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Results are presented for hadron spectroscopy with gauge groups SUðNÞ with N ¼ 3, 5, 7. Calculations

use the quenched approximation. Lattice spacings are matched using the static potential. Meson spectra

show independence on N and vacuum-to-hadron matrix elements scale as
ffiffiffiffi
N

p
. The baryon spectrum

shows the excitation levels of a rigid rotor.
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I. INTRODUCTION

Replacing the ‘‘3’’ of color SUð3Þ by ‘‘N’’ and then
taking N to infinity has a long history in the (continuum)
phenomenology of the strong interactions, dating back to
Refs. [1,2].

There is also a literature of lattice simulations applied to
gauge theories with the group SUðNÞ, for moderately large
N. Most of it [3–10] is directed at the properties of pure
gauge theory. I know of two papers onmeson spectroscopy:
Refs. [11,12]. They are done at smaller values of ‘‘largeN,’’
N ¼ 2, 3, 4, 6. They are pretty standard lattice QCD
spectroscopy calculations and reveal the N-independence
of meson masses. Narayanan, Neuberger, and collaborators
[13,14] have measured masses and the pseudoscalar decay
constant from simulations at much larger N (exploiting
reduction, to simulate on smaller lattice sizes).

But only Ref. [15] discusses large N expectations for
baryons, and it only makes comparisons to actual lattice
data for N ¼ 3. So it seemed like an appropriate time to
look at a lattice calculation of baryon spectroscopy at
several values of N.

Baryons in large N seem to be fascinating objects, either
viewed as many-quark states [16] or as topological ob-
jects in effective theories of mesons [17,18]. There is an
enormous (continuum) literature about spectroscopy and
matrix elements for large N baryons. Assorted early refer-
ences include [19–23], summarized in a review, Ref. [24].
Perhaps a lattice study might reveal something interesting?

In fact, it does: general arguments [18,19] state that the
mass of an N color baryon of angular momentum J should
show a rotor spectrum:

MðN; JÞ ¼ NAþ JðJ þ 1Þ
N

B: (1)

The formula applies to baryons made of an SUð2Þ isospin
doublet of equal mass quarks. The parameters A and B
depend on the quark mass and both should be some
‘‘typical hadron size,’’ a few hundred MeV. The observa-
tion of Eq. (1) in simulation data is the main new result of
this paper. Common expectations are that Eq. (1) is only
true for small values of J, because then the terms have
meaning as a good expansion in 1=N. However, I observe

that it holds for both the bottom and the top of the multip-
lets where I did measurements.
The first response of the lattice simulator to a proposal to

look at baryons at large N is undoubtedly negative: The
cost of an N-color simulation scales roughly like N3, just
from the cost of multiplying SUðNÞ matrices. Baryons are
large objects, so big volumes will be needed. Ordinary
(N ¼ 3) baryon correlators are noisy and because baryon
masses scale as N, baryons in higher N are probably
noisier. And most of the literature involves some combi-
nation of small 1=N effects and expectation values of
operators (�� hBjOjBi), which are already hard enough
for N ¼ 3 [25]. Fortunately, large-N tests seem (mostly)
not to require extrapolations to zero quark mass.
Only for odd N are baryons fermions, of course, so I

am performing simulations of SUðNÞ gauge theories with
N ¼ 3, 5, 7.
I used the quenched approximation for all N. The

quenched approximation contains many of the same ingre-
dients as the N ! 1 limit of QCD: hadrons are bound
states of the minimum number of fermions, and decay
widths and other effects of virtual �qq loops die away as
inverse powers of N. At nonzero N all these effects are
present. That means that, truly, I am not simulating QCD
for any value of N. However, a first study does not quite
demand the same level of quality as a later one might. I am
interested in comparing simple observables in systems
which differ only in N, but otherwise have the same
UV cutoff (lattice spacing), lattice action, and physical
volume. This is easy to set up in quenched approximation.
Quenched simulations for N ¼ 3 are obsolete, but the
effects of dynamical fermions on spectroscopy are really
not all that large: away from the deep chiral limit they are
small, on the order of ten per cent for simple observables
(compare Fig. 1 in Ref. [26]).
A practical difficulty with using the quenched approxi-

mation comes when one wishes to convert a lattice number
to MeV. The spectrum of quenched QCD is simply differ-
ent from the spectrum of ‘‘real’’ QCD. I will compare
dimensionless ratios of lattice quantities in my tests of
scaling with N. Any conversions to MeV I make are only
qualitative statements.
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One could take the position that one should test every-
thing about large-N QCD at once, by doing simulations
with dynamical fermions at several values of N. This just
postpones the matching problem: the spectrum of the
different N QCDs will be different. But perhaps that is
not the right point of view. The real question one asks when
comparing several values of N is whether dimensionless
ratios of masses show some smooth behavior with N. And
for that, one can begin simply, make observations, and then
ask how they change as one does ever more realistic
simulations.

