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Using the eigenmode of the Dirac operator 6D ¼ ��D� in quantum chromodynamics (QCD), we

develop a manifestly gauge-covariant expansion and projection of the QCD operators such as the Wilson

loop and the Polyakov loop. With this method, we perform a direct analysis of the correlation between

confinement and chiral symmetry breaking in lattice QCD Monte Carlo calculation on 64 at � ¼ 5:6.

Even after removing the low-lying Dirac modes, which are responsible for chiral symmetry breaking, we

find that the Wilson loop obeys the area law, and the slope parameter corresponding to the string tension,

or confinement force, is almost unchanged. We find also that the Polyakov loop remains to be almost zero

even without the low-lying Dirac modes, which indicates the Z3-unbroken confinement phase. These

results indicate that one-to-one correspondence does not hold between confinement and chiral symmetry

breaking in QCD.

DOI: 10.1103/PhysRevD.86.034510 PACS numbers: 12.38.Gc, 12.38.Aw, 14.70.Dj

I. INTRODUCTION

These days, quantum chromodynamics (QCD) has been
established as the fundamental gauge theory of the strong
interaction. However, nonperturbative properties of low-
energy QCD such as color confinement and chiral symme-
try breaking [1] are not yet well understood, which poses
one of the most difficult problems in theoretical physics.
The nonperturbative QCD has been studied in lattice QCD
[2–6] and various analytical frameworks [7–12].

In particular, it is rather interesting and important to
examine the correlation between confinement and chiral
symmetry breaking [12–19], since a direct relation is not
yet shown between them in QCD. A strong correlation
between them has been suggested by the almost simulta-
neous phase transitions of deconfinement and chiral resto-
ration in lattice QCD both at finite temperature [5,20] and
in a small-volume box [5].

The close relation between confinement and chiral sym-
metry breaking has also been suggested in terms of the
monopole degrees of freedom [12–14]. Here, the monopole
topologically appears in QCD by taking the maximally
Abelian (MA) gauge [21–25]. For example, by removing
the monopoles in the MA gauge, confinement and chiral
symmetry breaking are simultaneously lost in lattice QCD
[13,14] (The instantons also disappear without monopoles
[23]). This indicates an important role of the monopole to
both confinement and chiral symmetry breaking, and these
two nonperturbative QCD phenomena seem to be related
via the monopole. However, as a possibility, removing the
monopoles may be ‘‘too fatal’’ for most nonperturbative

properties. If this is the case, nonperturbative QCD phe-
nomena are simultaneously lost by their cut.
In fact, there remains an important question: ‘‘if only the

relevant ingredient of chiral symmetry breaking is care-
fully removed, how will confinement be in QCD?’’
Considering this question in this paper, we perform a direct
investigation between color confinement and chiral sym-
metry breaking in lattice QCD, using the Dirac-mode
expansion in a gauge-invariant manner [26].
The organization of this paper is as follows. In Sec. II, we

introduce the gauge-invariant formalismwith theDirac-mode
expansion. In Sec. III, we present the operator formalism in
lattice QCD. In Sec. IV, we formulate the Dirac-mode expan-
sion and projection. In Sec. V, we show the lattice results on
the analysis of confinement in terms of the Dirac modes in
QCD. Section VI is devoted to summary and discussions.

II. GAUGE-INVARIANT FORMALISM WITH
DIRAC-MODE EXPANSION

We newly develop a manifestly gauge-covariant expan-
sion of the QCD operator, e.g., the Wilson loop, using the
eigenmode of the QCD Dirac operator 6D ¼ ��D�, and
investigate the relation between confinement and chiral
symmetry breaking.

A. Gauge-covariant expansion in QCD instead
of Fourier expansion

In the previous studies [27,28], we investigated the
relevant gluon momentum region for confinement in lattice
QCD, and found that the string tension �, i.e., the confin-
ing force, is almost unchanged even after removing the
high momentum gluon component above 1.5 GeV in the
Landau gauge. In fact, the confinement property originates
from the low momentum gluon component below 1.5 GeV,
which is the upper limit to contribute to �.
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The previous study on the relevant gluonic modes was
based on the Fourier expansion, i.e., the eigenmode expan-
sion of the momentum operator p�. Because of the com-
mutable nature of ½p�; p�� ¼ 0, all the momentum p� can
be simultaneously diagonalized, which is one of the strong
merits of the Fourier expansion. Also, it keeps Lorentz
covariance.

However, the Fourier expansion does not keep gauge
invariance in gauge theories. Therefore, for the use of the
Fourier expansion in QCD, one has to select a suitable
gauge such as the Landau gauge [27–29], where the gauge
field fluctuation is strongly suppressed in Euclidean QCD.

As the next challenge, we consider a gauge-invariant
method, using a gauge-covariant expansion in QCD in-
stead of the Fourier expansion. In fact, we consider a
generalization of the Fourier expansion or an alternative
expansion with keeping the gauge symmetry.

