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We discuss the topological phenomena in the QCD-like theories with a variable number of fundamental

fermions Nf, focusing on the temperatures at or above the critical value Tc of chiral symmetry restoration.

The nonzero average of the Polyakov line, or holonomy, splits instantons into (anti)self-dual dyons, and

we study both the bosonic and fermionic interactions between them. The high temperature phase is a

dilute gas of ‘‘molecules’’ made of 2Nc dyons, neutral in topological, electric, and magnetic charges. At

intermediate temperatures the diluteness of the ‘‘molecular gas’’ reaches some critical level at which

chiral symmetry gets restored: we comment on why it is different for the fundamental and adjoint

fermions. At high density the ensemble is a strongly coupled liquid with crystal-like short range order:

we speculate about its possible structure at small and large Nf. We finally show that certain lattice

observations are in agreement with the proposed model, and suggest a number of further lattice tests.
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I. INTRODUCTION

A. Qualitative overview

Here we outline the qualitative findings that emerged
during the course of this study, and provide the answers to
some of the questions that followed from it. A history of
the works and ideas that lead us to these answers will be
provided in the next subsection.

It is perhaps necessary to explain what we mean by the
‘‘dyonic vacuum.’’ Dyons in general are objects possess-
ing both electric and magnetic charges. However, the term
is used in two very different contexts. Historically, the
first one is the ‘‘particle dyons’’ (Julia-Zee), the excita-
tions of ’t Hooft-Polyakov monopoles, well known in the
Georgi-Glashow model and many supersymmetric theo-
ries: we will not discuss those in this work. The second
type is the ‘‘self-dual dyons,’’ which appear as constitu-
ents of the instantons. Rather than being particlelike
excitations of the vacuum, as the monopoles and the first
type of dyons are, they are part of the vacuum itself,
describing certain topologically nontrivial configurations
of the gauge fields. Not being particles, they do not
have momenta or kinetic energies: they appear in the
QCD partition function integrated over their collective
variables. Color orientations and sizes of instantons are
re-interpreted as the positions of the dyons. In the case of
the SUð2Þ color group, there are two dyons per instanton,
commonly called the M type and the L (or twisted) type,
(see Table I). For a review of instanton dyons see [1,2]
and references therein.

Here are some physical questions we will discuss:
(i) What are the interactions between dyons, especially

between the self-dual and anti–self-dual ones?
(ii) How do fermions contribute to the interaction

between dyons?

(iii) What is the qualitative picture of the dyon statisti-
cal ensemble, as a function of three key parameters,
the temperature T and the number of fundamental
Nf or adjointNa quarks in the theory? In particular,

why does the chiral transition moves to a stronger
coupling?

(iv) In the high-T limit, gauge field topology was de-
scribed as a dilute gas of instanton–anti-instanton
molecules [3]. How are these objects modified for
the case of the nonzero holonomy in the language
of dyons?

(v) What is the Dirac eigenvalue spectra for different
dyonic ensembles? At which condition does chiral
symmetry breaking take place?

(vi) Can one explain the dependence of the chiral phase
transition on Nf and/or Na?

(vii) Can one evaluate the ‘‘gaps’’ in the Dirac eigens-
pectra which are developed at T > Tc using the
dyonic ensemble?

(viii) At T > Tc, using the quenched ensemble of gauge
fields, it has been found on the lattice that the
chiral properties crucially depend on the particu-
lar periodicity conditions for the fermions. In
particular, the periodic ones do not show a chiral
restoration transition, unlike the (physical) anti-
periodic fermions. How can one understand these
observations?

(ix) Why does the chiral transition strongly depend on
the color representation of the fermions, such as the
fundamental or adjoint ones?

The reader perhaps noticed that this list of questions
includes neither a discussion of the holonomy potential nor
other questions related to confinement (such as e.g. in [4]).
We think that any assessment of the back reaction of the
dyons on the holonomy can only be done after a more
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quantitative theory of their ensemble emerges. The purpose
of this paper is to take a step toward developing such a
theory. Thus, here we will consider the holonomy hPðTÞi as
given, e.g. by the lattice data.

Now we outline our observations. It is convenient to
discuss them by defining three regimes, from high to low T.
We will call them:

(i) High T � Tc case, the regime of a dilute molecular
gas

(ii) Intermediate regime, T ¼ ð1::2ÞTc, interacting
molecular gas

(iii) Dense regime, T < Tc, dyons form a strongly
coupled plasma, in their liquid phase

Here are further explanatory comments on each of those:
(i) High temperature implies weak coupling and thus

the semiclassical treatment of instantons/dyons is
applicable. Since these objects have nonzero electric
fields, subject to the perturbative Debye screening,
their density at high T is strongly suppressed. In
a resulting dilute regime, the ensemble forms a
‘‘molecular gas’’ of objects that have zero topologi-
cal, electric, and magnetic charges. The average
Polyakov line in this regime is close to 1, i.e. the
‘‘Higgs vacuum expectation value (VEV)’’ v � 0, so
all M-type dyons are light, while ‘‘heavy’’ L, �L
dyons have nearly all the action of instantons/
anti-instantons. Instanton–anti-instanton molecules
were described in [3] and subsequent works: and in
the high-T limit we expect to be close to those
results.
Fermionic zero modes of the instantons are shared
by their constituents in a way that depends on the
type of fermion of the theory. Physical antiperiodic
fermions have zero mode of the (twisted) L, �L
dyons. As the number of fundamental fermions Nf

in the theory increases, they bind them into tight L �L
‘‘clusters,’’ which play a role of the nucleus of these
molecules. Consequently, the chiral symmetry is
unbroken and the lowest Dirac eigenstates ‘‘at
the gap’’ correspond to independent L �L clusters,
see Fig. 1.
The standard Abelian electric charges of both L and
�L are equal to�1, so the clusters has the charge�2.
(The molecule thus looks like anti-He, withM, �M as
‘‘positrons’’ around it.) A particular sign of a charge
does not violate C parity, of course, because the

Abelian fields are color projected to the color direc-
tion of the holonomy field �TrðF��A4Þ, or more

precisely �TrF��L, where L is the Polyakov loop.

Since both non-Abelian fields in it are C odd, the
product is C even. These signs are just a matter of the
definitions used in the field.
Lattice practitioners sometimes use the so-called
‘‘valence’’ or nondynamical quarks (not included
in the partition function) as a tool for the analysis
of the gauge configurations. Those may have
arbitrary properties and periodicity conditions. The
‘‘valence quarks’’ periodic over the Matsubara time
have completely different zero modes and interact
with the lighter M-type dyons. Those are also more
weakly correlated than the L-type ones. The differ-
ence in their Dirac eigenspectra will be important
tool in testing the structure of the dyonic vacuum.

(ii) As T is lowered, the effective electric coupling
�sðTÞ ¼ g2ðTÞ=4� grows and eventually becomes
large �s ¼ Oð1Þ. A quite specific point introduced
in [5] is the so-called ‘‘E/M equilibrium point,’’ at
which �sðTÞ ¼ 1. Because of the Dirac condition
for electric and magnetic couplings

�s�magnetic ¼ integer (1)

at this point, with integer being 1, the magnetic
alpha is also 1. It has been argued and confirmed
on the lattice that at this point magnetic excita-
tions—monopoles—become about as numerous as
the usual electric excitations, quarks, and gluons. In
gluodynamics (no fermions, Nf ¼ 0) this happens

at T � 1:4Tc: how this depends on the presence of
fermions remains to be studied.
Below Tc, the confinement forces the density of the
electric objects (quarks and gluons) to be zero,
while the magnetic (monopoles) retain the finite
density. Only at T ! 0 does it disappear as well,
with only the magnetic condensate remaining.
Consequently, the electric Debye mass disappears

TABLE I. The charges and the mass (in units of 8�2=g2T) for
4 SUð2Þ dyons.
Name E M Mass

M þ þ v
�M þ � v
L � � 2�T � v
�L � þ 2�T � v

FIG. 1 (color online). The schematic picture of the dyonic
molecule, for 2 colors and large Nf.
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at T < Tc, while the magnetic screening mass
remains finite. This implies that the electric screen-
ing of instantons at high T is substituted by a
magnetic screening at T < Tc. As argued in [6],
the latter creates a factor in the density of the
instanton � expð��2 � constÞ, where � is the
instanton radius and the constant, due to magnetic
screening, has a nonzero value even at T ! 0 and is
related to Bose-condensed magnetic monopoles. In
certain dual models this constant was further related
to the QCD string tension const ¼ 2�� [6]. The
expression describes well the lattice data on instan-
ton size distribution and also explains why in the
QCD instanton ensemble remains relatively dilute
even at T ¼ 0. It would be very interesting to see if
any of that remains to be true at large Nf.

Near Tc magnetic screening should be induced
mostly by the scattering of non-Bose-condensed
monopoles. To our knowledge no study of the effect
has ever been done, and we also defer it to future
studies.
The interrelation between the ‘‘particle monopoles’’
(inducing confinement by their BEC) and the in-
stanton dyons (inducing chiral symmetry breaking
as we discuss below) is of course an intriguing open
problem. On the level of gauge configurations
themselves or their zero modes one finds no direct
relation between them. However, at the level of the
effective ’t Hooft Lagrangian an intriguing relation
has been found by Poppitz and Unsal [7] in
the N ¼ 2 compactified super Yang-Mills case. It
appears at the level of the partition functions, one
being the sum of the particle-dyon excitations and
another the sum over the periodic instanton-dyon
semiclassical solutions. Such relation clearly de-
serves further study and generalizations.
While any perturbative expressions/intuition is ob-
viously not to be trusted in the regime of �sðTÞ � 1,
the lattice simulations treat this region consistently.
Furthermore, as we will detail below, in QCD-like
theories with many fermions the plasma phase
extends to even stronger coupling of �s � 3 or so.
Perhaps the dual-–magnetic-formulation of such
theories can be used in this case, as the magnetic
coupling is getting weak �magnetic � 1=3.

Our paper, as many others, rely on the robustness of
the topological effects under deformations, even if
the amplitude of those is not small. Furthermore,
topology is related (by index theorems) to fermionic
zero modes. A ‘‘collectivized’’ set of such fermionic
states contributes significantly to the quark conden-
sate, pions and strongly influence the structure of
the lowest hadronic states and correlation functions
[8]. In contrast to the papers discussed in that re-
view, we now approach this problem ‘‘from above,’’

starting from the hot symmetric phase at T > Tc and
follow the evolution of the topological quark states,
from localized to delocalized ones as the transition
temperature is approached.
Lattice data tell us that in the temperature interval
ð2::1ÞTc the average Polyakov line hPðTÞi changes
from � 1 to � 0. The holonomy changes from
� ¼ 0 to � ¼ 1=2, at which point the masses
(i.e. actions) of the L, M-type dyons become
comparable. We also know that at the latter point
confinement phenomenon takes place.

(iii) We can only qualitatively discuss the dense regime
near and below Tc, as the interaction between the
dyons becomes very strong. We try to approach the
problem from the perspective of the strongly
coupled classical plasma.
For large Nf the basic objects include the L �L

clusters which, we will argue, strongly repel each
other. Therefore, the optimal correlations in such a
medium would be similar to other systems that
experience strong repulsive forces, such as closely
packed liquids. While the global order is absent,
locally those are strongly correlated, with the type
of correlations being similar to those in certain
best-packed crystals.
For zero Nf the dominant forces are Coulomb-like

and corrections to them are in a form of the deter-
minant proposed by Diakonov and collaborators, as
well as the screening ones. If so, we suggest dyonic
crystals resembling salt: cubic with alternating L,
M dyons.
(Needless to say, we do not think that the solid is
actually reached; it is well known that strongly
correlated liquid have short-range correlations
that are the same as their fully orderedcrystalline-
form. While the ‘‘dyonic crystals’’ discussed pro-
vide examples of configurations in which the
interaction is minimized, thermal fluctuations do
kill the long range order, making it a liquid.
Perhaps it is worth mentioning that the main
parameter in the Boltzmann exponents, the mean
ratio of the interaction potential per particle to T,
also called �, needs to be �> �c �Oð100Þ for
solidification. In the dyon problem discussed this
is not so, as ��Oð10Þ � �c).
Let us now focus on the main observable to be
discussed, the Dirac eigenvalue spectrum and
possible chiral symmetry breaking. With the in-
creasing number of fundamental fermions Nf in

the theory, they induce stronger correlations and
reduce the size of the �LL ‘‘clusters.’’ If onewants to
follow the lines of constant quark condensate, e.g.
the chiral restoration line, one has to increase the
density of the clusters accordingly. This can only
be achieved by a shift to stronger coupling.
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As the dyon masses and interactions are �1=g2,
they become lighter and less interacting. (Needless
to say, their fermionic zero modes and related
interaction must still be there, for topological
reasons: they do not depend on the coupling.) The
(dimensionless) density of dyons continue to grow
to the situation in which the inter-dyon distances
become comparable to the L �L molecule size.
The adjoint fermions are very different from
the fundamental ones. Some of them remain
‘‘massless’’ (in the sense of the ‘‘holonomy
mass’’) after adjoint Higgsing, and this drastically
changes the dependence of the ‘‘hopping ampli-
tudes’’ on the distance, from exponential to power-
like. The chiral symmetry is unbroken above such
T when not only heavy L but also light M dyons
have zero modes. This puts the chiral phase tran-
sition at much weaker coupling (higher T).

