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We study the Higgs boson mass spectrum of a classical scale invariant realization of the two

Higgs doublet model (SI-2HDM). The classical scale symmetry of the theory is explicitly broken by

quantum loop effects due to gauge interactions, Higgs self-couplings and top quark Yukawa couplings.

We determine the allowed parameter space compatible with perturbative unitarity and electroweak

precision data. Taking into account the LEP and the recent LHC exclusion limits on a standard-

model-like Higgs boson HSM, we obtain rather strict constraints on the mass spectrum of the heavy

Higgs sector of the SI-2HDM. In particular, if MHSM 125 GeV, the SI-2HDM strongly favors

scenarios in which at least one of the nonstandard neutral Higgs bosons has a mass close to

400 GeV and is generically degenerate with the charged Higgs boson, whilst the third neutral Higgs

scalar is lighter than 500 GeV.
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I. INTRODUCTION

Classical scale symmetries provide a minimal and
calculable approach to potentially solving the infamous
gauge hierarchy problem. In the standard model
(SM), the absence of the mass parameter m2 from the
Higgs potential renders the classical action of the theory
scale invariant (SI). However, as originally discussed by
Coleman and Weinberg [1] and later by Gildener and
Weinberg [2], quantum loops generate logarithmic terms
which anomalously break the scale invariance of the the-
ory, giving rise to electroweak symmetry breaking. Given
the LEP2 mass limit on the SM Higgs boson MHSM

>

114:4 GeV [3] and the experimental value of the top quark
massmt � 173 GeV, a perturbative SI version of the SM is
not both theoretically and phenomenologically viable. In
particular, the large top quark Yukawa coupling gives rise
to an effective potential which is no longer bounded from
below, at least at the perturbative level. This difficulty may
be circumvented, if additional massive bosonic fields such
as real and complex singlet scalars are present in SI
extensions of the SM [4–10].

In this paper we study a minimal scale invariant two
Higgs doublet model (SI-2HDM) extension of the SM. To
naturally avoid flavor-changing neutral currents (FCNCs),
we assume that the SI-2HDM potential is invariant under a
Z2 discrete symmetry [11], under which the two Higgs
doublets�1;2 transform as�1ð2Þ ! þð�Þ�1ð2Þ. At the tree
level, the spontaneous breaking of the classical scale sym-
metry due to the presence of a nonvanishing flat direction
in the Higgs potential gives rise to a massless CP-even
pseudo-Goldstone boson h. We calculate the radiative

corrections to the CP-even Higgs boson mass matrix that
result from quantum loops of W� and Z bosons, Higgs
self-interactions and top quark Yukawa couplings. To
determine the allowed parameter space of the SI-2HDM,
we consider the theoretical constraints of convexity and
perturbative unitarity, as well as phenomenological con-
straints from electroweak precision data and direct Higgs
boson searches.
Taking all the aforementioned constraints into account,

the allowed range of masses for the charged Higgs bosons
H� and the CP-odd scalar A gets significantly restricted.
We find that for a 125-GeV SM-like Higgs boson H1, at
least two Higgs states, charged (H�) or neutral (H2, A), are
generically degenerate and have masses close to 400 GeV,
whereas the third Higgs state has to be lighter than
500 GeV. In particular, there are three favorable scenarios
with the above characteristics. In the first scenario, the
CP-even Higgs boson H2 and the CP-odd scalar A are
almost degenerate with MH2

�MA � 400 GeV, and the

charged Higgs boson H� weighs between 295 GeV and
420 GeV, after taking into account the b ! s� constraint.
The second favorable scenario contains a CP-odd state A
lighter than 100 GeV, and the Higgs states H� and H2

have approximately equal massesMH� �MH2
� 400 GeV.

Finally, there is a third possibility, where the heavier
CP-even Higgs boson H2 can be lighter than 180 GeV,
while the charged Higgs bosons H� and the CP-odd
scalar A are restricted to be almost degenerate, with
MH� �MA � 400 GeV.
The layout of the paper is as follows. After this brief

introduction, in Sec. II we discuss in detail the Higgs sector
of the SI-2HDM. Specifically, we first determine the flat
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directions of the tree-level SI-2HDM potential and its
scalar mass spectrum. We then calculate the one-loop
effective potential of the SI-2HDM and evaluate the radi-
atively corrected masses of the CP-even Higgs bosons and
their mixing. At the end of this section, we discuss the
importance of the choice of the renormalization group
(RG) scale in our analysis. In Sec. III we impose the
theoretical constraint of perturbative unitarity and require
compatibility of the theory against electroweak precision
data and direct Higgs boson searches. In the light of these
restrictions, we determine the allowed parameter space for
the heavy Higgs sector of the SI-2HDM. Finally, Sec. IV
summarizes our conclusions and discusses possible future
directions.

II. SCALE INVARIANT TWO HIGGS
DOUBLET MODEL

The 2HDM exhibits an exact classical scaling
symmetry, if there are no explicit mass parameters in the
scalar potential. To be specific, under global scale
transformations

’ðxÞ ! ’0ðx0Þ ¼ ed’�’ðe�xÞ; (1)

where � is a constant, the action of the 2HDM
Lagrangian S½’ðxÞ� remains invariant; i.e., S½’ðxÞ� ¼
S½’0ðx0Þ�, where ’ represents a generic bosonic (fermi-
onic) field of the 2HDM, and d’ ¼ 1 (3=2) is its classical

scaling dimension. Beyond the tree level, the classical
scale invariance of the theory is broken by scalar opera-
tors of dimension n > 4, e.g. ’4 lnð’2=h’i2Þ with d’ ¼ 1,

in a SI (or no-scale) regularization scheme, such as the
scheme of dimensional regularization (see also [9], and
references therein). This is the scheme that we consider
here for performing our quantum loop calculations.
Nevertheless, had we chosen a scheme with explicit UV
cutoff dependence, we would have obtained the same
results by demanding that the renormalized Coleman-
Weinberg effective potential Veff satisfy the conditions
dnVeffð’Þ=d’n ¼ 0 at ’ ¼ 0, for n ¼ 0, 1, 2, 3.

We note that our approach to formulating a classical SI
theory differs from the one studied in [12,13], where the
scale symmetry is imposed at the quantum level. As argued
in [14], however, quantum SI theories face difficulties with
renormalizability at high orders, and they can therefore be
regarded only as effective field theories.

In this Section, after introducing the tree-level SI-2HDM
potential, we determine its flat directions and the resulting
scalar mass spectrum. Then, we calculate the one-loop
effective potential, from which we derive the radiatively
corrected Higgs boson masses. Finally, we comment on the
choice of the RG scale.