For allN’s, I use lattices of size 163 � 32 points. I match
the bare couplings so that the lattice spacings, as measured
by various observables from the heavy quark potential, are
the same and then sweep in quark mass over similar ranges.
This insures that finite volume and nonzero lattice spacing
artifacts will be similar across the board. I set the common
scale using the shorter version of the Sommer [27] parame-
ter, r1, defined in terms of the force FðrÞ so that r2FðrÞ ¼
�1:0 at r ¼ r1. The real-world value is r1 ¼ 0:31 fm [28],
and with it my lattice spacings would be about 0.08 fm.

Before going on, it’s useful to set some definitions. The
’t Hooft coupling is

g2N ¼ � (2)

and the usual gauge coupling is thus

� ¼ 2N

g2
¼ 2N2

�
: (3)

The combination g2CF, which appears in all perturbative
calculations of renormalization factors, is equal to �ð1�
1=N2Þ=2. For comparisons at fixed ’t Hooft coupling, like
the ones I present, this suggests that differences which
might be perturbative (lattice-to-continuum matching fac-
tors, for example) will scale up to corrections of order
1=N2.

The outline of the paper is as follows: The next section
describes some technical problems I faced: using fat links,
gauge fixing, and the construction of baryon operators.
Only the third topic might be of interest to continuum
physicists. Next, I present lattice results for the potential
and for meson masses and simple matrix elements. The
potential measurements show the extent to which lattice
spacings are matched. The mesonic observables illustrate

the N-independence of masses and the
ffiffiffiffi
N

p
scaling of

quantities like the pseudoscalar decay constant. Finally,
in Sec. IV, I show some results for baryon spectra. The
major one is the presence of a rotor spectrum of excitations
for two-flavor baryons.

II. TECHNICAL DETAILS

A. Simulation techniques

My simulations use a version of the publicly available
package of the MILC Collaboration [29], modified to

generate gauge configurations and quark propagators at
arbitrary N. Prior to this project, it had been extensively
used in studies of N ¼ 2, 3, 4 [30–32].
The gauge action is the usual Wilson action. Quenched

simulations are performed using the standard mix of
Brown-Woch microcanonical over-relaxation [33] and
Cabibbo-Marinari heat bath updates [34], performed on
all NðN � 1Þ=2 SUð2Þ subgroups of the SUðNÞ link vari-
ables. It is known that simulations performed on SUð2Þ
subgroups suffer critical slowing down at larger N, but the
largestN is only 7 and this problem did not appear. Lattices
are spaced 100 sweeps of the lattice apart, for later
analysis.
The spectroscopy was intended to be a typical SUð3Þ

lattice QCD calculation writ large. This involved an im-
proved fermion action and extended sources for hadronic
correlation functions. To achieve these goals a number of
small technical problems had to be solved. Many of them
have been encountered in other large-N studies, but per-
haps my solutions are a bit different than what is found
there and might be worth reporting.

B. SUðNÞ fat links; gauge fixing
My lattice fermions are clover fermions with normalized

hypercubic (nHYP) smeared links as their gauge connec-
tions [35]. The clover coefficient is fixed at its tree-level
value, cSW ¼ 1. This particular discretization is known to
work well, with small scaling violations, in both ordinary
QCD phenomenology and in beyond-StandardModel stud-
ies in SUð2Þ, SUð3Þ, SUð4Þ. So the first technical problem
is the construction of the nHYP link for arbitrary N. To
describe the nHYP link in words, it is a local average of
gauge connections over the hypercubes surrounding the
link, which smears out the gauge field for the fermion.
The specific problem to be solved is that the fat link is the
average of a set of paths which produces a sum of SUðNÞ
matrices, call it �. The fat link V� is defined as

V� ¼ �ffiffiffiffiffiffiffiffiffiffi
�y�

p : (4)

This is the matrix which maximizes ReTrV��
y. The

quantity Q�1=2 ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
�y�

p
is computed using the

Cayley-Hamilton theorem as described in Appendix B of
Ref. [32]. This construction involves finding the eigenval-
ues of Q, which is done using a Jacobi algorithm.
As written, V� is an element ofUðNÞ, not SUðNÞ. This is

not an issue when it is used for the fermions since all that
we care about is that our action should be gauge invariant,
and under a gauge transformation both the thin and fat
links transform the same way.
State-of-the-art spectroscopic calculations use extended

sources as interpolating fields for hadrons. In this work
configuration of link variables is gauge fixed to lattice
Coulomb gauge and the source for the quark propagator
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is some spatially extended function. So, we need to gauge
fix our lattices to lattice Coulomb gauge, rotating the links
to maximize

