1;x2ð�1; �2Þd�1d�2 ¼ 1 (41)

FIG. 8 (color online). Different contributions to triple parton
scattering in pT or p 3He interactions. All target nucleons
interact with large transverse-momentum exchange.

FIG. 9 (color online). Configurations in transverse space of the three amplitudes in Fig. 8, in the right-hand side of the cut.
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where GðxÞ is the one-body inclusive parton distribution, such that GðxÞ ¼ R
�ðx;bÞdb. In the case of identical

interactions, one may thus express the double parton scattering cross section on an isolated nucleon as

�Dðx1; �x1;x2; �x2Þ¼1

2
Kx1;x2K �x1; �x2

Z
fx1;x2ð�1;�2Þf �x1; �x2ðb1;b2Þ�Sðx1; �x1Þ�Sðx2; �x2Þ�ð�1��2�b1þb2Þd�1d�2db1db2

(42)

where �S ¼ R
GðxÞ�̂ðx; x0ÞGðx0Þdxdx0 is the single parton scattering inclusive cross section on an isolated nucleon. The

effective cross section, namely, the accessible experimental information in nucleon-nucleon collisions, is thus given by
1

�effðx1; �x1; x2; �x2Þ ¼ Kx1;x2K �x1; �x2

Z
fx1;x2ð�1; �1 ��1Þf �x1; �x2ðb1; b1 ��1Þd�1db1d�1 (43)

where �1 ¼ �1 � �2. In pD collisions, when two nucleons participate in the hard interaction, one has contributions from
a diagonal and from an off-diagonal term. The dominant contribution to the diagonal term is

�pD
2;2 jdðx1; �x1; x2; �x2Þ ¼

1

ð2�Þ3
Z

�ðx1; x2;�1; �2Þ�̂ðx1; �x1Þ�̂ðx2; �x2Þ�ð �x1=Z;b1Þ�ð �x2=ð2� ZÞ; b2Þj ~�DðZ;BÞj2

� dZ=Z2dBdb1db2d�1d�2�ðB� b1 þ b2 ��1Þ
’ Kx1;x2�Sðx1; �x1Þ�Sðx2; �x2ÞIDð0Þ (44)

where the general form of IDðxÞ is

I DðxÞ 	 1

ð2�Þ3
Z

~�DðZ; 0Þ ~��
DðZ0; 0Þ dZdZ

0

ZZ0 �ðZ� Z0 � xÞ: (45)

The range of the variables bi and �j, defined by the partonic distributions �, is much narrower as compared with the

nuclear range of B. The � function in Eq. (44) thus forces, in ~�D, B � 0.

Notice that, differently from the case of double parton scattering in nucleon-nucleon collisions, the scale factor in�pD
2;2 jd

is given by the value of IDð0Þ, which is determined by the radius of the deuteron, while the cross section is proportional to

Kx1;x2 , which gives the partonic correlation in fractional momenta. As already noticed in [58], �pD
2;2 jd thus depends weakly

on the correlation between partons in the transverse coordinates; on the contrary, it may provide rather direct information
on the size of Kx1;x2 .

The contribution of the interference term to the cross section is

�pD
2;2 jiðx1; �x1; x2; �x2Þ ¼

1

ð2�Þ3
Z

�ðx1; x2;�1; �2Þ�̂ðx1; �x1Þ�̂ðx2; �x2ÞW1ðZ; Z0; �x1; �x2; b1; b2; BÞ ~�DðZ;BÞ ~��
DðZ0;BÞ

� ½ZZ0��1dBdb1db2d�1d�2dZdZ
0�ðB� b1 þ b2 ��1Þ�ðZ� Z0 � �x1 þ �x2Þ: (46)

By neglecting the hadron scale with respect to the nuclear scale and keeping Z � 1 only in the deuteron wave function,
the integrations in b1 and b2 in Eq. (46) are

Z
W1ð1; 1; �x1; �x2;b1; b2; b1 � b2 þ�1Þdb1db2 ¼ 1

4ð2�Þ6
Z

dM2
1dM

2
2db1db2

�x1 �x2
ð1� �x1Þð1� �x2Þ cM1

ð �x1; b1Þ
� c �

M2
ð �x2;b2 � �1ÞcM2

ð �x1; b2Þc �
M1
ð �x2; b1 þ�1Þ

¼ ~Hð �x1; �x2; �1Þ ~Hð �x2; �x1;��1Þ (47)

where the generalized parton distributions ~H have been introduced:

~Hð �x1; �x2; �1Þ 	
Z

Hð1; 1; �x1; �x2;b1; b2Þ�ðb1 � b2 � �1Þdb1db2; (48)

and H has been defined in Sec. II B. Notice that the normalization is ~Hðx; x; 0Þ ¼ GðxÞ. One may thus define
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C1ðx1; �x1; x2; �x2Þ ¼
R
fx1;x2ð�1Þ ~Hð �x1; �x2; �1Þ ~Hð �x2; �x1;��1Þd�1

Gð �x1ÞGð �x2Þ (49)

which is dimensionless and weakly dependent on �x1, �x2 as compared to IDð �x1 � �x2Þ since C1 originates from the partonic
structure of the hadron while ID originates from the nuclear structure. The contribution of the interference term to the cross
section may thus be expressed as

�pD
2;2 jiðx1; �x1; x2; �x2Þ ’ Kx1;x2�Sðx1; �x1Þ�Sðx2; �x2ÞC1ðx1; �x1; x2; �x2ÞIDð �x1 � �x2Þ: (50)

Notice that both �pD
2;2 jd and �pD

2;2 ji depend linearly on Kx1;x2 , and both terms are proportional to the inverse of the square

of the deuteron radius, the latter term through the nuclear off-diagonal factor IDð �x1 � �x2Þ, which induces a much stronger

dependence of �pD
2;2 ji on �x1 � �x2 as compared with �pD

2;2 jd.
In the case of double parton interactions in p 3H or p 3He collisions, with two target nucleons taking part in the hard

interaction, one obtains the same expressions for the dominant contributions to the cross sections as in the case of pD
interactions. The only difference is in the multiplicity factors and in the terms IDð0Þ and IDð �x1 � �x2Þ, which are replaced
by the corresponding quantities with 3H or 3He, actually ITð0Þ and ITð �x1 � �x2Þ.

The leading contributions to the double parton scattering cross sections in pD and p 3H, p 3He are thus given by

�pD
2 ðxi; �xiÞ ¼ �pD

2;1 ðxi; �xiÞ þ �pD
2;2 jdðxi; �xiÞ þ �pD

2;2 jiðxi; �xiÞ
’ 2�Dðxi; �xiÞ þ Kx1;x2�Sðx1; �x1Þ�Sðx2; �x2Þ½IDð0Þ þ C1ðxi; �xiÞIDð �x1 � �x2Þ�;

�pT
2 ðxi; �xiÞ ¼ �pT

2;1ðxi; �xiÞ þ �pT
2;2jdðxi; �xiÞ þ �pT

2;2jiðxi; �xiÞ
’ 3�Dðxi; �xiÞ þ 3Kx1;x2�Sðx1; �x1Þ�Sðx2; �x2Þ½ITð0Þ þ C1ðxi; �xiÞITð �x1 � �x2Þ�:

(51)

The contributions �pD
2;1 and �pT

2;1 are well approximated by 2�D and by 3�D. The actual values can be evaluated with

great accuracy, once the double parton scattering cross sections in pp and in pn collisions are known as a function of
fractional momenta. Also the nuclear terms IDð0Þ, IDð �x1 � �x2Þ, ITð0Þ, and ITð �x1 � �x2Þ can be evaluated very accurately.
By measuring the double parton scattering cross sections in pD and p 3H (or p 3He) one may thus obtain accurate

estimates of the differences �pD
2 � �pD

2;1 and �pT
2 � �pT

2;1 and, as a consequence, of the rations RD and RT ,

defined as

RDðxi; �xiÞ 	
�pD

2 ðxi; �xiÞ � �pD
2;1 ðxi; �xiÞ

�Sðx1; �x1Þ�Sðx2; �x2Þ ’ Kx1;x2½IDð0Þ þ C1ðxi; �xiÞIDð �x1 � �x2Þ�;

RTðxi; �xiÞ 	
�pT

2 ðxi; �xiÞ � �pT
2;1ðxi; �xiÞ

�Sðx1; �x1Þ�Sðx2; �x2Þ ’ 3Kx1;x2½ITð0Þ þ C1ðxi; �xiÞITð �x1 � �x2Þ�:

(52)

One should point out that the contribution of the interfer-
ence term is not always present. As an example, in the case
of the production of W þ jets, through double parton col-
lisions, the interference term is absent. In such a case, the
second term in square brackets in (52) is missing and
Eq. (52) allows a direct estimate of Kx1;x2 , namely, of the
importance of the correlations in x in the double parton
distributions. When the interference term is present, the
cross section depends on the additional unknown quantity,
C1ðxi; �xiÞ, which multiplies the nuclear overlap integrals
IDð �x1 � �x2Þ or ITð �x1 � �x2Þ. In this way the main depen-
dence of the cross section on X 	 �x1 � �x2 is originated. By
measuring the cross section at different values of X, one
may construct the fraction

�RD;Tðxi; �xiÞ
�X

’ Kx1;x2C1ðxi; �xiÞ�ID;TðXÞ
�X

: (53)

By studying the dependence of RD and of RT on X ¼
�x1 � �x2, with the help of Eqs. (52) and (53), one may
obtain information both on C1ðxi; �xiÞ and on Kx1;x2 .