A. Flat directions of the tree-level potential

At the tree level, the most general SI-2HDM potential
reads

V0 ¼ �1ð�y
1�1Þ2 þ �2ð�y

2�2Þ2 þ �3ð�y
1�1Þð�y

2�2Þ

þ �4ð�y
1�2Þð�y

2�1Þ þ �5

2
ð�y

1�2Þ2 þ ��
5

2
ð�y

2�1Þ2

þ �6ð�y
1�1Þð�y

1�2Þ þ ��
6ð�y

1�1Þð�y
2�1Þ

þ �7ð�y
2�2Þð�y

1�2Þ þ ��
7ð�y

2�2Þð�y
2�1Þ: (2)

In order to naturally avoid too-large FCNC interactions of
the Higgs bosons to quarks, we impose the Z2 discrete
symmetry [11]:�1ð2Þ ! þð�Þ�1ð2Þ (for a recent review see

[15]). In such a minimal scenario, the quartic couplings �6

and �7 vanish, and the CP-odd phase of �5 can be rotated
away; i.e., there is no explicit CP violation at the tree level.
Assuming that only the neutral components of the two

Higgs doublets �1;2 develop nonvanishing vacuum expecta-

tion values (VEVs), we may parameterize�1;2 as follows:

�1 ¼
�þ

1

1ffiffi
2

p ðv1 þ�1 þ ia1Þ

0
@

1
A;

�2 ¼
�þ

2

1ffiffi
2

p ðv2 þ�2 þ ia2Þ

0
@

1
A:

(3)

We denote v1 � v cos� ¼ vc� and v2 � v sin� ¼ vs�,

where v ’ 246 GeV is the VEV of the SM Higgs doublet.
Extremizing the tree-level scalar potential V0 leads to the
following tadpole conditions:

T�1
�
�
@V0

@�1

�
¼ v1

�
�1v

2
1 þ

1

2
�345v

2
2

�
¼ 0;

T�2
�
�
@V0

@�2

�
¼ v2

�
�2v

2
2 þ

1

2
�345v

2
1

�
¼ 0;

(4)

with �345 � �3 þ �4 þ �5. The vanishing of the tadpole
parameters T�1;2

is ensured, provided

�1

�2

¼ tan4�; 2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p ¼ ��345: (5)

As we will see below, requiring a convex, bounded-
from-below potential and a non-negative scalar mass
spectrum fixes the � sign in front of �345, which turns out
to be minus.
In detail, the tree-level mass spectrum of the charged

and neutral Higgs bosons may be calculated as

V0
mass ¼ ðGþ; HþÞ 0 0

0 M2
H�

 !
G�

H�

 !

þ 1

2
ðG0; AÞ 0 0

0 M2
A

 !
G0

A

 !

þ v2

2
ð�1; �2Þ

2�1c
2
� �345c�s�

�345c�s� 2�2s
2
�

0
@

1
A �1

�2

 !
;

(6)
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where

��
1

��
2

 !
¼ c� �s�

s� c�

 !
G�

H�

 !
;

a1

a2

 !
¼ c� �s�

s� c�

 !
G0

A

 ! (7)

and

M2
H� ¼ � 1

2
ð�4 þ �5Þv2; M2

A ¼ ��5v
2 (8)

are the squared masses of the charged and CP-odd Higgs
bosons, H� and A, respectively. In addition, we observe
that the determinant of the 2� 2 CP-even Higgs boson
mass matrix vanishes identically, as a consequence of the
second tadpole condition in Eq. (5).

The vanishing of the determinant of the CP-even Higgs
boson mass matrix signifies the existence of a massless
pseudo-Goldstone boson h, arising from the spontaneous
breaking of the scaling symmetry along a minimal flat
direction of the SI-2HDM potential. In order to determine
the flat direction, we perform an orthogonal transformation
on the CP-even scalar fields:

�1

�2

 !
¼ c� �s�

s� c�

 !
H

h

 !
; (9)

so as to render theCP-even scalarmassmatrix diagonal, i.e.

c� s�

�s� c�

 !
2�1c

2
� �345c�s�

�345c�s� 2�2s
2
�

0
@

1
A c� �s�

s� c�

 !

¼ M2
H=v

2 0

0 0

 !
: (10)

In this way, we obtain

M2
H¼��345v

2¼2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
v2; sin2ð���Þ¼1: (11)

Observe that positivity of M2
H requires that �345 < 0.

Moreover, the coupling of the massive state (H) to the
two vector bosons vanishes, while the coupling of the
massless state h is the same as the SM one HSM:

g2HWW

g2HSMWW

¼ cos2ð�� �Þ ¼ 0;

g2hWW

g2HSMWW

¼ sin2ð�� �Þ ¼ 1:

(12)

The flat direction �Flat associated with the massless
CP-even scalar h may be expressed in different equivalent
forms as follows:

�Flat ¼ vþ h ¼ v� s��1 þ c��2

¼ c�ðv1 þ�1Þ þ s�ðv2 þ�2Þ;
(13)

where we take h�Flati ¼ v and s� ¼ �c� and c� ¼ s�.

In summary, gathering the results derived above in
Eqs. (5), (8), and (11), we have the following constraining
set of input parameters:

t2�¼
ffiffiffiffiffiffi
�1

�2

s
; M2

H¼�ð�3þ�4þ�5Þv2¼2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
v2;

M2
H� ¼�1

2
ð�4þ�5Þv2; M2

A¼��5v
2:

(14)

Note that all three tree-level Higgs masses can be deter-
mined entirely by the three couplings �3, �4, and �5 and
the SM VEV v, independently of t�. We may also invert

the relations given in Eq. (14) and determine the five
quartic couplings �1;2;3;4;5, in terms of v, t�, and the three

Higgs masses:

�1¼M2
H

2v2
t2�; �2¼ M2

H

2v2t2�
; �3¼

2M2
H� �M2

H

v2
;

�4¼
M2

A�2M2
H�

v2
; �5¼�M2

A

v2
:

(15)

Finally, it is interesting to comment on the convexity
conditions of the Z2-invariant 2HDM potential [16,17].
These are given by

�1 > 0; �2 > 0;

2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p þ �3 þmin½0; �4 þ �5; �4 � �5�> 0: (16)

While the first two conditions are easily satisfied, we
observe that the third expression of the couplings vanishes
identically, sincemin½0; �4 þ �5; �4 � �5� ¼ �4 þ �5, and
�3 þ �4 þ �5 ¼ �2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
[cf. Eq. (5)]. The vanishing

of the third expression signals the existence of a flat direction
in the SI-2HDM potential, which gets lifted by radiative
corrections as we discuss below.