P
x

P
i ReTrUiðxÞ, i labeling the spatial direc-

tions. This is done by finding a matrix V at each site of the
lattice xwhich maximizesReTrV�y where� is the sum of
forward going UiðxÞ’s emanating from x minus the sum of

Uy
i ðx� îÞ’s terminating on site x.
In the author’s SUð3Þ code, gauge fixing is done iter-

atively by sweeping through the lattice and, site by site,
determining an optimal V by maximizing ReTrV�y. As in
the case of configuration generation, the relaxation is done
using the SUð2Þ subgroups of V. Unfortunately, for N > 4
relaxing on the subgroups suffers critical slowing down
and it becomes impossible to carry out gauge fixing with-
out performing an enormous number of iterations.

This is a variation of a problem which has been previ-
ously observed (and solved) by several groups simulating
large-N gauge theories, with N > 10 [36,37]. There, the
problem is in the update step. Updating on SUð2Þ
subgroups produces a simulation algorithm with a long
autocorrelation time, which becomes longer with increas-
ingN. The solution is to perform over-relaxation on the full
SUðNÞ group, implementing an old idea of Creutz [38]. I
do this a little differently than Refs. [36,37]. The max-
imizing V is given by Eq, (4), which I have already dealt
with while generating the fat links for the fermion action.
The same application of the Cayley-Hamilton theorem
gives V. As I already remarked, this V is an element of
UðNÞ, not SUðNÞ. Now one needs SUðNÞ elements, so I
must compute the determinant of V, extracting its phase �
and performing an additional multiplication by the diago-
nal matrix expð�i�=NÞ. Doing this makes gauge fixing no
more expensive for SUð7Þ than for SUð3Þ.

C. Baryon operators

Mesonic states are constructed in the usual way, by
sandwiching fermion propagators with Dirac matrices.
Baryons are a bit more complicated. In SUð3Þ it is common
to use relativistic sources (�abc½uaC�5d

b�uc, for example,
for the proton). I don’t know a nice way to generalize this
to N > 3, so I built baryon states using nonrelativistic
quark model states. So far, I have only considered Nf ¼
2 flavors of quarks. In what follows, I will usually label the
flavors as u and d, although one can give them different
masses—in SUð3Þ the same operator can give the p or �,
for example.

In the MILC code, quark propagators are constructed in
the Weyl (�5 diagonal) basis and are rotated to �0 basis. I
keep the two ‘‘large’’ components of the propagator’s
source and sink spin indices to be the fields which contract
the quark model states. There are two choices for projec-
tion (states which are eigenvectors of �0 with eigenvalues
�1 allow forward going in time and backward going
two-component quark propagators). One projection has
the lightest positive parity state in a channel as the

forward-going state and the lightest negative-parity state
as the backward-going one. The situation is reversed for
the other �0 projector. In order to reduce noise, these two
propagators are summed (actually subtracted), configura-
tion by configuration. This produces a single correlator
extending halfway across the lattice, which is a candidate
for fitting to a single decaying exponential.
A generic N-color baryon operator can be written as

jBi ¼ �abc...N
X
fsjg

Cfsjgu
a
s1u

b
s2 . . . d

N
sN j0i: (5)

The C’s are an appropriate set of Clebsch-Gordan coeffi-
cients. The baryon propagator is a multiple sum over
source and sink colors and spin coefficients of products
of N quark propagators. This creates the possibility a large
number of terms. Fortunately, many are redundant.
I condense states as follows. (I suspect that this is quite

inefficient and that more efficiency is almost certainly
possible.) I begin with states of definite u and d content.
These states are eigenstates of I3, J, and J3. I then anti-
commute fermion fields into a ‘‘standard order,’’ shown in
Eq. (5): moving from the left, spin-up u quarks, spin-down
u quarks, spin-up d quarks, and spin-down d quarks. The
epsilon symbol absorbs the resulting minus signs.
Then, two examples are the I ¼ J ¼ J3 ¼ N=2 state

jB; I ¼ J ¼ N=2i ¼ �abc...Nua" . . . u
N
" j0i (6)

and the SUð3Þ proton operator

jp; "i ¼ �abc

ffiffiffi
2

3

s
ðua" ub" dc# � ua" u

b
# d

c
" Þj0i: (7)

Wick’s theorem says that the n-quark propagator itself is
also a determinant:

hqi1ðxÞ �qj1ðyÞqi2ðxÞ �qj2ðyÞ . . . qinðxÞ �qjnðyÞi
¼ ð�Þn X

Pð1;2...nÞ
signðPÞðD�1

i1;jP1
ðx� yÞ

�D�1
i2;jP2

ðx� yÞ . . .D�1
in;jPn

ðx� yÞÞ: (8)

