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Differently from the canonical seesaw mechanism, which is grounded in grand unified theories, the

inverse seesaw mechanism lacks a special framework that realizes it naturally. In this work we advocate

that the 3-3-1 model with right-handed neutrinos has such an appropriate framework to accommodate the

inverse seesaw mechanism. We also discuss the smallness of the lepton number violating mass and

estimate the branching ratio for the rare lepton flavor violation process � ! e�.

DOI: 10.1103/PhysRevD.86.035007 PACS numbers: 12.60.Cn, 12.60.Fr, 14.60.St

I. INTRODUCTION

Although experiments in neutrino oscillations have re-
ported that neutrinos are light particles mixed in an unusual
way [1],

�m2
21 ¼ ð7:59� 0:21Þ � 10�5 eV2;

�m2
31 ¼ ð2:43� 0:13Þ � 10�3 eV2;

sin2ð2�12Þ ¼ 0:861þ0:026
�0:022; sin2ð2�23Þ> 0:92;

sin2ð2�13Þ ¼ 0:092� 0:016;

(1)

from the theoretical side we still miss a definitive under-
standing of the smallness of the neutrino masses and of the
profile of their mixing.

Seesaw mechanisms [2–4] are considered the most ele-
gant way of explaining the smallness of the neutrino
masses. Their essence lies in the fact that the lepton
number must be explicitly violated at a high-energy scale.
As a result, left-handed neutrinos gain small masses

through the formula m� ¼ v
2=
w�, where vw is the electro-

weak scale and � is associated to the lepton number
violation scale. In the seesaw mechanisms � is generally
related to some grand unified theory (GUT) scale. In this
way, for� ¼ 1014 GeV, we get neutrino masses at the sub-
eV scale. In spite of providing an interesting explanation
for the smallness of the neutrino masses, such mechanisms
are not phenomenologically testable because the new phys-
ics engendered by them will manifest at the 1014 GeV
scale which is completely out of the range of the current
and next accelerator experiments.

A radically different realization of the seesaw mecha-
nism is the so-called inverse seesaw mechanism (ISS) [5],
where small neutrino masses arise as a result of new
physics at the TeV scale which may be probed at the
Large Hadron Collider (LHC) experiments. According to
the original idea, the implementation of the ISS mecha-
nism requires the addition of three right-handed neutrinos
NiR and three extra standard model singlet neutral fermi-
ons, SiL, to the three active neutrinos, �iL , with i ¼ 1, 2, 3.

The mechanism arises when we make use of extra

symmetries in order to allow that these nine neutrinos
develop exactly the following bilinear terms:

L ¼ � ��LmDNR � �SLMNR � 1

2
�SL�SCL þ H:c:; (2)

where mD, M, and � are generic 3� 3 complex mass
matrices. These terms can be arranged in the following
9� 9 neutrino mass matrix in the basis ð�L; N

C
L ; SLÞ:

M� ¼
0 mT

D 0

mD 0 MT

0 M �

0
BB@

1
CCA: (3)

On considering the hierarchy � � mD � M, the diago-
nalization of this 9� 9mass matrix provides the following
effective neutrino mass matrix for the standard neutrinos:

m� ¼ mT
DðMTÞ�1�M�1mD: (4)

The double suppression by the mass scale connected with
M makes it possible to have such a scale much below than
that one involved in the canonical seesaw mechanism. It
happens that standard neutrinos with mass at sub-eV scale
are obtained for mD at the electroweak scale,M at the TeV
scale and � at the keV scale. In this case all the six right-
handed neutrinos may develop masses around TeV scale
and their mixing with the standard neutrinos is modulated
by the ratio mDM

�1. The core of the ISS is that the small-
ness of the neutrino masses is guaranteed by assuming that
the � scale is small and, in order to bring the right-handed
neutrino masses down to TeV scale, it has to be at the keV
scale [6,7].
Differently from the canonical seesaw mechanism that

finds its natural place in GUT, the ISS mechanism still
lacks a special framework where the six new neutrinos
could be a part of some underlying particle content and
naturally provide the mass terms in Eq. (9). In this work
we show that the SUð3ÞC � SUð3ÞL �Uð1ÞN model with
right-handed neutrinos (331RHN for short) [8] has the
appropriate framework to accommodate the ISS mecha-
nism. This is so because this is a model which may mani-
fest at the TeV scale and possesses in its matter content the
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new six right-handed neutrinos required by the mechanism
and easily provides the mass terms in Eq. (9). In addition
we develop an explanation for the smallness of the �
parameter and compute the branching ratio for the rare
lepton flavor violation process � ! e�, for which strin-
gent bounds are expected to emerge in future neutrino
experiments [9].

