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We present a new determination of the B and Bs meson decay constants using nonrelativistic quantum

chromodynamics (NRQCD) b-quarks, highly improved staggered quark (HISQ) light and strange valence

quarks and the MILC collaboration Nf ¼ 2þ 1 lattices. The new calculations improve on HPQCD’s

earlier work with NRQCD b-quarks by replacing AsqTad with HISQ valence quarks, by including a more

chiral MILC fine ensemble in the analysis, and by employing better tuned quark masses and overall scale.

We find fB ¼ 0:191ð9Þ GeV, fBs
¼ 0:228ð10Þ GeV and fBs

=fB ¼ 1:188ð18Þ. Combining the new value

for fBs
=fB with a recent very precise determination of the Bs meson decay constant based on HISQ

b-quarks, fBs
¼ 0:225ð4Þ GeV, leads to fB ¼ 0:189ð4Þ GeV. With errors of just 2.1% this represents the

most precise fB available today.

DOI: 10.1103/PhysRevD.86.034506 PACS numbers: 12.38.Gc

I. INTRODUCTION

Precision electroweak data gathered at the B factories,
the Tevatron and at LHCb are allowing particle physicists
to carry out stringent tests of the Standard Model (SM) and
search for hints of new physics (NP). Several groups, for
instance, are studying global fits to the Cabibbo-
Kobayashi-Maskawa unitarity triangle (UT) and checking
whether various combinations of constraints coming from
experiment and theory can be accommodated consistently
with each other [1–3]. In recent years some tensions at the
2–3� level within the SM have emerged from these studies
and it will be very interesting to see whether future im-
provements in experimental and theory inputs will remove
these tensions or conversely elevate them to serious hints
of new physics.

Lattice quantum chromodynamics (QCD) is playing an
important role in UT analyses, providing crucial inputs

such as �K, B̂Bq
, � ¼ fBs

ffiffiffiffiffiffiffiffi
BBs

p
=fB

ffiffiffiffiffiffi
BB

p
, fB and information

on semileptonic form factors [4]. To make progress in
resolving the tensions in UT analyses it is imperative to
reduce the errors in current lattice results. In Ref. [1] the B
meson decay constant fB is not used as an input for the

global fits but becomes instead one of the fit outputs fðfitÞB .

This fðfitÞB is then compared with the SM (i.e., lattice QCD)

value fðQCDÞB to check for consistency. The authors of
Ref. [1] experiment with dropping different processes in

their global fits and study how this affects fðfitÞB and when

fðfitÞB agrees best with fðQCDÞB . Using this fit-comparison
procedure, the authors attempt to determine the dominant
source of deviations from the SM, e.g., whether it is
coming from B! cKsðsin2�Þ, Bs and Bd mixing, Kaon

mixing (�K) or B! ��. Needless to say this fðfitÞB � fðQCDÞB

comparison method requires knowing fðQCDÞB as accurately
as possible. In this article we significantly reduce errors in

fðQCDÞB . With reduced errors, the B meson decay constant
will hopefully help further constrain UT analyses in the
future.
In the next section we introduce the lattice setup

and explain how the bottom and strange quark masses
were fixed in our lattice actions. Section III discusses
operator matching between heavy-light currents in full
continuum QCD and in the lattice theory. We describe
two-point correlators and the smearings employed.
In Sec. IV we present our fitting strategies to the two-point
correlators and describe how the extracted amplitudes
lead to the hadronic matrix elements relevant for determin-
ing decay constants. This section also includes summary

tables of fit results for �s ¼ fBs

ffiffiffiffiffiffiffiffiffi
MBs

p
, � ¼ fB

ffiffiffiffiffiffiffiffi
MB

p
, and

their ratios for each of the 6 MILC ensembles that we
work with. Then in Sec. V we explain how continuum
and chiral limit physics is extracted from our simulation
data. Section VI discusses results at the physical point and
the error budget and we conclude with a summary in
Sec. VII. For the rest of this article we omit the ‘‘QCD’’

in fðQCDÞB .
*Present address: Argonne Leadership Computing Facility,
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II. THE LATTICE SETUP AND TUNING OF BARE
QUARK MASSES

HPQCD’s previous work on B and Bs meson decay
constants with nonrelativistic quantum chromodynamics
(NRQCD) b-quarks used AsqTad light and strange quarks
[5]. It utilized the MILC AsqTad Nf ¼ 2þ 1 lattices [6].

In the present work we replace the AsqTad valence quarks
by their highly improved staggered quark (HISQ) [7]
counterparts thereby reducing the dominant discretization
errors coming from staggered taste breaking by roughly a
factor of three [8]. Details of the MILC ensembles em-
ployed here are given in Table I. There is considerable
overlap between the MILC ensembles used in the present
article and in Ref. [5]. In Ref. [5] an additional coarse
ensemble with sea quark masses ml=ms ¼ 0:007=0:05 was
employed. Here we have added instead a third, more-chiral
fine ensemble, the 403 � 96 Set F0 with ml=ms ¼
0:0031=0:031.