Notice that the values of �X needed in Eq. (53) may not
be too small. The natural scale of X ¼ �x1 � �x2 is in fact

ðEB=mÞ1=2 � 5� 10�2, where EB is the nuclear binding
energy.
The indication of the value of Kx1;x2 , together with the

measure of the effective cross section in nucleon-nucleon
collisions, allows us to obtain an indication of the value of
the integral

R
fx1;x2ð�1Þf �x1; �x2ð�1Þd�1 [cf. Eq. (43)]. With

the help of Eqs. (52) and (53), one may estimate C1ðxi; �xiÞ
and obtain an indication of the value of the integralR
fx1;x2ð�1Þ ~Hð �x1; �x2;�1Þ ~Hð �x2; �x1;��1Þd�1 [cf. Eq. (49)].

The information on the two integrals will provide
important constraints on the correlation length between
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partons in transverse space, which is explicit in fx1;x2ð�1Þ.
By measuring the double parton scattering cross section in
pD and p 3H (or p 3He) one may thus learn both about
correlations between partons in fractional momenta,
through the factor Kx1;x2 , and about correlations between

partons in the transverse coordinates.

B. Triple scattering

As in the case of double parton scattering, the triple
parton scattering cross section in pD and p 3H or p 3He
collisions can be written as

�pD
3 ðxi; �xiÞ ¼ �pD

3;1 ðxi; �xiÞ þ �pD
3;2 ðxi; �xiÞ

�pT
3 ðxi; �xiÞ ¼ �pT

3;1ðxi; �xiÞ þ �pT
3;2ðxi; �xiÞ þ �pT

3;3ðxi; �xiÞ:
(54)

With the simplifying assumptions discussed in the pre-
vious section, the dominant contribution to the terms where

only a single bound nucleon undergoes a triple parton
interaction is given by

�pD
3;1 ’ 2�T; �pT

3;1 ’ 3�T (55)

where �T is the triple parton scattering inclusive cross
section on an isolated nucleon. By making the positions

�ðx1; x2; x3;�1; �2; �3Þ
	 Kx1;x2;x3Gðx1ÞGðx2ÞGðx3Þfx1;x2;x3ð�1; �2; �3Þ (56)

with

Z
fx1;x2;x3ð�1; �2; �3Þd�1d�2d�3 ¼ 1 (57)

one may express, in the case of identical interactions,
the triple parton scattering cross section on an isolated
nucleon as

�Tðx1; �x1; x2; �x2; x3; �x3Þ ¼ 1

6
Kx1;x2;x3K �x1; �x2; �x3

Z
fx1;x2;x3ð�iÞf �x1; �x2; �x3ðbiÞ�ð�1 � �2 � b1 þ b2Þ�ð�1 � �3 � b1 þ b3Þ

�Y
�Sðxi; �xiÞd�idbi: (58)

1. Two different target nucleons interact with large transverse-momentum exchange

The contribution to the triple parton scattering cross section, where two target nucleons undergo hard interactions, is the
process Oð1=ðS2R2ÞÞ, to be compared with triple scattering on a single nucleon, which is of Oð1=R4Þ; R and S are the
hadronic and nuclear scales. In the case of pD collisions, the different contributions to the cross section are summarized by
the expression

�pD
3;2 jj¼

2

ð2�Þ3N j

Z
�ðx1;x2;x3;�1;�2;�3Þ d�̂d�1

d�̂

d�2

d�̂

d�3

W2;jð �x1; �x2; �x3;Z1;Z2;b1;b2;b3;BÞ ~�DðZ1;Z2;BÞ ~��
DðZ0

1;Z
0
2;BÞ

�dBdZ1dZ
0
1dZ2dZ

0
2=ðZ1Z

0
1Þ
Y
i

dxid �xidbid�id�idZi�ðZ1þZ2�2Þ�ðZ0
1þZ0

2�2Þ�ðZ1�Z0
1�XjÞ

��ðZ2�Z0
2þXjÞ�ðb2�b1þ�1Þ�ðB�b1þb3��2Þ (59)

where�1 ¼ �1 � �2 and�2 ¼ �3 � �1, while the index j corresponds to the diagonal case, when j ¼ 0, and to the three
different interference terms, when j ¼ 1, 2, 3 (cf. Figs. 6 and 7). By neglecting the hadronic scale R as compared to the
nuclear scale S, in the diagonal case one obtains

W2;0ð �x1; �x2; �x3;Z1; Z2; b1; b2; b3;BÞ 	 1
2�ðz1; z2;b1; b2Þ�ðz3; b3Þ: (60)

The quantity Xj assumes the following values:

X0 ¼ 0; X1 ¼ �x1 � �x2; X2 ¼ � �x2; X3 ¼ �x1 � �x2 � �x3; (61)

and the multiplicity factors N j are N 0 ¼ 2, N 1 ¼ 4, N 2 ¼ 4, N 3 ¼ 2.
Analogously to the case previously discussed, the dominant contributions may be estimated by

�pD
3;2 jj ’ N j

Z
�ðx1; x2; x3;�1; �2; �3Þ�̂ðx1; �x1Þ�̂ðx2; �x2Þ�̂ðx3; �x3Þ

�W2;jð �x1; �x2; �x3; 1; 1; b1; b2; b3;b1 � b3 þ�2ÞIDðXjÞ�ðb2 � b1 þ�1Þ
Y
i

dxid �xidbid�i (62)

where all effects of the deuteron wave function are summarized in the terms IDðXjÞ:

I DðXjÞ ¼ 1

ð2�Þ3
Z

~�DðZ; 0Þ ~��
DðZ0; 0Þ�ðZ� Z0 � XjÞ dZdZ

0

ZZ0 (63)
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as already defined in Eq. (45). By introducing

C2;jðxi; �xiÞ ¼
R
fx1;x2;x3ð�iÞW2;jð �xi; 1; 1; bi;b1 � b3 þ �2Þ�ðb2 � b1 þ �1ÞQi dbi�i

Gð �x1ÞGð �x2ÞGð �x3Þ (64)

one obtains

�pD
3;2 jjðxi; �xiÞ ’ N jKxi�Sðx1; �x1Þ�Sðx2; �x2Þ

� �Sðx3; �x3ÞC2;jðxi; �xiÞIDðXjÞ: (65)

The expression of the diagonal contribution is

�pD
3;2 j0ðxi; �xiÞ ’ 1

2Kx1;x2;x3K �x1 �x2�Sðx1; �x1Þ�Sðx2; �x2Þ
� �Sðx3; �x3ÞGxi �xkIDð0Þ (66)

where

Gxi �xk ¼
Z

fx1;x2;x3ð�1;�2;�3Þf �x1 �x2ðb1; b2Þ�ðb2 �b1 þ�1Þ

�Y
d�idbk: (67)

As in the case of double collisions one may introduce the
ratio

R 0
Dðxi; �xiÞ 	

�pD
3;2 ðxi; �xiÞQ
�Sðxi; �xiÞ ¼

P
j �

pD
3;2 jjðxi; �xiÞQ
�Sðxi; �xiÞ

’ Kxi

X
j

N jC2;jðxi; �xiÞIDðXjÞ (68)

and, for j > 0, construct the fraction

�R0
Dðxi; �xiÞ
�Xj

’ KxiN jC2;jðxi; �xiÞ
�I 0

DðXjÞ
�Xj

: (69)