A straight generalization is to use the covariant derivative
operatorD� instead of the derivative operator @�. However,
due to the noncommutable nature of ½D�;D�� � 0, one
cannot diagonalize all the covariant derivative D� (� ¼ 1,
2, 3, 4) simultaneously, instead only one of them can be
diagonalized. For example, the eigenmode expansion of D4

keeps gauge covariance and is rather interesting, but this type
of expansion inevitably breaks the Lorentz covariance. Thus,
we consider the eigenmode expansion of the Dirac operator
6D ¼ ��D� or D2 ¼ D�D� [30], since such an expansion
keeps both gauge symmetry and Lorentz covariance.

In particular, the Dirac-mode expansion is rather inter-
esting because the Dirac operator 6D directly connects with
chiral symmetry breaking via the Banks-Casher relation
[8] and its zero modes are related to the topological charge
via the Atiyah-Singer index theorem [31]. Here, we mainly
consider the manifestly gauge-invariant new method using
the Dirac-mode expansion. Thus, the Dirac-mode expan-
sion has some important merits:

(i) The Dirac-mode expansion method manifestly keeps
both gauge and Lorentz invariance.

(ii) Each QCD phenomenon can be directly investigated
in terms of chiral symmetry breaking.

B. Eigenmode of Dirac operator in lattice QCD

Now, we consider the Dirac operator and its eigenmodes
in lattice QCD formalism with spacing a in the Euclidean
metric. On the lattice, each site is labeled by x ¼
ðx1; x2; x3; x4Þ with x� being an integer. In lattice QCD,

the gauge field is described by the link variable U�ðxÞ ¼
eiagA�ðxÞ 2 SUðNcÞ, where g is the QCD gauge coupling
and A�ðxÞ 2 suðNcÞ corresponds to the gluon field.

In lattice QCD, the Dirac operator 6D ¼ ��D� is ex-

pressed with U�ðxÞ as

6Dx;y ¼ 1

2a

X4
�¼1

��½U�ðxÞ�xþ�̂;y �U��ðxÞ�x��̂;y�; (1)

where the convenient notation U��ðxÞ � Uy
�ðx� �̂Þ is

used. Here, �̂ denotes the unit vector on the lattice in
�-direction [5].
In this paper, we adopt the hermite definition of the

�-matrix, �y
� ¼ ��. Thus, 6D is anti-hermite and satisfies

6D y
y;x ¼ �6Dx;y: (2)

The normalized eigenstate jni of the Dirac operator 6D is
introduced as

6Djni ¼ i�njni; (3)

with �n 2 R. Because of f�5; 6Dg ¼ 0, the state �5jni is
also an eigenstate of 6D with the eigenvalue �i�n. The
Dirac eigenfunction

c nðxÞ � hxjni; (4)

obeys 6Dc nðxÞ ¼ i�nc nðxÞ, and its explicit form of the
eigenvalue equation in lattice QCD is

1

2a

X4
�¼1

��½U�ðxÞc nðxþ �̂Þ �U��ðxÞc nðx� �̂Þ�

¼ i�nc nðxÞ: (5)

The Dirac eigenfunction c nðxÞ can be numerically
obtained in lattice QCD apart from a phase factor.
According toU�ðxÞ ! VðxÞU�ðxÞVyðxþ �̂Þ, the gauge

transformation of c nðxÞ is found to be

c nðxÞ ! VðxÞc nðxÞ; (6)

which is the same as that of the quark field. To be precise,
for the Dirac eigenfunction, an irrelevant n-dependent

global phase factor ei’n½V� appears, according to the arbi-
trariness of the definition of c nðxÞ.
It is notable that the quark condensate h �qqi, the order

parameter of chiral symmetry breaking, is given by the
zero eigenvalue density �ð0Þ of the Dirac operator, via the
Banks-Casher relation [8],

h �qqi ¼ � lim
m!0

lim
V!1	�ð0Þ: (7)

Here, the spectral density of the Dirac operator is
defined by

�ð�Þ � 1

V

X
n

h�ð�� �nÞi; (8)

with the four-dimensional volume V. Also, the zero-mode
number asymmetry of the Dirac operator 6D is equal to the

topological charge (the instanton number) Q � g2

16	2 �R
d4x TrðG��

~G��Þ, which is known as the Atiyah-Singer

index theorem, Index ð 6DÞ ¼ Q [31].
In calculating the eigenvalue of the Dirac operator 6D, we

use the Kogut-Susskind (KS) formalism [3,5], which is
often used to remove the redundant doublers of lattice
fermions. Here, the use of the KS formalism is just the
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practical reason to reduce the calculation of the Dirac
eigenvalues. In fact, the result of the Dirac-mode projec-
tion, which will be shown in Sec. IV, is unchanged, when
the Dirac operator is directly diagonalized.