B. One-loop effective potential

As mentioned above, it is important to consider the
quantum effects on the tree-level potential. More explicitly,
the one-loop effective potential [1] may be calculated as

V
1-loop
eff ¼ 1

64�2

�
M4

H

�
� 3

2
þ ln

M2
H

Q2

�
þM4

A

�
� 3

2
þ ln

M2
A

Q2

�

þ 2M4
H�

�
� 3

2
þ ln

M2
H�

Q2

�
þ 6M4

W

�
� 5

6
þ ln

M2
W

Q2

�

þ 3M4
Z

�
� 5

6
þ ln

M2
Z

Q2

�
� 12m4

t

�
�1þ ln

m2
t

Q2

��
;

(17)

where Q is the RG scale and the background field-
dependent masses are given by
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M2
H ¼ �2�345ð�y

1�1 þ�y
2�2Þ;

M2
A ¼ �2�5ð�y

1�1 þ�y
2�2Þ;

M2
H� ¼ ��45ð�y

1�1 þ�y
2�2Þ;

M2
W ¼ g2

2
ð�y

1�1 þ�y
2�2Þ;

M2
Z ¼ g2

2c2w
ð�y

1�1 þ�y
2�2Þ;

m2
t ¼ jhIj2�y

I �I:

(18)

In the above, we have used the shorthand notation �ijðkÞ ¼
�i þ �jðþ�kÞ, with i, j, k ¼ 3, 4, 5, and labeled with I ¼ 1

or I ¼ 2, according to the Z2 symmetry.
Adding the one-loop effective potential to the tree-level

one, i.e. V ¼ V0 þ V
1-loop
eff , the tadpole conditions now read�

@V

@�1

�
¼ T�1

þ
�
@V

1-loop
eff

@�1

�
¼ 0;

�
@V

@�2

�
¼ T�2

þ
�
@V

1-loop
eff

@�2

�
¼ 0:

(19)

More explicitly, we obtain�
@V

1-loop
eff

@�i

�
¼ viv

2

64�2
�t̂i; (20)

where �t̂1;2 are found to be

�t̂i¼ 1

v2

�
4�345M

2
H

�
1� ln

M2
H

Q2

�
þ4�5M

2
A

�
1� ln

M2
A

Q2

�

þ4�45M
2
H�

�
1� ln

M2
H�

Q2

�
�6g2M2

W

�
1

3
� ln

M2
W

Q2

�

�3
g2

c2W
M2

Z

�
1

3
� ln

M2
Z

Q2

�
þ12jhIj2m2

t

�
1�2ln

m2
t

Q2

�
�Ii

�
:

(21)

Thus, the one-loop improved tadpole conditions are
given by

T�1

vc�
þ v2�t̂1

64�2
¼ 0;

T�2

vs�
þ v2�t̂2

64�2
¼ 0: (22)

These conditions can easily be solved for the quartic cou-
plings�1 and�2, in terms of the other three couplings�3;4;5.

1. Masses of the CP-odd neutral and charged
Higgs bosons

The one-loop corrected potential term for the CP-odd
scalar mass matrix reads

VCP�odd
mass ¼ 1

2
ða1; a2ÞM2

P

a1

a2

 !
; (23)

where

M2
P ¼

��5v
2s2� þ T�1

vc�
þ
�
@2V

1-loop
eff

@a2
1

�
�5v

2c�s� þ
�
@2V

1-loop
eff

@a1@a2

�

�5v
2c�s� þ

�
@2V1-loop

eff

@a1@a2

�
��5v

2c2� þ T�2

vs�
þ
�
@2V1-loop

eff

@a2
2

�
0
BBB@

1
CCCA: (24)

The VEVs of the double derivatives are found to be

�
@2V

1-loop
eff

@ai@aj

�
¼ v2

64�2
�t̂i�ij: (25)

Employing the one-loop tadpole conditions [Eq. (22)]
along with Eq. (25), we find that the CP-odd mass matrix
retains its tree-level form, i.e.

M2
P ¼ M2

A

s2� �c�s�

�c�s� c2�

0
@

1
A (26)

with MA ¼ ��5v
2. In similar fashion, we find that radia-

tive effects do not modify the tree-level structure of the
charged Higgs boson mass matrix:

VH�
mass ¼ M2

H�ð��
1 ; �

�
2 Þ

s2� �c�s�

�c�s� c2�

0
@

1
A �þ

1

�þ
2

 !
; (27)

with M2
H� ¼ ��45v

2=2.

2. Masses and mixing of the CP-even neutral
Higgs bosons

One-loop quantum effects give rise to nontrivial contri-
butions to the masses of the CP-even neutral Higgs bosons
and their mixing. The one-loop corrected potential term
describing these quantum effects is given by

VCP-even
mass ¼ 1

2
ð�1; �2ÞM2

S

�1

�2

 !
; (28)

where M2
S is the 2� 2 one-loop improved CP-even mass

matrix

M2
S ¼

2�1v
2c2� þ T�1

vc�
þ
�
@2V

1-loop
eff

@�2
1

�
�345v

2c�s� þ
�
@2V

1-loop
eff

@�1@�2

�

�345v
2c�s� þ

�
@2V

1-loop
eff

@�1@�2

�
2�2v

2s2� þ T�2

vs�
þ
�
@2V

1-loop
eff

@�2
2

�
0
BBB@

1
CCCA: (29)
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Here, the VEVs of the double derivatives of the effective
potential with respect to the CP-even scalar fields �1;2 are
calculated to be�

@2V
1-loop
eff

@�i@�j

�
¼ 1

64�2
ðvivj�m̂

2
ij þ v2�t̂i�ijÞ; (30)

with

�m̂2
ij � 8�2

345 ln
jMHj2
Q2

þ 8�2
5 ln

M2
A

Q2
þ 4�2

45 ln
M2

H�

2

þ g4
�
2þ 3 ln

M2
W

Q2

�
þ g4

2c4W

�
2þ 3 ln

M2
Z

Q2

�

� 12jhIj4
�
1þ 2 ln

m2
t

Q2

�
�ij�Ii: (31)

After implementing the one-loop tadpole conditions
[Eq. (22)], the CP-even scalar mass matrix M2

S sim-
plifies to

M2
S¼v2

�
2�1þ�m̂2

11

64�2

	
c2�

�
�345þ�m̂2

12

64�2

	
c�s��

�345þ�m̂2
12

64�2

	
c�s�

�
2�2þ�m̂2

22

64�2

	
s2�

0
B@

1
CA: (32)

Notice that the top quark contribution in Eq. (31)
breaks the universality of �m̂2

ij.
In contrast to what happens at the tree level, the diago-

nalization of the one-loop effective mass matrixM2
S yields

two nonvanishing mass eigenvalues. As a consequence of
the breaking of the scaling symmetry at the quantum level,
the pseudo-Goldstone boson h receives a radiative mass,
which could be even larger than the nonzero tree-level
mass MH, for specific choices of parameters. To appropri-
ately describe the radiatively corrected masses and mixing
of the CP-even Higgs bosons, we introduce a 2� 2 or-
thogonal matrix O, through

ð�1; �2ÞT� ¼ O�iðH1; H2ÞTi ; (33)

which diagonalizes theCP-even mass matrix asOTM2
SO¼

diagðM2
H1
;M2

H2
Þ, with the convention MH1

	MH2
.