In what follows we implement the ISS mechanism in the
331RHN and then we develop a suitable mechanism to
explain the smallness of the � parameter.

II. ISS IN THE 3-3-1 MODELWITH
RIGHT-HANDED NEUTRINOS

We consider the 331RHN [8] whose leptonic sector is
composed by

faL ¼ �aLeaL�
C
aL

� �
T � ð3;�1=3Þ;

eaR � ð1;�1Þ; NaR � ð1; 0Þ; (5)

where a ¼ 1, 2, 3, and the numbers between the paren-
theses refer to the SUð3ÞL, Uð1ÞN transformation proper-
ties. In this way we have the minimum matter content
needed in the ISS, i.e., nine neutral chiral leptons.

In order to generate mass to all fermions consistently,
and also leaving only the electromagnetic symmetry group
Uð1Þem explicitly realized, we take into account the follow-
ing three scalar triplets:

� ¼ �0���00� �
T � ð3;�1=3Þ;

� ¼ �0���00� �
T � ð3;�1=3Þ;

� ¼ �þ�0�0þ� �
T � ð3; 2=3Þ:

(6)

The relevant Yukawa Lagrangian for the lepton sector
that yields the ISS mechanism for the neutrinos is com-
posed by the following summation of terms:

LY
ISS ¼ Gab�ijk �L

C
ai�

�
jLbk þG0

ab
�La�NbR

þ 1

2
�NC
R�NR þ H:c:

(7)

We assume that the fields �0, �0 and �00 develop a
vacuum expectation value (VEV) according to

h�0i ¼ v�ffiffiffi
2

p ; h�0i ¼ v�ffiffiffi
2

p ; h�0i ¼ v�0ffiffiffi
2

p : (8)

With this set of VEVs, the Lagrangian above yields the
following neutrino mass terms:

L mass ¼ ��LmD�R þ ��C
LMNR þ 1

2
�NC
R�NR þ H:c: (9)

In the basis SL ¼ ð�L; �
C
L; N

C
L Þ, the mass terms above

can be cast in the following manner:

L mass ¼ 1

2
�SCLM�SL þ H:c:; (10)

with the mass matrix M� having the texture

M� ¼
0 mT

D 0

mD 0 MT

0 M �

0
BB@

1
CCA; (11)

where the 3� 3 matrices are defined as

Mab ¼ G0
ab

v�0ffiffiffi
2

p ; (12)

mDab ¼ Gab

v�ffiffiffi
2

p ; (13)

with Mab and mDab
being Dirac mass matrices, with this

last one being antisymmetric. The mass matrix in Eq. (11)
is characteristic of the ISS mechanism. We would like to
call the attention to the fact that the two energy scales
related with the models’ gauge symmetry breakdown ap-
pear in the mass matrix. Namely, v�0 in Mab is connected

with SUð3ÞL �Uð1ÞN=SUð2ÞL �Uð1ÞY and could be ex-
pected to be at the TeV scale leading to observable effects
at the LHC, while v� in mDab is connected with the

electroweak standard model symmetry breakdown scale.
Unfortunately, the third scale of energy, �, characteristic
of the mechanism is not a natural outcome of the 331RHN
model. For the smallness of �, we provide, in the next
section, an explanation inspired by the one formulated in
Ref. [6].
In order to see how M� in Eq. (11) can lead to eigenval-

ues at the eV scale it is useful to define the matrices

MD6�3
¼ mD3�3

03�3

 !
; MR6�6

¼ 03�3 MT
3�3

M3�3 �3�3

 !
; (14)

so that we have the following matrix with blocks, where
MR is supposed invertible matrix:

M�9�9
¼ 03�3 MT

D3�6

MD6�3
MR6�6

 !
: (15)

This last matrix can be diagonalized by means of proce-
dures involving block matrices which are presented in
Refs. [10,11]. Following these references, we define a
diagonalizing matrix, W, such that

WTM�W ¼ mlight3�3
03�6

06�3 mheavy6�6

 !
: (16)

In this way, the W matrix has the following form:

W ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FFyp

Þ3�3 F3�6

Fy
6�3 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FyF

p
Þ6�6

0
@

1
A; (17)

where it is understood thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FFy

p
� 1� 1

2
FFy � 1

8
FFyFFy þ . . . : (18)

Under the assumption that F is given as a power series
in M�1

R ,
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F ¼ F1 þ F2 þ . . . ; (19)

Fi � ðM�1
R Þi; (20)

the eigenvalues of MR are supposed to be larger than the
entries ofMD. This is justified by observing that the entries
ofM inMR are of order v�0 . Then, Eqs. (16) and (17) allow

us to determine the blocksmlight andmheavy order by order in

M�1
R . At lowest order,

F 	 F1 ¼ ðMT
DM

�1
R Þ�; mlight 	 �MT

DM
�1
R MD;

mheavy 	 MR: (21)

In general grounds these results are identical to those ob-
tained from the usual seesaw mechanism. What turns it
different is the texture of the matrices MD in Eq. (14) and

M�1
R ¼ �M�1�ðMTÞ�1 M�1

ðMTÞ�1 0

 !
; (22)

which leads to the ISS form for the light Majorana neutrino
mass matrix,

mlight ¼ mT
DM

�1�ðMTÞ�1mD: (23)

The minimal model we are developing here has the peculiar
characteristic that mD is an antisymmetric matrix. As the
three active standard neutrinos masses correspond to the
eigenvalues of Eq. (23), there is a prediction that one of
them is massless.

A departure from a scenario involving just three active
neutrinos, where their mixing is described by an unitary
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, is
observed in neutrinos mixing relying on the ISS. It happens
that the largest energy scale figuring in Eq. (14) isM� v0

�,

supposedly of 1 TeV order. As a consequence description
of oscillation involving three active neutrinos will be
attached with nonunitary effects modulated by the ratio
v2
W=v

02
� . Such effects manifest experimentally through neu-

trino disappearing in discordance from what is expected
when considering unitarity in oscillation phenomena in-
volving the three known neutrinos.

It is worthwhile to review how the nonunitarity aspect is
quantified in the ISS mechanism. For obtaining the com-
plete mass eigenstates the matrix in Eq. (16) has still to be
transformed to a diagonal form by means of

U ¼ U0 0

0 U1

 !
; (24)

whereU0 andU1 are unitary matrices which turnmlight and

mheavy, respectively, diagonal.1 Thus, the matrix which

diagonalizes M� is then

U ¼ WU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FFyp

U0 FU1

FyU0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FyF

p
U1

0
@

1
A: (25)

Let nL be the 9� 1 vector whose components are neutrino
mass eigenstates, where we denote n0

iL, a ¼ 1, 2, 3 being
the three light mass eigenstates and n1

kL, k ¼ 1; . . . ; 6, the
six heavy ones, so that

nL ¼ n0
L

n1
L

 !
¼ Uy �L

sL

 !
; (26)

where

sL ¼ �C
L NC

L

� �
T

is a 6� 1 vector. The flavor eigenstates �aL figuring in
charged current are given by the following superposition:

�aL 	
�
U0 � 1

2
F1F

y
1U0

�
ai
n0
iL þ ðF1U1Þakn1

kL: (27)

The matrix connecting the flavor and light mass eigenstates
is given by

N ¼ ð1� �ÞU0; (28)

where � is defined as � � 1
2F1F

y
1 . N is nonunitary and

replaces the unitary PMNS matrix which parametrizes the
mixing in the typical three neutrino scenario. The PMNS
matrix is to be identified here with U0 in Eq. (24). All the
nonunitarity effects are characterized by � which is
approximately given by