B. From instantons to dyons

The discovery of the instanton solution [9] has created a
great deal of literature, including electroweak physics of
baryon charge nonconservation as well as the famous exact
results for various supersymmetric theories. Obviously we
cannot review this amount of literature here.

In the context of the QCD-like theories, the predecessor
of this paper is the so-called instanton liquid models, for
a review see [8]. Its main point was to account for the
so-called ’t Hooft interactions to arbitrary order, by includ-
ing the fermionic determinant in certain approximation in
numerically simulated statistical ensembles. The calcu-
lated point-to-point correlation functions have reproduced
many lattice results related to chiral SUðNfÞ and Uð1Þ
symmetries. Chiral restoration can be viewed as the dis-
appearance of the nontrivial solution to the so-called gap
equation. Alternatively, it was explained [3] as a conse-
quence of a structural phase transition in the instanton
ensemble, from a random plasma at low T into a gas of
strongly correlated �II instanton–anti-instanton pairs. The
pairing mechanism is due to the fermion exchange, thus it
gets stronger as Nf grows.

Let us recall its basic ideas, which will be used below.
In the basis spanned by the zero modes of individ-
ual instantons/anti-instantons, one can write the Dirac
operator as

i 6D ¼ 0 TIA

TAI 0

 !
; (2)

where we have introduced the overlap submatrix TIA

TIA ¼
Z

d4xc y
0;Iðx� zIÞi 6Dc 0;Aðx� zAÞ; (3)

where I, A are indices which run over all instantons and
anti-instantons in the configuration. Here, c 0;I is the

fermionic zero mode. The individual matrix elements
have the meaning of a hopping amplitude for a quark
from one pseudoparticle to another, and the determinant
of this matrix is nothing else but the sum over the loop
diagrams in which quarks visit each instanton once. Note
that two c s have opposite chirality, so if i ¼ instanton then
j ¼ anti-instanton or v.v. The fermionic determinant is
approximated by j detðTijÞj2. The low-T ensemble is a

dense liquid that breaks chiral symmetry, but at high T
(small size in � direction) it breaks into ‘‘ �II molecules’’
and chiral symmetry gets restored. The actual calculation
was a simulation of the ensemble with the weight contain-
ing j detðTijÞj2, which was then used for the evaluation of

the Dirac spectra and hadronic correlation functions.
At high T, the approximate factorization of the Dirac
matrix into independent 2� 2 boxes (for separate clusters)
explains the deformation of the Dirac eigenvalue spectra
and disappearance of near-zero eigenvalues and the exis-
tence and the magnitude of the spectral gap G.
We will now extend these ideas to the case of the non-

zero holonomy, the gauge-invariant closed loop integral

over the x4 ¼ � circle
R1=T
0 d�A4. Its exponent, the

so-called Polyakov line, averaged over the statistical
ensemble of fields, has a nonzero value

hPi ¼
�
1

Nc

TrP expði
Z

d�Aa
4t

aÞ
�
� 0: (4)

This calls for classical solutions that do not approach
zero fields at spatial infinity but rather some constant value
v of the A3

4 [in SUð2Þ]. We will also use dimensionless
notations

� ¼ v

2�T
; �� ¼ 1� �: (5)

Explicit solutions of such type [10,11] demonstrate that an
instanton gets split into the Nc constituent dyons. The
names and quantum numbers [for the simplest SUð2Þ gauge
group we will discuss in this work] cover all four possibil-
ities for the electric and magnetic charges, see Table I. For
SUðNcÞ in general there areM1;M2 . . .MNc�1 static dyons
with all diagonal charges and one ‘‘twisted’’ L dyon.
Let us indicate here the qualitative difference that the

nonzero holonomy brings into this problem. The funda-
mental fermions in the ‘‘Higgsed’’ vacuum with a VEVof
A4 are ‘‘massive,’’ with masses (in SUð2Þ) mf ¼ �gv=2.

Therefore, the zero modes at large distances r ! 1 de-
crease exponentially with the distance, unlike the power
behavior typical for the zero holonomy case. These rapidly
decreasing fermionic amplitudes are of course further
enhanced by the number Nm of fermionic zero modes

e�V � detT � e�Nmmfr; (6)

which creates strong linear confining potential for
the corresponding dyons and thus produces small-size
‘‘clusters’’ of the size
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hri � ðNmmfÞ�1: (7)

The number of the modes is dependent on the fermion’s
color charge and the number of its copies. For the usual
fundamental quarks Nm ¼ 2Nf, as there is a zero mode for

a quark and for an antiquark.
For the adjoint fermion Nm ¼ 2NcNa. Furthermore,

adjoint fermions that are diagonal with respect to the
Polyakov line VEV remain ‘‘massless.’’ The interaction
between the dyons due to an exchange of the adjoint
fermions has been discussed by Unsal [12]. The center of
his proposal is a ‘‘bion,’’ a cluster of L �M dyons with the
magnetic charge 2. Such bions can induce Polyakov-like
confinement in the spatially compactified QCD [12].

C. Overview of lattice data on chiral symmetry
restoration and deconfinement

1. The critical lines versus the number of
fermions Nf , Na

Let us start by reviewing some recent lattice results. Our
version of the phase diagram uses the ‘‘critical lattice
coupling’’

�cðTcÞ ¼ 2Nc

g2ðTcÞ
(8)

as a function of Nf or Na. The ‘‘bare’’ coupling values in

lattice works are defined at the lattice UV scale a. In order
to make it lattice independent, we have evolved the scale
from a by a factor of Nt (the number of points in the time
direction) to the physical scale Nta ¼ 1=Tc using the two-
loop beta function. The near overlapping points in Fig. 2(a)

are from different Nt simulations: their spread is a measure
of the inaccuracy of the two-loop beta function used.
The open diamonds in Fig. 2(a) correspond to lattice

data from Ref. [13]: they show the critical line of the chiral
restoration (thin solid line). Above the line one finds the
symmetric [quark-gluon plasma (QGP)] phase, below is
the chirally broken (and confining) one. Moving downward
on this figure means increasing the gauge coupling or
decreasing the temperature. Thus, at Nf � 10 one may

reach ‘‘the most strongly coupled QGP,’’ which is by itself
a very interesting phenomenon. Why is it happening?
(There are many other simulations reported in the lattice

literature, of course: we decided not to put those on this
plot because the rather different actions used produce
rather random spreading of the couplings, confusing the
observation).
The situation at Nf ¼ 12 is special. Reference [14]

argued that the chiral symmetry remains unbroken. A
more recent paper [15] studied the region of even stronger
coupling 6=g2 � 1, and perhaps clarified the observation.
Two distinct phase transitions are observed, with the chiral
condensate disappearing at stronger coupling (the closed
diamond in Fig. 2(a)] than the confinement (the closed
box). Thus, a novel intermediate phase in between is
confining but chirally symmetric. An understanding of
its precise nature remains a challenge, although such
examples are known in supersymmetric theories.
The same authors [15] also concluded that for Nf ¼ 12

those transitions are also separated by a bulk transition
from a weaker coupling domain, in which there seem to
exist a conformal (infrared fixed point) behavior. If so, the
two phase transitions must be below (on the other side of)
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FIG. 2 (color online). The critical lines for chiral restoration (solid line and diamonds) and deconfinement (dotted line and boxes) of
the Nc ¼ 3 gauge theory. We plot the critical lattice coupling �cðTcÞ ¼ 6=g2cðTcÞ versus the number of fundamental quarks Nf in (a) or

a number of adjoint quarks Na in (b). Both paths of the infrared fixed point, calculated in the two-loop approximation, are shown by the
thick (red) lines. The vertical dashed lines separate the ‘‘conformal window domain’’: its location is a guess. In Fig. (a) we also show,
by the dash-dotted (red) line, our guess for the actual location of the fixed point. For the meaning of the data points see the text.
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the true trajectory of the fixed point schematically shown
by the (red) dash-dotted line. This line may deviate from
the thick solid (red) line, showing a fixed point line using
the two-loop beta function, because of the very strong
coupling involved. The issue of where exactly the confor-
mal window starts remains unresolved. We tentatively put
the vertical dashed line separating it at Nf ¼ 11 in the

figure. This is not a prediction but just a guess, and should
not be used in any way.

Changing the fundamental quarks into either (i) adjoint
(triplet in SUð2Þ, octet in SUð3Þ) or (ii) symmetric rang-
2-tensor (triplet in SUð2Þ, sextet in SUð3Þ) shifts the Tc of
the chiral transition upwards. The theory with two adjoint
fermions, Na ¼ 2, has been studied in detail, see Fig. 2(b)
based on [16], but (to our knowledge) not for other values,
notably Na ¼ 1. (Of course, introducing variable masses
may allow to follow the lines continuously.) Two distinct
transitions were found, but in the opposite order in the
previous case of the fundamental fermions. So, between
the solid and the dotted lines there exists the deconfined but
chirally broken phase (a plasma of constituent quarks).
Furthermore, while the difference between these two points
may appear small on this plot, the actualTc scales of the two
transitions are different by about factor 8. (It is also note-
worthy that these points are close to the conformal window
perturbatively, or perhaps already inside it nonperturba-
tively. We tentatively put its boundary—the vertical dashed
line—at Na > 2: it is not a prediction. Its exact location
needs to be found numerically in future works).

2. The magnitude of the chiral splittings versus Nf

For Nf up to at least 8, the low-T theories retain both

confinement and chiral symmetry breaking, but the quan-
titative relation between them changes. Let us characterize
it by the relative splittings between the chiral partners, such
as vector-axial �� A1 mesons or the nucleon and the
lowest 1=2� N� resonance at T ¼ 0

��A1
¼ 2

mA1
�m�

mA1
þm�

(9)

�NN� ¼ 2
mN� �mN

mN� þmN

: (10)

The Nf dependence of these ratios is interesting: in the

interval Nf ¼ 0::3 these chiral splittings are ‘‘large’’ near

the experimental values (i.e. at Nf � 2:5)

�
exp
�A1

� 0:45 �
exp
NN� � 0:55; (11)

which are well reproduced on the lattice. Yet calculated for
the Nf ¼ 4 [17] and 8 [18] theories, one consistently finds

about twice smaller values, and at Nf ¼ 12 these splittings

were not observed at all [14,18]. In view of the trend just
discussed, as well as because of the two transition observed

in [15], we expect the chiral and deconfinement lines to
separate, perhaps already at Nf > 4 or so.

3. Sensitivity to the fermionic periodicity conditions

Introducing an arbitrary phase in the periodicity condi-
tion of the ‘‘valence quarks,’’ one can switch the fermionic
zero mode between the dyons: this has been demonstrated
using artificial configurations for calorons, e.g. in [19].
There is significant literature covering efforts to understand
the difference in lattice gauge configurations below and
above Tc. A paper presenting interesting results on the
Dirac eigenvalue spectrum in the SUð3Þ quenched and
unquenched ensembles is that by Bilgici et al. [20]. Its
brief summary:
(i) at T > Tc the Dirac spectrum has a well-determined

gap G (no eigenvalues inside 	 < jGj), growing
approximately linearly

G� ðT � TcÞ; T > Tc (12)

in the quenched case, until at least about 2Tc.
(ii) if arbitrary (twisted) boundary conditions are used

for (valence) fermions, with a phase 
 ¼ 2�z, they
seem to be irrelevant below Tc but change the results
drastically above it. h �c c i, or the density of eigen-
values at zero, seem to have a simple dependence on
the angle

jh �c c ij � c1ðTÞ þ c2ðTÞ cos
 (13)

with only one harmonic and positive coefficients
c1, c2. For the holonomy values shifted above Tc

by �2�=3 the phase of the cosine is shifted
accordingly.