In the KS method, using TðxÞ � �x1
1 �

x2
2 �

x3
3 �

x4
4 with

��k
� � ð��1

� Þk (k ¼ 1; 2; . . . ), all the gamma matrices ��

are diagonalized as TyðxÞ��Tðx� �̂Þ ¼ 
�ðxÞ1 with the

staggered phase 
�ðxÞ defined by


1ðxÞ � 1; 
�ðxÞ ¼ ð�1Þx1þ���þx��1ð� � 2Þ: (9)

For�nðxÞ � TyðxÞc nðxÞ, theDirac eigenvalue equation has
no spinor index, and the spinor degrees of freedom can be
dropped off, which reduces the lattice-fermion species from
16 to 4 [5]. In the KS method, the Dirac operator ��D� is

replaced by the KS Dirac operator 
�D�,

ð
�D�Þx;y¼ 1

2a

X4
�¼1


�ðxÞ½U�ðxÞ�xþ�̂;y�U��ðxÞ�x��̂;y�;

(10)

and the spinless eigenfunction �nðxÞ satisfies
1

2a

X4
�¼1


�ðxÞ½U�ðxÞ�nðxþ �̂Þ �U��ðxÞ�nðx� �̂Þ�

¼ i�n�nðxÞ: (11)

In the KS formalism, the chiral partner �5c nðxÞ reduces
into 
5ðxÞ�nðxÞ ¼ ð�1Þx1þx2þx3þx4�nðxÞ, which is an
eigenfunction of 
�D� with the eigenvalue �i�n.

Using the KS formalism [3,5], the Dirac-mode number
L4 � Nc � 4 is reduced to be L4 � Nc on the L4 lattice.
The actual number of the independent Dirac eigenvalue �n

is about L4 � Nc=2, due to the chiral property of the Dirac
operator, i.e., pairwise appearance of ��n.

III. OPERATOR FORMALISM IN LATTICE QCD

To keep the gauge symmetry, careful treatments are
necessary, since naive approximations may break the
gauge symmetry. Here, we take the ‘‘operator formalism’’
[26], as explained below.

We define the link variable operator Û�� by the matrix

element of

hxjÛ��jyi ¼ U��ðxÞ�x��̂;y: (12)

Note that Û� and Û�� are Hermitian conjugate as the

operator in Hilbert space in the sense that

hyjÛy
�jxi ¼ Uy

�ðyÞ�yþ�̂;x ¼ Uy
�ðx� �̂Þ�x��̂;y

¼ U��ðxÞ�x��̂;y ¼ hxjÛ��jyi: (13)

In the operator formalism, Eq. (5) for the Dirac eigenstate
is simply expressed as

1

2a

X4
�¼1

��ðÛ� � Û��Þjni ¼ i�njni: (14)

In the KS method, where the spinor index is dropped off,
one identifies �nðxÞ ¼ hxjni, and then Eq. (11) for the KS
Dirac eigenstate is expressed as

1

2a

X4
�¼1


̂�ðÛ� � Û��Þjni ¼ i�njni; (15)

where 
̂� is defined by hxj
̂�jyi ¼ 
�ðxÞ�x;y. Owing to


�ðx� �̂Þ ¼ 
�ðxÞ, one finds 
̂�Û�� ¼ Û��
̂�, so that

there is no ordering uncertainty in the KS Dirac operator in
Eq. (15). In the KS method, the chiral partner �5jni cor-
responds to 
̂5jni, where 
̂5 is defined by the matrix
element hxj
̂5jyi ¼ 
5ðxÞ�x;y ¼ ð�1Þx1þx2þx3þx4�x;y. Due

to 
5ðx� �̂Þ ¼ �
5ðxÞ, we note 
̂5Û�� ¼ �Û��
̂5.

In the following, we mainly use the ordinary Dirac
operator ��D� and the spinor eigenfunction c nðxÞ ¼
hxjni. When the KS method is applied, one only has to
use the identification of �nðxÞ ¼ hxjni in the following
arguments. The final results are the same between both
calculations based on ��D� and 
�D�.

The Wilson loop operator Ŵ is defined as the product of

Û� along a rectangular loop,

Ŵ � YN
k¼1

Û�k
¼ Û�1

Û�2
� � � Û�N

: (16)

For arbitrary loops, one finds
PN

k¼1 �̂k ¼ 0. We note that

the functional trace of the Wilson loop operator Ŵ is
proportional to the ordinary vacuum expectation value
hWi of the Wilson loop:

TrŴ ¼ tr
X
x

hxjŴjxi ¼ tr
X
x

hxjÛ�1
Û�2

� � � Û�N
jxi

¼ tr
X

x1;x2;���;xN
hx1jÛ�1

jx2ihx2jÛ�2
jx3ihx3jÛ�3

jx4i � � � hxNjÛ�N
jx1i

¼ tr
X
x

hxjÛ�1
jxþ �̂1ihxþ �̂1jÛ�2

jxþ X2
k¼1

�̂ki � � � hxþ
XN�1

k¼1

�̂kjÛ�N
jxi

¼ X
x

tr

�
U�1

ðxÞU�2
ðxþ �̂1ÞU�3

�
xþ X2

k¼1

�̂k

�
� � �U�N

�
xþ XN�1

k¼1

�̂k

��
¼ hWi � Tr1: (17)
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Here, ‘‘Tr’’ denotes the functional trace, and ‘‘tr’’ denotes
the trace over SU(3) color index.