� � 1

2
F1F

y
1 	 1

2
my

DðM�1Þ�ðM�1ÞTmD: (29)

Observation of oscillation phenomena involves charged
currents interactions. Since the three left-handed neutrinos
entering in such interactions are now a superposition of the
nine mass eigenstates, as given by Eq. (27), we have the
following charged current Lagrangian:

LCC¼� gffiffiffi
2

p �laL�
��aLW

�
� þH:c:

	� gffiffiffi
2

p �laL�
�fN ain

0
iLþKakn

1
kLgW�

� þH:c:; (30)

where

K ak ¼ F1 U1

� �
ak:

For the term in Eq. (30) involving the heavy neutrinos n1
kL

there is a suppression coming from elements of

F1 U1

� �
ak

which are expected at least of order v�=v�. It can be

estimated, by taking v� 	 102 GeV and v� 	 103 GeV,

to be of order 10�1. This gives a sizable mixing among left-
handed and right-handed neutrinos which can be probed
through the rare lepton flavor violating processes that we
are going to address in a moment.

1Any negative mass eigenvalue can be turned in a positive one
by defining a diagonal matrix K such that UK leads to a diagonal
form for Eq. (16) with all entries nonnegative, but it can be
omitted without further consequences.
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Returning to mlight, on substituting mD ¼ Gv�,

M ¼ G0v�0 , we obtain

mlight ¼ ðGTðG0TÞ�1�ðG0Þ�1GÞ v
2
�

v2
�0
: (31)

Remember that G is an antisymmetric matrix, implying
that one eigenvalue of the neutrino mass matrix in Eq. (31)
is null. Then, automatically the squared mass difference in
Eq. (1) provides, necessarily, the following neutrino mass
spectrum:

m1 ¼ 0; m2 	 4:8� 10�2 eV;

m3 	 8:7� 10�3 eV:
(32)

In other words, in the framework of the ISS mechanism
developed here, the solar and atmospheric neutrino oscil-
lation experiments provide the absolute mass of the
neutrinos.

In view of this, let us check ifm� in Eq. (31) is capable of
providing the mass spectrum given in Eq. (32) and the
correct mixing matrix. For this we have to diagonalize m�

in Eq. (31). However, notice that it involves many free
parameters in the form of Yukawa couplings, the compo-
nents of G and G0 and, unfortunately, there are no con-
straints over them.

With such a large set of free parameters, there is a great
deal of possible solutions that lead to the correct neutrino
mass spectrum and mixing. However, due to the nonun-
itarity of the mixing matrix N , any set of values for the
entries in G and G0 that do the job must obey the following
constraints [12]:

j�j<
2:0� 10�3 3:5� 10�5 8:0� 10�3

3:5� 10�5 8:0� 10�4 5:1� 10�3

8:0� 10�3 5:1� 10�3 2:7� 10�3

0
BB@

1
CCA: (33)

In what concerns the energy parameters that appear in
m� above, we consider v� ¼ v� ¼ v, thus the constraint

v2
� þ v2

� ¼ ð246 GeVÞ2 imposes v ¼ 174 GeV. The natu-

ral value of v�0 is around TeV, but since we are interested

only in its order of magnitude, we consider exactly 1 TeV.
On the other hand, the usual scale of� is around keV. Here,
we consider � ¼ 0:3I keV where I is the identity matrix.

Regarding the Yukawa couplings entries in G and G0,
notice that G is antisymmetric matrix. Thus, it has only
three independent free parameters. In view of this we
cannot make the common assumption of considering M
as being diagonal and having a degenerate mass matrix
once we are at risk of having less free parameters than
necessary to give the correct pattern of neutrino masses and
mixing. Thus, the simplest scenario here is one whereM is
diagonal but nondegenerate. But even in this case it is not
possible to uniquely fix the parameters inG andG0. In what
follows we present a particular solution of the diagonaliza-
tion of the mass matrix m� above which involves the
following set of values for G and G0 entries:

G ¼
0 0:02 0:012

�0:02 0:0 0:01

�0:012 �0:01 0:0

0
BB@

1
CCA;

G0 ¼
0:32 0:0 0:0

0:0 0:8 0:0

0:0 0:0 0:9

0
BB@

1
CCA:

(34)