Differently with respect to the case of the double colli-
sions, Eqs. (68) and (69) do not allow us to disentangle Kxi

from C2;jðxi; �xiÞ. Disentangling the effects of longitudinal

and transverse correlations is possible in the case of double
collisions because, in that case, the dominant contribution
to the diagonal term depends only on Kx1;x2 . In the actual

case, on the contrary, C2;0ðxi; �xiÞ is proportional to the

product KxiGxi �xk . By studying triple scattering on a deu-

teron, one may only obtain an estimate of the products
KxiC2;jðxi; �xiÞ. To gain further insight into longitudinal and
transverse three-body correlations, one needs additional

information, which can be provided by triple parton inter-
actions in collisions of protons with 3H or with 3He.
When two target nucleons participate in the hard inter-

action, after integrating the spectator nucleon, p 3H (or p
3He) gives results very similar to pD collisions. The two
dominant contributions to the diagonal term differ in fact
only by an overall multiplicity factor (which is actually 3)
and in the factors ITðXjÞ, which substitute for the factors

IDðXjÞ. Analogously to the case of D, ITðXjÞ represents
the square of the 3H (or 3He) wave function in the mixed
representation, integrated in the fractional momenta Zi

with the constraints given in Eq. (59), and in the relative
transverse distance B0, while the transverse distance B has
been set equal to zero. One thus obtains the relation

�pT
3;2jjðxi; �xiÞ ’ �pD

3;2 jjðxi; �xiÞ
ITðXjÞ
IDðXjÞ : (70)

Equation (70) is a consequence of Eq. (68), which holds
in the limit R2=S2D ! 0. If ST is the 3H (or 3He) radius, the
two terms in Eq. (70) are thus of Oð1=ðR2S2TÞÞ and the
relation is exact in the limit R2=S2D ! 0. Finite values of R
contribute, in the left-hand side, with terms of
Oð1=ðR2S2TÞ � R2=S2TÞ and with terms of Oð1=ðR2S2TÞ �
R2=S2DÞ in the right-hand side of the equation. One may
thus estimate that Eq. (70) is valid up to terms of
Oð1=S2T � ð1=S2T � 1=S2DÞ � ðS2D � S2TÞ=S6TÞ.

2. Three different target nucleons interact with large
transverse-momentum exchange

In the case of the contribution to the triple parton scat-

tering cross section, �pT
3;3, where three different target

nucleons interact with large transverse-momentum ex-
change, in p 3H or p 3He collisions one has three different
terms, one diagonal and two off diagonal, which are
labeled with the index j in the expression below (cf.
Figs. 8 and 9). As in the previous section, the label j ¼ 0
corresponds to the diagonal case.

�pT
3;3jj¼

2

ð2�Þ3N
0
j

Z
�ðx1;x2;x3;�1;�2;�3Þ d�̂d�1

d�̂

d�2

d�̂

d�3

W3;jð �x1; �x2; �x3;Z1;Z2;Z3;b1;b2;b3;B;B
0Þ ~�TðZ1;Z2;Z3;B;B

0Þ

� ~��
TðZ1;

0Z0
2;Z

0
3;B;B

0ÞdBdZ1dZ
0
1dZ2dZ

0
2dZ3dZ

0
3½Z1Z

0
1Z2Z

0
2Z3Z

0
3��1=2�ðZ1þZ2þZ3�3Þ

��ðZ0
1þZ0

2þZ0
3�3Þ�ðZ1�Z0

1�Yj;1Þ�ðZ2�Z0
2þYj;2Þ�ðZ3�Z0

3þYj;3Þ�ðB0 þb1�b3þ�1Þ
��ðb3�b2��2�BÞY

i

dxid �xidbid�id�idBdB
0: (71)
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With the approximations previously discussed one obtains

�pT
3;3jj ’

2

ð2�Þ3 N
0
j

Z
�ðx1; x2; x3;�1; �2; �3Þ�̂ðx1; �x1Þ�̂ðx2; �x2Þ�̂ðx3; �x3Þ

�W3;jð �x1; �x2; �x3; 1; 1; 1; b1; b2; b3;b3 � b2 ��2;�b1 þ b3 � �1ÞJ ðYj;i¼1;3Þ
Y
i

dxid �xidbid�i (72)

where

J ðYj;i¼1;3Þ ¼ 2

ð2�Þ3 N
0
j

Z
~�TðZ1; Z2; Z3; 0; 0Þ ~��

TðZ0
1; Z

0
2; Z

0
3; 0; 0ÞdZ1dZ

0
1dZ2dZ

0
2dZ3dZ

0
3½Z1Z

0
1Z2Z

0
2Z3Z

0
3��1=2

� �ðZ1 þ Z2 þ Z3 � 3Þ�ðZ0
1 þ Z0

2 þ Z0
3 � 3Þ�ðZ1 � Z0

1 � Yj;1Þ�ðZ2 � Z0
2 þ Yj;2Þ (73)

and

Yj¼0;i¼1;3: Y0;1 ¼ 0; Y0;2 ¼ 0; Y0;3 ¼ 0
Yj¼1;i¼1;3: Y1;1 ¼ �x1 � �x3; Y1;2 ¼ 0; Y1;3 ¼ �x3 � �x1
Yj¼2;i¼1;3: Y2;1 ¼ �x1 � �x2; Y2;2 ¼ �x2 � �x3; Y2;3 ¼ �x3 � �x1

while the multiplicity factors are N 0
0 ¼ 1, N 0

1 ¼ 3, N 0
1 ¼ 2. Introducing

C3;jðxi; �xiÞ ¼
R
fx1;x2;x3ð�iÞW3;jð �xi; 1; 1; 1; bi; b3 � b2 ��2;�b1 þ b3 � �1ÞQi dbid�i

Gð �x1ÞGð �x2ÞGð �x3Þ (74)

one obtains

�pT
3;3ðxi; �xiÞjj ’ N 0

jKx1;x2;x3�Sðx1; �x1Þ�Sðx2; �x2Þ�Sðx3; �x3ÞC3;jðxi; �xiÞJ ðYj;i¼1;3Þ: (75)

In the case j ¼ 0 one has

C3;0ðxi; �xiÞ ¼ 1 (76)

and one obtains

�pT
3;3j0ðxi; �xiÞ ’ 1

6Kx1;x2;x3�Sðx1; �x1Þ�Sðx2; �x2Þ�Sðx3; �x3ÞJ ð0Þ: (77)

For j ¼ 1 one hasZ
W3;1ð �xi; 1; 1; 1; bi;b3 � b2 � �2;�b1 þ b3 � �1Þ

Y
dbi ¼ ~Hð �x1; �x3; �1ÞGðx2Þ ~Hð �x3; �x1;��1Þ (78)

in such a way that

C3;1ðxi; �xiÞ ¼
R
fx1;x2;x3ð�1Þ ~Hð �x1; �x3; �1Þ ~Hð �x3; �x1;��1Þd�1

Gð �x1ÞGð �x3Þ (79)

where

fx1;x2;x3ð�1Þ ¼
Z

fx1;x2;x3ð�iÞ�ð�1 � �1 þ �2Þ
Y

d�i: (80)

For j ¼ 2 one hasZ
W3;2ð �xi; 1; 1; 1;bi;b3 � b2 � �2;�b1 þ b3 � �1Þ

Y
dbi ¼ ~Hð �x1; �x3; �1 þ�2Þ ~Hð �x2; �x1;��2Þ ~Hð �x3; �x2;��1Þ (81)

and

C3;2ðxi; �xiÞ ¼
R
fx1;x2;x3ð�1;�2Þ ~Hð �x1; �x3; �1 þ�2Þ ~Hð �x2; �x1;��2Þ ~Hð �x3; �x2;��1Þd�1d�2

Gð �x1ÞGð �x2ÞGð �x3Þ (82)

where

fx1;x2;x3ð�1;�2Þ ¼
Z

fx1;x2;x3ð�iÞ�ð�1 � �1 þ �2Þ�ð�2 þ �1 � �3Þ
Y

d�i: (83)
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As in the case of double parton collisions, discussed
previously, the contribution to the triple parton scattering
cross section�pT

3;1 is given to a good approximation by 3�T ,
where �T is the triple parton scattering cross section on an
isolated nucleon. Once the triple parton scattering cross
sections in pp and in pn collisions are known as a function
of fractional momenta, the smearing effects of the nuclear
wave function can be taken into account and �pT

3;1 can be
evaluated with great accuracy. Also, the off-diagonal nu-
clear terms J ðYj;i¼1;3Þ can be evaluated with great accu-
racy. By measuring �pT

3 , one may thus obtain an accurate
estimate of the difference �pT

3 � �pT
3;1. Equation (70)

allows one to estimate �pT
3;2. One may thus define

R 0
Tðxi; �xiÞ 	

�pT
3;3ðxi; �xiÞQ
�Sðxi; �xiÞ (84)

where

�pT
3 ðxi; �xiÞ ¼ �pT

3;1ðxi; �xiÞ þ �pT
3;2ðxi; �xiÞ þ �pT

3;3ðxi; �xiÞ;