(iii) As a result, antiperiodic fermions cos
 ¼ �1 have
a density that touches zero at Tc and develops a gap,
restoring chiral symmetry. The periodic fermions,
with cos
 ¼ 1, never do so and their h �c c i grow
indefinitely above Tc.

4. Chiral restoration in different Polyakov phase sectors

The previous issue is strongly related to lattice observa-
tions that subensembles of quenched configurations at
T > Tc with different Polyakov phases show different spec-
tra of the Dirac eigenvalues and chiral parameters. In
SUð3Þ there are two sets, one with hPi real and another

with the phase e�i2�=3. For example, Fig 1 of [21] shows
that these two different subensembles not only have differ-
ent eigenvalues but also drastically different ‘‘participation
ratios’’ (a degree of mode localization on the lattice). This
phenomenon gives us the opportunity to study more than
one set of holonomies in one simulation.
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5. The spectral gaps at T > Tc versus
the fermion periodicity conditions

The gap opening is clearly observed for antiperiodic
fermions but not for periodic ones, see [20]. An explana-
tion based on dyon-antidyon classical correlation at high
Tc was offered in [22]. Similar studies based on quenched
configurations have been extended to adjoint fermions in
Ref. [23]. Like for fundamental quarks, the antiperiodic
adjoint fermions show a clear gap opening above the chiral
transition, while the periodic ones do not.

6. Identifying the topological objects
via their fermionic zero modes

In configurations with say exact Q ¼ 1 one can locate
one exactly zero mode and see the location of the corre-
sponding eigenvector is space-time. Using such lattice
configurations Gattringer and Schaefer. [24] have observed
that while the eigenvector does indeed locate a single
‘‘topological lump,’’ its position and quantum number
depend on the boundary phase and jump at certain values,
resembling what happens with the different types of
constituent dyons inside classical caloron solutions. Such
techniques allow locating all kinds of dyons and potentially
study their correlations/interactions.

At T � Tc, with massless fermions and restored chiral
symmetry, all configurations with nonzero Q are absent,
and the Dirac eigenvalues get gapped. What are the states
‘‘at the gap,’’ with the lowest Dirac eigenvalues at T > Tc?
As demonstrated in [25], those have two topological
lumps, confirming the observation of the paired instanton–
anti-instantons [3]. As wewill argue below, in the language
of dyons, these molecules are more complicated, with 2Nc

dyons of all kinds and certain Abelian charge distribution.
Therefore, now one should use this method again, to look
at Abelian-projected charges, clarifying their structure
further.

More recently, Bruckmann et al. [26] looked at the
fermionic states at the chiral gap at 2.6 Tc for quenched
SUð2Þ gauge simulations. They have shown that the corre-
sponding eigenstates are well localized and correspond to a
strongly modified local value of the Polyakov line. They
observe that the number of such objects vastly exceeds the
density of the isolated topological charges deduced from
topological susceptibility, ruling out an ideal instanton gas
as their source. They also commented, at the end of the
section on topology, that their data ‘‘do not exclude’’ con-
figurations in which the topological charge cancels, like the
instanton–anti-instanton molecules to be discussed.

II. DYON INTERACTIONS

A. Classical interaction

As is well known, classical interaction of the dyons
inside one of the sectors—self-dual or anti–self-dual—
are absent, as they are protected by the Bogomolny-

Prasad-Sommerfeld bound. Although it is clear how this
works from the explicit solutions [11,27], we will still
discuss it in the dilute limit, as our starting point.
The question of Higgs topology and monopole interac-

tion has been addressed in many articles (e.g. [28–30]).
Recall that the usual Higgs field has to go to zero at the
monopole center because there is no preferred direction
of color there. However with our ’’Higgsing’’ by the
Polyakov loop, which is an element of SUð2Þ, and its value
at infinity [which defines an unbroken Uð1Þ direction], the
Polyakov loop can be viewed as L 2 SUð2Þ=Uð1Þ ¼ S2

mapping. At points without definite color direction the
Polyakov loop takes a value of Lð ~x0Þ ¼ �1: thus, two
types of dyons. Indeed, the effective ’’Higgs‘‘ field at the
dyon’s center it is going to zero for M type and to

A4 ¼ �
̂ 	 ~� for the twisted L dyon, where 
̂ is a unit
color vector (see below).
For a caloron—the L�M pair in SUð2Þ—one can see

from quantum numbers that both the electric and magnetic
charges are opposites, so they should both create attraction.
Another long-distance force is Higgs mediated: because
dyons of M and L types have different value of the A4 at
their centers this turns out to be repulsive. Furthermore, it
exactly cancels the attractive Coulomb forces, as required
by Bogomolny-Prasad-Sommerfeld.
Now we consider dyon-antidyon pairs, starting with

M �M (which do not have a temporal twist, i.e. dyons
completely static in time). We take them at a large distance
d � 1=v compared to the size of their cores. Inside some
ball around the dyon (antidyon) of radius r0 such that
1=v � r0 � d the field strength can be written as a small
deviation from self-duality due to the other dyon, i.e. of the
order 1=d. Outside of these balls the ‘‘Higgs’’ field is given
by jA4j ¼ v� 1=r1 � 1=r2, where r1;2 are distances from
the dyon and antidyon, so as to conform to the expected
asymptotic formulas for dyon and antidyon (see e.g. [2]).
For a single dyon the Higgs field can be written as

~A 4 ¼ hðrÞ
̂; (14)

where 
̂ ¼ ~A4=jA4j. Asymptotically hðrÞ ¼ v� 1=r. An
ansatz that properly describes two dyons would have to obey

the condition that asymptotically j ~A4j � v� 1=r1 � 1=r2.
However, the color direction is a gauge choice that can be
chosen arbitrarily at each point. Insisting that the Higgs
points are in one color direction at some large sphere (gauge
combing), one then has to introduce Dirac strings, as the
gauge transformation cannot be made single valued. We do
not specify this gauge choice, as we only deal with the
action, which is gauge invariant.
That being said, we expect that the influence of the

other dyon will change the h function by introducing an
additive Coulomb term near the core of the first dyon, i.e. if
r1 � r2, we have

Hðr1; r2Þ � ðhðr1Þ � 1=r2Þ
̂; (15)

CHIRAL SYMMETRY BREAKING/RESTORATION IN A . . . PHYSICAL REVIEW D 86, 036001 (2012)

036001-7



where r1 and r2 are the distances from monopoles to
the point of observation. An analogous relation holds
when r2 � r1.

Now we determine the action of the system of two
dyons, writing the action as an integral over three regions

S¼�

2

�Z
1
TrðF2Þd3xþ

Z
2
TrðF2Þd3xþ

Z
outside

TrðF2Þd3x
�
;

(16)

where 1 and 2 denote the regions around the dyon and
antidyon, respectively. Inside these regions we assume
self-duality (anti–self-duality) up to some small correction
of the order of 1=d inside the cores, i.e. DiA4 ¼

 1

2 �ijkF
jk þ fi, where fi is the field strength deviation

from self-duality induced by the other (anti)dyon and is of
order f ¼ oð1=dÞ.

S1 ¼ �
Z
1
d3x

�
TrðDiA4Þ�ijkFjkÞ þ 1

2
Trf2i

�

� �
Z
1
d3x@iðA4B

iÞ þ oð1=d2Þ

¼ 4�

�
v� 1

r0
� 1

d

�
þ oð1=d2Þ;

(17)

where the integration is over a ball of radius r0 centered
around the first dyon.

We pause to comment on a similar expression in the case
when we have a single dyon. One can integrate on the
surface at infinity, which would just simply yield 4�v�,
i.e. the usual mass of a dyon. However, it is more instruc-
tive to divide the region of integration into a small ball of
radius r0 and the rest. The small ball is a total derivative
and yields the contribution 4�ðv� 1=r0Þ�Þ to the action.
Then we can write the action as

Ssingle dyon ¼ 4�ðv� 1=r0Þ�þ �
Z
outside

d3x
1

2
ðE2 þ B2Þ;

(18)

where we integrate over the volume outside the ball.
However, in this region the fields are Abelian and behave

in an expected way. We can write Ei ¼ qer̂i
r2


̂ and

Bi ¼ qmr̂i
r2


̂ and the outside integral is 4�=r0. The sum of

the region inside and outside gives the expected result 4�v.
Coming back to the case of two dyons, we include the

region around the antidyon and get

1

2
Tr
Z
cores

d3xF2 ¼ 8�

�
v� 1

r0
� 1

d

�
; (19)

showing how one dyon has been modified by the presence
of the other one. Next we write the integral outside as the
sum of electric and magnetic parts, i.e.

Ei ¼ r̂i1
r21

þ r̂i2
r22
; (20)

Bi ¼ r̂i1
r21

� r̂i2
r22

; (21)

which, upon integration, gives the expected interaction
4�=d for the electric and �4�=d for the magnetic, and
they cancel. Also there are two self-energy terms which are
given by 4�=r0 for electric and magnetic field separately,
which cancel the 1=r0 contribution to the inside-the-sphere
integration.
Notice that even though the electric and magnetic fields

cancel outside the cores, the dyon-antidyon system still
attracts, due to the modification of their mass by the
presence of the other (anti)dyon. Thus, there exists a
long-distance classical Higgs-based attraction for the
M �M pair.
One can equally well consider L �L dyons with the twist,

i.e. with core time dependence. The only modification is
that then the contribution to the action of the core is given
by 4� �v, where �v ¼ 2�� v. Also, for a purely self-dual
sector, the interaction of the L and M dyon is seen to
cancel. This result is well known from the original works
[10,11], but here we see that since the Higgs asymptotic
looks like v� 1=rM þ 1=rL (see [2]), the Higgs interac-
tion is repulsive, which exactly cancels the attractive forces
of the E and B field. Note also that due to this effect of
‘‘dyon mass renormalization’’ we expect that if the L dyon
has a fermionic zero mode (which as we will see in the next
subsection, depends on this holonomy), it is renormalized
by the presence of the otherM dyon. This was observed in
the original papers by van Baal et al. and it followed from
the exact zero mode expression: we just identify its physi-
cal origin.

B. Fermion-induced interactions

Fermionic interactions between dyons are central for
this paper. They are induced by the presence of fermionic
localized modes facilitated by the time-dependent twist in
the gauge fields. The fermions introduce the fermionic
determinant det 6D factor in the partition function. If both
the dyon and antidyon are in isolation (at large distances),
they have zero modes, which leads to vanishing determi-
nant: thus, such configurations are excluded from the
ensemble. Obviously, at finite r the modes are nonzero,
and therefore the dyon-antidyon pair is attracted due to the
fermions.
As was done for the instantons, one can look at the Dirac

operator in the basis of localized zero modes of individual
L and �L dyons. The matrix element of the 6D zero mode
between two of those we denote as TIJ, where the indices
run through all dyon and antidyon zero modes. Since the
Dirac operator in the chiral basis connects between the left
and right fermions only, the diagonal elements are all zero,
and only blocks TI �I and T �II remain, where now I runs
through the dyon zero modes only, and �I through the
antidyon zero modes only.
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It is quite clear that in the case of a dyon-antidyon pair,
since detT ¼ �jTI �Ij2, we have that Veff ¼ � lnðTL �LðrL �LÞÞ.
Since the matrix element is approximately TL �L � e�Mr=2,
where M is the ‘‘holonomy mass’’ of the fermion, the
resulting effective potential between dyons is linearly
confining.

While in this paper we focus only on the zero modes of
the fundamental quarks, we would like to mention some
important works on the adjoint fermions, which naturally
appear in the supersymmetric context. For periodic com-
pactification, the corresponding index theorem is discussed
in [31] (see also citations therein). an extensive discussion
of the zero modes for the periodic and antiperiodic adjoint
fermions can be found in [32].