With these G, G0 and the values for the VEVs v, v�0 and�

presented above, the diagonalization of the mass matrix
mlight in Eq. (31) furnishes the desired eigenvalues in

Eq. (32) and, in addition, yields a standard PMNS mixing
matrix given by

UPMNS¼
0:802987 0:583404 0:121869

�0:485344 0:521409 0:701836

0:34591 �0:622714 0:701836

0
BB@

1
CCA: (35)

This UPMNS implies in the following mixing angles
�12 ¼ 36
, �23 ¼ 45
 and �13 ¼ 7
.
This set of values for the entries in G and G0 yields

j�j¼
1:4�10�5 �5:0�10�10 4:7�10�6

�5:0�10�10 3:6�10�5 3:9�10�5

4:7�10�6 3:8�10�5 4:2�10�5

0
BB@

1
CCA; (36)

which respect the bounds in Eq. (33).
Let us see the prediction for the six right-handed neu-

trinos masses that such a set of values for the parameters in
G and G0 can provide. On diagonalizing mheavy ¼ MR in

Eq. (14), we obtain two eigenvalues around 900 GeV,
another two around 800 GeV, and two more around
320 GeV. With these masses such heavy neutrinos may
be probed in the LHC through the process pp !
l�l�l��ð ��Þ [13] or in future neutrino experiments through
rare lepton decays like � ! e�.
We focus now on the rare lepton flavor violation (LFV)

process � ! e�. Such a process is allowed by the second
coupling in Eq. (30). The branching ratio for the process
mediated by these six heavy neutrinos is given by [14]

BRð� ! e�Þ

	 	3
Wsin

2ð�WÞm5
�

256
2m4
W��

�
��������
X6
1¼1

K	iK�iI

	m2
Ni

m2
W


��������
2

; (37)

where

IðxÞ ¼ � 2x3 þ 5x2 � x

4ð1� xÞ3 � 3x3 lnx

2ð1� xÞ4 : (38)

In the above branching ratio 	W ¼ g2

4
 with g being the

weak coupling, �W is the electroweak mixing angle, m�

is the muon mass, mW is the W� mass, and �� is the

muon total decay width. The present values of these pa-
rameters are found in Ref. [15]. In order to obtain K,
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we get F1 from Eq. (21) and diagonalizeMR in Eq. (14) to
obtain U1.

Considering all this, we obtain the approximate value for
BRð� ! e�Þ,

BR ð� ! e�Þ 	 3� 10�14: (39)

The current upper bound on this branching ratio is
BRð� ! e�Þ< 4:9� 10�11 [15]. Our result for this
branching ratio respects the upper bound and, interestingly,
falls inside the sensitivity of future neutrino experiments
[9], which will be able to probe a branching ratio up to
10�18, representing an additional test of our proposal.

POSSIBLE REALIZATION OFA SMALL �

In this section we develop a dynamical explanation to
the smallness of the parameter �. Basically, we adapt the
mechanism developed in Ref. [6] to our context.

We first remark that the 331RHN model with only an
additional discrete symmetry does not work in the appro-
priate way as to furnish the correct entries in the mass
matrix Eq. (3). In view of this we thought of a minimal
modification of this model and added a scalar singlet
�� ð1; 0Þ to its scalar content in Eq. (6). In order to avoid
unpleasant terms in the Lagrangian of the model, we can
then impose a Z3 symmetry with only the following fields
transforming nontrivially according to the following
assignment:

NaR! e2i
=3NaR; La ¼ e4i
=3La; �! e2i
=3�;

�! e2i
=3�; �¼ e4i
=3�: (40)

This discrete symmetry has a twofold importance. It re-
stricts the Yukawa interaction terms leading, after sponta-
neous symmetry breaking, to mass terms needed for
producing the texture like that in Eq. (3). Also, the Z3

symmetry plays a role in the scalar potential allowing
terms, like the trilinear one, which guarantees a safe spec-
trum of scalar fields (meaning, no extremely light scalar).