For the b-quarks in our simulations we use the same
NRQCD action employed in Ref. [5]. Since the publication
of Ref. [5] the HPQCD collaboration has updated the value
of the scale parameter r1 to r1 ¼ 0:3133ð23Þ fm [9], and
this necessitated a retuning of all quark masses including
the bare b-quark mass aMb for all MILC ensembles in
Table I. To fix aMb we use the spin averaged � mass. One
calculates,

�Mb �b �
1

4
½3Mkinð3S1Þ þMkinð1S0Þ�; (1)

with

Mkin ¼
p2 � �E2

p

2�Ep

; �Ep ¼ EðpÞ � Eð0Þ; (2)

and compares with the experimental value (adjusted for the
absence of electromagnetic, annihilation and sea charm
quark effects in our simulations) of 9.450(4) GeV [10].
Results from this tuning are shown in Fig. 1. Errors in the
data points include statistical and r1=a errors. One sees that
these are much smaller than the 0.7% error in the absolute
physical value of r1. To achieve such small statistical errors
in Mkin it was crucial to employ random wall sources for
the NRQCD b-quark propagators. Most of the tuning
of aMb was carried out with momentum 2�=ðaLÞ for

ensembles C1, C2, C3, F1 and F2, and with momentum
4�=ðaLÞ for ensemble F0. However, we have checked on
one ensemble that consistentMkin values result from higher
(but not too large) momenta as well. For instance on C2
with aMb ¼ 2:8 (slightly larger than the actual physical
b-quark mass) one finds aMkinð3S1Þ ¼ 5:933ð15Þ for mo-
mentum 2�=ðaLÞ and aMkinð3S1Þ ¼ 5:941ð15Þ for mo-
mentum 4�=ðaLÞ.
The s-quark mass was tuned to the (fictitious)�s mass of

0.6858(40) GeV [9]. Figure 2 shows results for this tuning.
All but the set F0 point (most chiral point on plot) were
fixed already in Ref. [11]. Having fixed the bottom and
strange quark masses on each ensemble one can investigate
the mass combination MBs

� �Mb �b=2. The leading depen-

dence on the heavy quark mass cancels in this difference,

TABLE I. Simulation details on three ‘‘coarse’’ and three
‘‘fine’’ MILC ensembles.

Set r1=a ml=ms (sea) Nconf Ntsrc L3 � Nt

C1 2.647 0:005=0:050 1200 2 243 � 64
C2 2.618 0:010=0:050 1200 2 203 � 64
C3 2.644 0:020=0:050 600 2 203 � 64
F0 3.695 0:0031=0:031 600 4 403 � 96
F1 3.699 0:0062=0:031 1200 4 283 � 96
F2 3.712 0:0124=0:031 600 4 283 � 96
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FIG. 1 (color online). Tuning of the b-quark mass via the spin
averaged � mass. 9.450 GeV corresponds to the experimental
value adjusted for lack of electromagnetic, annihilation and sea
charm quark effects in the simulations.
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FIG. 2 (color online). Tuning of the strange quark mass via the
fictitious �s meson.
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so one is testing how well the lattice actions are simulating
QCD bound state dynamics. Results for this mass differ-
ence are shown in Fig. 3. Within the r1 scale error and
additional �10 MeV uncertainty from relativistic correc-
tions to �Mb �b one sees agreement with experiment after
removing discretization effects.

Table II summarizes the valence quark masses used in
this article. We include the HISQ valence charm quark
masses for each ensemble, since these provide a convenient
scale in the chiral extrapolations of Sec. V. The charm
quark masses were fixed by tuning to the �c mass. The
light HISQ valence quark mass ml is chosen so that

mlðvalenceÞ=msðvalenceÞ is close to mlðseaÞ=mphys
s;AsqTad,

where m
phys
s;AsqTad corresponds to the physical AsqTad

strange quark mass. As a final consistency check of our
lattice setup, we have looked at the Bs � B mass differ-
ence. This is shown in Fig. 4.

III. OPERATOR MATCHING AND RELEVANT
CORRELATORS

Decay constants fBq
are determined by calculating the

matrix element of the heavy-light axial vector current A	

between the Bq meson and hadronic vacuum states. For the

temporal component in the Bq rest frame one has

h0jA0jBqiQCD ¼ MBq
fBq

: (3)

Simulations are carried out with effective lattice theory
currents,

Jð0Þ0 ðxÞ ¼ ��q�0�Q; (4)

Jð1Þ0 ðxÞ ¼
�1
2Mb

��q�0� � r�Q; (5)

Jð2Þ0 ðxÞ ¼
�1
2Mb

��q� � r
 

0�0�Q; (6)

with �0 ¼ 
5
0 for decay constant calculations. �q is the

HISQ action light or strange quark field (in its four com-
ponent ‘‘naive fermion’’ form) and �Q is the heavy quark

field with the upper two components given by the two-
component NRQCD fields and the lower two components
set equal to zero. We have matched these effective theory
currents to A0 in full QCD at one-loop through order �s,
�QCD