(P is a permutation of indices.) The baryon propagator,
then, is a product of an up-quark determinant times a
down-quark determinant, summed over all the color com-
binations of the individual up and down quarks. Many
terms are redundant in this product, as can be seen in an
example, the SUð3Þ proton: The contributions from the
�abcua" u

b
" source terms are antisymmetric in both Eqs. (5)

and (8). This means that it is only necessary to keep one
color ordering (b > a, for example) for each pair of colors
(a, b) in the baryon propagator, and each term can be
reweighted by a factor of 2! This generalizes straightfor-
wardly so that a term in any wave function withNu

" spin-up
u quarks, Nu

# spin-down u quarks, Nd
" spin-up d quarks, Nd

#
spin-down d quarks, picks up a restricted color sum, a
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single color ordering for each individual spin-flavor label
and a multiplicity Nu

" !N
u
# !N

d
" !N

d
# !.

An extreme example of this pruning procedure is the the
propagator for the I ¼ N=2, J ¼ N=2 state of Eq. (6). It is

�ðx; yÞ ¼ ðN!Þ2 detMðx; yÞ; (9)

where M is the N � N matrix of u" propagators from a

source color to a sink one.
The lower the J, the more complicated are the wave

functions. By SUð7Þ, the J ¼ 1=2 states involve several
hundred color combinations per spin configuration. This is
getting quite unwieldy. [Since the nonrelativistic quark
propagator is itself only a ð2NÞ � ð2NÞ matrix, there
must be more redundancy.] But for now, I go on, naively.

To summarize, flavor SUð2Þ wave functions and propa-
gators for the various states are

(i) I ¼ J ¼ N=2: as already described, there is one
determinant of an N � N matrix, for a cost N3

(ii) Analogs of �� and �� states are

jB; I ¼ N=2� 1; J ¼ N=2i
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þ!p ðua" . . . uN�1

" sN" j0i: (10)

The baryon correlator is built of N2 terms, one for
each s color in the source and sink. Each is a
determinant of an ðN � 1Þ � ðN � 1Þ matrix—the
propagator of the up quarks.

(iii) I ¼ J ¼ N=2� 1: We have an ðN � 1Þ � ðN � 1Þ
matrix of u-quark propagators and N þ NðN � 1Þ
color terms in the interpolating field for a cost of
roughly N4þ3 ¼ N7:

jB; I ¼ J ¼ N=2� 1i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

N

s
ðua" . . . uN�1

" dN#

� ua" . . . u
N�2
" uN�1

# dN" Þj0i: (11)

(iv) I ¼ J ¼ N=2� 2: An ðN � 2Þ � ðN � 2Þ matrix
of propagators. The last term in the interpolating
field has about N3 color possibilities, for a cost
of N9.

jB; I ¼ J ¼ N=2� 2i
/ ðua" . . . uN�2

" dN�1
# dN# � 2ua" . . . u

N�3
" uN�2

# dN�1
" dN#

þ ua" . . . u
N�4
" uN�3

# uN�2
# dN�1

" dN" Þj0i: (12)

(v) I ¼ J ¼ N=2� 3: our lowest state if N ¼ 7; there
are N11 terms to evaluate.

jB; I ¼ J ¼ N=2� 3i
/ ðua" . . . uN�3

" dN�2
# . . . dN#

� 3ua" . . . u
N�4
" uN�3

# dN�2
" dN�1

# dN#
þ 3ua" . . . u

N�5
" uN�4

# uN�3
# dN�2

" dN�1
" dN#

� ua" . . . u
N�6
" uN�5

# . . .uN�3
# dN�2

" . . . dN" Þj0i:
(13)

Still to be constructed are three flavor (u, d, s) states.
An obvious solution to the problem of increasing multi-

plicity is to prune states by doing an incomplete color sum.
This will collide with another big problem: SUðNÞ baryon
signals degrade as N increases. For now, the only way to
fight this is to collect larger data sets. Along the way,
however, one can try to improve our signals by tactics
such as averaging over the propagators with the same J
and different mJ’s. (In practice, I combine the mJ and-mJ

propagators into a single correlator.) Another approach
involves forcing a fit of several correlators that couple to
the same states to a common mass. Ultimately, a varia-
tional calculation along the lines of what is done for
excited-state baryon spectroscopy might be necessary.