The Yukawa Lagrangian of interest to the implementa-
tion of the ISS mechanism involving scalars and leptons,
invariant by Z3, is composed by the following sum of
terms:

LY ¼ gab�ijkðLaiÞcLbj�k þ g0ab �La�NbR

þ 
ab

2
�0 �Nc

aLNbR þ H:c:
(41)

Let us assume the following shift on the neutral scalars:

�0; �0; �0; �0; �0

! 1ffiffiffi
2

p ðv�;�0;�;�0;� þ R�;�0;�;�0;� þ iI�;�0;�;�0;�Þ: (42)

With these VEVs the Yukawa terms in Eq. (41) provide the
neutrino mass terms in Eq. (9) with � being recognized as

� ¼ 
v�ffiffi
2

p . In this case a small � requires a small v�. In

order to achieve this we evoke a kind of type II seesaw
mechanism [3] over v�, built from the scalar potential that
obeys the extra Z3 symmetry,

V ¼ ð�2
1 þ 
1j�j2Þj�j2 þ ð�2

2 þ 
2j�j2Þj�j2 þ ð�2
3

þ 
3j�j2Þj�j2 þ ð�2
4 þ 
4j�j2Þj�j2 þ 
5j�j2j�j2

þ 
6j�j2j�j2 þ 
7j�j2j�j2 þ 
8j�y�j2 þ 
9j�y�j2
þ 
10j�y�j2 þ ð
11j�j2 þ 
12j�j2 þ 
13j�j2Þj�j2

þ
	
f1ffiffiffi
2

p �ijk�i�j�k þ f2ffiffiffi
2

p �y��þ f3ffiffiffi
2

p �3 þ H:c:



:

(43)

The existence of a minimum of the potential in Eq. (43)
requires its first derivatives, with respect to the neutral
scalar fields developing VEVs, to vanish, which leads to
a set of five constraint equations. However, for our pro-
posal here the only constraint equation that matters is the
one related to the neutral scalar field �0,

v�½2�2
�þ2
4v

2
�þ
11ðv2

�þv2
�0 Þ

þ
12v
2
�þ
13v

2
�0 þ3f3v��þf2v�v�0 ¼0: (44)

The traditional assumption here is that the scalar �0 is
very heavy belonging to a GUT scale [3]. In this case on
assuming that �� is the dominant energy parameter in the
constraint equation above, we obtain

v� 	 f2v�0v�0

�2
�

: (45)

As f2 is related to a term that explicitly violates the lepton
number, it is also usual to assume that it belongs to the
GUT scale too. Assuming that the GUT scale is� we must
have � ¼ �� ¼ f2. In this case, we obtain

v� 	 v�0v�0

�
: (46)

There is an upper bound over v�0 < 40 GeV derived

in Ref. [16]. On assuming reasonable values for the
VEVs of the model, v�0 ¼ 10 GeV, v�0 ¼ 103 GeV and

� ¼ 1010–11 GeV, we obtain v� 	 0:1–1 KeV, which
implies � around KeV.

IV. CONCLUSIONS

The appealing point behind the ISS mechanism is the
fact that it is a phenomenological seesaw mechanism
whose signatures are right-handed neutrinos at the TeV
scale which may be probed at LHC and in future neutrino
experiments through the rare LFV process.
Although the ISS mechanism is a phenomenologically

feasible seesaw mechanism, it lacks a natural underlying
framework, namely one that accommodates right-handed
neutrinos at the TeV scale. In this work we implemented
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the ISS mechanism in the 331RHN.2 We showed that the
model possesses the appropriate neutrino content and the
energy scales as required by the mechanism. We also pro-
vided a concrete example which recovered the neutrino
physics involved in oscillation neutrino experiments, and
evaluated the rare LFV decay � ! e� whose prediction is
around BRð� ! e�Þ 	 3� 10�14. Such a robust value for
this branching ratio may be probed in future neutrino experi-
ments and represents a further means of testing our proposal.
Finally, we developed a scheme where the model can be

suitably modified to provide a natural explanation of the
smallness of the characteristic ISS parameter� (keV scale).
In view of all these results, it seems that the 3331RHN

model is an interesting framework for realizing the ISS
mechanism.
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