The Dirac-mode matrix element of the link variable

operator Û� can be expressed with c nðxÞ:
hmjÛjni ¼ X

x

hmjxihxjÛ�jxþ �̂ihxþ �̂jni

¼ X
x

c y
mðxÞU�ðxÞc nðxþ �̂Þ: (18)

Although the total number of the matrix element is very
huge, the matrix element is calculable and gauge-invariant,
apart from an irrelevant phase factor. Using the gauge
transformation (6), we find the gauge transformation of
the matrix element as

hmjÛ�jni¼
X
x

c y
mðxÞU�ðxÞc nðxþ�̂Þ

!X
x

c y
mðxÞVyðxÞ �VðxÞU�ðxÞ

�Vyðxþ�̂Þ �Vðxþ�̂Þc nðxþ�̂Þ
¼X

x

c y
mðxÞU�ðxÞc nðxþ�̂Þ¼ hmjÛ�jni: (19)

To be precise, an n-dependent global phase factor appears,
corresponding to the arbitrariness of the phase in the basis
jni. However, this phase factor cancels as e�i’nei’n ¼ 1
between jni and hnj, and does not appear for QCD physical
quantities including the Wilson loop and the Polyakov
loop.

In the practical lattice-QCD calculation, we adopt the
KS formalism to reduce the computational complexity, as
mentioned in Sec. II B. In the KS method, instead of c nðxÞ,
we use the spinless eigenfunction �nðxÞ of the KS Dirac
operator 
�D�, with the identification of �nðxÞ ¼ hxjni,
and the KS-reduced matrix element of Û� is expressed as

hmjÛjni ¼ X
x

hmjxihxjÛ�jxþ �̂ihxþ �̂jni

¼ X
x

�y
mðxÞU�ðxÞ�nðxþ �̂Þ: (20)

In the arguments in the next section, the same results are
obtained between the calculations based on the original
Dirac operator ��D� and the KS Dirac operator 
�D�.

IV. DIRAC-MODE EXPANSION AND PROJECTION

A. General definition of Dirac-mode expansion
and projection

From the completeness of the Dirac-mode basis,P
njnihnj ¼ 1, we get

Ô ¼ X
m

X
n

jmihmjÔjnihnj; (21)

for arbitrary operators. Based on this relation, the Dirac-
mode expansion and projection can be defined [26]. We

define the projection operator P̂ which restricts the Dirac-
mode space,

P̂ � X
n2A

jnihnj; (22)

where A denotes an arbitrary set of Dirac modes. In P̂, the
arbitrary phase cancels between jni and hnj. One finds

P̂2 ¼ P̂ and P̂y ¼ P̂. The typical projections are IR cut
and UV cut of the Dirac modes:

P̂ IR � X
j�nj��IR

jnihnj; P̂UV � X
j�nj��UV

jnihnj: (23)

Using the projection operator P̂, we define the Dirac-
mode projected link variable operator,

Û P
� � P̂Û�P̂ ¼ X

m2A

X
n2A

jmihmjÛ�jnihnj: (24)

During this projection, there appears to be some nonlocal-
ity in general, but it would not be important for the argu-
ment of large-distance properties such as confinement.
Each lattice QCD configuration is characterized by the

set of the link variable fU�ðsÞg, or equivalently, the link

variable operator fÛ�g, and then the Dirac-mode projec-

tion is described by the replacement of fÛ�g by fÛP
�g.

In fact, the Dirac-mode projection of QCD physical

quantities hO½U�ðsÞ�i or TrÔ½Û�� can be defined by the

replacement of

Tr Ô½Û�� ! TrÔ½ÛP
��: (25)

Also in full QCD, after the integration over the quark
degrees of freedom, all the QCD physical quantities can

be written by hO½U�ðsÞ�i or TrÔ½Û��, so that the Dirac-

mode projection can be applied in the same way.

B. Dirac-mode expansion and projection
of the Wilson loop

In this subsection, we consider the Dirac-mode expan-

sion and projection of the Wilson loop hWðR; TÞi /
TrŴðR; TÞ corresponding to the R� T rectangular loop.
For the ordinary Wilson loop hWðR; TÞi, its area law

indicates the confinement phase of the QCD vacuum and
the linear arising potential between static quark and anti-
quark in the infrared region [5].

From the Wilson loop operator Ŵ � Q
N
k¼1 Û�k

, we get

the Dirac-mode expansion of the Wilson loop as

TrŴ¼Tr
YN
k¼1

Û�k
¼TrðÛ�1

Û�2
���Û�N

Þ

¼ tr
X

n1;n2;���;nN
hn1jÛ�1

jn2ihn2jÛ�2
jn3i���hnNjÛ�N

jn1i:

(26)

Based on this expression, we investigate the role of specific
Dirac modes on the area law of the Wilson loop. In fact, if
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some Dirac modes are essential to reproduce the area law
of the Wilson loop or the confinement property, the re-
moval of the coupling to these modes leads to a significant
change on the area law.

In this way, we try to answer the question: ‘‘Are there
any relevant Dirac modes responsible to the area law of the
Wilson loop?’’