III. RESULTS FOR PURE GAUGE
AND MESONIC OBSERVABLES

The simulations use the Wilson gauge action. Pure
gauge systems with the Wilson action and N ¼ 2 and 3
have a rapid crossover from strong to weak coupling,
which becomes increasingly strong as N rises, converting
to a real first-order bulk transition by N ¼ 6 or so. The
location of the bulk transition has been tabulated in
Ref. [3]. It is a lattice artifact. The weak coupling side of
the transition is the physical one from the point of view of
making comparisons to continuum physics: only there is
physics in the ultraviolet governed by asymptotic freedom
so that the lattice spacing can be taken to zero by tuning the
bare g2 to zero. It is necessary to perform simulations
above this transition, and I checked that my simulations
were above it, by using the table and by doing my own
simulations on smaller lattices to find the transition.
I present quenched results from three N’s, N ¼ 3, 5, 7. I

have data sets of 80, 120, and 160 propagators, respec-
tively. The bare gauge coupling � is tuned to match po-
tentials through the Sommer parameters r0 or r1. (Recall
r20Fðr0Þ ¼ �1:65. r1 is the shorter-distance version of the

Sommer parameter, r21Fðr1Þ ¼ �1:00. In the real world,
r1 � 0:31 fm.)
In the present simulations, �ðN ¼ 3Þ ¼ 6:0175 (to

match to previous work by Ref. [12]), and then the
N ¼ 5 and seven couplings were tuned to match r1.
Couplings and derived quantities are recorded in Table I.
The bare ’t Hooft couplings � turn out to be quite similar.
Potentials for the three values of N are shown in Fig. 1.
They seem satisfactorily matched.
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The combination r0
ffiffiffiffi
�

p
or r1

ffiffiffiffi
�

p
(� is the string tension)

gives a dimensionless combination of the Sommer radius
and the string tension �. The table shows that this quantity
scales well.

My spectroscopy is based on smeared Gaussian sources
and ~p ¼ 0 point sinks. At each N I collected sets for
several different values of the width of R0 for the source.
These correlation functions are not variational since
the source and sink are different. Thus, as R0 is varied,
the effective mass (meff is defined through fitting cor-
relators at a single distance to a single exponential; with
open boundary conditions for correlator CðtÞ, meff ¼
logCðtÞ=Cðtþ 1Þ) can approach its asymptotic value
from above or below. I observe that, typically, as R0 rises,
the mixed Gaussian-point correlators make their approach
from above for smaller R0 and from below for bigger R0.
An example of this behavior is shown in Fig. 2. (At large t,
the signal deteriorates—a characteristic feature quite fa-
miliar from many SUð3Þ studies. The noise is enhanced by
the small data sets—40 lattices—used to make the figure.)

Then, rather than re-running the propagator code with yet
another source, I can combine pairs of sources to produce a
flat meff distribution using, say,

CðtÞ ¼ CðR0 ¼ 6; tÞ þ fCðR0 ¼ 8; tÞ: (14)

For SUð3Þ, the optimal source is a linear combination of
R0 ¼ 4 and 6 sources, favoring larger R0 as the quark mass
falls. For SUð5Þ I mix sources with R0 ¼ 6 and 8. For
SUð7Þ the R0 ¼ 8 source produced flat effective mass plots
across my mass range, and I did not do any source mixing.
Tables II, III, and IV contain the resulting spectroscopy.

The values of the masses are highly correlated because they
come from the same underlying configurations. Mass dif-
ferences, which will be described below, are taken from
jackknife averages of the data.
Now I turn to results for mesonic observables. The

critical hopping parameter 	c is determined through the
vanishing point for the axial Ward i quark mass, defined as

@t
X
x

hAa
0ðx; tÞOai ¼ 2mq

X
x

hPaðx; tÞOai; (15)

where the axial current Aa
� ¼ �c���5ð
a=2Þc , the pseu-

doscalar density Pa ¼ �c�5ð
a=2Þc , and Oa could be any
source. Here, it is my Gaussian shell model source.
The mass is shifted from its free value in the usual way.

To compare to usual expectations, recall the relation be-
tween g2CF and �: we expect the mass shift

�m ¼ 1

2	c

� 4 (16)

TABLE I. Bare parameters and observables from potentials.

SUð3Þ SUð5Þ SUð7Þ
� 6.0175 17.5 34.9

� ¼ g2N 2.99 2.86 2.81

r0=a 5.36(6) 5.20(5) 5.41(3)

r1=a 3.90(3) 3.77(3) 3.91(2)

r0
ffiffiffiffi
�

p
1.175(3) 1.172(3) 1.167(2)

r1
ffiffiffiffi
�

p
0.856(5) 0.850(4) 0.845(2)

FIG. 1. Static potentials from 163 � 32 volumes: (a) SUð3Þ at
� ¼ 6:0175; (b) SUð5Þ at � ¼ 17:5; (c) SUð7Þ at � ¼ 34:9.
Effective mass fits for several values of t are overlaid.