In terms of the mixing matrix O, the couplings of the
Higgs bosons to the vector bosons are given by

L HVV ¼ gMW

X
i

gHiVV

�
HiW

þ
	W

�	 þ 1

2c2W
HiZ	Z

	

�
;

(34)

L HAZ ¼ g

2cW

X
i

gHiAZZ
	ðA@$	HiÞ; (35)

L HH�W
 ¼ g

2

�X
i

gHiH
�WþWþ	ðHii@

$
	H

�Þ

þWþ	ðAi@$	H
�Þ þ H:c:

�
; (36)

where the action of @
$
	 on two arbitrary functions fðxÞ

and gðxÞ is defined such that fðxÞ@$	gðxÞ � fðxÞ�

ð@	gðxÞÞ � ð@	fðxÞÞgðxÞ. In addition, the reduced cou-

plings that occur in Eqs. (34)–(36) are given by

gHiVV ¼ c�O1i þ s�O2i;

gHiAZ ¼ gHiH
�Wþ ¼ c�O2i � s�O1i;

(37)

which satisfy the identity

g2HiAZ
þ g2HiVV

¼ 1; (38)

for each i ¼ 1, 2. The latter implies that g2H1AZ
¼ g2H2VV

and g2H2AZ
¼ g2H1VV

.

For illustration, we show in Fig. 1 numerical estimates of
the CP-even Higgs boson masses MH1;H2

(left panel) and

their couplings g2HiVV
(right panel), as functions of �3. We

have taken tan� ¼ 1 and fixed the CP-odd and charged
Higgs boson masses to be MA ¼ MH� ¼ 400 GeV. The
dependence of the tree-level CP-even Higgs mass
MH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi��345

p
v on �3 is also displayed with a dashed

line. We observe that there is a level-crossing phenomenon
taking place at the critical value �3 ¼ �c

3 ’ 5:06, at which
g2H1VV

¼ g2H2VV
. For quartic couplings �3 smaller than �c

3,

the lighter state H1 is mainly SM-like and has the larger
coupling to the Z boson, i.e. g2H1VV

> g2H2VV
, whereas the

heavier boson H2 has a smaller coupling to Z, and its mass
is close to the tree-level value, i.e. MH2

�MH. If �3 > �c
3,

the roles of theH1 andH2 bosons are exchanged, where the
heavier state H2 becomes the SM-like Higgs boson, with
g2H2VV

> g2H1VV
, and MH1

�MH.

Before closing this section, we comment on our choice
of the RG scale:

Q ¼ �GW; (39)

where �GW is the so-called Gildener-Weinberg scale [2]
which may be determined from the expression

ln
�GW

v
¼ A

2B
þ 1

4
: (40)

Here, the parameters A and B are given by

A¼ 1

64�2v4

�
M4

H

�
�3

2
þ ln

M2
H

v2

�
þM4

A

�
�3

2
þ ln

M2
A

v2

�

þ2M4
H�

�
�3

2
þ ln

M2
H�

v2

�
þ6M4

W

�
�5

6
þ ln

M2
W

v2

�

þ3M4
Z

�
�5

6
þ ln

M2
Z

v2

�
�12m4

t

�
�1þ ln

m2
t

v2

��
;

B¼ 1

64�2v4
ðM4

HþM4
Aþ2M4

H� þ6M4
W þ3M4

Z�12m4
t Þ:

(41)

With the choice for the RG scale Q given in Eq. (39), we
have checked that the radiative corrections are minimized
and the predictions for the masses of the CP-even Higgs
bosons exhibit the least sensitivity under small variations of
Q around �GW. We note that in kinematic regions far from
the critical level-crossing point; e.g., for �3 � �c

3, the tree-

level relationsMH2
’ MH, g

2
H2VV

’ 0, and g2H1VV
’ 1 prove
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to be an excellent approximation. Moreover, the radiative
mass MH1

of the pseudo-Goldstone boson H1 may well be

approximated by the Gildener-Weinberg mass MGW:

M2
H1

’ M2
GW � 8Bv2; (42)

where the parameter B is given by Eq. (41).

III. NUMERICAL ANALYSIS

The SI-2HDM may be parameterized in terms of five
independent kinematic parameters. These parameters could
be either the five quartic couplings ð�1; �2; �3; �4; �5Þ, or
the set ðv; t�;MH;MH� ;MAÞ. At the tree level, the two sets
are simply related, by means of Eqs. (14) and (15). For our
numerical analysis, we choose to vary the four parameters

t�; MH� ; MA; Meff
H ; (43)

with v ’ 246 GeV and

Meff
H � MH2

g2H1VV
þMH1

g2H2VV
: (44)

The latter mass parameter was introduced since its value
stays close to that of the tree-levelH-boson massMH after
radiative corrections are included. As discussed in the pre-
vious section, the masses of the charged andCP-odd Higgs
bosons are not affected by quantum effects, so the couplings
�4 and�5 are determined by the tree-level relations given in
Eq. (15). Instead, the couplings �1;2;3 receive significant

quantum corrections beyond the Born approximation.
Explicitly, for given input values of Meff

H and t�, the cou-

plings �1;2;3 can be determined iteratively, after taking into

consideration the one-loop tadpole conditions in Eq. (22).
For definiteness, we have assumed the type II Yukawa sector
for the top quarkmassmt, corresponding to I ¼ 2 inEq. (18).
However, our results do not depend on this choice.