To this end, we define the Dirac-mode projected Wilson
loop operator,

ŴP � YN
k¼1

ÛP
�k

¼ ÛP
�1
ÛP

�2
� � � ÛP

�N

¼ P̂Û�1
P̂Û�2

P̂ � � � P̂Û�N
P̂

¼ X
n1;n2;���;nNþ12A

jn1ihn1jÛ�1
jn2i

� hn2jÛ�2
jn3i � � � hnNjÛ�N

jnNþ1ihnNþ1j: (27)

Then, we obtain the functional trace of the Dirac-mode
projected Wilson loop operator,

TrŴP ¼ Tr
YN
k¼1

ÛP
�k

¼ TrÛP
�1
ÛP

�2
� � � ÛP

�N

¼ TrP̂Û�1
P̂Û�2

P̂ � � � P̂Û�N
P̂

¼ tr
X

n1;n2;���;nN2A

hn1jÛ�1
jn2i

� hn2jÛ�2
jn3i � � � hnNjÛ�N

jn1i; (28)

which is manifestly gauge invariant. Here, the arbitrary
phase factor cancels between jnki and hnkj. Its gauge
invariance is also numerically checked in the lattice QCD
Monte Carlo calculation.

The original Wilson loop operator ŴðR; TÞ couples to all
the Dirac modes, and TrŴðR; TÞ obeys the area law,

Tr ŴðR; TÞ / hWðR; TÞi / e��RT; (29)

for large R and T. Here, the slope parameter � corresponds
to the string tension, or confinement force. For the restric-
tion of the Dirac-mode space to be A, we investigate the

Dirac-mode projected Wilson loop operator ŴPðR; TÞ,
which couples to the restricted Dirac modes. If the re-
moved Dirac modes are essential for the confinement
property or the area-law behavior of the Wilson loop, a

large change is expected on the behavior of TrŴPðR; TÞ. If
not, no significant change is expected on the behavior of

TrŴPðR; TÞ. In fact, one can investigate the role of the
removed Dirac modes to confinement by checking the

area-law behavior of TrŴPðR; TÞ and the slope parameter
�P, which is formally written as

�P � � lim
R;T!1

1

RT
lnfTrŴPðR; TÞg: (30)

C. Corresponding Dirac-mode projected
interquark potential

For the estimation of the slope parameter �P from

TrŴPðR; TÞ, we define the corresponding Dirac-mode pro-
jected interquark potential,

VPðRÞ � � lim
T!1

1

T
lnfTrŴPðR; TÞg; (31)

which is also manifestly gauge invariant. To be precise,
because of the nonlocality appearing in the Dirac-mode
projection, VPðRÞ does not have a definite meaning of the
static potential. However, it is still useful to obtain �P in

Eq. (30) from TrŴPðR; TÞ. In fact, �P is obtained from the
infrared slope of VPðRÞ. Note also that, in the unprojected

case of P̂ ¼ 1, the ordinary interquark potential is obtained
apart from an irrelevant constant,

VðRÞ ¼ � lim
T!1

1

T
lnfTrŴðR; TÞg

¼ � lim
T!1

1

T
lnhWðR; TÞi þ irrelevant const; (32)

because of TrŴ ¼ hWi � Tr1, as was derived in Eq. (17).

V. ANALYSIS OF CONFINEMENT IN TERMS
OF DIRAC MODES IN QCD

We consider various projection space A in the
Dirac-mode space, e.g., IR cut or UV cut of Dirac modes.
With this Dirac-mode expansion and projection formalism,
we calculate the Dirac-mode projected Wilson loop
TrWPðR; TÞ in a gauge-invariant manner. In particular,
using IR cut of the Dirac modes, we directly investigate
the relation between chiral symmetry breaking and con-
finement as the area-law behavior of the Wilson loop, since
the low-lying Dirac modes are responsible to chiral sym-
metry breaking.
As a technical difficulty of this formalism, we have to

deal with huge dimensional matrices and their products.

Actually, the total matrix dimension of hmjÛ�jni is

ðDirac-modenumberÞ2. On the L4 lattice, the Dirac-mode
number is L4 � Nc � 4, which can be reduced to be
L4 � Nc, using the KS formalism [3,5], as mentioned in
Sec. II B. The actual number of the independent Dirac
eigenvalue �n is about L4 � Nc=2, due to the chiral prop-
erty of 6D, i.e., pairwise appearance of ��n. Even for
the projected operators, where the Dirac-mode space is
restricted, the matrix is generally still huge. In addition,
we have to deal with the product of the huge matrices

hmjÛ�jni in calculating the Wilson loop. Thus, at present,

we use a small-size lattice in the numerical calculation.
In this paper, we perform the SU(3) lattice QCD Monte

Carlo calculation with the standard plaquette action at � ¼
5:6 on 64 at the quenched level, using the pseudo-heat-bath
algorithm. The ordinary periodic boundary condition is
used for the link variable. The gauge configurations are
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taken every 500 sweeps after 10,000 sweeps thermaliza-
tion, and 20 gauge configurations are used for each analy-
sis. At � ¼ 5:6, the lattice spacing a is estimated as
a ’ 0:25 fm, i.e., a�1 ’ 0:8 GeV, which leads to the string
tension � ’ 0:89 GeV=fm in the interquark potential (This
estimate is done also on a larger volume lattice). Then, the
total volume is V ¼ ð6aÞ4 ’ ð1:5 fmÞ4, and the momentum
cutoff is 	=a ’ 2:5 GeV.

On the 64 lattice, the Dirac-mode number is 64 � 3�
4 ¼ 15; 552, which is reduced to 64 � 3 ¼ 3; 888 using the
KS formalism. In fact, the KS Dirac operator 
�D� and

the KS-reduced matrix element hmjÛ�jni are expressed by
3; 888� 3; 888 matrix. Considering the pairwise appear-
ance of �n and��n, the actual number of the independent
Dirac eigenvalue �n is reduced to be around 64 � 3=2 ¼
1; 944.