FIG. 2. Effective masses for the highest-spin baryon for differ-
ent size sources, labeled by octagons for R0 ¼ 4, diamonds for
R0 ¼ 6, and squares, R0 ¼ 8. (a) SUð3Þ, 	 ¼ 0:1265; (b) SUð5Þ
123 volume, 	 ¼ 0:1275; (c) SUð7Þ, 123 volume, 	 ¼ 0:129.
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to show 1=N2 variation. This I roughly see; compare Fig. 3.
Just for comparison over a wider N range, I show the older
results of Ref. [11], done with unimproved Wilson
fermions.

Next, we turn to spectroscopy, shown for mesons in
Fig. 4 and baryons in Fig. 5. Data are plotted in terms of
the axial Ward i quark mass, in units of r1, to make the
x axis the same for all N. The near independence of meson

masses on N (when expressed in terms of a common
variable) is apparent. This is not so for baryons.
One is tempted to compare the chiral limit of the vector

meson mass as a function of N. A simple linear fit to the
data of Fig. 4 gives r1mV ¼ 1:58ð2Þ, 1.44(1) and 1.52(1)
for N ¼ 3, 5, 7. With a nominal 1=r1 ¼ 635 MeV, this is
about 900 MeV—1 GeV versus 770 MeV for the physical
rho meson. One always has to be careful with quenched
lattice results from a single volume and lattice spacing, but

TABLE II. Spectra from SUð3Þ simulations.

	 amq amPS amV amBðJ ¼ 3=2Þ amBðJ ¼ 1=2Þ
0.1230 0.119 0.525(2) 0.617(3) 0.996(6) 0.942(5)

0.1240 0.089 0.449(2) 0.561(3) 0.915(7) 0.846(5)

0.1250 0.055 0.362(2) 0.505(4) 0.835(8) 0.744(6)

0.1253 0.046 0.333(2) 0.491(5) 0.804(9) 0.700(6)

0.1260 0.029 0.255(3) 0.457(6) 0.747(12) 0.613(7)

0.1265 0.014 0.184(4) 0.427(10) 0.703(13) 0.516(12)

TABLE III. Spectra from SUð5Þ simulations.

	 amq amPS amV amBðJ ¼ 5=2Þ amBðJ ¼ 3=2Þ amBðJ ¼ 1=2Þ
0.1240 0.127 0.565(1) 0.655(1) 1.864(6) 1.814(5) 1.786(5)

0.1250 0.099 0.488(1) 0.593(1) 1.708(6) 1.650(6) 1.616(5)

0.1260 0.070 0.403(1) 0.532(2) 1.566(7) 1.488(6) 1.446(6)

0.1265 0.055 0.356(1) 0.500(2) 1.486(7) 1.404(6) 1.356(6)

0.1270 0.041 0.302(2) 0.469(3) 1.419(8) 1.325(7) 1.270(7)

0.1275 0.026 0.240(2) 0.440(4) 1.357(10) 1.243(9) 1.177(8)

FIG. 3. Additive mass shift versus 1=N2. My data are shown as
octagons. The diamonds are the pure Wilson fermion data of
Ref. [11], just for comparison over a wider N range.

TABLE IV. Spectra from SUð7Þ simulations.

	 amq amPS amV amBðJ ¼ 7=2Þ amBðJ ¼ 5=2Þ amBðJ ¼ 3=2Þ
0.1260 0.115 0.565(1) 0.663(1) 2.681(11) 2.649(8) 2.612(8)

0.1270 0.088 0.488(1) 0.603(1) 2.483(9)s 2.420(10) 2.386(9)

0.1280 0.062 0.401(1) 0.537(2) 2.279(11) 2.215(11) 2.174(10)

0.1290 0.036 0.299(1) 0.471(3) 2.082(15) 1.994(12) 1.929(11)

FIG. 4. Meson spectroscopy in units of r1 from N ¼ 3, 5 and
7, plotted as squares, diamonds and octagons, respectively. Panel
(a) shows the squared pseudoscalar mass. Panel (b) shows the
vector meson mass.
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the number is completely sensible. It is close to the results
of Refs. [11,12].

(Using completely different methodology plus a differ-
ent choice of physical input to set the lattice scale, the
authors of Ref. [14] have a mass which is from 30 percent
to a factor of 2 higher than this. The difference between
their result and the low-N ones will probably only be
resolved by removing the many differences in methodol-
ogy one at at time.)

In what follows, I will replace the quark mass as the
independent variable by the square of the ratio of the
pseudoscalar to vector meson mass. The quark mass is
scheme dependent; the ratio is not. Of course, nothing I
say is affected by this choice.