M , �s

aM , a�s, �s
�QCD

M . Details of the matching of

NRQCD/HISQ currents will be presented in a separate
publication [12]. The calculations follow the strategy de-
veloped in Ref. [13] and employed for NRQCD/AsqTad
currents in Ref. [14]. One finds

hA0iQCD ¼ ð1þ �s�0ÞhJð0Þ0 i þ ð1þ �s�1ÞhJð1Þ;sub0 i
þ �s�2hJð2Þ;sub0 i; (7)

JðiÞ;sub0 ¼ JðiÞ0 � �s
10J
ð0Þ
0 : (8)

Here �0, �1, �2 and 
10 are the one-loop matching
coefficients.
We use smeared heavy-light bilinears to represent the Bq

mesons. For instance, we create a meson at time t0 via
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FIG. 3 (color online). The mass difference MBs
� �Mb �b=2.

TABLE II. Valence quark masses.

Set aml ams amc aMb

C1 0.0070 0.0489 0.6207 2.650

C2 0.0123 0.0492 0.6300 2.688

C3 0.0246 0.0491 0.6235 2.650

F0 0.00339 0.0339 0.4130 1.832

F1 0.00674 0.0337 0.4130 1.832

F2 0.0135 0.0336 0.4120 1.826
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FIG. 4 (color online). The Bs � B mass difference �M versus
the light valence quark mass.
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��ð ~x; t0Þ �
X
~x1

��Qð ~x1; t0Þ��ð ~x1 � ~xÞ�sc�qð ~x; t0Þ; (9)

with �sc ¼ 
5. For the smearing functions ��ð ~x1 � ~xÞ we
use a �-function local smearing (� ¼ 1) or Gaussian

smearings / e�j ~x1� ~xj2=ð2r2
0
Þ for two different widths r0 and

normalized to one (� ¼ 2, 3). We then calculate a 3� 3
matrix of zero momentum meson correlators with all com-
binations of source and sink smearings,

CB
�;�ðt; t0Þ ¼

1

V

X
~x

X
~y

h�y�ð ~y; tÞ��ð ~x; t0Þi; (10)

with V ¼ L3. We use Gaussian widths in lattice units of
size r0 ¼ 3 or 5 on coarse ensembles and r0 ¼ 4 or 7 on the
fine ensembles. In addition to this matrix of B correlators

we also need correlators with �� at the source and JðiÞ0 at

the sink for i ¼ 0, 1, 2,

CJi
� ðt; t0Þ ¼ 1

V

X
~x

X
~y

hJðiÞ0 ð ~y; tÞ��ð ~x; t0Þi: (11)

Since 
0�Q ¼ �Q it turns out that

CJ0
� � CB

�¼1;�: (12)

Furthermore for zero momentum correlators one can show
that

CJ2
� � CJ1

� ; (13)

so only the three CJ1
� , � ¼ 1, 2, 3, are required in addition

to the 3� 3 matrix CB
�;�.

The spatial sums
P

~y in (10) and (11) are done at the sink,

and so can be handled very easily. We implement the
P

~x

sums at the source via random wall sources. This is de-
scribed for instance in Ref. [10]. Here we give some of the
explicit formulas. In terms of quark propagators for the�Q

and �q fields Eq. (10) becomes (we set t0 ¼ 0 for sim-

plicity)

CB
�;�ðtÞ ¼

1

V

X
~x

X
~y

X
~x1

X
~y1

htrfGQð ~y1 � ~x1; tÞ��ð ~x1 � ~xÞ

� �scGqð ~x� ~y;�tÞ�sk��ð ~y1 � ~yÞgi
¼ 1

V

X
~x

X
~y

X
~x1

X
~y1

htrfGQð ~y1 � ~x1; tÞ��ð ~x1 � ~xÞ

� �sc
5G
y
q ð ~y� ~x; tÞ
5�sk��ð ~y1 � ~yÞgi: (14)

We set

Gðsm�Þ
Q ð ~y1; ~x; tÞ �

X
~x1

GQð ~y1 � ~x1; tÞ��ð ~x1 � ~xÞ; (15)

and recall the relation between the naive HISQ propagator
Gqðy� xÞ and the one component HISQ quark propagator

G�ðy� xÞ [15],

Gqðy� xÞ ¼ �ðyÞG�ðy� xÞ�yðxÞ; (16)

or equivalently,

Gyq ðy� xÞ ¼ �ðxÞ½�ðyÞG�ðy� xÞ�y; (17)

with,

�ðxÞ � 
x0
0 


x1
1 


x2
2 


x3
3 : (18)

Setting �sc ¼ �sk ¼ 
5 one has

CB
�;�ðtÞ ¼

1

V

X
~x

X
~y

X
~y1

htrf½Gðsm�Þ
Q ð ~y1; ~x; tÞ�ðxÞ�½�ðyÞ

�G�ð ~y� ~x; tÞ�y��ð ~y1 � ~yÞgi: (19)

We introduce a random U(1) field �ð ~xÞ at each spatial site
of the source time slice (in practice we employ separate
U(1) fields for each color but suppress this index in the
formulas given below) and replace