To diagonalize the KS Dirac operator 
�D�, we use

Linear Algebra PACKage (LAPACK) [32]. For the statis-
tical error on the lattice data, we adopt the jackknife error
estimate [5].

We show in Fig. 1(a) the spectral density �ð�Þ of the
QCD Dirac operator 6D. The chiral property of 6D leads to
�ð��Þ ¼ �ð�Þ. Figure 1(b) is the IR-cut Dirac spectral
density

�IRð�Þ � �ð�Þ�ðj�j ��IRÞ (33)

with the IR cutoff �IR ¼ 0:5a�1 ’ 0:4 GeV.
Note that, using the eigenvalue �n, the quark condensate

h �qqi is obtained as

h �qqi ¼ � 1

V
Tr

1

6Dþm
¼ � 1

V

X
n

1

i�n þm

¼ � 1

V

� X
�n>0

2m

�2
n þm2

þ �

m

�
; (34)

where � is the total number of the zero mode of 6D. Here,
the nonzero eigenvalues appear as pairwise, which makes
h �qqi real. (In lattice QCD, one has to take account of the
doubler contribution, which can be regarded as flavor at the
quenched level.) Then, in the presence of the IR cut�IR for
the Dirac eigenmode, the quark condensate is obtained as

h �qqi�IR
¼ � 1

V

X
�n��IR

2m

�2
n þm2

: (35)

We show in Fig. 2 the lattice QCD result of the quark
condensate h �qqi�IR

as a function of the current quark mass

m in the presence of IR cut �IR.
By removing the low-lying Dirac modes, the chiral

condensate h �qqi is largely reduced, reflecting the Banks-
Casher relation. Actually, directly from lattice QCD cal-
culation, we find a large reduction of the chiral condensate
in the presence of the IR cut �IR ¼ 0:5a�1 ’ 0:4 GeV,

h �qqi�IR

h �qqi ’ 0:02; (36)

around the physical region of m ’ 0:006a�1 ’ 5 MeV
[33], as shown in Fig. 2.
Now, let us consider the removal of the coupling to the

low-lying Dirac modes from the Wilson loop hWðR; TÞi.
Figure 3 shows the Dirac-mode projected Wilson loop

hWPðR; TÞi � TrŴPðR; TÞ after removing low-lying
Dirac modes, which is obtained in lattice QCD with the
IR cut of �IRð�Þ � �ð�Þ�ðj�j ��IRÞ with the IR cutoff
�IR ¼ 0:5a�1. Even after removing the coupling to the
low-lying Dirac modes, which are responsible to chiral
symmetry breaking, the Dirac-mode projected Wilson
loop is found to obey the area law as

hWPðR; TÞi / e��PRT; (37)

and the slope parameter �P corresponding to the string
tension, or confinement force, is almost unchanged as

�P ’ �: (38)

In fact, the confinement property seems to be kept in the
absence of the low-lying Dirac modes or the essence of
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FIG. 1 (color online). (a) The spectral density �ð�Þ of the
Dirac operator in lattice QCD at � ¼ 5:6 and 64. The
negative-� region is omitted, because of �ð��Þ ¼ �ð�Þ. The
volume V is multiplied. (b) The IR-cut Dirac spectral density
�IRð�Þ � �ð�Þ�ðj�j ��IRÞ with the IR cutoff �IR ¼ 0:5a�1 ’
0:4 GeV.
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chiral symmetry breaking [26]. This result indicates that
one-to-one correspondence does not hold for confinement
and chiral symmetry breaking in QCD.

Next, to estimate the slope parameter �P, we consider
the potential VPðRÞ obtained from hWPðR; TÞi. Figure 4
shows the ‘‘effective mass’’ of the interquark potential
VeffðR; TÞ � ln½hWPðR; TÞi=hWPðR; T þ 1Þi� after remov-
ing the low-lying Dirac modes, plotted against T at each R.
One finds the ‘‘plateau’’ or the stability of the effective
mass VeffðR; TÞ against T, which means the dominance of
the ground-state component. Similarly, in the standard

procedure to obtain potentials in lattice QCD [5,34], we
determine the interquark potential VPðRÞ by the exponen-
tial fit of the Wilson loop

hWPðR; TÞi ¼ Ce�VPðRÞT (39)

for T ¼ 1, 2, 3, which corresponds to the plateau region of
T ¼ 1, 2 in VeffðR; TÞ. Figure 5 shows the Dirac-mode
projected interquark potential VPðRÞ after removing low-
lying Dirac modes below the IR cutoff �IR ¼ 0:5a�1. No
significant change is observed on the interquark potential
besides an irrelevant constant, that is, the slope parameter
�P is almost unchanged, even after removing the low-lying
Dirac modes.
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FIG. 2 (color online). The lattice QCD result of the quark
condensate h �qqi�IR

as a function of the current quark mass m

in the presence of IR cut �IR ¼ 0:5a�1. The vertical axis is
normalized by the original value of h �qqi without cut. A large
reduction is found as h �qqi�IR