1. Fermionic zero mode for arbitrary
periodicity condition

As we mentioned in the Introduction, one should not
confuse the ‘‘particle dyons’’ and ‘‘instanton’’ (or self-
dual) dyons: while mathematically similar they are asso-
ciated with quite different physics. The ‘‘particle’’ dyons
are time-independent three-dimensional objects and their
fermionic zero mode are three-dimensional normalizable
and time independent. For the ‘‘instanton dyons’’ we need
four-dimensional normalizable zero modes. Index theo-
rems associate the latter ones with the topological charge
Q of the four-dimensional theory: thus an instanton
(Q ¼ 1) consisting of Nc dyons possesses only one of
those, which need to be somehow shared between the
dyons. Another important technical difference is induced
by the fact that in QCD-like theories the role of the Higgs
boson is played by A4 rather than scalars or pseudoscalars.
As a result, the corresponding gamma matrix for Higgs is
�0 (rather than 1 or �5): this makes the interaction with the
Higgs chirally symmetric.

Let us generalize the fermionic (�) and bosonic (þ)
boundary conditions to a general ‘‘anyonic’’ phase

c ð�Þ ¼ expð�i
Þc ð0Þ; (22)

which should be satisfied by a normalizable solution of the
Dirac equation

6Dc ¼ 0; (23)

containing the gauge field in the hedgehog ansatz [33]

Aa
i ¼ �aijAr̂j; (24)

Aa
4 ¼ H r̂a: (25)

We use the gamma matrix convention �i ¼ �2 � �i,
�4 ¼ �1 � 1, so that �5 ¼ �1�2�3�4 ¼ �3 � 1, and do
the calculation for the right spinor component. The Dirac
equation then reads as

ð��Þ��ðD�ÞABðc RÞB� ¼ 0; (26)

where we explicitly wrote the Dirac indices �, � and color
indices A, B, and where �� ¼ ð1; i�iÞ. Now we use the
form [34,35]

c A
� ¼ �ðrÞ�A� þ �ðrÞ½ðr̂ 	 �Þ��A�: (27)

We may choose to consider the matrix

A� ¼ �c A
���� (28)

as being in the ansatz

 ¼ �1ðrÞ1þ �2ðrÞr̂ 	 �: (29)

A color matrix � acts on this object from the left, and the
spin matrix � from the right, with an extra minus sign, i.e.

�c ¼ ��T ¼ ���: (30)

The density of the fermions is defined as

c �A
�c

A
� ¼ TrðyÞ: (31)

We now plug the ansatz into (26) and obtain the follow-
ing two equations:

�0
1ðrÞ þ

H þ 2A
2

�1 þ


�
�2 ¼ 0; (32a)

�0
2ðrÞ þ

�
H � 2A

2
þ 2

r

�
�2 þ


�
�1 ¼ 0; (32b)

where we have assumed c R / e�i
t=�, i.e. that the
Fermion has arbitrary periodicity condition in the imagi-
nary time direction.
We solve Eq. (26) in the Appendix, and the result

is shown in Fig. 3. However, here we can easily look
at the asymptotic behavior of the solution, i.e. when
H ðr ! 1Þ ¼ v and Aðr ! 1Þ ¼ 0, then

�0
1ðrÞ þ

v

2
�1ðrÞ þ


�
�2ðrÞ ¼ 0; (33)

5 10 15 20
r

0.4

0.2

0.2

0.4

0.6

0.8

1.0

1 r solid, 2 r dashed

FIG. 3. The profile of (unnormalized) zero mode components
�1;2 (the solid and the dashed curves) as a function of the

distance from the dyon. We show four different values of

 ¼ 0, 0:2v=�, 0:4v=�, 0:5v=�, 0:55v=�. Note that the zero
mode delocalizes at 
 ¼ 0:5v=�.
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�0
2ðrÞ þ

v

2
�2ðrÞ þ


�
�1 ¼ 0: (34)

This equation is easily solvable. By taking the substitution
�� ¼ �1 � �2Þ, we get

�� ¼ e�ððv=2Þ�ð
=�ÞÞr: (35)

In order for the solution to be normalizable, we must
have that both �� vanish at infinity. This is only possible if
j
j< jvj�=2.

2. The zero mode hopping

The formulas derived in the previous section explain
why the zero mode ’’jumps‘‘ from one dyon to the other
with the change in the periodicity condition of the fermi-
ons. However, there we assumed a static M-type dyon,
which has the zero mode

cM � e�ððjvj=2Þ�j
jÞr; (36)

where all dimensionful quantities are expressed in units of
� ¼ 1=T. Now it is quite clear that 
 2 ð�v=2; v=2Þ will
preserve the normalizability of the solution. But for the
phase in the interval v=2<
<�, one can use the equa-
tion for the zero mode on the L dyon instead. To do so one
must first go to the static gauge in which v ! �v ¼ 2�� v,
and then the zero mode has good asymptotic behavior

cM � e�ððj �vj=2Þ�j
jÞr: (37)

Furthermore, because one has to apply a time-dependent
gauge transformation to reinstate A4 ! v at infinity in the
form U ¼ expði�t ~� 	 r̂Þ, the fermions (in the fundamental
representation) gain the desired antiperiodicity. One can
replace 
 by �
 ¼ ��
, or

cM � e�ððj �vj=2Þ�j �
jÞr: (38)

Now we insert �v ¼ 2�� v and �
 ¼ 
� �, where
 and
v are the (true) holonomy and periodicity of the fermions.
We assume
 2 ðv=2; �Þ, so that the exponential term can
become

j �vj
2

� j �
j ¼ �� v

2
� �þ
 ¼ 
� v

2
; (39)

and the fermion zero mode becomes normalizable for

 2 ðv=2; �Þ.

Finally, we explore the region 
 2 ð�; 2�� v=2Þ.
Then we argue that the zero mode on the L dyon is still
normalizable. Indeed, the exponent now becomes

j �vj
2

� j �
j ¼ 2�� v

2
�
 2 ð0; �� v=2Þ: (40)

Therefore,

cM � e�ðjvj=2�j
jÞr � jvj=2<
< jvj=2

c L �
(
e�ðj
j�jvj=2Þr jvj=2<
<�

e�ð2��jvj=2�j
jÞr � < 
< 2�� jvj=2 :
(41)

C. The fermionic interaction among the clusters

As it has already been mentioned above, on general
grounds one expects the L �L clusters to repel each other,
as say atoms do, because of the Pauli principle. In this
section we will show how it works using the first ‘‘non-
diagonal’’ diagrams in which fermion exchange between
such clusters takes place.
The fermion determinant will be of the form

det 6D ¼ jT1�1j2jT2�2j2 . . . jTN �Nj2
� T1�2T�22T2�1T�11T3�3 . . .TN �N . . . ; (42)

where T1�1 ¼ �T�
�11
. We can interpret the first term as a two-

loop diagram, with the fermion hopping from one dyon to
the antidyon and back, for each of the pairs 1�1, 2�2, etc. The
second term is interpreted as a one-loop process, in which
the fermion is hopping from 1 to �2 and then from �2 to 2 to �1
back to 1. The determinant is the sum of all such terms,
with the appropriate minus sign to enforce the Fermi
statistics. Note that the zero resulting from the cancellation
between hose diagrams means that a dyon-antidyon pair
will be repelled by another dyon-antidyon pair at certain
distances.
It is simple to see that chiral symmetry is necessarily

restored if the ensemble is made of dyonic pairs. Then the
determinant is dominated by the near-diagonal matrix
elements TI �I, where indices I, �I go over dyons and anti-
dyons, respectively, which are the closest pairs, i.e.
TI �J � TI �I, for �J � �I. Then the spectrum of the Dirac
operator is exactly solvable and is given by 	I ¼ �jTI; �Ij.
Therefore, very small eigenvalues will be given by the very
small matrix elements TI �I of the dyonic pairs. This matrix
element is small only if the respective dyons are very far
away (much further than the range of the transition ele-
ment, i.e. 1= �v). But since the overall configuration is
already weighted by the determinant to the power of the
number of flavors Nf, these configurations are strongly

suppressed, and the density of such eigenvalues goes to
zero at small eigenvalues, implying that, by the Banks-
Casher relation, chiral symmetry is restored.
An 2N � 2N matrix of the form

M ¼ 0 A

�Ay 0

 !
(43)

has a determinant equal to

detM ¼ j detAj2; (44)

which is always positive.
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Let us now consider the fermionic determinant in
the basis of fermionic localized modes for 2 dyons
and 2 antidyons, labeled with indices 1, 2 and �1, �2,
respectively,

det 6D ¼ jT1�1T2�2 � T1�2T2�1j2: (45)

As an example, consider a configuration of dyons and
antidyons placed on a rectangle of dimensions a� b. A
little thought will immediately reveal that if we put them
on a square such that as we go around we have 1�12�2, the
determinant vanishes when a ¼ b, or in other words, clus-
ters 1� �1 and 2� �2 are mutually already infinitely repel-
ling when b ¼ a. However, we can make them come closer
if we orient them on the rectangle as 1�1 �2 2, i.e. dyons
1� �1 and 2� �2 form independent clusters with distance

r1�1 ¼ r2�2 ¼ a and r1�2 ¼ r2�1 ¼
ffiffiðp a2 þ b2Þ. Then the re-

pulsion for small b=a will be

Veff ¼ � lnðdet 6DÞ � � log

�
TðaÞT0ðaÞ b

2

a

�
; (46)

where TðrI �IÞ ¼ TI �I. Quite clearly the effective potential
becomes infinite when b ! 0, making an effective repul-
sive core for the two dyonic clusters.

To discuss this further we introduce the diagrammatic
interpretation of the determinant viewed as a sum over all
fermionic loops. Let us view a determinant in some basis of
local fermionic states. This need not (and in fact most
certainly is not) be an eigenbasis of the Dirac operator.
We denote the basis vectors as c n, which are localized at
xn. Since this basis is not an eigenbasis of the Dirac
operator 6D, we have that

i 6Dc n ¼ Jn; (47)

where Jn is a spinor resulting from the action of the Dirac
operator. However, we may view Jn as a source of our basis
states, and interpret c nðyÞ ¼

R
d4y�ðx� yÞJnðyÞ, where

�ðx� yÞ is the fermionic propagator. Then 6D taken
between two states c m;n will be

ði 6DÞmn ¼
Z

d4xd4yJymðxÞ�ðx� yÞJnðyÞ: (48)

Therefore, we can view the matrix elements TI �I as hopping
from one source to another.

The diagrammatic description of the determinant A in
the upper-right quadrant is then (we assume Nf ¼ 1 in

what follows)

where the black circle represents the dyon and gray circle
the antidyon.

The complex conjugation can be viewed, instead of
the fermion going from the dyon to antidyon, as the
opposite propagation of an antifermion going from an

antidyon to dyon. The pictorial representation of the deter-
minant is

The interpretation of this expansion is then straightfor-
ward. The determinant can be interpreted as loop diagrams
connecting the various dyons that carry a zero mode. It is
quite evident from this diagrammatic expansion that every
diagram of two loops will have a similar diagram with the
opposite sign where the two loops join via a small channel
(see Fig. 4).
Let us now think about how many pairs we can make

from N dyons and N antidyons. After a bit of thought we
can see that it is N!. All terms like that involve permuting
in the above expression two positions of two (anti)dyons,
and, because it requires two exchanges, the sign remains
the same. The determinant will be integrated over the
moduli space of the dyon-antidyon pairs, and so all of
these kinds of permutations can be taken to be the same.
Therefore, the first term will contribute with a factor of N!
to the determinant.
The second term is a bit more tricky. We proceed in

the following way. Let us consider k 4-plets (a 2 dyon-
antidyon pairs) which facilitate the one loop. The number
of ways we can have one 4-plet is ðNðN � 1ÞÞ2, because we
can pick two dyons in NðN � 1Þ ways, and the same for
antidyons. For k such 4-plets have the expression

FIG. 4. A graphical interpretation of the weight in the back-
ground of the dyons. Note that the relative minus sign will
always induce repulsion between the dyon and the antidyon in
a dyon-antidyon pair.
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Nk�4 plets ¼ ½NðN � 1ÞðN � 2Þ . . . ðN � 2kþ 1Þ�2
2kk!