�pT
3;2ðxi; �xiÞ ¼

X
j

�pT
3;2ðxi; �xiÞjj ’

X
j

�pD
3;2 ðxi; �xiÞjj

ITðXjÞ
IDðXjÞ ;

(85)

and then relate the ‘‘known’’ quantity R0
T to the unknown

properties of the hadron structure, represented by Kxi and
C3;jðxi; �xiÞ:

R 0
Tðxi; �xiÞ ¼

P
j �

pT
3;3jjðxi; �xiÞQ
�Sðxi; �xiÞ

’ Kxi

X
j

N 0
jC3;jðxi; �xiÞJ ðYj;i¼1;3Þ: (86)

Analogously to the case of double parton scattering, an
indication of triple correlations in fractional momenta and
in the transverse coordinates can then be obtained by
looking at the variation of R0

T as a function of Yj;i and

using the property that C3;0 ¼ 1.
Notice that Eq. (86) is a consequence of Eq. (70), which

holds up to terms of OððS2D � S2TÞ=S6TÞ. Since the right-
hand side of Eq. (86) is of Oð1=S4TÞ, one may estimate that
the relative correction to the dominant terms in Eq. (86) is
only of OððS2D � S2TÞ=S2T � 1=5Þ. Equation (86) can there-
fore provide only a semiquantitative indication of the size
of triple correlations, while a better determination requires
a dedicated study.

V. FINAL DISCUSSION

MPI in pA collisions allow one to obtain information on
multiparton correlations, which cannot be provided by
studying MPI in pp collisions [54]. Relevant features of
the simplest case, double parton interactions in pD colli-
sions, were pointed out in [58]. In the present paper, we
have extended the study of MPI in pA collisions to the
cases of double and triple parton interactions in collisions

of protons with D, 3H, and 3He, also including the effects
of interference terms in the discussion.
Double parton interactions in collisions of protons with

D, 3H, and 3He are discussed in Sec. II. When only a single
nucleon takes part in the hard process (Sec. II A), the
integrations on the relative transverse coordinates of the
spectator nucleons are decoupled from all other transverse
variables and the cross section is the same as that measured
in nucleon-nucleon collisions, apart from the proper multi-
plicity factor and the smearing corrections in the longitu-
dinal variables, which, as discussed in Sec. IV, are,
however, rather small. The explicit expressions of the cross
sections for pD, p 3H and p 3He collisions are given in
Eq. (10). Similar considerations hold in the case of triple
parton collisions on a single nucleon, which is discussed in
Sec. III A. The corresponding contribution to the triple
parton scattering cross section is given in Eq. (22).
Notice that the spectator nucleons are on mass shell. As
already discussed in [58], in spite of that, one may still
claim that final state interactions of the spectators are
approximately taken into account. The statement is sup-
ported by unitarity: If a nucleon is produced on mass shell
and undergoes a final state interaction with the remnants of
another nucleon, the final state interaction does not modify
the inclusive cross section, since the spectators are not
observed. If a nucleon is produced off mass shell, its
virtuality is rather small and it may not be unreasonable
to extend the unitarity relation SSy ¼ 1 to the actual
kinematical domain. Unitarity hence allows the replace-
ment of all final state interactions with cut nucleon lines,
i.e. with on mass shell nucleons.
In Sec. II B, we discuss the case of double parton colli-

sions, with two nucleons taking part in the hard process. In
addition to the diagonal contribution in Fig. 2(a) discussed
in [58], which leads to the geometrical picture of the
interaction in transverse space shown in Fig. 3, one has a
nondiagonal contribution from Fig. 2(b). The geometrical
picture in transverse space, of the corresponding interfer-
ing configurations (a) and (a*), is shown in Fig. 4. Notice
that, in both interfering configurations, the hard interac-
tions are localized at the same points and are well separated
in transverse space. As a consequence, the argument for the
suppression of the interference terms in MPI, discussed in
[61], does not apply in this case. Differently from pp
collisions, the additional degrees of freedom provided by
the nucleus, namely, the possibility of having different
nucleons involved in the hard process, can in fact produce
the same partonic initial state in different ways, which can
thus interfere in the process. As discussed in Sec. II B, the
contribution of the interference term is important in the
region where the fractional momenta of the interacting

partons are of order
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EB=m

p
, where EB and m are the

nuclear binding energy and nucleon mass, respectively.
Differently from the diagonal contributions, which are
dominated by the most probable nuclear configuration,
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where all nucleons’ fractional momenta are equal, in the
off-diagonal term of Fig. 2(b) the fractional momenta Z1,
Z0
1 and Z2, Z

0
2, of the two nucleons taking part in the hard

process, are forced by kinematics to be different:
Z1 � Z0

1 ¼ �ðZ2 � Z0
2Þ ¼ �x1 � �x2. Here �x1, �x2 are the

fractional momenta of the two target partons undergoing
the double collisions.

As discussed in Sec. IVA, the dominant contribution to
the interference term can be expressed in terms of off-
diagonal parton distributions, Eqs. (47) and (48). The con-
tribution of the interference term can be singled out by
looking at the dependence of the double parton scattering
cross section on the difference �x1 � �x2 [cf. Eq. (53)].
Taking into account that the scale which characterizes the

dependence of the nuclear wave function on Z is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EB=m

p
,

one may roughly estimate that, to single out the contribu-
tion of the interference term, one needs to measure the
double parton scattering cross section in an interval
�x1 � �x2 � 5� 10�2 with an accuracy greater than 10%.
The whole discussion assumes that each couple of scat-
tered partons, and the resulting observed particles, can be
identified as a definite pair, which requires that each couple
is sufficiently separated in phase space from the other
couples. The quantitative amount of this separation de-
pends on the detailed properties of the final state.

As mentioned in Sec. IVA, by studying the ratios in
Eqs. (52) and (53), using the information on double parton
interactions in pp collisions, and taking into account that
the dominant contribution to the diagonal term depends
only on Kx1;x2 , one may obtain information on parton

correlations in fractional momenta and, through the over-
lap integrals in the transverse parton coordinates, which
characterize �eff and the interference term, also on parton
correlations in the transverse coordinates. When the inter-
ference term is absent, as for production of W þ jets, the
task of estimating parton correlations may be simpler. In
that case, as discussed in [58], all information concerning
correlations may be obtained directly from Eq. (52).

The case of triple parton interactions has many features
similar to the case of double parton interactions. The main
difference is in the sizably larger number of contributing
terms. As already pointed out, the contribution where only
a single nucleon participates in the hard process is well
approximated by the cross section on an isolated nucleon,
multiplied by the multiplicity of target nucleons, while
nuclear smearing effects can give only minor corrections.
This description becomes complex when two or three
nucleons participate in the hard process. The general fea-
tures of the contributions where two nucleons participate in
the hard process are discussed in Sec. III B while, in
Sec. IVB 1, one may find a simplified estimate of the
different terms. In the case of two participating nucleons,
one finds a diagonal and three different off-diagonal con-
tributions. Differently from the case of double parton
collisions, in the case of triple parton collisions on two

different target nucleons, the dominant contribution to the
diagonal term depends both on the correlations in frac-
tional momenta, throughKx1;x2;x3 , and on the correlations in

the transverse coordinates, through the overlap function
Gxi; �xk [defined by Eq. (67)]. A consequence is that one

cannot disentangle the effects of longitudinal and trans-
verse correlations in triple parton collisions by studying the
ratios in Eqs. (68) and (69) in pD interactions only.
The information on triple parton collisions in pD inter-

actions can, nevertheless, be utilized to estimate the con-
tribution to triple parton collisions with two participating
nucleons, in the case of p 3H or p 3He collisions. By
measuring the triple parton scattering cross section in p
3H or p 3He collisions, one may thus estimate, using
Eq. (70), the contribution to the cross section where all
three target nucleons are involved in the hard process and
thus figure out the value of the ratio R0

T in Eq. (86). A

relevant feature of �pT
3;3, the component of the triple parton

scattering cross section with three participating target nu-
cleons, is that the leading contribution to the diagonal term,
as given by Eq. (77), is proportional toKx1;x2;x3 and does not

depend on the correlations in the transverse coordinates. By
studying the dependence ofR0

T on Yi;j one can thus obtain

an estimate both of Kx1;x2;x3 and of the different overlap

integrals in the transverse coordinates, which characterize
the different interference terms. As discussed in the last part

of Sec. IVB2, the uncertainties in the determination of�pT
3;2,

bymeans of Eq. (70), can, however, allow only a qualitative
estimate of triple parton correlations, while a better deter-
mination requires a dedicated study. Some preliminary
results of these investigations were presented in [62].