Vacuum-to-meson matrix elements are expected to scale

as
ffiffiffiffi
N

p
. I have looked at the pseudoscalar, vector meson,

and axial vector meson decay constants. To be explicit,
they are defined as follows:

h0j �u�0�5dj�i ¼ m�f�; (17)

(so f� � 132 MeV) while the vector meson decay constant
of state V is defined as

h0j �u�idjVi ¼ m2
VfV�i (18)

and the axial vector meson decay constant of state A is

h0j �u�i�5djAi ¼ m2
AfA�i: (19)

�i is a unit polarization vector. The lattice quantities f
L are

converted to continuum convention by f ¼ fLð1�
ð3	Þ=ð4	cÞÞ. I have left out the lattice-to-continuum
Z-factor. With nHYP clover fermions, it is a few percent
away from unity. (Ref. [39] has a table of one-loop
Z-factors for various actions and HYP (hypercubic) links,
which are a predecessor of nHYP links with the same one-
loop Z factor: For a current of type i, Zi ¼ 1þ
g2Cf=ð16�2Þzi. The pseudoscalar factor is zP ¼ 0:04.

The corresponding vector and axial vector factors are
zV ¼ �1:38 and zA ¼ �1:30.)
The pseudoscalar decay constant is shown in Fig. 6. I

show the dimensionless combination r1fPS=
ffiffiffiffi
N

p
. It’s nice

to see the
ffiffiffiffi
N

p
scaling. Naive linear extrapolations give

r1f�=
ffiffiffiffi
N

p ¼ 0:154ð2Þ, 0.151(1) and 0.154(2) for N ¼ 3,

5, 7. The real world value is 1=
ffiffiffi
3

p � 0:31 fm�
132 MeV ¼ 0:12, so the quenched decay constant at this
lattice spacing is coming in about 15 percent high. Experts
know that this kind of extrapolation is far too naive, to say
nothing about comparing quenched QCD to the real world.
Nevertheless, the answer is not absurd. Reference [26]
shows a figure with the ratio of quenched f� to its experi-
mental result about ten percent high.ffiffiffiffi

N
p

scaling for the pseudoscalar decay constant was first
observed by the authors of Ref. [13]. Their numerical result
for the decay constant, translated to SUð3Þ, is also high, but
by 40 percent. Detecting the origin of this difference will
probably again require detailed numerical work.
The same comparison is shown for fV , and fa1 in Fig. 7.

The a1 decay constant is quite noisy at small quark mass

and I omit those results as untrustworthy. The
ffiffiffiffi
N

p
scaling

rule works well here, too.

FIG. 5. Baryon spectroscopy in units of r1 from N ¼ 3, 5 and
7, plotted as squares, diamonds and octagons, respectively. For
all N, higher J lies higher in mass: for N ¼ 3 and 5 I have all
states from J ¼ 1=2 to J ¼ N=2. For N ¼ 7 only the J ¼ 7=2,
5=2, and 3=2 states are shown.

FIG. 6. Pseudoscalar decay constant, matched from the differ-
ent simulations using the r1 parameter from the potential and
rescaled by 1=

ffiffiffiffi
N

p
. Squares, Nc ¼ 3; diamonds, Nc ¼ 5, octa-

gons, Nc ¼ 7.

FIG. 7. Vector meson and axial vector meson decay constants,
rescaled by 1=

ffiffiffiffi
N

p
. Squares, Nc ¼ 3; diamonds, Nc ¼ 5, octa-

gons, Nc ¼ 7.
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IV. RESULTS FOR BARYONS—THE
ROTOR SPECTRUM

My baryon data in Fig. 5 show masses that increase
roughly linearly in N. All data show that for the baryons,
higher J does lie higher in energy. This is no surprise, so
let’s look deeper. Figure 8 shows the splitting between the
various members of each multiplet. It is extracted using a
jackknife average of differences of the two baryon masses.

I now demonstrate that the masses in Fig. 8 form a rotor
spectrum. First, we can test the numerator of the rotor term
of Eq. (1) N by N. This is done by looking at the ratio of
differences

�ðJ1; J2; J3Þ ¼ MðN; J2Þ �MðN; J3Þ
MðN; J1Þ �MðN; J3Þ ; (20)

for which the constants (A, B) cancel. The result is shown
in Fig. 9. I just plot one mass difference as a function of the
other one and compare the data to a straight line of zero
intercept whose slope is given by Eq. (20). The rotor
spectrum is confirmed for all the members of the N ¼ 5
and 7 multiplets I observe.

Second, one can look at the J ¼ 3=2� 1=2 splitting and
check the N dependence for the bottom of the multiplets:

MðN; 3=2Þ ¼ MðN; 1=2Þ ¼ 3B

N
: (21)

Given the states I have recorded, this can only be done for
N ¼ 3 and 5. Rescaling the mass difference by N=3 ex-
poses B. The result is shown in Fig. 10(a). This is quite
promising: the N ¼ 3 and 5 data coincide.
Next, we can look at the top of the multiplet. Equation (1)

gives us a rescaled Landé interval rule: it says that the
splitting between the J ¼ N=2 and J ¼ N=2� 1 states is a
constant, B, independent of J. Figure 10(b) shows this
difference. It and panel (a) share the common N ¼ 3
points, but the other points are different. The envelope of
the curve is BðmqÞ.
By design, these differences ignore the A term in Eq. (1).