; (50)

where the k! factor is present to compensate for all possible
interchanges of all k 4-plets. The rest of the dyons and
antidyons can be made into pairs, and since there are
N � 2k leftover (anti)dyons we can do this in ðN � 2kÞ!
ways. Combining this with the above factor we get

Nk
4�plets ¼

N!2

2kðN � 2kÞ!k! : (51)

Now we consider the integrals over such matrix ele-
ments. Generally we will have that for the arrangement
of pairs the integral over the moduli space (assuming flat
moduli space metric—an assumption justified only in the
dilute phase) will be given by

N!

�
c0

V

m3

�
N
; (52)

where c0 is a constant that depends on a particular form of
the matrix element TI �I. In other words, we have written the
integral

RðTðrÞÞ2d3r ¼ c0=m
3, making it explicit that the

effective volume of the integration measure is given by
1=m3, i.e. integrating over pairs will introduce a volume
given by the range of their matrix elements TL �L � e�mr,
and an overall volume corresponding to the integration over
the center of mass of each pair. Notice that we also put in the
factor N!, which is an overall degeneracy of the integral.

In the case of k 4-plets and N � 2k pairs, we have

N!2

2kðN � 2kÞ!k!
�
c1

V

m9

�
k
�
c0

V

m3

�
N�2k

: (53)

The constant c1 appears in the quadrupole integral over a
loop that includes 4 (anti)dyons (2 dyons and 2 antidyons).
The effective volume is now 1=m9, with a single, overall,
volume factor. Therefore, the partition function can be
approximated as

Z � 1=ðN!Þ
�
c0

V

m3

�
N XN=2

k¼0

ð�1ÞkN!

2kðN � 2kÞ!k!
�

c1n

c20m
3N

�
k
; (54)

where we have divided everything byðN!Þ2 due to
the indistinguishability of dyons and antidyons, and
n ¼ N=V is dyon density. Rewriting

Z � 1=ðN!Þ
�
c0

V

m3

�
N XN=2

k¼0

ð�1ÞkN!

ðN � 2kÞ!k!
�
A

N

�
k
; (55)

where the factor

A ¼ ðc1=2c02Þn=m3: (56)

The coefficient c1=c02 is just a numerical factor, and it
depends on how fast the matrix element falls off with
distance, but it does not depend on an overall coefficient
in front of the transition element.

The sum above can be computed by using the identity

HNðxÞ ¼
XN=2

k

ð�1Þk N!

k!ðN � 2kÞ! ð2xÞ
N�2k:

Then the partition function becomes

Z � 1=ðN!ÞNN=2

�
c0

ffiffiffiffi
A

p
nm3

�
N
HN

�
1

2

ffiffiffiffi
N

A

s �
: (57)

The approximation can only be valid if A is small;
therefore, 1=A is large. We can employ an asymptotic
form of a Hermite polynomial for large N in the following
form [36]:

e�x2=2HNðxÞ �; (58)

� 2N=2�3=4
ffiffiffiffiffiffi
N!

p

ð�NÞ1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh


p eðN=2þ1=4Þð2
�sinh2
Þ (59)

for x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p
cosh
. Another asymptotic series

assuming x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p
cos
 leads to oscillatory asymp-

totics, which is clearly a good indicator that our approxi-
mation of just including 4-plet diagrams is invalidated, and
that higher order diagrams become important. For such an
estimate the chiral symmetry will be restored for A < 1=8,
or n=m3 < c20=2c1, where n is the density of one species of

dyons.
Finally, going back to (54) for a moment, we see that

if we look for the quantity hki ¼ A@ðlnZÞ=@A, each
coefficient will have a factor of k in front. (Note that this
is not an average number of 4-plets: each configuration
arbitrarily has many 4-plets, 6-plets, etc.). In Fig. 5
we show hki=N as a function of parameter A. Notice the
abrupt change as we approach the critical value A ¼ 1=8,
which we take as an indication of chiral symmetry breaking.
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FIG. 5 (color online). hki=N as a function of parameter A
defined in (56).
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D. Bosonic one-loop interactions
and electric screening

The basic physics of the electric screening can be ex-
plained most simply following the original derivation by
one of us [37] (in the Coulomb gauge). If some object
possessing a nonzero A4 is immersed into a quark-gluon
plasma, those quanta from the heat bath are scattered on it.
The simplest diagram comes from the quartic term in the
gauge Lagrangian, �g2A2

mA
2
4, which couples the heat

bath gluons directly to the square of A4, but there are
also other diagrams contributing to the forward scattering
amplitude. The result was the expression for the QCD
Debye mass [38]

M2
D ¼ g2T2ðNc=3þ Nf=6Þ (60)

for massless quarks and gluons: incorporation of their
effective masses is straightforward.

The next relevant paper is by Pisarski and Yaffe (PY)
[39] who calculated the one-loop action of the calorons
(the finite-T instantons). Its main part is the following
correction to the instanton action:

�SPY ¼ 2�2�2

g2
M2

D; (61)

where � is the instanton radius. The first factor in this
expression comes from the (four-dimensional) dipole
moment of the instanton, and the second from the forward
scattering amplitude of the thermal plasma quanta on it (for
the derivation see [40]). This term is only present in the
plasma phase, at T > Tc, as only in this case there exist
thermal quarks and gluons undergoing this scattering.

Going forward to calorons at nonzero holonomy, a cor-
responding one-loop effective action has been computed
by Diakonov, Gromov, Petrov and Slizovskiy (DGPS) [4].
The caloron is now a superposition of the M and L dyons,
separated by distance rML, and the basic expression from
which the effect comes is the following integral:

hA2
4i �

Z
d3r

�
1

rL
� 1

rM

�
2 ¼ 4�rML þ . . . ; (62)

where rL, rM are distances from the dyon centers to the
observation point ~r. (The dots stand for corrections due to a
finite dyon size: the Coulombic A4 is true only at large
distance. Note also that at large r the integral converges
because the integrand is �r2LM=r

4. This term comes again
from the quartic term in the action, in which two gauge
potentials are the A4 of the instanton and two others belong
to the thermal gluons).

Thus, the electric screening effectively generates the
confinement of two dyons, with a potential linearly de-
pending on the LM separation:

VLM
scr ¼ rLM

2�M2
D

Tg2
: (63)

At the zero holonomy this result matches the PY answer
because of the ‘‘instanton size relation’’

��2T ¼ rML (64)

which, so to say, relates the four-dimensional dipole of
the instanton to the three-dimensional dipole of the dyon
pair. The second factor is still the same thermal integral
producing T2. One obvious effect of fermions is that a
generalization of the DGPS result to theory with the gen-
eralized Debye factor as in (60). As a result, the electric
screening effect ensures LM ‘‘binding’’ into a finite-size
object with the (inverse) size

hrMLi�1 � TðNc=3þ Nf=6Þ: (65)

Note also, that for L �L or M �M pairs with the same
electric charge, there will be a plus in the integral (62)
above and thus the effect becomes repulsive and the inte-
gral diverges: it needs to be regulated by some opposite
charges. For molecules consisting of all 4 ðL;M; �L; �MÞ
dyons, to be discussed shortly, the screening potential is

Vscr ¼ M2
D

2Tg2
hA2

4ijLM �L �M (66)

in which the A4 now contains all 4 Coulomb contributions.
This integral is of course convergent because of the total
zero charge of the molecule.
Let us give an example of the electric multi-dyon screen-

ing potential created in this case. We will later see that the
direct fermionic interaction binds L �L pairs stronger than
the LM interaction. Therefore, for simplicity one can
ignore the L �L cluster size and put them at the same point,
the origin. Another simplification appears if one puts M,
�M, and L �L on one line. The integral (62) changes to

−2 −1 0 1 2 3 4

5

10

15

20

FIG. 6 (color online). The integral (67) proportional to the
potential for theM (or �M) dyon created by the electric screening
as a function of its position. The charge �2 L �L pair is assumed
to be in the origin, and the companion dyon is at point 1.
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Z
d3r

�
2

r
� 1

rM
� 1

r �M

�
2
: (67)

The corresponding potential is shown in Fig. 6. As one can
see, like for DGPS case, the potential consists of linear
segments, but is now deformed away from the companion
dyon. (Note, that it is not due to their Coulomb repulsion,
which is also there but will be discussed in the next section).

III. STATISTICAL MECHANICS OF DYONS

A. Statistical mechanics of a single dyonic molecule

The partition function for an instanton–anti-instanton
molecule can be recovered using known elements for
each of the ingredients. Let us start with dimensional
considerations, valid at high enough temperatures. If the
fermions are all massless, the overall power of the T
dependence of total molecular density can be determined
from the known power of the �QCD in the instanton–

anti-instanton measures, namely,

nmol ¼ logZmol

V
� T3

�
T

�

��ð11Nc=3þ4Nf=3Þ
: (68)

Typically the power in the second factor is large and
negative, so this density rapidly decreases with T. (It is
so except near the boundary of the asymptotic freedom
domain where that power is getting small: we will not
discuss this region).

The translation from the language of the dyonic to the
language of the instanton at the level of the moduli metric
and partition function has been studied for the self-dual
and anti–self-dual sectors by Diakonov et al. [4]. Their
expression, in the SUð2Þ case for pure gauge theory is

dZLM ¼ d3rLd
3rMT

62�C

�
8�2

g2

�
4

�
�
�PVe

�
E

4�T

�
22=3

FDðrLMÞe�VscrðrLMÞ; (69)

where rLM ¼ j~rm � ~rMj, is the numerical constant
C ¼ 1:0314 . . . , and the scale parameter �PV is for the
Pauli-Villars regularization [41] The factor

FDðrÞ ¼
�
1þ v �vr

2�T

�
ð1þ vrÞð4v=3�TÞ�1ð1þ �vrÞð4 �v=3�TÞ�1

is the correction appearing due to the nonzero holonomy.
If the holonomy v ¼ 0 or antiholonomy �v ¼ 0, in the
expression above FD ¼ 1, it reduces to the well-known
caloron measure, using the relation (64). In the limit of
large dyon separation one may keep only the r terms: note
that it then becomes flat and r independent as one would
expect. The screening potential for LM pair is

VscrðrÞ ¼ 2�r

�2T

�
�T

�
1� 1ffiffiffi

3
p

�
� v

��
��T

�
1� 1ffiffiffi

3
p

�
þ �v

�
:

(70)

We have excluded one more factor in the partition function
of [4]

exp

�
�V

v2 �v2

12�2T

�
; (71)

which does not depend on the calorons/dyons and is just
a one-loop contribution to the probability to have the
holonomy v in the ensemble: it certainly should not be
repeated twice.
The same expression can be repeated for the for the �L, �M

pair, and then combined into the 4-particle partition function
for a ‘‘molecule.’’ Since, unlike [4], we are interested in the
theories with fermions, we introduced extra factors that
include that for zero modes as well as the nonzero mode part

dZmol ¼ dZLMdZ �L �M

�
m2 þ jTIAðrL �LÞj2

�2

�
Nf

� CðNfÞ
�
�2rLMr �L �M�

4

T2

�
Nf=6

e�Vscr�VL �L (72)

As discussed in the preceding section, Vscreening is defined by

the 4-particle expression for A4 integrated over the volume.
If one of the particles is going to large distances, the
expression reduces to a dipole and returns the linear con-
finement result, preventing ‘‘ionization’’ of a molecule.
The bracket in the power of Nf=6 comes from the non-

zero mode part of the fermionic determinant calculated by
’t Hooft. The power of � in it corresponds to correct beta
function of the theory with Nf fermions, and is therefore

fixed. Its dimension should be compensated by some
parameters with the dimension of the distance, which in
the case of a single instanton can only be its size �. At finite
temperature instantons lose four-dimensional spherical
symmetry and another dimensional parameter—T appears,
as well as a nonzero holonomy v. Lacking explicit evalu-
ation of the nonzero mode determinant, we just used the
instanton expression and the relation ��2T ¼ r translating
its size into the current language. At least for small-size
instantons (small r) this should work. As a result, we get

factors r3Nf=2 in the measure, or a repulsive potential
�Nf logð1=rÞ trying to dissolve the molecule. Recall how-

ever that it is only supposed to be true at small r, while at
large r the one-loop electric screening effects generate an
attractive potential linear in r which would prevent it from
happening.
We have introduced here the fermion massm in the Dirac

operator, assuming it is the same for all flavors, for normal-
ization reasons [42]. The term proportional to the masses is
nothing else but a square of the independent instanton and
anti-instantons, and since their normalization has already
been determined by ’t Hooft, the flavor-dependent normal-
ization constant CðNfÞ can be determined for �PV.