=h �qqi ’ 0:02 for �IR ¼ 0:5a�1 ’
0:4 GeV around the physical region of m ’ 0:006a�1 ’ 5 MeV.
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FIG. 3 (color online). The lattice QCD result of the Dirac-
mode projected Wilson loop hWPðR; TÞi � TrŴPðR; TÞ after
removing low-lying Dirac modes, plotted against the area R�
T. Circles denote the Wilson loop obtained with the IR cut of
�IRð�Þ � �ð�Þ�ðj�j ��IRÞ with the IR cutoff �IR ¼ 0:5a�1.
Squares denote the original Wilson loop hWðR; TÞi. hWPðR; TÞi
seems to obey the area law with the same slope parameter,
�P ’ �.
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FIG. 5 (color online). The lattice QCD result (circles) of the
interquark potential VPðRÞ after removing low-lying Dirac
modes below the IR cutoff �IR ¼ 0:5a�1. Squares denote the
original interquark potential. The potential is almost unchanged
even after removing the low-lying Dirac modes, apart from an
irrelevant constant.
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On the potential argument, we comment on the non-
locality stemming from the Dirac-mode projection, which
makes the link variable extended and makes the potential
meaning vague. This nonlocality appears hypercubic sym-
metrically in the four-dimensional space-time, and its ef-
fect would be maximal for the IR-cut case. As a whole,
such a nonlocality makes the potential flat, because of the
spatial averaging. (As an extreme example, the ‘‘potential’’
between wall-like sources is completely flat.) However, our
obtained potential is almost the same as the original con-
fining one, in spite of the possible flattening effect by the
nonlocality. Therefore, regardless of the nonlocality, the
confinement is kept after cutting off the low-lying Dirac
modes (Since no flattening effect is observed in this pro-
jection, the nonlocality effect would not be significant, at
least for the argument of confinement).

As another way to clarify the confinement on the peri-
odic lattice, we also investigate the Polyakov loop hLPi �
htrQL

t¼1 U4ð ~x; tÞi=3 and the center Z3-symmetry [5] in

terms of the Dirac-mode projection. The Polyakov loop
hLPi, which is usually used at finite temperature, can also
be applied to our temporally periodic system on the link
variable, and it physically relates to the quark single-
particle energy and the Z3-symmetry [5]. Note that the

nonlocality effect is less significant for the Polyakov loop
hLPi or the quark single-particle energy.
Now, we calculate the Polyakov loop with cutting off of

the low-lying Dirac modes,

hLPiIR � 1

3

1

V

�
Tr

�YL
k¼1

ÛP
4

��
¼ 1

3

1

V
hTrfðÛP

4 ÞLgi; (40)

and its scatter plot, using the same lattice (64,� ¼ 5:6) and
the same IR cutoff �IR ¼ 0:5a�1. In the use of the full

Dirac modes, i.e., P̂ ¼ 1, hLPiIR coincides with hLPi. We
show in Fig. 6 the scatter plot of the Polyakov loop hLPiIR
after cutting off the low-lying Dirac modes below �IR ¼
0:5a�1. We find that the IR-cut Polyakov loop hLPiIR
remains to be almost zero, i.e., hLPiIR ’ 0, which corre-
sponds to the Z3-unbroken phase. In fact, even after re-
moving the low-lying Dirac modes, which are responsible
to chiral symmetry breaking, the single-quark energy is
extremely large and the system is in the Z3-unbroken
confinement phase.
We also investigate the UV cut of Dirac modes in lattice

QCD, using the UV-cut Dirac spectral density �UVð�Þ �
�ð�Þ�ð�UV � j�jÞ with the UV cutoff �UV ¼ 2a�1 ’
1:6 GeV. In this case, unlike the IR cut, the chiral conden-
sate is almost unchanged, and chiral symmetry breaking is
almost kept. We show in Fig. 7 the UV-cut Wilson loop and
the corresponding interquark potential, after removing the
UV Dirac modes. We find that the area-law behavior of the
Wilson loop and the slope parameter �P are almost un-
changed by the UV cut of the Dirac modes. This result
seems consistent with the pioneering lattice study of
Synatschke-Wipf-Langfeld [17]: they found that the
confinement potential is almost reproduced only with
low-lying Dirac modes using the spectral sum of the
Polyakov loop [16,35].
Furthermore, we examine ‘‘intermediate (IM) cut’’,

where a certain part of �1 < j�nj<�2 of Dirac modes
is removed. Unfortunately, when the wide region of Dirac
modes is removed, the statistical error becomes quite large
for the Dirac-mode projected Wilson loop. Here, we
remove the IM Dirac modes of 0:5–0:8½a�1�,
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FIG. 6 (color online). The scatter plots of the Polyakov loop.
The left panel shows the original Polyakov loop hLPi. The right
panel shows the Polyakov loop hLPiIR after cutting off the low-
lying Dirac modes below the IR cutoff �IR ¼ 0:5a�1.
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0:8–1:0½a�1�, and 1:0–1:2½a�1�, respectively, and investi-
gate the corresponding IM-cut Wilson loop and the corre-
sponding interquark potential in each case, as shown in
Fig. 8. For each case, the area-law behavior of the Wilson
loop and the slope parameter �P are found to be almost
unchanged by the IM cut of the Dirac modes.