1

V

X
~x

! 1

V

X
~x

X
~x0
�ð ~xÞ�yð ~x0Þ: (20)

Equation (19) becomes

CB
�;�ðtÞ ¼

1

V

X
~x

X
~x0

X
~y

X
~y1

htrf½Gðsm�Þ
Q ð ~y1; ~x; tÞ�ðxÞ�ð ~xÞ�

� ½�ðyÞG�ð ~y� ~x0; tÞ�ð ~x0Þ�y��ð ~y1 � ~yÞgi:
(21)

An even more concise expression can be obtained if one
defines

Gðsm�;rwÞ
Q ð ~y1; tÞ � 1ffiffiffiffi

V
p X

~x

Gðsm�Þ
Q ð ~y1; ~x; tÞ�ðxÞ�ð ~xÞ

¼ 1ffiffiffiffi
V
p X

~x1

GQð ~y1 � ~x1; tÞ

�X
~x

��ð ~x1 � ~xÞ�ðxÞ�ð ~xÞ; (22)

and,

GðrwÞq ð ~y; tÞ � �ðyÞGðrwÞ� ð ~y; tÞ

� 1ffiffiffiffi
V
p X

~x0
�ðyÞG�ð ~y� ~x0; tÞ�ð ~x0Þ: (23)

This leads to

CB
�;�ðtÞ ¼

X
~y

X
~y1

htrf½Gðsm�;rwÞ
Q ð ~y1; tÞ�

� ½GðrwÞq ð ~y; tÞ�y��ð ~y1 � ~yÞgi: (24)

Equations (22) and (23) tell us that we should create
NRQCD propagators with source,
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SC�
Qð ~x1Þ ¼

1ffiffiffiffi
V
p X

~x

��ð ~x1 � ~xÞ�ðxÞ�ð ~xÞ; (25)

and HISQ propagators with source,

SCqð ~x0Þ ¼ 1ffiffiffiffi
V
p �ð ~x0Þ: (26)

The double sum in (24) is carried out via fast Fourier
transforms.

IV. FITS AND DATA ANALYSIS

The 3� 3 matrix of correlators CB
�;� of Eq. (10) and the

CJi
� of Eq. (11) for i ¼ 1 can be combined into a 4� 3

matrix of correlators C�;� with C�;� � CB
�;� for �, � ¼ 1,

2, 3 and C�¼4;�¼1;2;3 � CJ1
�¼1;2;3. Various subsets of these

correlators are then fit simultaneously to the form,

C�;�ðtÞ ¼
XN�1
j¼0

b�j b
�
j e
�Ejðt�1Þ þ ð�1Þt X

~N�1

k¼0
~b�k

~b�k e
� ~Ekðt�1Þ;

(27)

to extract the ground state energy E0 and amplitudes b�0 .
The hadronic matrix elements appearing in (7) are related

to the amplitudes b�0 as

a2h0jJð0Þ0 jBqi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBq

a
q

b�¼10 (28)

and

a2h0jJð1Þ0 jBqi ¼ a2h0jJð2Þ0 jBqi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBq

a
q

b�¼40 : (29)

The factors of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBq

a
q

come about due to differences in

normalization of states in the effective lattice theory com-
pared to the standard relativistic normalization of states.

We have investigated fits to various subsets of correla-
tors (submatrices) taken from the full 4� 3 matrix of 12
correlators. For each correlator we fit data between t ¼ tmin

and t ¼ tmax with tmin ¼ 2� 4 and tmax ¼ 16 on coarse
ensembles and tmin ¼ 4� 8 and tmax ¼ 24 on the fine
ensembles. In Fig. 5 we show results for the Bs energy in
lattice units, aEBs

, from fits to ensemble C2. One sees a

large improvement upon going from a fit to a single local-
local (�, � ¼ 1) correlator to a 2� 2 matrix of correlators
(�, � ¼ 1, 2 or �, � ¼ 1, 3). There appears to be little
further improvement when one goes to 3� 3matrices. Our
final fit results are taken from 3� 2matrix fits with � ¼ 1,
3 and � ¼ 1, 3, 4. We do simultaneously a 3� 2 fit to B
correlators together with a 3� 2 fit to Bs correlators. This

allows us to get ratios such as fBs

ffiffiffiffiffiffiffiffiffi
MBs

p
=fB

ffiffiffiffiffiffiffiffi
MB

p
and mass

differences such asMBs
�MB in a single fit with correctly

correlated errors, in addition to the separate quantities fB
and fBs

.