If the fermion masses are set to zero, the fermions couple
the instanton to the anti-instanton via the overlap matrix
element and four integrals over the dyon positions pro-
duce three convergent integrals, while the one remaining
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integral over the global position produces one factor of V,
the box volume.

Even for the simplest case of SUð2Þ color, when mole-
cules contain 4 dyons, their position space is already
12-dimensional. Therefore, we used standard Metropolis
algorithm to generate their statistical distributions.
Figure 7 shows one typical example of the output: in it
we compare the distances between the LM dyons (stars)
with that of the L �L (boxes). The latter are seen to be much
tighter placed, forming a ‘‘nucleus’’ of the molecule.

B. Modelling the dyonic ensemble

1. Three molecular models

As a first step toward the understanding of dyonic
ensembles and their role in chiral symmetry breaking/
restoration, we have formulated some simplified models.

For calculation purposes it is convenient for these
models to treat the density of the dyon as

nd ¼ nL ¼ nM ¼ n �L ¼ n �M (73)

(which is also the same as the density of the instanton
ninst þ nantiinstanton) as the basic dimensional quantity, pro-

viding the units of length n�1=3
d . Using such length units

we put nd ¼ 1 for awhile, and will be expressing other
dimensional quantities in these units. We will be working
with traditional periodic boxes of some size L� L� L,
with L large, and thus put into such boxes Nd ¼ L3 dyons
of each kind.

For each configuration of these models we then calculate
the fermionic matrix Tij, and calculate its eigenvalues. In

this way we get part of the Dirac spectrum built on the
subspace of the dyon zero modes. Since antiperiodic
fermionic zero modes resign on L, �L dyons only, the
fermionic part of the measure ignores the M, �M dyons.
The matrix is thus of the size 2Nd � 2Nd. For reasons of
opposite chirality, two quarters of the matrix, when both i,
j ¼ L or �L are zero, so fermionic hopping occurs only
from a dyon and antidyon.
We assume the matrix element Tij, which is given by

Tij ¼ c
e�Mrijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þMrij

p ; (74)

where one of the indices counts L dyons, and the other
counts �L dyons. The constant c will be left undetermined,
whereas the mass M is given by

M ¼ �v=2 ¼ ð2�� vÞ=2 (75)

The form of the matrix element is not derived, but it is
postulated as expected from the matrix element of the
Dirac operator in the zero mode basis. We introduce a
regulator at r ¼ 0, so as to make smooth distributions.
However, there will be an natural cutoff for how close
the dyon and antidyon can get before they are part of a
perturbative vacuum, which is already roughly the size of
their cores 1=M ¼ 2= �v. Strictly speaking, the definition of
the distance at which the dyon-antidyon pair is irrelevant is
defined as the distance at which it no longer supports a
localized fermionic mode.
We proceed by three models:
(i) The random gas model
(ii) The random molecular model
(iii) The reweighted molecular model
The simplest model is that of the ‘‘random gas model,’’

in which all correlations between the dyons are ignored and
they are placed randomly. The only parameter of the model
is the fermion mass M entering the matrix Tij, to be

expressed in units of n1=3d . (In reality, both the density of

the dyon and the holonomy, defining M, will be a function
of the temperature T, but we prefer to study our models in
their parameter space before mapping some of the results
to lattice data, see below).
In Figs. 8 and 9 we show the results of such calculation.

We use the box of the size 63 and thus 216 dyons of each
kind, and a range of fermion masses as indicated in the
figure caption. The characteristic feature of the ‘‘random
gas model’’ is a large peak near eigenvalues 	 � 0. Since
the density of quasizero eigenvalues is proportional to the
quark condensate (Casher-Banks theorem), we conclude
that this model provides large or ‘‘enhanced’’ chiral sym-
metry breaking.
Our second model is the ‘‘random molecules model,’’ in

which we include pair correlations between L, �L dyons.
As we discussed above, we expect significant attraction

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

0.02

0.04

0.06

0.08

0.10

FIG. 7 (color online). Histograms of the distributions of the
distance between the LM dyons (stars) and L �L (boxes) dyons,
for the Nc ¼ 2, Nf ¼ 4 molecule, in the units of the Matsubara

time 1=T. The fermionic mass is taken to be mf ¼ T and the

holonomy � ¼ 0:1.
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between those of classical (Higgs-related) origin, as well as
the fermion-induced dyon-antidyon confinement. We focus
here on the fermionic interaction. As the number of fermi-
onic zero modes grows proportionally to the number of
flavors Nf, we expect that at large enough Nf the mole-

cule’s mean size Rm decreases as �1=Nf. We model the

vacuum as being composed out of random molecules. The
following distribution of the size of molecules is used:

DmolðrÞ ¼ Nr2
�

e�Mrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þMr

p
�
2Nf

; (76)

where r2 is due to the measure of the dyon-antidyon
coordinates, and N is the normalization constant. The
above form is inspired by a weight ðdetTijÞNf , for a dilute

molecule ensemble. The average molecular size will
roughly be given by Rm ¼ 1=ðNfmÞ.

At this stage we have ignored any interaction between
the molecules, placing them randomly with random
orientations.

The model has two parameters, the holonomy mass M
and the number of flavors Nf. In Fig. 10 we show the Dirac

spectrum for several values ofNf, as a function ofM and in

Fig. 11 the lowest eigenvalue and chiral condensate results.
Note that here there is explicit dependence of the chiral
condensate on the holonomy.
The third model is a modification of the second by

reweighting the configurations with the determinant
ðdetTijÞ2Nf=ðQiDmolðriiÞÞ, where rii is the distance

between its closest neighbors. The result is shown in
Figs. 12 and 13.

2. Mapping the models to finite T QCD

Our three models were defined in such a way that each
step has introduced one new parameter: with the density
of the dyon, it brings the total number of parameters to
four. Yet QCD-like theories with massless fermions have
only two parameters, the temperature T and �. Thus, only
a 2-parameter subspace of our (up to) 4-parameter model
space can be compared to reality.
Now is the time to map those parameters. Like lattice

practitioners do, it is thus natural to measure all dimen-
sional quantities in units of T. The dimensionless density
of the dyon nd=T

3 is one of the key parameters. It has not
yet been measured on the lattice, but it can be. While it is
the same as the density of instantons, it is not given by the
topological susceptibility �ðTÞ, as neutral molecules con-
tribute to the former but not the latter. Semiclassical theory
tells us that the large T is asymptotically dependent on T,
expression (68). For qualitative estimates one may use it
normalized to its value at Tc. The factor in front of the
power of Tc=T depends on the coupling, in a particular
definition used by ’t Hooft, and at the fermionic factors its
value is Oð1Þ for physical QCD or Nf ¼ 2, which one can

use for absolute normalization.
The fermion mass M=T � 1=Nf and thus, keeping the

coupling fixed while increasing Nf, one finds that the

cluster size is reducing and thus we are going into a regime
of more dilute gas. However, if one wants to follow the line
of ‘‘fixed eigenvalue spectrum’’ and/or fixed h �c c i, one
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FIG. 9 (color online). The eigenvalue gap and the quark condensate for the random gas model, as a function of the ‘‘holonomy
mass’’ M.
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FIG. 8 (color online). The Dirac eigenvalue spectrum for the
random dyon gas.
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needs to keep the same diluteness of the molecular model,
or keep constant

R3
mnd ¼ const; (77)

where Rm � 1=ðNfMÞ. Thus, the density of the dyon

should grow as N3
f, e.g. from Nf ¼ 2 to 12 increase by a

factor 216.

The only way it can be achieved is by a shift into the
stronger coupling! A crude estimate ignoring the pre-
exponent gives a shift of

8�2

g2ðTcðNfÞÞ
� 8�2

g2ðTcðNf ¼ 2ÞÞ ¼ �3 lnðNf=2Þ: (78)
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FIG. 10 (color online). The Dirac eigenvalue spectrum. The horizontal axis is the eigenvalue of the Dirac operator 	 expressed in
units of c defined in Eq. (74), and the vertical axis is the probability density dP=	. The plots are for Nf ¼ 2 and M ¼ ð�=6 . . . 9Þ �
�=6n1=3, where n is the density of L dyons. Note that the chiral symmetry is restored as a function of M, which is connected to the
holonomy as M ¼ �v=2 ¼ ð2�� vÞ=2.
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FIG. 11 (color online). The smallest eigenvalue and the chiral condensate for the random molecule model, as a function of the
holonomy mass combined with the density of the dyon for Nf ¼ 2.

CHIRAL SYMMETRY BREAKING/RESTORATION IN A . . . PHYSICAL REVIEW D 86, 036001 (2012)

036001-17



This qualitatively explains why the chiral restoration line
h �c c i ¼ 0 derived in lattice studies (see Fig. 2) dramati-
cally shifts into stronger coupling.

Unfortunately our attempts to do it quantitatively failed,
for the following reason. The coupling g in the semiclas-
sical expressions and on the lattice (such as in Fig. 2) are
defined in different schemes, with the scales � �MS and �lat.
Perturbatively they only differ by a calculable factor, but as
their ratio happens to be large, this relation is not very
useful in practice. For example, for QCD orNf ¼ 3 theory,

the former is about 300 MeV and the latter about 5 MeV.
The density of the instanton includes a huge factor

exp

�
� 8�2

g2

�
� ð� �MS=�latÞ11Nc=3�2Nf=3 � 609: (79)

Obviously, in view of such a huge factor, any small
deviation from the two-loop beta function used would
result in huge uncertainties which make any numerical
comparison of the semiclassical expressions and lattice
bare coupling meaningless.
The tests of this explanation however can still be made

using lattice data. The most straightforward one would be
to measure the density and size of the dyon molecule and
see if the relation (77) holds. To do so one can, e.g., use
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FIG. 13 (color online). The smallest eigenvalue and the chiral condensate for the reweighted random molecule model, as a function
of the holonomy for Nf ¼ 2 andM ¼ �=6 . . . 30� �=6. Note that reweighting becomes unreliable at aroundM ¼ 15� �=6, and that

we show this result only to demonstrate the trend that chiral symmetry persists to lower values of the holonomy mass M than for the
nonreweighted case.
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FIG. 12 (color online). The Dirac eigenvalue spectrum for a random molecule ensemble light (blue) and reweighted random
molecule ensemble dark (red). The horizontal axis is the eigenvalue of the Dirac operator 	 expressed in units of c defined in Eq. (74),
and the vertical axis is the probability density dP=	. The plots are for Nf ¼ 2 and M ¼ ð30; 25; 20; 15; 10; 5Þ � �=6n1=3, where n is

the density of the L dyons. The reweighting becomes unreliable in the last plot, and only one configuration dominates.
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Dirac eigenstates in a certain interval of 	, which can
identify a dyon-antidyon cluster.

3. Structure of strongly coupled ‘‘cluster liquid’’

With a large number of fermions L �L are strongly
coupled into a charge �2 well localized objects, compen-
sated by the negatively chargedM and �M dyons, which are
more homogeneously distributed.

The L �L ‘‘nuclei,’’ with the fermions attracted to them,
form mutually repulsive ‘‘atoms.’’ The question is what
arrangements those should have to get the lowest energy.
One obvious idea is those with the best packing in
three dimensions, namely, the face-center cubic or the
hexagonal-close packing. Selecting between those one
may follow the guidance given by ordinary atoms which
are neutral and spherically symmetric by themselves.
High-density solid He4 is of the hexagonal-close-packing
structure, and perhaps that would be the approximate local
symmetry of our strongly correlated L �L liquid. If so, each
of them has 12 nearest neighbors, organized in two hex-
agons at two planes above and below the cluster.

While a large number of correlated neighbors reinforces
the correlations, simple estimates show that the parameter
� (the average interaction potential divided by T) does not
reach the critical value needed for the ensemble to get
solidified. Thus, with the parameter range at hand we
expect a strongly coupled liquid, with smaller number of
well-correlated neighbors but with their locations still
correspond to those in the crystal. Explicit statistical simu-
lations of it are possible, but are deferred for further
studies.