A. Theoretical and phenomenological constraints

We now consider several theoretical and phenomeno-
logical constraints on the SI-2HDM. These include (i) the

perturbative unitarity bounds [18,19], (ii) the indirect con-
straints from the electroweak precision data [20], and
(iii) the direct constraints from the LEP collider [21] and
the LHC [22].
We first consider the constraints obtained by requiring

validity of perturbative unitarity [18,19]. For the tree-level
unitarity conditions, we closely follow [23]. We observe
that the perturbative unitarity constraint is weakest when
tan� ¼ 1 and becomes stronger as tan� deviates from this
value. The reason is that the couplings �1 / t2� and �2 /
1=t2� for the present Z2-invariant SI-2HDM. Furthermore,

at the tree level, the perturbative unitarity bounds are sym-
metric under the exchange c� $ s�, since the eigenvalues

of the scattering matrices depend on the combinations of
�1 þ �2 and ð�1 � �2Þ2, while the other couplings �3;4;5 are

independent of tan�. Specifically, one of the most stringent
conditions may come from requiring that the eigenvalue aþ
of the scattering matrices [23] obey the bound

aþ � 1

16�

�
3ð�1 þ �2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð�1 � �2Þ2 þ ð2�3 þ �4Þ2

q �
	 1

2
: (45)

In view of the above discussion, we only consider regions of
parameter space, for which tan� � 1.
The electroweak oblique corrections to the so-called S,

T and U parameters [24,25] provide significant constraints
on the quartic couplings of the SI-2HDM. For a vanishing
U parameter (U ¼ 0), the electroweak oblique parameters
are constrained by the following inequality:

ðS� Ŝ0Þ2
�2

S

þ ðT � T̂0Þ2
�2

T

� 2
ST

ðS� Ŝ0ÞðT � T̂0Þ
�S�T

	 R2ð1� 
2
STÞ; (46)

with R2 ¼ 2:30, 4,61, 5.99 and 9.21, for electroweak pre-
cision limits at 68%, 90%, 95% and 99% confidence levels
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FIG. 1 (color online). The CP-even Higgs masses (left panel) and their couplings g2HiVV
(right panel) as functions of �3. We have set

tan� ¼ 1 andMA ¼ MH� ¼ 400 GeV, corresponding to �4 ¼ �5 ’ �2:64. The parameterMH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi��345

p
v is the tree-level CP-even

Higgs boson mass. The RG scale Q ¼ �GW is chosen; see the text for more details.
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(C.L.s), respectively. The central values and their standard
deviations are given by [20]

ðŜ0;�SÞ¼ ð0:03;0:09Þ; ðT̂0;�TÞ¼ ð0:07;0:08Þ; (47)

for the value 
ST ¼ 0:82 of the correlation parameter. In
our numerical analysis, we apply the 90% C.L. limits.

The SI-2HDM contributions [26] to the S and T parame-
ters may conveniently be expressed as follows:

S� ¼ � 1

4�

�
ð1þ �H�

�Z Þ2F0
�ðMH� ;MH�Þ

� X
i¼1;2

ðgHiAZ þ �Hi

Z Þ2F0
�ðMHi

;MAÞ
�
;

T� ¼ �
ffiffiffi
2

p
GF

16�2�EM



�ð1þ �A

WÞ2F�ðMA;MH�Þ

þ X
i¼1;2

�
ðgHiAZ þ �Hi

Z Þ2F�ðMHi
;MAÞ

� ðgHiH
�Wþ þ �Hi

W Þ2F�ðMHi
;MH�Þ

��
: (48)

In the evaluation of the new-physics parameters S� and T�

in Eq. (48), we have dressed the vertex couplings with
the dominant one-loop corrections Oð�2=16�2Þ, where �
symbolizes a generic quartic coupling �1;2;3;4;5. These

additional �2-dependent contributions are denoted as

�H�
�Z , �

H1;H2
Z and �A;H1;H2

W , and become rather significant

for quartic couplings j�j> 1. Their explicit analytic forms
are presented in the Appendix A.
On the other hand, the analytic form of the one-loop

functions F�ðm1; m2Þ and F0
�ðm1; m2Þ may be found in

[27]. Here we simply quote some of their key properties:
F�ðm1; m2Þ ¼ F�ðm2; m1Þ, F0

�ðm1; m2Þ ¼ F0
�ðm2; m1Þ and

F�ðm;mÞ ¼ 0. If the �2-dependent vertex corrections are
ignored, then S� and T� become independent of tan� and
symmetric under the exchange MA $ MH2

, since g2H2AZ
¼

g2
H2H

�Wþ ¼ g2H1VV
¼ 1 and g2H1AZ

¼ g2
H1H

�Wþ ¼ g2H2VV
¼

0 at the tree level in the SI-2HDM. Finally, it is interesting
to observe that T� vanishes identically in the limit MA !
MH� , or equivalently when �4 ! �5. In this limit, the
SI-2HDM realizes an unbroken SO(3) custodial symmetry
in the bilinear scalar field space of SO(5), according to a
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FIG. 2 (color online). The allowed parameter space in theMA �MH� plane compatible with perturbative unitarity (small black dots)
and electroweak precision limits (solid red circles) at the 90% C.L., for tan� ¼ 1 (upper left panel), tan� ¼ 2 (upper right panel),
tan� ¼ 4 (lower left panel) and tan� ¼ 8 (lower right panel). The region of green squares indicates the allowed area due to the LEP
and LHC limits. The open blue circles in the green area single out the region for which jgH2VV j> jgH1VV j. The thick horizontal line

gives a lower bound on the charged Higgs mass MH� * 295 GeV, from the b ! s� data [31], assuming type II Yukawa couplings.
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recent classification of the 2HDM potential [28,29]. Since
this symmetry remains unbroken even by the inclusion of
�-dependent vertex corrections, the electroweak parameter
T� still vanishes.

The total contribution to the electroweak S and T
parameters is given by the sums S ¼ SSM þ S� and T ¼
TSM þ T�. For the SM contribution, we have employed the
parameterizations [30]

SSM ¼ �0:007xt þ 0:091xh � 0:010x2h;

TSM ¼ ð0:130� 0:003xhÞxt þ 0:003x2t � 0:079xh

� 0:028x2h þ 0:0026x3h; (49)

with xt¼ðmt=GeV�173Þ=10 and xh¼lnðMHSM
=117GeVÞ,

where MHSM
� MH1

g2H1VV
þMH2

g2H2VV
. This last expres-

sion approximates the mass of the SM Higgs boson fairly
well over the whole region of the parameter space.