In all our fits we use Bayesian methods [16] and work
with fixed tmin and tmax while increasing the number of

exponentials N and ~N in Eq. (27) until fit results including
errors and chisquares/degrees of freedom (DOF) have
saturated. Figure 6 shows fit results for the B meson
amplitude b10 on ensemble C1 versus N (which we also

set equal to ~N). One sees that things have stabilized by

N ¼ 4. In Table III we collect fit results for a3=2� �
a3=2fB

ffiffiffiffiffiffiffiffi
MB

p
and a3=2�s � a3=2fBs

ffiffiffiffiffiffiffiffiffi
MBs

p
for the six ensem-

bles. The quantities �ð0Þ and �ð0Þs are analogous results if

only the 1� hJð0Þ0 i contribution is included on the right-

hand side of Eq. (7), i.e., if one drops all one-loop and 1/M
current corrections. In Table IV we summarize results for
the mass difference �M � MBs

�MB in GeVs and the

ratios �s=� and �ð0Þs =�ð0Þ. Figure 4 illustrates the results
for �M. For the ratios one sees good agreement between
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2 x 2 (loc-sm2)

3 x 3 (loc-sm1-sm2)

3 x 2 (loc-sm1-j1)

3 x 2 (loc-sm2-j1)

simultaneous Bs  and B

FIG. 5 (color online). Examples of results from different
matrix fits for the Bs meson energy in lattice units. These fit
results are taken from the C2 ensemble and used N ¼ ~N ¼ 7 in
Eq. (27).
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FIG. 6 (color online). Fit results for the B meson amplitude b10
on ensemble C1 versus the number of exponentials N ¼ ~N �
Nexp. Simultaneous 3� 2 matrix fits were carried out to both B

and Bs meson correlators at the same time.
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�s=� and �ð0Þs =�ð0Þ indicating complete lack of sensitiv-
ity to Oð�Þ or Oð1=MÞ current corrections in this ratio.

V. EXTRACTING CONTINUUM AND CHIRAL
LIMIT PHYSICS

In this section we describe how we extract continuum
and chiral limit physics from �, �s and �s=� given in
Tables III and IV. We fit � and �s to the general form,

�q ¼ �0ð1þ �fq þ ½analytic�Þð1þ ½discret�Þ; (30)

(discret. being discretization) where �fq includes the chi-

ral logarithm terms. Explicit expressions, taken from the
literature [17,18], are given in Appendix A. The chiral limit
corresponds to ml=ms ! ðml=msÞphysical ¼ 1=27:4 to-

gether with ms=mc ! ðms=mcÞphysical ¼ 1=11:85. Most of

our extrapolations employed formulas for �fq at one-loop

order in chiral perturbation theory (ChPT) and at lowest
order in 1/M. We have also included some 1/M corrections
such as effects of the B�q-Bq hyperfine splitting as discussed

in Ref. [18]. For the [analytic] terms we use powers of
mvalence=mc and msea= ~mc, where mc is the bare HISQ
charm quark mass (see Table II) fixed for each ensemble
through the �c mass, and ~mc is the analogous bare AsqTad
charm quark mass for �c mesons made out of AsqTad
quarks and antiquarks. The bare charm quark mass is a
convenient scale to use since ratios such as ms=mc or

ml=mc are equal to the corresponding ratio of MS masses
and are furthermore scale independent (up to discretization

corrections). The ratio ~mc=mc was found to be 0.9 in
Ref. [7] for the fine ensembles. The same ratio will be
approximately true for the coarse ensembles as well, since
amc does not vary too much for the lattice spacings em-
ployed here and mass renormalization starts only at order
�2
s , with the one-loop corrections being very similar in the

two actions.
For the [discret.] terms in (30) we employ powers of

ða=r1Þ2. We allow for the expansion coefficients to be
themselves functions of aMb and/or amq to take into

account that we are dealing with an effective NRQCD
theory for the b-quarks and with taste breaking splittings
in staggered meson masses. With NRQCD b-quarks we
cannot naively set a! 0. What we do instead is fit the data
to a theoretically motivated ansatz for discretization errors
and then remove the latter. For instance with our current
NRQCD action the leading order discretization errors go as
a2 times a slowly varying function of aMb. Reference [10]
describes how we parameterize such aMb dependence.
This approach has worked well not just in the heavy-light
spectroscopy calculations of Ref. [10] but also in recent
HPQCD studies of � physics with an improved NRQCD
action [19]. In the present article we have tried ansätze for
[discrete.] with both constant and aMb-dependent coeffi-
cients multiplying powers of ða=r1Þ and find little differ-
ence. This corresponds to test number 6 described below.
Figure 7 shows extraction of the physical point value

(the magenta point) for�B. We show results using what we
call our ‘‘basic’’ ansatz with

½analytic� ¼ �0ð2mu þmsÞ= ~mc þ �1mq=mc

þ �2ðmq=mcÞ2; (31)

where muðmqÞ denotes the sea (valence) light quark mass,

½discret� ¼ c0ða=r1Þ2 þ c1ða=r1Þ4; (32)

TABLE III. � � fB
ffiffiffiffiffiffiffiffi
MB

p
and �s � fBs

ffiffiffiffiffiffiffiffiffi
MBs

p
in lattice units.

The lowest order results �ð0Þ and �ð0Þs are also shown. Errors
include statistical and fitting errors.