VI. CONCLUSIONS

The aim of the present paper is to study the possibility of
obtaining model-independent information on multiparton
correlations, by measuring MPI in high-energy hadron-
nucleus collisions. Two different kinds of correlations, in
fractional momenta and in the transverse coordinates, are
in fact unavoidably linked and cannot be disentangled,
when studying MPI in pp collisions only. The simplest
case, namely, double parton interactions (DPI) in pD
collisions, is characterized by novel and nontrivial fea-
tures, as compared to DPI in pp collisions. The component
of the cross section, where both target nucleons contribute
to the process, depends in fact only weakly on the corre-
lations in transverse space. In addition, one also has a
contribution from an interference term. All the different
contributions to the cross section can be disentangled, and
all the new unknown quantities appearing in the reaction
and directly related to parton correlations, in fractional
momenta and in the transverse coordinates, can be isolated
in an essentially model-independent way. An interesting
feature is that the interference term is expressed through
the off-diagonal parton distributions. By studying the
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interference term one may thus also gain information on
the off-diagonal parton distributions, in kinematical ranges
not easily accessible through other processes.

In order to disentangle triple parton correlations in frac-
tional momenta and in the transverse coordinates, one
needs to measure triple parton interactions in p 3H or p
3He collisions. In fact, the knowledge of the cross section
of double and of triple parton interactions in pp and in pD
collisions is not sufficient to isolate all the unknown quan-
tities which appear in the reaction. On the other hand,
taking into account that the radii of D and of 3H and 3He
are not very different, we can learn much from triple parton
interactions in pD collisions about the contribution to
triple parton interactions in p 3H or p 3He collisions
when only two target nucleons play an active role in the
process. As discussed in Sec. IVB, taking advantage of the
information on triple parton interactions in pp and pD
collisions, it is in fact rather simple to figure out how to
obtain, from the cross section of triple parton interactions
in p 3H or p 3He collisions, a model-independent, although
only semiquantitative, indication of the different compo-
nents of the cross section, with a direct link either to the
triple parton correlations in fractional momenta or to the
triple parton correlations in the transverse coordinates.

Our conclusion is that MPI of hadrons with light nuclei
have a great potential to provide information on the multi-
parton structure of the hadron. Following the lines outlined
in the present paper one can obtain model-independent
indications on multiparton correlations, albeit a detailed
quantitative evaluation of the effects of multiparton corre-
lations on the cross sections will require a model-dependent
numerical study. By measuring the cross sections with a
given number ofMPI on various nuclear targets, onemay in
fact identify different features of the incoming parton flux,
allowing one to isolate diverse terms of the correlated
multiparton structure. To our knowledge, this result cannot
be accomplished by other means. The option of studying
MPI in collisions of protons with light nuclei at the
Relativistic Heavy Ion Collider and to run, at some stage,
light nuclear beams at the LHC could therefore be highly
rewarding, offering the possibility to exploit the remarkable
potential ofMPI inpA collisions to yield information on the
many-body parton correlations and thus to provide unpre-
cedented insight into the three-dimensional structure of the
hadron.

APPENDIX A: THE NONRELATIVISTIC THREE-
BODY WAVE FUNCTION

The nuclear systems we have considered (3H, 3He) can
be treated with a nonrelativistic dynamics in their center-
of-momentum frame, but since they are involved in a
highly relativistic process it is necessary to match this
internal nonrelativistic dynamics with the overall relativ-
istic treatment. To this end the original procedure used by
Salpeter [63,64] to reduce the Bethe-Salpeter equation to

the Schrödinger equation will be followed as strictly as
possible. We are only able to set a correspondence between
nonrelativistic and relativistic wave functions; we are not
able to build up a wholly deductive procedure as in the
quoted references. For simplicity, we treat both the con-
stituent and the bound state as spinless bosons. Our final
aim is to use the nonrelativistic wave functions (as they are
known from nuclear physics) in our relativistic calculation
with the correct factors and the correct kinematical
transformation.
The starting point is given by homogeneous equations in

relativistic forms as obtained by a Feynman graph repre-
sentation, in term of the two-body scattering matrices
as suggested by the Faddeev [65,66] treatment of three-
body scattering:

U3ðq1; q2; q3Þ ¼ �ðq1Þ�ðq2Þ
X
J�3

Z
it3ðq1 þ q2; kÞ

�UJðq1 � k; q2 þ k; q3Þdk;
t3 ¼ V3 þGo

3V3t3;

Go
3 ¼ �ðq1Þ�ðq2Þ; (A1)

together with the two analogous terms for U1 and U2. An
iteration of the above equation shows that all three terms
UJ are preceded by the product of the free propagators of
the constituent particles �ðq1Þ�ðq2Þ�ðq3Þ, as is explicit in
the graphical description in Fig. 10.
Defining T ¼ q1 þ q2 þ q3 the system is nonrelativistic

in the frame T ¼ 0.
When the two-body scattering matrices tJ do not depend

on the relative energies but only on the three-momenta, as
it happens in nonrelativistic dynamics, we can integrateUJ

in ko. A generalization of this procedure suggests the
following Ansatz:

UJðq1; q2; q3Þ ¼ i�ðq1Þ�ðq2Þ�ðq3Þ�Jðq1;q2;q3Þ: (A2)

This formmeans that, in the nonrelativistic limit, the bound
particles are near the mass shell, so the singularities of the
� factors are the most important; moreover, in this limit,
antiparticles are not relevant, so the contribution of the
antiparticle poles does not need to be taken into account in
the integrations. This can be explicitly written as

�ðqÞ ¼ i

q2 �m2
¼ i

2!

�
1

qo �!
� 1

qo þ!

�

� i

2!

1

qo �!
:

FIG. 10 (color online). Faddeev equation.
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By inserting Eq. (A2) into Eq. (A1), dropping the common factors �ðq1Þ�ðq2Þ and integrating in ko, we obtain

�ðq3Þ�3ðq1;q2;q3Þ ¼ �ðq3Þ
X
J�3

Z
it3ðq1 þ q2;kÞ�ðq1 � kÞ�ðq2 þ kÞ�Jðq1 � k;q2 þ k;q3Þdk

¼ �ðq3Þ
X
J�3

Z 2�

4 ~!1 ~!2

1

ðT � q3Þo � ~!1 � ~!2 þ i

t3ðq1 þ q2;kÞ�Jðq1 � k;q2 þ k;q3Þd3k: (A3)

The subenergies are !i ¼ ½ðqiÞ2 þm2�1=2, ~!1 ¼
½ðq1 � kÞ2 þm2�1=2, ~!2 ¼ ½ðq2 þ kÞ2 þm2�1=2. We pro-
ceed by integrating over ðq3Þo. Three sources of singular-
ities need to be considered:

(i) Singularities of the propagators where ðq3Þo appears
directly.

(ii) Singularities of the propagators containing ðq1Þo,
ðq2Þo, where ðq3Þo enters because we work at con-
stant To. [Actually it is convenient to define q1¼
ðT�q3Þ=2þ l, q2 ¼ ðT � q3Þ=2� l.]

(iii) Singularities of t3, possibly originating from the
two-body subsystem (1þ 2), which can be either
poles like C=½ðT � q3Þo � 	þ i
� (two-body
bound states) or cuts like

R
�ð	Þd	=½ðT � q3Þo �

	þ i
� (two-body scattering states).

A direct inspection shows that the pole ðq3Þo ¼ !3 � i

has an imaginary part with an opposite sign from all other
poles in ðq3Þo, so its contribution gives the whole result of
the integration. One obtains

�3ðq1;q2;q3Þ
¼ 2�

X
J�3

Z
d3k

1

4 ~!1 ~!2

t3ðT� q3;kÞ

� 1

To � ~!1 � ~!2 �!3 þ i

�Jðq1 �k;q2 þk;q3Þ:

(A4)

It is useful to define To ¼ MT ¼ 3mþ EB, !J ¼ mþ �J.
As a consequence, EB < 0, �J > 0. For the function
defined as

’3ðq1;q2;q3Þ ¼ N
EB � �1 � �2 � �3

�3ðq1;q2;q3Þ
(A5)

one obtains the equation

’3 ¼ 2�GoðEBÞ
X
J�3

Z
t3’Jd

3k with

GoðEBÞ ¼ 1

EB � �1 � �2 � �3

;

which, together with the two analogous equations for ’1,
’2, represents the usual Faddeev equation for a nonrela-
tivistic three-body system [65,66]; in fact, EB is the bind-
ing energy and �J are the nonrelativistic kinetic energies.
Defining as usual q1 ¼ T=3þ ps=2þ l, q2 ¼ T=3þ

ps=2� l, q3 ¼ T=3� ps, in the T ¼ 0 frame, the wave
function depends on two three-vectors. We setX

J

’Jðq1;q2;q3Þ ¼ ’ðps; lÞ

where ’ is the complete nonrelativistic bound-state wave
function, which can be made real; we must satisfy the
normalization condition

Z
’2d3psd

3l ¼ 1: (A6)

The relations (A1), (A4), and (A5) are linear and cannot
give the normalization constant N . A normalization con-
dition may be obtained by considering the total charge of
the bound state.
The coupling of tritium with an external electromagnetic

field (see Fig. 11) is written as

J ðkÞ ¼ 2Tfðk2Þ
¼

Z
�ðq1;q2;q3Þ�ðq1Þ2q1 �ðq1 þ kÞ

� �ðq2Þ�ðq3Þ�ðq1 þ k;q2;q3Þ
� �

�
T �X

q

�Y
dq: (A7)

FIG. 11 (color online). Photon tritium vertex.