C. Statistical mechanics driven by bosonic moduli
space metric effects

Let us now discuss the opposite limit of Nf ¼ 0, in

which there is no L �L clustering. Let us further imagine
that for some reason one can decouple the two sectors,
dyons and antidyons, and discuss what kind of a system
would be created by ‘‘Diakonov’s determinantal forces.’’.
Assuming that the anti–self-dual sector does not exist, let
us thus focus on the M, L sector. Since the electric and
magnetic charges in it have the same sign, one may in this
section simply call them þ and � dyons.

At large distances the forces between them are
Coulombic, and one may think that the local crystal corre-
lations those generate is a simple cubic crystal of alternat-
ing charges, like, e.g. the usual salt NaCl. Any charge is
thus strongly correlated with its 6 nearest neighbors.

Classical Coulombic systems are well known to be
unstable against charges falling on each other. (Of course
for real ions electron repulsion solves this issue, stabilizing
the salts). We thus studied the following question: can the
Diakonov’s determinantal forces stabilize a cubic crystal?

We use the moduli space metric Gij for the self-dual

sector as suggested in [2] to calculate the effective

potential of a crystal configuration of L and M dyons,
with a lattice spacing a, for a displacement of a single
dyon somewhere in a center. The effective potential is
the log of the measure, Vd ¼ � lnðdetGÞ. For a purely
Coulombic crystal, the crystal potential as a function of a
displacement �x has infinite Coulombic dips as displace-
ment �x approaches �a, which means that for purely
Coulombic interactions the alternating charges will fall
on each other. However the effective potential Vd contains
repulsion and, as shown in 14, this leads to a pronounced
minimum at x ¼ 0 for sufficiently small lattice spacings a
(high density). On closer inspection, however, there is
always a small, but clear minimum. As expected, the
Coulombic dips at �a still persist. This divergence—
corresponding to small-size instantons and the factor 1=�5

in the measure—is known to be removed by quantum fluc-

tuations, which produce a stronger factor �11Nc=3�2Nf=3.
Thus, outside of classical approximation the problem is
well defined.
On the other hand, as discussed in [2], it seems that from

the point of view of the far field metric, the anti–self-dual
sector behaves similarly to the self-dual one, and the
interaction between L and �L is similar to the interaction
between L and L (i.e. repulsive), while that of L and �M is
attractive. Therefore, we have three possible structures
depicted in Fig. 15:
For a nonzero number of quark flavors Nf fermions

correlate the L and �L, then they will repel the other pairs,
therefore making the hexagonal crystal, as we discussed

a 0 0.5a0.5 a
2146

2145

2144

2143

2142

2141

2140
a 0 0.5a0.5 a

x

FIG. 14 (color online). The effective potential Vd ¼
� lnðdetGÞ, where G is the Diakonov determinant, as a function
of the displacement �x of a single dyon in the center of a cubic
6� 6� 6 crystal, in the direction of the adjacent dyon. The
graphs have been rescaled for better comparison as follows:
(blue) solid 684Vd, a ¼ 0:1; (red) dash 818Vd, a ¼ 0:25;
(brown) short dash 917Vd, a ¼ :5; (green) dash-dotted 967Vd,
a ¼ 0:75; (blue) long dash 1000Vd, a ¼ 1. The units of �x, a
are the Matsubara time. Note that as the density of the dyon
increases by a factor 103, this one-loop bosonic interaction
creates a significant minimum at �X ¼ 0, stabilizing the cubic
structure.
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above. For zero Nf they can be either strongly correlated

(b) or form an alternating crystal (c). Lattice practitioners
often introduce the so-called valence quarks, which are not
in the measure but are only used for a diagnostic purposes
of the ‘‘quenched’’ (Nf ¼ 0) theory. Dirac eigenvalue

spectrum and chiral properties revealed by such studies
can be computed and compared to the lattice data.

In a standard way we model the Dirac matrix by a
‘‘hopping’’ matrix (2, 3), with the matrix elements being
some function of a distance between dyon-antidyon fðrÞ.
We expect these functions to be exponential in distance
r ¼ j~rj at large r and some constant we call fð0Þ at small r.

In the first approximation we can consider only next-
neighbor matrix elements, and use the cubic structure (b).
Then we can write the upper-right (or the lower-left) part of
the Dirac operator matrix, in the triple-index notations with
n, m, l being positions in units of a along the three spatial
coordinates in the cubic lattice

Dn0m0l0
nml ¼ fð0Þ�n0

n �
m0
m �l0

l þ fðaÞð�n0þ1
n �m0

m �l0
l þ �n0�1

n �m0
m �l0

l

þ �n0
n �

m0þ1
m �l0

l þ �n0
n �

m0�1
m �l0

l þ �n0
n �

m0
m �l0þ1

l

þ �n0
n �

m0
m �l0�1

l Þ: (80)

Upon standard diagonalization by transformation to the
dual lattice momentum states

jki ¼ 1ffiffiffiffiffiffi
L3

p X
I¼ðn;m;nÞ

e2�iI	k=L; (81)

we obtain that the spectrum is given by

�ð ~kÞ ¼ fð0Þ þ fðaÞðcosk1 þ cosðk2Þ þ cosðk3ÞÞ; (82)

where k1;2;3 go from ð0; 2�Þ, and the elementary number of

states is given by standard dN ¼ Vd3k=ð2�Þ3. The density
of states is

dN

d	
¼ V

Z
d3k�ð	� cosk1 � cosk2 � cosk3Þ; (83)

where we have used the shifted eigenvalues

	 ¼ ð�� fð0ÞÞ=fðaÞ: (84)

The spectrum can be integrated to yield

dN

d	
¼
Z

dk1dk2
1

j sink3ðk1; k2Þj ; (85)

where k3 ¼ arccosð	� cosk1 � cosk2Þ, and the region
of integration is such that j�� cosk1 � cosk2j  1.
Numerical integration yields the curve shown in Fig. 16.
We see that the density of states form a band with a sharp

boundary, it goes to zero at j	j> 3. For scenario (b) this
shape will appear in the spectrum centered around�jfð0Þj,
and, for vanishing fðaÞ, it will be delta function-like. Each
of these morphs into the shape in Fig. 16 in a type (b)
crystal as fðaÞ increases. If they are separated by more than
the width of the peak, the chiral symmetry is not broken.
The condition for chiral symmetry breaking is therefore��������fðaÞfð0Þ

��������> 1

3
: (86)

Alternatively, structure (c) can be motivated as follows.
As mentioned earlier, the long range interactions between
Ls and Ms, become the same regardless of them being
dyons or antidyons. This means that the cubic crystal will
haveLs and �Ls located at the positions of the ’’þ‘‘ ions and
M and �M at the positions of ’’�‘‘ ions. In this case, the
spectrum of the Dirac operator is

� ¼ 2fða ffiffiffi
2

p Þðcosk1 þ cosk2 þ cosk3 þ cosk4Þ; (87)

where we have approximated that, on average, each L has 4
nearest �Ls. Similarly as before we get that

dN

d�
ð� ¼ 0Þ ¼ 2fða ffiffiffi

2
p Þ

Z dk1dk2dk3
ð2�Þ4

1

j sink4j ; (88)

FIG. 15. Three possible crystal structures discussed in the text.
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FIG. 16 (color online). The plot of the density of the states of
the cubic lattice with the next-neighbor interactions.
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where k4 ¼ arccosðcosk1 þ cosk2 þ cosk3Þ, and cosk1þ
cosk2 þ cosk3  1.

D. Note on confinement of the cubic crystal

Here we show that the Polyakov loop of a crystal con-
figuration is indeed zero. We have that

trLðxÞ ¼ treiððv=2ÞþVðxÞÞ�3 ¼ 2 cos

�
v

2
þ VðxÞ

�
; (89)

where we used the gauge-combed gauge, and where VðxÞ is
some potential that goes to �v=2 at the position of the M
and �M dyons and to �v=2þ � at the position of the
L and �L dyons. Using the identity that cosð�þ �Þ ¼
cos� cos�� sin� sin�, we have that

trLðxÞ ¼ 2 cos
v

2
cosðVðxÞÞ þ 2 sin

v

2
sinðVðxÞÞ: (90)

The above expression has to be integrated over all possible
crystal orientations and positions. This is equivalent,
though, to integrating over x in the region of one crystal
unit, i.e.

htrLðxÞi¼2
1

a3

Z
a3
d3x

�
2cos

v

2
cosðVðxÞÞþ2sin

v

2
sinðVðxÞÞ

�

(91)

However, setting v ¼ � (the maximally nontrivial hol-
onomy), we see that the first term vanishes because
cosð�=2Þ ¼ 0, and the second term vanishes because
VðxÞ is alternating between the L and M dyons in sign,
and, since sin is an odd function, this term vanishes too.
Therefore, the Polyakov loop averaged over crystal
configurations vanishes, and it depends explicitly on the
holonomy being nontrivial.

Finally, let us note that such ‘‘confinement in average’’
phenomenon has its predecessors, resembling a finite-
density holographic model of densely packed baryons
[43]. In it baryons are modeled by instantons, which also
undergo a transition into a ‘‘dyon phase’’ in which they
restore chiral symmetry in average.

IV. SUMMARYAND DISCUSSION

In this work we have done a qualitative study of the
interactions of (anti)self-dual dyons, as well as some study
of the statistical ensembles following from them. We em-
phasized in particular the importance of the dyon-antidyon
interaction, both classical (bosonic) and fermion-induced
ones, instead of the interactions inside the self-dual and
anti–self-dual separate sectors. We specifically focused on
the SUð2Þ theory and the temperatures above and near the
chiral restoration phase transition.

We have already summarized our overall findings from
this study at the very beginning of the paper, so let us just
outline the elements that we believe explain certain lattice

observations. We will also emphasize what lattice practi-
tioners can do to test our predictions further.

(i) Existence of the ‘‘topological molecules’’
At high T the density of the instanton/dyon is small
due to electric screening, the topological object must
make molecules, neutral in terms of all three charges
involved: topological, electric and magnetic. In the
SUð2Þ theory they contain all 4 types of dyons. We
predict a peculiar distribution, with the nucleus of
the L �L cluster at the center, with M and �M at the
periphery, see Fig. 1. This effect is predicted to
become more pronounced with the increasing num-
ber of quark flavors Nf. It is important to check it on

the lattice, perhaps by identifying the fermionic
states ‘‘at the gap’’ in ensembles with varying Nf.

Its generalization to any number of colors is
straightforward.

(ii) The critical line versus the fermion numbers Nf, Na

Model simulations with such clusters, random or
interacting with each other, predict certain distinct
shapes of the Dirac eigenspectrum at small 	. We
have in particular found at which diluteness of the
‘‘cluster gas’’ one gets a particular value of the
chiral condensate, the chiral symmetry restoration
or at a certain size of the gaps. These eigenvalue
spectra and ‘‘lines of constant condensate’’ can be
compared with the lattice ones, in order to see if
chiral breaking does happen in the ‘‘molecular gas’’
regime, or at a denser regime.
The increasing number of fermions leads to stronger
fermion-induced interactions, binding the L �L pairs
into tighter clusters. In terms of our molecular gas
model, it becomes much more dilute, unless the
overall density of the dyons is significantly in-
creased. This can only be achieved by going into a
stronger coupling domain, which reduces the dyon
masses and interactions. That is why the critical
lines in Fig. 2 go downward with increasing flavors.
We have also explained why there is a qualitative
difference between the fundamental and adjoint
fermions. While the former have zero modes only
with one (heavier) dyon L �L, the adjoint have zero
modes for all dyons, including lighter M, �M
(for SUð2Þ). The latter are much less correlated,
thus their chiral restoration temperature is much
higher.