Set a3=2�ð0Þ a3=2� a3=2�ð0Þs a3=2�s

C1 0.2394(18) 0.2214(16) 0.2708(13) 0.2508(12)

C2 0.2498(18) 0.2313(17) 0.2780(9) 0.2577(8)

C3 0.2545(28) 0.2356(26) 0.2742(14) 0.2539(13)

F0 0.1431(16) 0.1293(14) 0.1647(8) 0.1489(7)

F1 0.1483(12) 0.1340(11) 0.1664(6) 0.1506(5)

F2 0.1520(12) 0.1375(10) 0.1656(7) 0.1498(6)
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FIG. 7 (color online). Physical point extraction for � ¼
fB

ffiffiffiffiffiffiffiffi
MB

p
.

TABLE IV. Bs and B mass difference �M, and ratios

�ð0Þs =�ð0Þ and �s=�, with � � fBq

ffiffiffiffiffiffiffiffiffi
MBq

q
. Errors include statis-

tical and fitting errors.

Set �M [GeV] �ð0Þs =�ð0Þ �s=�

C1 0.0648(22) 1.1311(90) 1.1324(89)

C2 0.0577(18) 1.1132(65) 1.1143(64)

C3 0.0413(20) 1.0772(81) 1.0775(80)

F0 0.0717(29) 1.1508(123) 1.1516(121)

F1 0.0614(20) 1.1223(75) 1.1234(73)

F2 0.0478(13) 1.0889(51) 1.0896(50)
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and using (A7) from Appendix A for �fq. The �
2=DOF for

this fit was 0.24. We have checked the stability of our
extractions by modifying the basic ansatz in the following
ways:

(1) dropping the �2 term in (31);
(2) adding more ðmq=mcÞn terms with n > 2;

(3) dropping the c1 term in (32);
(4) adding more ða=r1Þn terms with n > 4;
(5) making the coefficients ci depend on mq, i.e., a

power series in mq=mc;

(6) making the coefficients ci depend on aMb;
(7) using (A1) rather than (A7) for �fq;

(8) allowing for a 20% error in the scale f ¼ f� (see
Appendix A for the relevant formulas).

Figure 8 summarizes results from these tests. We compare
fB at the physical point with these modifications in place
with results obtained with the basic ansatz. The latter
corresponds to the left most data point in Fig. 8 and is
the same as the magenta point in Fig. 7. The integers on the
horizontal axis in Fig. 8 refer to the type of modification of
the basic ansatz as enumerated above. One sees that the
basic ansatz result is very stable. The decay constant fB
changes by less than 1 MeV in all the tests undertaken.

In Figs. 9 and 10 we show physical point extractions for

�s ¼ fBs

ffiffiffiffiffiffiffiffiffi
MBs

p
and �s=� both carried out and tested

along similar lines as for fB in Figs. 7 and 8. The
�2=DOF for the two fits were 0.59 and 0.48 respectively.

The physical point results in Figs. 7 and 9 show statis-

tical, extrapolation and rð3=2Þ1 errors whereas in Fig. 10 only

statistical and extrapolation errors are included. In the next
section we will discuss additional systematic uncertainties
inherent in our decay constant determinations.

VI. RESULTS

Table V gives the error budget for fB, fBs
and fBs

=fB.

The first four entries, ‘‘statistical’’, ‘‘scale r3=21 ’’, ‘‘discre-

tization corrections’’ and ‘‘chiral extrapolation and gB�B�’’
are all part of the errors emerging automatically from the
fits. Their individual contributions were separated out us-
ing the methods of Ref. [20] [see Eqs. (30) and (31) of that
article]. The remaining four entries in Table V, ‘‘mass
tuning,’’ ‘‘finite volume,’’ ‘‘relativistic corrections’’ and
‘‘operator matching’’ are additional systematic errors af-
fecting our calculations. Sensitivity to the strange quark
mass can be estimated by comparing results for valence
quarks masses ams and aml. Similarly effects of mistuning
of aMb can be investigated using older NRQCD/HISQ
decay constant results (see Ref. [21]) covering a range of
aMb values. Those calculations were done before proper
retuning of the b-quark mass and provide information on
how the decay constants depend on aMb. For the finite
volume uncertainty we take the same percentages as de-
termined for the D and Ds meson decay constants in
Ref. [22] using finite volume chiral perturbation theory.
Our heavy-light currents have been matched to full QCD
through order �s�QCD=Mb and corrections come in at

order ð�QCD=MbÞ2 � 0:01. There are order �s�QCD=Mb

corrections to the NRQCD action that are not included in
our simulations. However, as discussed in Ref. [5], their
effect on decay constants can be bounded to be at most
�1%.
TheOð�2

sÞ corrections to Eqs. (7) and (8) are not known.
The JðiÞ;sub0 are nonleading, so the most important high-

order correction is in the coefficient of Jð0Þ0 . To account for

corrections at this level and beyond, we modify our data by
multiplying the right-hand side of Eq. (7) by an overall
factor of 1þ �2

s�
0
0 where we approximate �2

s � 0:1. We

use two different �00s, one for all coarse-lattice data and the
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FIG. 8 (color online). Tests of fB at the physical point. The left
most magenta point is the ‘‘basic ansatz’’ result. The remaining
points refer to results when the basic ansatz was modified in
several ways as explained in the text.
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other for all fine-lattice data. To be conservative, we take
each to be Oð0:4Þ, which is more than twice as large as the
one-loop �0 and also comparable to the estimates used in
Ref. [5]: that is, we set each �00 ¼ 0	 0:4. The errors from
these factors are combined in quadrature with the simula-
tion errors in the currents, taking care to preserve the
correlations caused by the fact that all course-lattice data
has the same �00, as does all fine-lattice data. We then

repeat the fits to Eq. (30) described in the previous section,
this time applied to the modified data with enhanced errors.
We use the difference between the total extrapolation error
obtained with and without higher order matching errors
added to the data to estimate the operator matching errors
for fB and fBs