The recent LHC data pertinent to SM Higgs boson
searches provide important constraints on the kinematic
parameters of the SI-2HDM. In our numerical analysis, we
derive conservative limits by taking that either g2H1VV

¼ 1

or g2H2VV
¼ 1. To this end, we consider the 95% C.L.

exclusion limits on the SM Higgs boson mass MHSM
, as

quoted by the CMS and ATLAS collaborations [22]:

CMS: 127GeV–600GeV;

ATLAS: 112:7GeV–115:5GeV; 131GeV–453GeV:

(50)

Combining the above CMS and ATLAS results, the follow-
ing LHC exclusion limits on the Higgs masses may be
deduced:

127<MH1
=GeV< 600; when g2H1VV

� 0:99;

127<MH2
=GeV< 600; when g2H2VV

� 0:99:

More precise limits may be derived by calculating the
production cross sections for each Higgs search channel,
in conjunction with the limits on the ratio �=�SM. We
leave this issue to our experimental colleagues for more
detailed analyses. Finally, we have included the LEP limits
according to [21].

B. Numerical predictions

We start our numerical analysis by showing in Fig. 2 the
allowed parameter space in theMA �MH� plane, which is
compatible with perturbative unitarity (small black dots)
and electroweak precision limits (solid red circles) at the
90% C.L., for four values of tan�: tan� ¼ 1 (upper left
panel), tan� ¼ 2 (upper right panel), tan� ¼ 4 (lower left
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FIG. 3 (color online). The same as in Fig. 2, but in the MH1 �MH2
plane.
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panel) and tan� ¼ 8 (lower right panel). Moreover, the re-
gion of green squares in Fig. 2 indicates the allowed area due
to the LEP and LHC mass limits on a SM-like Higgs boson.
The open blue circles in the green area highlight the region
governed by the coupling hierarchy jgH2VV j> jgH1VV j. The
thick horizontal line that appears in each panel of Fig. 2
displays the lower bound on the charged Higgs boson mass,
MH� * 295 GeV, which is derived from the b ! s� data
[31], assuming a type II Yukawa coupling model.

From Fig. 2, we observe that the combined constraints get
weaker for low values of tan�, with tan� ¼ 1 giving the
weakest exclusion limits. The allowed parameter space is
dominated by the points for which MH� � MA and MH� �
MH2

andcentered around400GeV.Thismaybeunderstood as

follows. The direct constraints from LEP and the LHC data
restrict themass of theSM-likeHiggs boson to lie in the region
between 114.4 GeV and 127 GeV. This is close to the value
117 GeV, for which SSM and TSM almost vanish. On the other
hand, the contributions from the heavierHiggs bosons to theT
parameter are significant, unless their masses stay close to the
custodial symmetric limit, whereMH� � MA. Alternatively,
an accidental suppression of the T� parameter takes place
when MH� � MH2

. If in view of the electroweak precision

constraints we take MH� ¼ MA ¼ MH2
� MX, then the re-

lationM2
H1

’ M2
GW ¼ 8Bv2 [cf. Eq. (43)] leads typically to

M4
X � 1

4
ð8�2v2M2

H1
� 6M4

W � 3M4
Z þ 12m4

t Þ: (51)

Thus, forMH1
� 120 GeV, one obtains an approximate esti-

mate ofMX � 400 GeV.
Let us now look more closely at how each constraint acts

on the parameter space. The requirement of perturbative
unitarity (p.u.) constrains the masses of the charged and
CP-odd Higgs bosons as follows:

M
p:u:

H� & 850 GeV; M
p:u:
A & 700 GeV: (52)

Note that these upper bounds are almost independent of
tan�. Instead, the perturbative unitarity limit on MH de-
pends crucially on tan�, which becomes stronger for large
values of tan�. This is a direct consequence of the relation
�1 ’ M2

Ht
2
�=2v

2 and the perturbative bound imposed on

�1. Therefore, the regions with small MH� and/or MA are
excluded, since M2

H1
becomes negative. The reason is that

for jgH1VV j> jgH2VV j, one has the relation M2
H1

’ M2
GW ¼

8Bv2, and the one-loop parameter B given in Eq. (41)
should be positive.
The electroweak (e.w.) oblique parameters offer addi-

tional constraints on the scalar masses and on tan�.
Specifically, the mass limits become stronger for larger
values of tan�, i.e.
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FIG. 4 (color online). The same as in Fig. 3, but with the restriction MH� ¼ MA.
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tan� ¼ 1: Mp:u:
e:w:
H� & 700 GeV; Mp:u:
e:w:

A & 700 GeV;

tan� ¼ 2: M
p:u:
e:w:
H� & 700 GeV; M

p:u:
e:w:
A & 700 GeV;

tan� ¼ 4: Mp:u:
e:w:
H� & 700 GeV; 300 GeV & Mp:u:
e:w:

A & 700 GeV;

tan� ¼ 8: Mp:u:
e:w:
H� & 700 GeV; 300 GeV & Mp:u:
e:w:

A & 700 GeV;

(53)

where the superscript p:u: 
 e:w indicates the simultaneous implementation of limits due to perturbative unitarity and the
electroweak precision S and T parameters.

As a final constraint, we consider the direct LEP and LHC limits on a SM-like Higgs boson mass. If we combine these
limits with the bound derived on the charged Higgs mass MH� * 295 GeV from the b ! s� data [31], we find that

tan� ¼ 1: 295 GeV & MH� & 680 GeV; MA & 650 GeV;

tan� ¼ 2: 295 GeV & MH� & 600 GeV; 320 GeV & MA & 580 GeV;

tan� ¼ 4: MH� ’ MA � 380–480 GeV;

tan� ¼ 8: MH� ’ MA � 400 GeV:

(54)

Finally, it is worth remarking that only the scenarios with jgH2VV j> jgH1VV j, which are highlighted by blue circles in the
plots, are allowed for larger values of tan�; e.g., up to tan� ¼ 8.