(iii) Chiral splittings of hadronic masses versus Nf

As this parameter is now becoming measurable on
the lattice, with the progress in computer/lattice
technology, it is perhaps time to map it more con-
sistently, and also think again about the physics it
reveals.
The rapid decrease of the chiral condensate
scale around Nf � 4 has in fact been predicted

CHIRAL SYMMETRY BREAKING/RESTORATION IN A . . . PHYSICAL REVIEW D 86, 036001 (2012)

036001-21



by the instanton liquid simulations [8] long ago.
The reason for that has been a ‘‘dip’’ in the eigen-
value spectrum developed due to the molecule
formation [44]. This very phenomenon is in fact
central to our current study. What was not predicted
in the 1990s was a significant shift to the stronger
coupling and the drastic increase of the overall
density of the instanton/dyon (in other words, a
rapid decrease of the hadronic scale), which makes
a very small quark condensate relevant. It would be
important to study the transition to a ‘‘molecular’’
topological structure in lattice simulation.
The dependence of the quark condensate on the
density of the molecules we found in our calcula-
tions is interesting. As seen in Fig. 10, at low density
there is a minimum between two ‘‘molecular
peaks,’’ but at some diluteness there is the sudden
appearance of a small peak inside this minimum.
This implies a sudden jump in the quark condensate
value, in a small interval of parameters. It is more
pronounced than many crossover phase transitions,
and thus we may call this phenomenon a phase
transition in the dyonic ensemble, from an
‘‘atomic’’ to a molecular state, at Nf > 3. Using

quark masses as interpolating parameters between
Nf ¼ 3, 4, 5, lattice practitioners can see if this

change in Dirac spectrum is also occurring in lattice
simulations as well.

(iv) Dependence of the Dirac eigenvalues on the hol-
onomy value and phase
The nonzero holonomy provides Higgsing, the
breaking of the color group, and thus it naturally
explains the different fermionic holonomy
‘‘masses’’’ that appear in theTij hopping amplitudes.

Since theSUð2Þ gauge groupwas discussed earlier in
this paper, let us discuss SUð3Þ in a bit more detail,
that is, the two SUð3Þ options shown in Fig 1
of [21], namely, the real hPi sector as well as
the one with the phase of P being 2�=3. The gene-
ric holonomy in SUð3Þ is described by 3
parameters �1, �2, �3 subject to one condition
ð�1 þ�2 þ�3 ¼ 0ðmodð1ÞÞ. If one imposes an
additional condition, such as the fixed phase of hPi,
there is only one free parameter left. If the phase is
zero, hPi is real, and the 1-parameter family of
possible holonomies is

�1 ¼ 0; �2 ¼ 1=2� �; �3 ¼ 1=2� �:

(92)

If the phase is 2�=3, this solution is simply rotated
additively to

�1 ¼ 1=3; �2 ¼ 1=3þ 1=2� �;

�3 ¼ 1=3þ 1=2� �:
(93)

The masses of the monopoles are determined by the
differences, which are the same in both cases,

�1 ¼ �3 ¼ 1=2þ �; �2 ¼ 2�; (94)

since for the gluonic observable the two sectors are
identical by the ZNc

symmetry.

However the fundamental fermions notice the dif-
ference, as their masses are given by �i, not �i.
Furthermore, which dyon gets the zero mode de-
pends on the phase parameter z in the fermionic
periodicity condition: the rule is that it is the one in
which the � sector z resides on the circle. The anti-
periodic fermions (z ¼ 1=2) pick up the second type
of dyon �2 ¼ 2� in the real sector and the first one
�1 ¼ 1=2þ � in the one with the 2�=3 phase. The
lowest mass of the fermion is 2�T� in the former
case, while in the complex ones it is ð2�TÞ�
minð1=6; 1=3� �Þ.
Of course, in the lattice subsector with the fixed
phase, the modulus still has some average and the
distribution, determined by the effective potential
of hPi at a given T, which is known if the
lattice simulation is made. We however do not
know the values: let us take some generic value
between 0 and 1 as a guess: a half

jhPij ¼ 1=2 ¼ ð1� 2 cosð2��ÞÞ=3 ! � � 0:29:

(95)

If so, the fermion masses for the two sectors are
m=ð2�TÞ ¼ 0:29 and 0.04, respectively. Such a
large mass difference explains why the participation
ratios (roughly, the fraction of the box volume occu-
pied by a mode) are so different: while in the real
sector the Dirac modes occupy only about 1% of the
box, in the complex sectors nearly the whole box is
occupied).

(v) Dirac eigenstates ‘‘at the gap’’
The objects found via this method by Bruckmann
et al. [26] are consistent with being made of L and �L
dyons. Apparently they must be neutral under the
topological charge because they do not contribute to
topological susceptibility. The clusters we propose in
this work include both L and �L dyons, with zero total
topology, yet are still able to support the fermionic
localized states. Further lattice studies of the Abelian-
projected electric and magnetic fields correlated with
those objects would further clarify their origins.

(vi) Dependence on fermionic periodicity conditions
In several works [20,23] the effects of the temporal
boundary conditions on the chiral condensate on
quenched ensembles was explored. In addition to
the restoration of the chiral symmetry for the physi-
cal, antiperiodic, boundary conditions, an increase
in the chiral condensate for the periodic condition
above Tc was observed.
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In the case of the adjoint fermions the drop of chiral
condensate happens for both the periodic and anti-
periodic sectors. There is however a qualitative
difference: the drop is slower for the periodic
case, differs in shape, and was not traced to reach
zero. A qualitative difference is certainly expected
on the basis of Ref. [32]: the zero modes for peri-
odic and antiperiodic boundary conditions are dras-
tically different. For the periodic case, all zero
modes are democratically distributed, whereas for
the antiperiodic boundary conditions they all fall
onto the heaviest one (the L dyon). The case of
antiperiodic boundary condition then restores chiral
symmetry in the way similar to fundamental
quarks, by condensation into L �L clusters. The
case of periodic adjoint fermions is quite different,
it has a ‘‘democratic’’ distribution of zero modes
over all dyons of the instanton. This makes resto-
ration of the chiral symmetry much more difficult,
as now correlating the ‘‘heaviest’’ L �L is insufficient
and also ‘‘light’’ M �M pairs should form. A more
quantitative analysis of the adjoint fermion case is
reserved for future studies.
We finally comment that the case of dynamical
adjoint fermions was treated analytically in [45],
where it was shown that the chiral symmetry is
indeed restored.

(vii) Short-range correlations of dyons in quenched
and nonquenched ensembles
At high temperature, the vacuum is mostly domi-
nated by perturbative fluctuations: the coupling is
simply too small to allow for any kind of large
quantum effects. As we lower the temperature, the
formation of topological objects starts to be pos-
sible. Although still suppressed, the vacuum is able
to polarize into topological objects, which can
support localized fermionic modes of small eigen-
value, but still not small enough to break chiral
symmetry. Also, the mass M of these zero modes,
which interpolates from 2�T to �T i.e. reduces by
half in units of temperature as temperature is de-
creased, makes it harder to break chiral symmetry
at high temperature, as the tail of zero modes,
being the inverse of this mass, does not extend
very far, and, thus, at a small density of topological
charge, the off-diagonal matrix elements are sim-
ply too small to matter, and the ensemble of dyons
is the ensemble of L �L pairs and neutral random
clouds of light M, �M dyons.
However things change drastically as temperature
is decreased. The gluon dynamics facilitates the
increase in topological density, due to a suppres-
sion of the action of any field configuration at
lower temperature by the coupling 1=g2. At one
point the moduli space metric of topological

objects becomes the sole dictator of the distribu-
tion of the topological (dyonic) field configuration
of the dyons, the rest simply being fluctuations,
which is also not suppressed at all, but does not
change the important topological properties of the
background configuration. The dynamics of dyons
becomes important solely through the geometry of
the moduli space metric.
The interaction of L and anti-L is very similar to
the interaction between L and L, i.e. they repel
(Coulombic-like), and the L and anti-M attract
from the point of view of the metric (at large
distances), just like L and M. The vacuum then
needs to undergo a transition in the structure, from
pairs of L �L and M �M, to the crystal of alternating
dyons and antidyons.
Such an abrupt change in the vacuum structure of
the quenched ensemble is absent upon introduction
of dynamical fermions. In this case, the situation
changes drastically. The increase in topological
density is suppressed by the presence of fermions,
as increasing density means making pairs come
closer together. According to arguments in the
article, such a scenario will make the fermionic
determinant become smaller and smaller, eventu-
ally going to zero if the molecules overlap. That
means that the same topological density is harder
to develop with fermions. Increasing the flavors
makes it even harder, as the smallness of the
fermionic measure is enhanced by Nf. However,

if Nf is not too large, chiral symmetry may still be

broken, but the nature of this transition is now
vastly different. The pairs try to keep their distance
from all other pairs as large as possible.

(viii) Small comment about deconfiement
Recent work by Bruckmann et al. [46] argued that
uncorrelated dyons of all kinds create linear con-
finement. We propose that an ensemble of corre-
lated neutral molecules would not do that and
generate short-range correlations only. This
potentially links both deconfinement and chiral
restoration with molecule formation.
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�M dyons, while for antiperiodic fermions those are indeed
related with type-L, �L dyons. This conclusion was reached
by correlating the topology with the sign of the Polyakov
line at the dyon center. The difference in inverse partici-
pation ratios between the two cases is indeed naturally
explained by the large difference in M and L actions. For
the ‘‘heavier’’ L dyons, even the shape of the fermionic
eigenmodes was shown to agree with the corresponding
semiclassical predictions.

APPENDIX: EXACT SOLUTION
OF THE ZERO MODES

Although zero modes of a caloron were generally found
elsewhere [10,11], here we use an approach that is more
illuminating.

We solve Eqs. (32), where

H ¼ � 1� vr cothðvrÞ
r

; (A1)

A ¼ 1� vr= sinhðvrÞ
r

: (A2)

We will take the lower sign (anti–self-dual solution). To do
this we separate the matrix MðrÞ as

MðrÞ ¼ M0ðrÞ þM1ðrÞ; (A3)

where

M0ðrÞ ¼
�
H
2

þ 1

r

�
1 ¼ 1þ rv cothðrvÞ

2r
; (A4)

M1ðrÞ ¼ z

�
�1 þ

�
A� 1

r

�
�3 ¼ z

�
�1 � v

sinhðvrÞ�3:

(A5)

The solution can then be written as � ¼
expð�R

r
0 M0ðrÞdrÞ�, or

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r sinhrv

p �: (A6)

Note that if we took the upper sign in Eq. (A1), we would

get a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðvrÞp

in front of the solution. This is
clearly non-normalizable, as it should be by the index
theorem.

The differential equation for � is

d

dr
� ¼ �M1ðrÞ�; (A7)

i.e.

�0
1ðrÞ ¼

v

sinhðvrÞ�1ðrÞ �


�
�2ðrÞ; (A8)

�0
2ðrÞ ¼ � v

sinhðvrÞ�2ðrÞ �


�
�1ðrÞ: (A9)

We may take a change of variables � ¼ rv. Then the
equations read

�0
1ð�Þ ¼

1

sinhð�Þ�1ðrÞ � &�2ðrÞ; (A10)

�0
2ð�Þ ¼ � 1

sinhð�Þ�2ðrÞ � &�1ðrÞ; (A11)

where we labeled & ¼ 
=ðv�Þ. We now eliminate �2, and
obtain the second order differential equation

� d2

d�2
�1 � 1

2cosh2 �
2

�1 ¼ �&2�1: (A12)

This equation has a general solution

�1ð�Þ ¼ c1

�
�2&þ tanh

�

2

�
e&� þ c2

�
2&þ tanh

�

2

�
e�&�

(A13)

with arbitrary constants c1;2. Using the first order equa-

tions. we can write �2 as

�2ð�Þ ¼ c1

�
2&� coth

�

2

�
e&� þ c2

�
2&þ coth

�

2

�
e�&�

(A14)

The function �2ð�Þ is divergent when � ! 0, except if
c1 ¼ c2, in which case �2ð0Þ ¼ 0. Therefore, c2 ¼ c1.
The constant c1 can be determined by the overall normal-
ization. The solution then becomes

�1ð�Þ ¼ 2c1

�
�2& sinhð�&Þ þ tanh

�

2
coshð�&Þ

�
(A15a)

�2ð�Þ ¼ 2c1

�
2& coshð�&Þ � coth

�

2
sinhð�&Þ

�
: (A15b)

Finally, combining with (A6) we obtain

�1;2 ¼
ffiffiffi
v

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� sinh�

p �1;2: (A16)

ffiffiffi
v

p
can be absorbed into constant c1, and our final expres-

sion is

�1;2 ¼ �1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� sinh�

p ; (A17)

with functions �1;2 given by (A6), � ¼ vr, & ¼ 
=ðv�Þ.
Note that the value of �1ð� ! 0Þ is given by

c1ð1–4&2Þ; (A18)

and the solution is completely regular at r ¼ 0.
Remarkably it turns out that for c1 ¼ 1=2, the solution is
already normalized (in the sense of

R
d��2 integration).
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