. These are given as the last entries in

Table V. For the ratio fBs
=fB, matching errors are negli-

gible, as was already pointed out at the end of Sec. IV.
Finally, we note that sea charm quarks are omitted in our

simulations. However we expect their contributions to be
small enough that the final total errors in Table V are
unaffected.

Our final decay constant results including all the errors
discussed above are

fB ¼ 0:191ð9Þ GeV; (33)

fBs
¼ 0:228ð10Þ GeV; (34)

and

fBs

fB
¼ 1:188ð18Þ: (35)

These numbers are in good agreement with HPQCD’s
previous NRQCD b-quark/AsqTad light quark results [5],
however with improved total errors. Comparison plots are
shown in the next section.

The errors in fB and fBs
are overwhelmingly dominated

by the matching uncertainties. Without them, the total
errors would be reduced to 4:6%! 2:1% and 4:4%!
1:6% for fB and fBs

respectively. Clearly a huge advantage

can be gained if one could develop a formalism that did not
require operator matching. One major motivation for de-
signing the HISQ action [7] was to come up with a quark

action that could be used not only for accurate light quark
physics, but also to simulate heavy quarks. It has been
employed already very successfully for charmed quarks
[11,22–24] and HPQCD has recently also started work
with amQ > amc [25]. The HISQ action allows for a

relativistic treatment of heavy quarks which means that
one does not have to resort to effective theories. One
important consequence is that decay constants can be
determined from absolutely normalized currents. There is
no need for operator matching. Furthermore it has been
demonstrated that due to its high level of improvement the
HISQ action can be used for heavy quarks up to about
amQ 
 0:8 without leading to large discretization effects.

Recently a successful application of heavy HISQ quarks to
B physics was achieved through a very accurate determi-

nation of the Bs meson decay constant, namely fðHISQÞBs
¼

0:225ð4Þ GeV with errors of only 1.8% [25]. There is very

good agreement between fðHISQÞBs
and the NRQCD b-quark

result Eq. (34) of this article. This indicates that the very
different systematic errors in the two calculations are under
control and properly accounted for in our error estimates.
The HISQ b-quark calculation of fBs

required going to

very fine lattices including the MILC superfine and ultra-
fine ensembles with lattice spacings �0:06 fm and
�0:045 fm respectively. Repeating those calculations for
the B meson with its light valence quark would be quite
expensive and it will take some time before such calcula-
tions become available. In the mean time we can combine

fðHISQÞBs
with the result Eq. (35) of this article to extract a

new and accurate fB. One finds�
fBs

fB

��1
NRQCD

� fðHISQÞBs
� fB ¼ 0:189ð4Þ GeV; (36)

which is in excellent agreement with (33), only more
accurate by better than a factor of 2. Equation (36) is the
most important result of this article for phenomenology. It
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FIG. 10 (color online). Physical point extraction for �s=�.

TABLE V. Error budget.

Source fBs
(%) fB (%) fBs

=fB (%)

Statistical 0.6 1.2 1.0

Scale r3=21 1.1 1.1 -

Discretization corrections 0.9 0.9 0.9

Chiral extrapolation and gB�B� 0.2 0.5 0.6

Mass tuning 0.2 0.1 0.2

Finite volume 0.1 0.3 0.3

Relativistic corrections 1.0 1.0 0.0

Operator matching 4.1 4.1 0.1

Total 4.4 4.6 1.5
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also demonstrates the advantages of working with both
HISQ and NRQCD b-quarks in parallel. In the future we
plan to apply this combined approach to B and Bs semi-
leptonic decay studies as well.

VII. SUMMARY

We have carried out new determinations of fB, fBs
and

fBs
=fB using NRQCD b-quarks and HISQ light valence

quarks and improve on our previous calculations with
AsqTad light quarks. Figures 11–13, compare our new
results with HPQCD’s older work [5,25] and also with
results from the Fermilab/MILC [18] and the ETM [26]
collaborations. One finds overall consistency between the
different lattice groups. Our most accurate determination
of fB, Eq. (36), comes from combining the new ratio

fBs
=fB, (35), with a precise determination of fBs

based

on HISQ b-quarks [25]. This gives the most precise fB
available today with errors of just 2.1%. As mentioned in
Sec. I, accurate values for fB are needed to compare with

fðfitÞB from global fits in unitarity triangle analyses. In
Fig. 14 we compare the new accurate fB with two ex-

amples of fðfitÞB determined by Lunghi and Soni [2]. With

current errors the two fðfitÞB values are consistent with each
other and with fB from lattice QCD. In the future, once
errors are reduced considerably, these kind of comparisons
could become more interesting.
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APPENDIX A: PARTIALLY QUENCHED CHPT
CHIRAL LOGS