In Fig. 3, we present the allowed parameter space in theMH1
�MH2

plane. The allowed parameter space decreases when

tan� deviates from 1. When tan� ¼ 1, we find there exist three favorable mass regions:

I: MH1
> 127 GeV: M

t�¼1
H1

� 127–350 GeV; M
t�¼1
H2

� 140–380 GeV;

II: MH1
¼ 114–127 GeV: M

t�¼1
H1

¼ 114–127 GeV; M
t�¼1
H2

� 140–550 GeV;

III: MH1
< 114 GeV: M

t�¼1
H1

< 114 GeV; M
t�¼1
H2

� 120–170 GeV:

(55)
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FIG. 5 (color online). The same as in Fig. 2, but restricting either MH1
or MH2

to lie between 123 and 127 GeV.
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In region I, the mixing between the H1 and H2 scalars is
significant with MH1

�MH2
. In this case, the LHC exclu-

sion limits on a SM-like Higgs boson may not be straight-
forwardly applicable. For this reason, our obtained limits
should be regarded as conservative in this case. On the
other hand, there is no lower limit on theH1 boson lying in
region III with g2H1VV

� 1, thus allowing for a very light
scalar to have escaped detection at the LEP II collider. For
the larger values of tan�, scenarios with g2H1VV

� g2H2VV

are becoming more likely. For instance, when tan� ¼ 8,
we find

M
t�¼8
H1

& 80 GeV; M
t�¼8
H2

� 118 GeV: (57)

Figure 4 shows the allowed parameter space in the
MH1

�MH2
plane for the custodial symmetric scenario

with MH� ¼ MA. As explained in the previous subsection,
T� vanishes identically in this scenario, because

F�ðMA;MH�Þ ¼ 0 and �Hi

Z ¼ �Hi

W . Therefore, the masses
MH1

orMH2
must be close to 120 GeV, in order for the SM

contribution TSM to remain acceptably small.
Motivated by the 2:3� excess of a positive SM Higgs

signal corresponding to MHSM
� 125 GeV [22], we show

in Fig. 5 the allowed regions in the MA �MH� plane,
where either the H1 boson or the H2 boson mass is
restricted to lie in the interval (123,127) GeV. Taking
into account the lower bound on the charged Higgs boson
mass, MH� � 295 GeV, derived from b ! s� data, we
find that all viable scenarios must have jgH1VV j> jgH2VV j
and tan� 	 2. In this case, we find the following three
possible scenarios:

(i) MH2
�MA � 400 GeV with MH� & 420 GeV

(ii) MA & 100 GeV with MH� �MH2
� 400 GeV

(iii) MH2
& 180 GeV with MH� �MA � 400 GeV

In conclusion, ifMH1
� 125 GeV, viable scenarios of the

SI-2HDMgenerically have at least two heavyHiggs bosons
of �400� GeV mass and favor low values of t� � 1.

IV. CONCLUSIONS

We have studied the Higgs sector of a classical scale
invariant realization of the two Higgs doublet model
(SI-2HDM). Such a model may provide a minimal and
calculable solution to the well-known gauge hierarchy
problem. To naturally suppress flavor off-diagonal inter-
actions of the Higgs bosons to quarks, we have imposed
the usual Z2 symmetry on the SI-2HDM potential. In
this case, the SI-2HDM scalar potential only depends
on the five quartic couplings �1–5, and hence it becomes
very predictive.

The classical scale symmetry of the SI-2HDM is explic-
itly broken by quantum loop effects due to gauge interac-
tions, Higgs self-couplings and top quark Yukawa
couplings. To take account of these effects, we have calcu-
lated the one-loop effective potential and evaluated the
radiatively corrected masses of the CP-even Higgs bosons

and their mixing. Unlike the CP-even Higgs sector, we
have found that the CP-odd and charged Higgs mass
matrices retain their tree-level form. In addition to the
CP-even Higgs masses, radiative effects may drastically
modify the Higgs couplings to the Z boson, through an
effective H1 �H2 mixing. Our analysis has revealed
that a critical value of the coupling �c

3 exists, for which

jgH1VVj ¼ jgH2VV j. Depending on the value of �3, a level-

crossing phenomenon occurs for both the H1 and H2

masses and their couplings to the Z boson. For �3 < �c
3,

the lighter state H1 behaves like the SM Higgs boson,
with g2H1VV

� 1, and its mass is well approximated by the

Gildener-Weinberg mass MH1
�MGW, while MH2

�MH.

Instead, if �3 > �c
3, the heavier state H2 becomes SM-like

with g2H2VV
� 1, and its mass is approximately given by

MH2
�MGW, while MH1

�MH.

In our numerical analysis, we have imposed three basic
theoretical and phenomenological constraints on the
SI-2HDM: (i) the requirement of validity of perturbative
unitarity, (ii) the indirect constraints from the electroweak
precision data and (iii) the direct Higgs search constraints
from the LEP collider and the LHC. At large tan�, the
perturbative unitarity bounds and the indirect constraints
become rather strong. In conjunction with the existing LEP
and the current LHC limits on the SM Higgs boson mass,
the electroweak T-parameter constraints reduce the theo-
retically allowed parameter space into two smaller regions,
governed by the approximate restrictions: MH� �MA or
MH� �MH2

. In this context, our analysis has shown that

the Higgs boson masses obey the following upper limits:

MH1
& 350 GeV; MH2

& 550 GeV;

MA & 650 GeV; MH� & 680 GeV:

The above bounds hold for low values of tan�� 1. For
tan� * 4, the masses may be further restricted, with
MH� ’ MA � 400–500 GeV. In addition, the heavier
CP-even state H2 becomes more SM-like with MH2

�
114–170 GeV and MH1

& 160 GeV.

Motivated by the 2:3� excess for a Higgs mass around
125 GeV at the LHC, we have extended our analysis by
including the bound on the charged Higgs mass MH� &
295 GeV from the b ! s� data. In this case, we have
found that tan�� 1 and the lightest Higgs boson is SM-
like, with MH1

¼ MHSM
’ 125 GeV. The heavier CP-even

Higgs bosonH2 can be lighter than 180 GeV whenMH� �
MA � 400 GeV. On the other hand, the CP-odd scalar A
can be lighter than 100GeVwhenMH� �MH2

� 400 GeV.

Otherwise, the pronounced mass region for H2 and A is
mainly around 400 GeV with MH� & 420 GeV. We may
therefore conclude that, if MHSM

� 125 GeV, there are at

least two heavy Higgs bosons with masses close to 400 GeV
and the third one below�500 GeV in the SI-2HDM.
At the LHC, the heavy neutral Higgs bosons H2 and A,

with masses MH2;A � 400 GeV, are expected to be mainly
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produced via gluon-gluon fusion, where the Higgs pair
production channel might be also relevant. In general, the
search strategies for the Higgs bosons H2, A and H� will
depend on the type of theYukawa sector assumed.Moreover,
the detection of possible light Higgs bosons with masses
below 100 GeV and suppressed couplings to vector bosons
becomes a difficult issue. A detailed investigation of the
possible search strategies may be given elsewhere.