FIG. 12 (color online). T=3He vertex—one nucleon is virtual
and two nucleons are on shell.
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In the limit k ! 0 the zero component must give the total
charge of the bound state J 0ð0Þ ¼ 2To, or, in other words,
the form factor must satisfy fð0Þ ¼ 1. Now we use the
relations q1 ¼ T � q2 � q3 and then, keeping the pre-
scription of neglecting the antiparticle poles, we set

�ðqÞ2 � � 1

4qo!

�
1

qo �!

�
2
:

The integration over the particle poles in q2o , q3o is per-

formed in the frame T ¼ 0 with the result

J 0ð0Þ ¼ �ð2�Þ2
Z Y d3q

2!
�ðq1;q2;q3Þ

�
�

1

To �!1 �!2 �!3

�
2

��ðq1;q2;q3Þ�
�X

q

�

¼ 2MT: (A8)

We compare (A8) with (A6) At first sight, we might con-
clude that we need an N that depends on !i, but we
remember that in the present treatment we neglect � with
respect to m, but not with respect to EB. Finally, we have

N ¼ 2m
ffiffiffiffiffiffiffiffiffiffiffi
mMT

p
=�: (A9)

The function ’ goes as q3 [see (A6)]; then the function �
has power zero in q as expected. In fact,� finally plays the
role of an effective coupling in a four-boson relativistic
vertex. Summing up the procedure, we start from ’, as it is
known in nuclear physics; we then construct � [Eqs. (A5)
and (A9)], and from it we obtain [Eq. (6)] the expression of
� that, after Fourier transformation, enters in the expres-
sion of the cross sections.

The functions ’ are given in terms of the three-
dimensional momenta in the c.m. of the nucleus qi; they
need to be expressed in terms of the light-cone fractional
momenta to evaluate the cross sections in the main text. In
the case of interest, two nucleons are on shell (see Fig. 12).
Introducing the invariants

s12 ¼ ðp1 þ p2Þ2 ¼ ðT � p3Þ2;
s23 ¼ ðp2 þ p3Þ2 ¼ ðT � p1Þ2;
s13 ¼ ðp1 þ p3Þ2 ¼ ðT � p2Þ2

(A10)

one has

p2
1 ¼ p2

2 ¼ m2; T2 ¼ M2
T; p2

3 � m2;

s12 þ s23 þ s13 ¼ M2
T þ 2m2 þ p2

3:
(A11)

The light-cone four-momenta components are given by

T 	
�
M2

T

T�
; T�; 0

�
;

p1 	
�

m2
1?

Z1ðT�=3Þ ; Z1T�=3;p1?
�
;

p2 	
�

m2
2?

Z2ðT�=3Þ ; Z2T�=3;p2?
�
;

p3 	
�
p2
3 þ ðp1? þ p2?Þ2

ð3� Z1 � Z2ÞðT�=3Þ ; ð3� Z1 � Z2Þ

� T�=3;�ðp1? þ p2?Þ
�

(A12)

where m2
i? ¼ m2 þ p2

i? are the transverse masses. The

four-momentum conservation

M2
T ¼ 3

Z1

m2
1? þ 3

Z2

m2
2?

þ 3

3� Z1 � Z2

½p2
3 þ ðp1? þ p2?Þ�2 (A13)

implies

p2
3 �m2 ¼ ð3� Z1 � Z2Þ

�
M2

T

3
�m2

1?
Z1

�m2
2?
Z2

� m2
3?

3� Z1 � Z2

�
: (A14)

In the T=3He center-of-mass frame, the nucleon’s energies
Ei, i ¼ 1, 2, 3 are expressed in terms of the invariants ti as
follows:

E1 ¼ M2
T þm2 � s23

2MT

;

E2 ¼ M2
T þm2 � s31

2MT

;

E3 ¼ M2
T þ p2

3 � s12
2MT

:

(A15)

The relations

s23 ¼ M2
T þm2 �M2

T

Z1

3
�m2

1?
3

Z1

;

s31 ¼ M2
T þm2 �M2

T

Z2

3
�m2

2?
3

Z2

(A16)

allow us to express E1 and E2 in terms of fractional
momenta and transverse masses,

E1 ¼ 1

2MT

�
M2

T

Z1

3
þm2

1?
3

Z1

�
;

E2 ¼ 1

2MT

�
M2

T

Z2

3
þm2

2?
3

Z2

�
:

(A17)

By using E2
i ¼ q2

i þm2 one obtains similar expressions
for center-of-mass three-momenta q1z and q2z,
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q1z ¼ 1

2MT

�
M2

T

Z1

3
�m2

1?
3

Z1

�
;

q2z ¼ 1

2MT

�
M2

T

Z2

3
�m2

2?
3

Z2

�
:

(A18)

Taking into account

MT ¼ E1 þ E2 þ E3; q1 þ q2 þ q3 ¼ 0 (A19)

one obtains the analogous relations for E3 and q3z,

E3 ¼ 1

2MT

�
M2

T

�
2� Z1

3
� Z2

3

�
� 3

m2
1?
Z1

� 3
m2

2?
Z2

�
;

q3z ¼ �1

2MT

�
M2

T

�
Z1

3
þ Z2

3

�
� 3

m2
1?
Z1

� 3
m2

2?
Z2

�
;

(A20)

which allow us to express explicitly the nonrelativistic
nuclear wave functions as a function of the fractional
momenta Zi and of the transverse momenta pi?, i.e. in
terms of variables invariant under longitudinal boost.

APPENDIX B: MODELS WORKED OUT
COMPLETELY

We present here two models where more explicit calcu-
lations are carried out after having introduced more or less
strong simplifications of the real dynamics.

1. A model with the Hulthén wave function

Since the Hulthén potential, with its relative wave func-
tion, is one of the simplest potentials used in preliminary
analyses of the deuteron properties, we present here a short
derivation of some properties which are relevant for our
investigations, in particular, for an estimate of the rele-
vance of the interference terms.

The relative two-body wave function for the ground state
(S wave) in r and p representations is

hðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�þ �Þ=2�p

�� �

1

r

�
e��r � e��r

�
;

~hðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�þ �Þp
�ð�� �Þ

�
1

p2 þ �2
� 1

p2 þ �2

� (B1)

where � ¼ ffiffiffiffiffiffiffiffi
mE

p
, � ¼ �þ, the binding energy is E ¼

2m�MD, 1= should represent the range of the potential
(actually it has been fitted phenomenologically to  �
5�), and m=2 is the reduced mass, assuming equal masses
for the nucleons. The normalization is

4�
Z

jhðrÞj2r2dr ¼ 1; 4�
Z

j~hðpÞj2p2dp ¼ 1:

Now we may calculate the mean value and the disper-
sion of the radial coordinate, with the results

hri ¼ �2 þ 4��þ �

2��ð�þ �Þ ;

hr2i � hri2 ¼ �4 þ 2�3�þ 6�2�2 þ 2��3 þ �4

½2��ð�þ �Þ�2 :

(B2)

In the actual case the parameters satisfy the condition
� � � and there is a strong simplification:

hri �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2i � hri2

q
� 1=2�:

The longitudinal variable Z is studied in an analogous way,
and the results are

hZ2i ¼ 4

M2
D

�
4

3
hp2i þm2

�
;

hZ4i ¼ 16

M4
D

�
16

5
hp4i þ 4m2hp2i þm4

� (B3)

with the mean values

hp2i ¼ ��; hp4i ¼ ��ð�2 þ 3��þ �2Þ:
The qualitative behaviors of the parameters B, Z are that
the transverse extension is as large as one expected and that
the relative dispersion is quite large; the longitudinal vari-
able Z is centered around 1, with a relatively small disper-
sion at least for � < � <m, where we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hZ4i � hZ2i2

q
=hZ2i ¼ ffiffiffiffiffiffiffiffiffi

3��
p

=6m:

The fact that the fractional momentum is slightly larger
than 1 is due to the fact the we are, really, considering an
unsymmetrical situation where one of the bound nucleons
is put on mass shell; the configuration is symmetrical in the
space variables p, but it is not symmetrical in the relative
energies. It seems that the more interesting result is the
dispersion in Z; in fact, this is the parameter which says
how much the contribution of the interference term, where
Z � Z0, differs from the diagonal term.
We are also interested in a mixed representation where

the transverse degrees of freedom are expressed in space
variables B while the longitudinal degree is given in
light-cone variables pþ, p�. We recall that we are inter-
ested in a particular kinematical situation where one of the
bound nucleons is treated as real on mass shell, but we are
still in the center-of-momentum frame so that the two
three-momenta are opposite; then we shall consider a
longitudinal boost. In this situation we obtain pz ¼
m2

?=2p� � p�=2, m2
? ¼ m2 þ p2

?. With these definitions

we obtain

1

p2 þ �2 ¼ p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � �2

p
�

1

p2
? þ w2

� 1

p2
? þ v2

�

where
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v2
� ¼ p2� þ 2p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � �2

p
þm2;

w2
� ¼ p2� � 2p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � �2

p
þm2

and � is either � or �. The definition Z ¼ 2p�=D� gives,
in the center-of-momentum frame, p� ¼ MDZ=2, and so
we get

ĥðB;ZÞ¼MD



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�þ�Þp �

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2��2

p ½Koðw�BÞ�Koðv�BÞ�

� Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2��2

p ½Koðw�BÞ�Koðv�BÞ�
�
: (B4)

In order to apply these expressions to the deuteron case
we take into account that � <<m; we have already
noted that we are interested in small values of B compared
with the nuclear scale 1=2�, so we look for the limit B ! 0
which gives Koðw�BÞ � Koðv�BÞ ! lnðv�=w�Þ.

We can study numerically the above limiting form of ĥ.
The results forE=m ¼ 0:0021 are presented in the graph as a
function of u ¼ p�=m, which is slightly different fromZ ¼
2mu=MD. Since ¼ 5� is a phenomenological fitwithout a
direct interpretation, the numerical study has been per-
formed also for  ¼ 3�, which would better describe a
binding potential generated by pion exchange; the qualita-
tive conclusions are, however, the same for both choices of

the parameters. In Fig. 13weplot ĥð0; ZÞ as a function ofZ in
the cases  ¼ 3� and  ¼ 5�. A numerical study shows

that the shape of ĥðB; ZÞ has little variation with increasing
B. In accordance with the previous results the spread in Z is

sizable; in order to go from the maximum of ĥ to half of this
maximum, Z must vary at least by 0.1. When the difference
inZ of the two functions in the interference term is only a few
percent, the corresponding overlap integral is thus not very
depressed with respect to the diagonal term. In practice, this
means that the interference terms are smaller than the diago-
nal ones, but not by orders of magnitude.

2. A Gaussian model for the transverse dynamics

1. General features of the model

Here the simplification is heavier, with the aim of deal-
ing explicitly with the transverse degrees of freedom for all
the graphs we considered. No correlations among trans-
verse and longitudinal degrees of freedom are taken into
account; moreover, the transverse distributions are
Gaussian. One of the results, which are likely to be less
model dependent, is that the transverse dynamics is less
sensitive to the difference between diagonal terms and
interference terms.
The one-parton inclusive distribution is written as

�1 ¼ GðxÞf1ðbÞ; f1ðbÞ ¼ 1

�R2
exp½�b2=R2�: (B5)

The two-parton distribution is

�2 ¼ KGðx1ÞGðx2Þf2ðb1; b2Þ;
f2ðb1; b2Þ ¼ 1

ð�R2Þ2ð1� �2Þ
� exp½�ðb21 þ b22 þ 2�b1b2Þ=R2ð1� �2Þ�;Z

f2ðb1; b2Þdb2 ¼ f1ðb1Þ: (B6)

K controls the parton multiplicity, and � controls the
spatial correlation; both can still depend on the fractional
momenta xi.
The three-parton distribution, with a minimal number of

new parameters, is written as

�3¼Gðx1ÞGðx2ÞGðx3ÞK3f3ðb1;b2;b3Þ;
f3ðb1;b2;b3Þ¼ 1

ð�R2Þ3ð1�2�Þð1þ�Þ2

�exp

�
�ð1��ÞPi b

2
i þ2�

P
i<jðbi �bjÞ

R2ð1þ�Þð1�2�Þ
�

(B7)

where we have implemented the requirement that f3 be
symmetric in the parton variables and that

Z
f3ðb1; b2; b3Þdb3 ¼ f2ðb1; b2Þ:

The information embodied in the parameters KN and �
can be seen in this way. The distributions fN are inclusive;
if the corresponding exclusive distributions, integrated on
the longitudinal variables in a given interval, were
Poissonian, then KN would be 1. Of course, even a
Poissonian distribution of the partons’ multiplicities can
imply spatial correlations if � � 0.
The nuclear distribution, i.e. the square of the wave

function, is expressed for the deuteron as

0.5

1.0

1.5

2.0

0.8 1.0 1.2 1.4

FIG. 13 (color online). Graph of ĥðB ¼ 0Þ as a function of
p�=m. Arbitrary vertical normalization: the upper curve corre-
sponds to  ¼ 3�, and the lower curve corresponds to  ¼ 5�.
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gðz;bÞ ¼WðZÞFðBÞ; FðBÞ ¼ 1

�S2
exp½�B2=S2�;

0<Z< 2; B¼ B1 �B2:
(B8)

Since the distribution will be integrated at the end, for
tritium we write

gðZi; BiÞ ¼ WðZ1; Z2; Z3Þ�ðZ1 þ Z2 þ Z3 � 3ÞFðBiÞ;
0< Z< 3;

FðBiÞ ¼ 4

3ð�S2Þ2 exp½�2½ðB1 � B2Þ2

þ ðB2 � B3Þ2 þ ðB2 � B3Þ2�=3S2�: (B9)

The normalization is

Z
WðZÞdZ ¼ 1;

Z
WðZ1; Z2; Z3Þ�ðZ1 þ Z2 þ Z3 � 3ÞdZ1dZ2dZ3 ¼ 1:

In the nonrelativistic case Z � 1. The transverse three-
body distribution satisfies

Z
FðBiÞdB3 ¼ 1

�S2
exp½�B2=S2�; B ¼ B1 � B2;

which defines the normalization. It has already been noted
that the sizes S in the deuteron and in tritium, although
similar, are in fact different.

2. Free nucleons

As reference quantities we consider, within the model,
the simple double and triple hard scattering among free
nucleons at fixed fractional momenta. The simple hard
scattering is described by

�1ðx; x0Þ ¼ �̂xx0GðxÞGðx0Þ
Z

f1ðbÞf1ðb� �Þdbd�
¼ �̂xx0GðxÞGðx0Þ

due to the normalization of the transverse distributions.
The double hard scattering is described by

�2ðx1; x2; x01; x02Þ ¼ K2
2�̂x1x

0
1
Gðx1ÞGðx01Þ�̂x2x

0
2
Gðx2ÞGðx02ÞIo;

Io ¼
Z

f2ðb1; b2Þf2ðb1 � �; b2 � �Þdb1db2d�:
(B10)

The triple hard scattering is described by

�3ðx1; x2; x3; x01; x02; x03Þ ¼ K2
3�̂x1x

0
1
Gðx1ÞGðx01Þ�̂x2x

0
2
Gðx2ÞGðx02Þ�̂x3x

0
3
Gðx3ÞGðx03ÞJo;

Jo ¼
Z

f3ðb1; b2; b3Þf3ðb1 � �; b2 � �; b3 � �Þdb1db2db3d�:
(B11)

All the transverse variables ‘‘b’’ are two dimensional, and
the cylindrical symmetry is always preserved. Thus, all the
calculations regarding the transverse variables have the
standard form

C

�Z
dNy exp½�y �M � y�

�
2 ¼ C

�N

detM
: (B12)

Here M is an N � N matrix, and C embodies the normal-
izing factors as given in Eqs. (B5)–(B7).