In this appendix we summarize partially quenched ChPT
(PQChPT) expressions for the chiral logarithm terms �fB
and �fBs

, taken from the literature. We follow closely the

notation of Ref. [17] which we also adopted in our D! K
semileptonic paper [11]. We use ‘‘u’’ and ‘‘s’’ for sea and
‘‘q’’ and ‘‘qs’’ for valence light and strange quarks respec-
tively. Furthermore mab is the mass of the pseudoscalar
meson with quark/antiquark content a and b and m2

� ¼
1
3 ðm2

uu þ 2m2
ssÞ. For x ¼ q or qs PQChPT gives

�fBx
¼ 1þ 3g2

32�2f2

�
�2I1ðmxuÞ � I1ðmxsÞ

� 1

3
DR½2;2�ðmxx; I1Þ

�
; (A1)

where

I1ðmÞ ¼ m2 log
m2

�2
; (A2)

and

DR½2;2�ðm; IÞ ¼ @

@m2
R½2;2�ðm; IÞ; (A3)

with

R½2;2�ðm; IÞ ¼ ðm
2
uu �m2Þðm2

ss �m2Þ
ðm2

� �m2Þ IðmÞ

þ ðm
2
uu �m2

�Þðm2
ss �m2

�Þ
ðm2 �m2

�Þ
Iðm�Þ: (A4)

In Eq. (A1) g is the B�B� coupling which has not been
measured yet experimentally, but for which several un-
quenched lattice determinations are now available [27].
We treat this ‘‘constant’’ as one of the fit parameters and
set priors for the square of this coupling to a central value
of g2 ¼ 0:25with width 0.10 (40%). This is consistent with
typical values in the recent literature [27]. The scale � is
set to 4�f, with f given by the physical pion decay
constant. In the full QCD limit the partially quenched
formulas simplify to

�fBs
¼ 1þ 3g2

32�2f2

�
�2I1ðmKÞ � 2

3
I1ðm�Þ

�
; (A5)

�fB ¼ 1þ 3g2

32�2f2

�
� 3

2
I1ðm�Þ � 1

6
I1ðm�Þ � I1ðmKÞ

�
:

(A6)

Following Ref. [18] we have also considered PQChPT logs
that include hyperfine and flavor splitting effects. A modi-
fication of the terms proportional to 3g2 in (A1) is required
leading to

�fBx
¼ 1

32�2f2

�
�2I1ðmxuÞ � I1ðmxsÞ

� 1

3
DR½2;2�ðmxx; I1Þ

�

þ 3g2

32�2f2

�
�2Jðmxu;�þ �xuÞ � Jðmxs;�þ �xsÞ

� 1

3
DR½2;2�ðmxx; Jðmxx;�ÞÞ

�
; (A7)

with

Jðm;�Þ ¼ ðm2 � 2�2Þ log
�
m2

�2

�
þ 2�2 � 4�2Fðm=�Þ;

(A8)

Fð1=xÞ ¼
8><
>:
�

ffiffiffiffiffiffiffiffi
1�x2
p

x

�
�
2 � tan�1 xffiffiffiffiffiffiffiffi

1�x2
p

�
jxj 
 1

ffiffiffiffiffiffiffiffi
x2�1
p

x logðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

Þ jxj � 1

: (A9)

� is the B�x � Bx hyperfine splitting and �xu and �xs adjust
for the fact that in some one-loop diagrams the internal
B�u=s does not have the same flavor as the external Bx. We

have carried out chiral/continuum extrapolations with both
(A1) and (A7). Differences in the final values at the physi-
cal point serve as a measure of systematic errors coming
from our extrapolation ansatz.

APPENDIX B: EXAMPLE OF PRIORS
USED IN SEC. V

Table VI gives a sample set of priors and prior widths
used for the fB extraction in Sec. V. For parameters such as
�j or cj where the overall sign is not known a priori, we

TABLE VI. Priors and prior widths for fits to Eq. (30).

Prior Width

�0 1.00 1.00

�0 0.00 1.00

�1 0.00 4.00

�2 0.00 1.00

c0 0.00 0.30

c1 0.00 1.00

g2 0.25 0.10

r1 0.3133 0.0023
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take the central value to be 0.0. The widths for the �j

depend on whether mc, 1=a or 1=r1 is used to set the scale
for the masses. Although mc is our preferred scale, due to
the ease of handling quark mass running issues, we have
also tried fits with the other scales and obtain consistent

results. In all cases fitted values for the parameters are
consistent and within the widths assigned to them. For c0
we use prior widths of 0.3 to reflect the expectation that
Oða2Þ errors come in as Oð�sa

2Þ. Again fit results for c0
are consistent with this expectation.
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