Thus, from the above lattice QCD results, we conclude
that there is no specific region of the Dirac modes respon-
sible to the confinement in QCD, unlike the chiral symme-
try breaking. Instead, we conjecture that the ‘‘seed’’ of
confinement is distributed not only in low-lying Dirac
modes, but also in a wider region of the Dirac-mode space.

VI. SUMMARYAND DISCUSSIONS

We have developed a manifestly gauge-covariant expan-
sion and projection using the eigenmode of the QCD
Dirac operator 6D ¼ ��D�. With this method, we have
performed a direct investigation of correspondence

between confinement and chiral symmetry breaking in
SU(3) lattice QCD on the 64 periodic lattice at � ¼ 5:6
at the quenched level. We have found that the Wilson loop
remains to obey the area law, and the slope parameter
corresponding to the string tension, or confinement force,
is almost unchanged, even after removing the low-lying
Dirac modes, which are responsible to chiral symmetry
breaking. We have also found that the Polyakov loop
remains to be almost zero even without the low-lying
Dirac modes, which indicates the Z3-unbroken confine-
ment phase. These results indicate that one-to-one corre-
spondence does not hold between confinement and chiral
symmetry breaking in QCD.
As a caution, we have used a coarse and small lattice,

because of the technical difficulty to diagonalize the full
Dirac operator. In particular, the box size of our lattice
volume is about 1.5 fm. In fact, to be precise, this region we
survey is the intermediate distance, of which confining
behavior is rather important for the quark-hadron physics.
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To obtain more a definite conclusion, especially on the
asymptotic confining behavior of the potential, it is desired
to perform larger-volume lattice QCD calculations and to
cut various wider regions of the Dirac modes, although it is
technically quite difficult.

Our strategy is to investigate the relation between the
nonperturbative properties of QCD, by extracting or re-
moving the essence of chiral symmetry breaking. This is
similar to the demonstration of Abelian/monopole domi-
nance [9,12–14,21–25,36] or center/vortex dominance
[15,37,38] for nonperturbative properties. However, while
the previous scenario has been done in a specific gauge, our
new method is manifestly gauge invariant. In this analysis,
we have carefully amputated only the ‘‘essence of chiral
symmetry breaking’’ by cutting off the low-lying Dirac
modes. Then, we have artificially realized the ‘‘confined
but chiral restored situation’’ in QCD.

Recently, Lang and Schrock studied the hadron spectra
after the cut of the low-lying Dirac modes [39]. Since the
quark propagator is directly expressed with the Dirac
operator 6D, the Dirac-mode projection is straightforward,
and a complicated projection procedure is not necessary in
such studies. In their study, although the confinement was
not checked, the appearance of hadronic spectra seems to
suggest the existence of the confinement force, even after
cutting the low-lying Dirac modes.

Next, we comment on the possible relation among con-
finement, chiral symmetry breaking, and monopoles in
QCD. There is a close relation between confinement and
chiral symmetry breaking through themonopoles in theMA
gauge [12–14]. Themonopolewould be essential degrees of
freedom for most nonperturbative QCD: confinement [22],
chiral symmetry breaking [13,14], and instantons [23]. In
fact, removing the monopole would be ‘‘too fatal’’ for the
nonperturbative properties, so that nonperturbative QCD
phenomena are simultaneously lost by their cut. On the
approximate coincidence of the critical temperatures of
deconfinement and chiral restoration, a large change of
monopoles may lead to both phase transitions [13], since
the global connection of the monopole current seems to be
largely changed around the QCD phase transition [24].

As for the recent finite-temperature QCD analysis, a
lattice QCD group has reported a certain difference

between the ‘‘critical temperatures’’ of deconfinement
and chiral restoration, which are determined by the sus-
ceptibility peak of the Polyakov loop and chiral conden-
sate, respectively [40]. This may also be indirect evidence
of ‘‘confinement � chiral symmetry breaking’’ in QCD.
Next, we briefly discuss the role of low-lying Dirac

modes in the viewpoint of instantons in QCD. The Dirac
zero-mode associated with an instanton is localized around
it [11]. However, the localized objects are hard to contrib-
ute to the large-distance phenomenon of confinement,
although such low-lying Dirac modes contribute to chiral
symmetry breaking. Recall that instantons contribute to
chiral symmetry breaking, but do not directly lead to
confinement [11]. Then, as a thought experiment, if only
instantons can be carefully removed from the QCD vac-
uum, confinement properties would be almost unchanged,
but the chiral condensate is largely reduced, and accord-
ingly some low-lying Dirac modes disappear. Thus, in this
case, confinement is almost unchanged, in spite of the large
reduction of low-lying Dirac modes.
If the relation between confinement and chiral symmetry

breaking is not one-to-one in QCD, richer phase structure
is expected in QCD. For example, the phase transition
point can be different between deconfinement and chiral
restoration in the presence of strong electromagnetic fields,
because of their nontrivial effect on chiral symmetry [41].
It is also interesting to investigate the similar analysis at
finite temperatures in lattice QCD. The full QCD calcula-
tion in this direction is also an interesting subject.
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