In the cases considered above, after a rescaling of the

variables, b ! bR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
in the first case and b !

bR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p
in the second case, the matrices take

the form

MI ¼
�������������

2 2� �1� �

2� 2 �1� �

�1� � �1� � 2þ 2�

�������������
; (B13)

MJ¼
�������������
2ð1� �Þ 2� 2� �1

2� 2ð1� �Þ 2� �1
2� 2� 2ð1� �Þ �1
�1 �1 �1 3ð1þ �Þ

�������������
:

(B14)

So, finally, we have

Io ¼ 1

4�R2

1

1þ �
; Jo ¼ 1

12ð�R2Þ2
1

1þ 4�þ 2�2
:

(B15)

3. Bound nucleons

We start by considering the scattering process when one
of the nucleons is bound in a deuteron,

�D;1ðx; x0Þ ¼ �̂xx0GðxÞGðx0=ZÞWðZÞdZdxdx0
Z

f1ðbÞf1ðb
� B1ÞFðB1 � B2ÞdbdBi:

By integrating in B2 the factor F, one simply gets 1.
According to the discussion in Sec. III, in the distribution
W the variable Z is shrunk around the value Z ¼ 1 so we
take

R
Gðx0=ZÞdZWðZÞ � Gðx0ÞR dZWðZÞ ¼ Gðx0Þ; we

obtain the same expression as for the free case. From the
simple procedure described it is seen that the same result
holds for the case of tritium, with a suitable redefinition of
the size S also when we consider double or triple hard
scatterings.

COLLISIONS OF PROTONS WITH LIGHT NUCLEI SHED . . . PHYSICAL REVIEW D 86, 036003 (2012)

036003-27



When we look at hard scatterings where more than one
bound nucleon participates, new features appear. In the
simplified model described here where the longitudinal
degrees of freedom are factorized, we have seen that the
Z � 1 approximation is inconsistent with the conservation
of longitudinal momentum in the nondiagonal cases, but
we do not have anything new to add to this point. We
investigate the transverse degrees of freedom of the partons
(inside the nucleon) and of the nucleon (inside the nu-
cleus), which are dynamically connected.

Now we study the double scattering when both nucleons
of the deuteron are involved (here and below the x, x0
arguments of �̂ will usually be omitted).

It has been shown that in this case there are two possi-
bilities: the direct term and an interference term. In the
latter case we cannot simply work with the density distri-
bution of partons; we need the ‘‘wave function,’’ whose
absolute square gives the distribution of the partons inside
the hadron. In our case, where the distributions are
Gaussian, we take as wave function the square root of
the distribution; i.e. we ignore the possible phases. Then
the relevant quantities are

Id2 ¼
Z
f2ðb1;b2Þf1ðb1�B1Þf1ðb2�B2ÞFðB1�B2ÞdbdB;

Ii2¼
Z
f2ðb1;b2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðb1�B1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðb1�B2Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðb2�B2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðb2�B1Þ

q
FðB1�B2ÞdbdB:

(B16)

The subsequent calculations are very similar to the pre-
vious one. There is only one new feature, the new
dimensional parameter S. We have an integration over
the transverse variables b. The Gaussian integration
involves the calculation of 4� 4 determinants, and
finally, taking into account the normalizations, for the
diagonal and for the interference terms we obtain,
respectively,

Id2 ¼ 1

�½S2 þ 2ð2þ �ÞR2� ;

Ii2 ¼
1

�ð2þ �Þ½S2 þ 2R2� :
(B17)

In the double collision involving tritium there is neces-
sarily a spectator. Since by integrating the three-body
distribution (B5) over the spectator’s coordinates we obtain
the two-body distribution (B4), the final expression is the
same, provided we rescale the size in (B11) according to
the experimental values.

Nowwe consider the triple hard interaction where one of
the bound nucleons interacts twice, another only once, and
there is, in tritium case, a spectator. It has already been
shown that there are two kinds of processes in this case,

with a diagonal term and some interference terms which
must be treated separately.
We do not repeat the consideration about the longitudi-

nal variables; as far as the transverse variables are con-
cerned, the integration implies the calculation of 5� 5
determinants, and the final result is, for the diagonal term,

Jd2 ¼ 1

1þ �

1

4�2R2½S2 þ ð3þ �ÞR2� : (B18)

For the interference terms we get

Ji;22 ¼ 1� �

ð1þ �Þð6� �Þ
� 4

�2R2½ð4� �ÞS2 þ 2ð4� 2�� �2ÞR2� ;

Ji;32 ¼ 1� �

ð1þ �Þð3þ �Þ
1

�2R2½ð3� �ÞS2 þ 4ð1� �ÞR2� ;

Ji;42 ¼ 1� �

ð1þ �Þð4� 2�� �2Þ
4

�2R2½7S2 þ 2ð6� �ÞR2� :
(B19)

Finally, we consider the process where we have three
bound nucleons, all interacting once; evidently, now we
must consider tritium. We find a diagonal term and two
different interference terms; the integration implies the
calculation of 6� 6 determinants, and the final result is,
for the diagonal term,

Jd3 ¼ 4

3

1

�2½S2 þ 2ð2þ �ÞR2�2 : (B20)

For the two interference terms we get

Ji;23 ¼4

3

1

�2ð2þ�Þ½ðS2þ2R2ÞðS2þ2ð2þ�ÞR2� ;

Ji;33 ¼4

3

16

�2½ð7þ3�ÞS2þ8ð2þ�ÞR2�2 :
(B21)

A feature that appears very clearly from the model but
that reflects a more general property is the dependence on
the geometrical parameters: since the cross section has
dimension ‘2 and there are three factors �̂, each with
dimension ‘2, the terms J must have dimensions ‘�4.
When only one nucleon interacts, this factor is necessarily
1=R4; when two nucleons interact, the factor is
1=R2ðS2 þ �R2Þ; when three nucleons interact, the factor
has the form 1=ðS2 þ �R2Þ2. The meaning is clear con-
sidering the hypothetical situation S 
 R. In this case the
first cross section remains unaltered, the second vanishes as
1=S2, and the third one vanishes as 1=S4.

APPENDIX C: INFRARED BEHAVIOR

We take a brief look at the infrared properties of the
amplitudes and densities we have used.
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Using Eqs. (5) and (9) we can conclude that the
one-particle density has the behavior �ðz; bÞ / 1=z,
but we know that this is not supported by experimental
data, so we conclude that the vertex � must also show
an infrared singularity in such a way that �ðz; bÞ / 1=z1þ�.
Since the integration (with an infrared cutoff) of the
two-body distribution must give the one-body distribution,
the same behavior must be found in the two-body

vertex �̂.
Thus, we find a relevant simplification of the two-parton

amplitude when one of the two partons has a very soft four-
momentum; this is the particular case of the general fea-
tures found in the emission of soft particles. For definite-
ness, we consider the free proton case: when the parton
four-momentum goes to zero linearly in all its components,
we have l1? / x1. Then, in the expression for c 2 we
neglect the term in l21? and also x1 with respect to x2.
The result is

c i:r: ¼ 1ffiffiffi
2

p
Lþx1

�̂

x2½m2 �M2
?=ð1� x2Þ� � l2?

2

but we have seen that �̂must have a singularity; we extract

it by writing �̂ / �

x�=2
. In the same kinematical configura-

tions the other factor used in defining the densities � can
also be decomposed as

x1; x2
1� x1 � x2

’ x1
x2

1� x2
; x1 � x2:

So the original density is decomposed into two factors: the
second factor is precisely the probability of finding one
parton with finite fractional momentum, as seen in Eq. (5),

and the first one can be thought of as the usual infrared
term of QED corrected phenomenologically, thus enhanc-
ing the singularity. The well-known term of QED is P �
"=P � q. It could also represent a gluon emission, but since
we have not taken into account the spin, we do not have the
numerator P � "; the denominator is dominated by the
‘‘large’’ component x1Lþ.
We use the mixed representation of c with longitudinal

momenta and transverse coordinates, so we should
perform the Fourier transformation in l?. The operation
on l2? yields precisely c ðx2; b2Þ; on l1? the integration
must run only on the infrared domain of l1?, limited by a
cutoff jl1?j< ‘i:r: for dimensional reasons. The result is
proportional to a function ‘2i:r:Gðb1‘i:r:Þ, and we get for

the density �ðx1; x2; b1; b2Þ ’ ‘2i:r:Gðb1‘i:r:Þ�ðx2;b2Þ=2x1.
Integrating over the longitudinal infrared momentum x1,
we obtain the usual phenomenological divergence
dx=x1þ�.
It is in fact a very general property that the soft emission

is relatively independent of the rest of the dynamics, so it
holds also for the more complicated expressions, like the
terms Wj, and also for three-body amplitudes, which be-

come completely factorized in the limit x1 � x3, x2 � x3.
In detail, the treatment applies to a soft emission originat-
ing directly from a free nucleon. When the parton emission
comes from a nucleus, one finds the usual complication
due to the binding, but when the treatment is applied
to a configuration with z � 1, the previous discussion
still holds [see Eq. (21)]. The factorization which is
produced in this particular case can be useful in order to
make a simpler relation, at least in this kinematical con-
figuration, between the diagonal and the interference term.
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