Another problem that needs to be addressed in detail
within the SI-2HDM pertains to the natural implementa-
tion of light neutrino masses. If the theory is extended
with right-handed neutrinos, then light neutrino masses
can only be incorporated in the theory in a SI manner,
via the standard but very small Dirac Yukawa couplings.
However, in the presence of extra singlets or triplets,
further possibilities arise to naturally explain the smallness
of the light neutrino masses, along the lines presented
in [9,32,33]. It would be interesting to investigate the
phenomenological implications of such extensions of the
SI-2HDM in a future communication.
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APPENDIX: VERTEX CORRECTIONS AND
TRILINEAR HIGGS COUPLINGS

In this appendix we calculate the one-loop quantum
corrections Oð�2

1�5Þ to the gauge-invariant, transverse

part of the gauge couplings to neutral and charged Higgs
bosons. These quantum effects get enhanced for large

potential couplings and should be included next to the
tree-level contributions. Our calculation is performed in
the effective potential limit, in which all external momenta
squared are assumed to vanish.
The radiative corrections to the Z�H� �H
 and

��H� �H
 couplings are the same. In detail, these
are given by

�H�
Z ¼ �H�

� � �H�
�Z

¼ v2

16�2

X
j¼1;2

�2
HjH

�HþfVðM2
H� ;M2

Hj
;M2

H�Þ:
(A1)

Here, fVðm2
1; m

2
2; m

2
3Þ is the one-loop vertex function,

which has been calculated to be

fVðm2
1; m

2
2; m

2
3Þ ¼

1

ðm2
3 �m2

1Þ
�

m2
3

2ðm2
2 �m2

3Þ
� m2

1

2ðm2
2 �m2

1Þ

þ m4
3

2ðm2
2 �m2

3Þ2
ln

�
m2

3

m2
2

�

� m4
1

2ðm2
2 �m2

1Þ2
ln

�
m2

1

m2
2

��
;

with fVðm2; m2; m2Þ ¼ 1=ð6m2Þ. Likewise, the one-loop
corrections to the Hi � A� Z couplings are given by

�Hi

Z ¼ v2

16�2

�
��HiAA

X
j¼1;2

gHjAZ�HjAAfVðM2
A;M

2
A;M

2
Hj
Þ

þ Xð1;2Þ;ð2;1Þ;ð2;2Þ

ðj;kÞ¼ð1;1Þ
�HiHjHk

gHjAZ�HkAAfVðM2
Hj
;M2

Hk
;M2

AÞ
�
:

(A2)

By analogy, the one-loop corrections to the A�H� �W

and Hi �H� �W
 couplings are given by

�A
W ¼ v2

16�2

� X
j¼1;2

�HjAA�HjH
�HþfVðM2

A;M
2
Hj
;M2

H�Þ
�
;

�Hi

W ¼ v2

16�2

�
��HiH

�Hþ
X
j¼1;2

gHjH
�Wþ�HjH

�HþfVðM2
H� ;M2

H� ;M2
Hj
Þ

þ Xð1;2Þ;ð2;1Þ;ð2;2Þ

ðj;kÞ¼ð1;1Þ
�HiHjHk

gHjH
�Wþ�HkH

�HþfVðM2
Hj
;M2

Hk
;M2

H�Þ
�
: (A3)

Notice that �Hi
Z ¼ �Hi

W in the custodial symmetric limit: MA ¼ MH� or �4 ¼ �5, since �HiAA ¼ �HiH
þH� .

The Higgs potential terms describing the trilinear Higgs interactions may be written down as follows:

VTrilinear ¼ v

�
�H1H1H1

6
H3

1 þ
�H1H1H2

2
H2

1H2 þ
�H1H2H2

2
H1H

2
2 þ

�H2H2H2

6
H3

2 þ
�H1AA

2
H1AAþ �H2AA

2
H2AA

þ �H1G
0AH1G

0Aþ �H2G
0AH2G

0Aþ �H1G
0G0

2
H1G

0G0 þ �H2G
0G0

2
H2G

0G0

�

þ v
X
i¼1;2

½�HiG
�GþHiG

�Gþ þ �HiG

H�HiðG�Hþ þGþH�Þ þ �HiH

�HþHiH
�Hþ�; (A4)
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where the trilinear self-couplings of the CP-even Higgs bosons are

�H1H1H1
¼ 6ðO3

11��1�1�1
þO2

11O21��1�1�2
þO11O

2
21��1�2�2

þO3
21��2�2�2

Þ;
�H1H1H2

¼ 6O2
11O12��1�1�1

þ 2ðO2
11O22þ 2O11O12O21Þ��1�1�2

þ 2ðO12O
2
21þ 2O11O21O22Þ��1�2�2

þ 6O2
21O22��2�2�2

;

�H1H2H2
¼ 6O11O

2
12��1�1�1

þ 2ðO2
12O21þ 2O11O12O22Þ��1�1�2

þ 2ðO11O
2
22þ 2O12O21O22Þ��1�2�2

þ 6O21O
2
22��2�2�2
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�H2H2H2
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12��1�1�1
þO2

12O22��1�1�2
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2
22��1�2�2

þO3
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In addition, the trilinear couplings involving one CP-even Higgs boson and two CP-odd scalars may be cast into the form:

�HiXY ¼ NXYðO1i��1XY þO2i��2XYÞ; (A6)

with ðXY;NXYÞ ¼ ðAA; 2Þ; ðG0A; 1Þ; ðG0G0; 2Þ.
Finally, the trilinear CP-even Higgs couplings with the charged Higgs bosons H� may be expressed as follows:

�HiX
0Y0 ¼ O1i��1X

0Y0 þO2i��2X
0Y0 ; (A7)

with X0Y0 ¼ G�Gþ, G
H� and H�Hþ. The trilinear couplings in the basis of weak eigenstates are given by

��1�1�1
¼ �1c�; ��1�1�2
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2
s�; ��1�2�2

¼ �345

2
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2
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3
�; ��2G

0A ¼ ð2�2 � �34Þs2�c� þ �5c
3
�;

��1G
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3
� þ �345

2
c�s

2
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3
� þ �345

2
s�c

2
�;

(A8)

��1G
�Gþ ¼ 2�1c

3
� þ �345s�c

2
�; ��2G

�Gþ ¼ 2�2s
3
� þ �345c�s

2
�;

��1G

G� ¼ �2�1s�c

2
� þ �3s�c

2
� þ �45

2
s�c2�; ��2G


G� ¼ 2�2c�s
2
� � �3c�s

2
� þ �45

2
c�c2�;

��1H
�Hþ ¼ 2�1c�s

2
� þ �3c

3
� � �45c�s

2
�; ��2H

�Hþ ¼ 2�2s�c
2
� þ �3s

3
� � �45s�c

2
�;

(A9)

with �345 � �3 þ �4 þ �5 and �34 � �3 þ �4. Notice that ��iH
þH� ¼ 2��iAA in the custodial symmetric limit: �4 ¼ �5.
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