To get it, we can look at the bottom of the multiplets,

A ¼ 5

4N
MðN; J ¼ 1=2Þ � 1

4N
MðN; J ¼ 3=2Þ; (22)

or the top of the multiplets,

A ¼ N þ 2

4N
MðN; J ¼ N=2� 1Þ

� N � 2

4N
MðN; J ¼ N=2Þ: (23)

Figure 11 shows these two mass formulas. Again, they
behave consistently.
Figures 10 and 11 show that the A and B coefficients in

Eq. (1) have typical hadronic sizes. Inserting a nominal
lattice spacing, 1=a� 2100 MeV, we see that A ¼
400 MeV at small quark mass and is an increasing function
of quark mass. In quark model language, A is the constitu-
ent quark mass and its value and dependence on quark
mass are both quite reasonable. B ¼ 300 MeV and falls
with energy. Again this is a typical hadronic scale.
These values address an old conundrum of large-N

phenomenology: the mass difference of the nucleon and
� is supposed to be order �QCD=N. It is measured to be

about 300 MeV, which is itself order �QCD. The plots of

mass differences show that the nucleon-� mass splitting is
indeed well described by large-N QCD. Having data at
several N’s as well as at several quark masses makes this

FIG. 8. (a) Delta-proton (J ¼ 3=2� 1=2) mass splitting versus
quark mass, in quenched SUð3Þ. (b) SUð5Þ mass splittings:
octagons for J ¼ 5=2� 1=2, squares for J ¼ 5=2� 3=2, and
crosses, for J ¼ 3=2� 1=2. (c) SUð7Þ mass splittings: octagons
for J ¼ 7=2� 3=2, squares for J ¼ 7=2� 5=2, and crosses, for
J ¼ 5=2� 3=2. Equation (1) says that the SUð5Þ J ¼ 5=2� 3=2
splitting is supposed to be equal to the SUð3Þ J ¼ 3=2� 1=2
mass splitting, and also to the SUð7Þ J ¼ 7=2� 5=2 splitting.

FIG. 9. Mass differences in the SUð5Þ and SUð7Þ multiplets,
panels (a) and (b), respectively. For SUð5Þ the line has a
slope which is equal to the ratio �ð5=2; 3=2; 1=2Þ ¼ 3=8 [recall
Eq. (20)]. For SUð7Þ the slope of the line is �ð7=2; 5=2; 3=2Þ ¼
5=12.
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result appear immediately. In particular, the data disfavor
the large-N scenario of Ref. [40].

V. CONCLUSIONS

The qualitative features of large-N QCD phenomenol-
ogy are easy to observe. The shape of the potential (char-
acterized by the scaling combination r1

ffiffiffiffi
�

p
) is

N-independent. Meson masses show little N-dependence
is N-independent. Vacuum-to-hadron matrix elements

scale as
ffiffiffiffi
N

p
. Two-flavor baryons show a prominent rotor

spectrum. This seems to be true for both the bottom of the
spectrum (low J) and the top (J ¼ N states).
Naively, one might expect that the wave function of the

baryon would be N-independent. Lattice simulations do
not generally directly reveal wave function information,
but one might expect that the same interpolating fields
might behave the same for different N’s. That does not
seem to be the case; larger N seems to prefer larger
Gaussian trial wave functions. But perhaps even N ¼ 7 is
not such large N and one should push further.
Readers who do lattice simulations can undoubtedly list

many obvious extensions of this project: smaller lattice
spacing to do an honest extrapolation to the continuum
limit, bigger volumes to check that the answers are trust-
worthy, smaller quark masses, and bigger N’s are obvious
technical improvements. Giving the two fermions different
masses, or better yet, considering flavor SUð3Þ, would
allow more tests of large-N spectroscopy. One might really
want to test whether dynamical fermions become less
important at large N. Writing the code to simulate SUðNÞ
fundamental fermions is straightforward; running it might
be costly, and seeing the expected small differences shrink
as N rises would be even more costly.
The continuum literature of large-N baryons is more

than 30 years old, and I clearly have only scratched its
surface in this paper. Several simple ingredients were
useful: having data at several N’s, at several J’s for each
N, and having data at many quark masses. Most of the
continuum literature I have read restricts itself to state-
ments about J ¼ 1=2 and 3=2—presumably because that is
all that exists in experimental data. Predictions for any J
can challenge the lattice and would be candidates for future
studies.
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