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Using the improved lattice gauge field Hamiltonian and the truncated eigenvalue equation method, we

compute the 0þþ glueball wave function of ð2þ 1Þ-dimensional SU(2) gauge field theory. The result

shows a good scaling behavior in the weak coupling region 3 � 1=g2 � 6.
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I. INTRODUCTION

Lattice gauge field theory (LGT) is the most reliable and
powerful nonperturbative approach to QCD. LGT has two
equivalent formulations, namely, the Lagrangian formula-
tion and the Hamiltonian formulation. QCD predicts the
existence of new hadrons, named glueballs. They are bound
states of gluons, the vector bosons mediating strong interac-
tions. According to Lagrangian lattice QCDMonte Carlo simu-
lation, the lightest glueball 0þþ mass is about 1.5–1.8 Gev.
There have been a lot of candidates in experiments [1].
Investigation of glueball production and decays would
give additional important information to determine which
is the 0þþ glueball. In such a study, the calculation of the
0þþ glueball wave function is necessary. The disadvantage
of the conventional Lagrangian formulation is that it is very
difficult to compute the wave function. In our opinion the
Hamiltonian approach is a viable alternative.

But LGT’s progress has been hampered by systematical
errors mainly due to the finite value of the lattice spacing a.
The standard Wilson gluonic (bosonic) action (or Kogut
Susskind Hamiltonian) differs from the continuum Yang-
Mills action (or corresponding Hamiltonian) by order of
Oða2Þ, while the error of the standard Wilson quark
(fermionic) action (or Hamiltonian) is bigger, being of the
order OðaÞ. In the continuum limit a ! 0 or equivalently
1=g2 ! 1 in an asymptotically free theory; these differ-
ences in principle disappear and the action (or Hamiltonian)
becomes the continuum one. If the practical lattice calcu-
lations could be carried out up to a weak enough coupling
region, the finite lattice errors would be negligible.
Unfortunately, both the standard numerical simulation and
the standard Hamiltonian method can only be carried out up
to the intermediate coupling region. For example, in the
standard Kogut Susskind Hamiltonian method, the calcula-
tions of the vacuumwave function and glueball mass as well
as glueball wave function for ð2þ 1Þ-dimensional SUðNCÞ
can only be carried out up to 1=g2 < 2:5 [2–7]. For
such a lattice parameter, violation of scaling is still obvious
and extrapolation of the results to the 1=g2 ! 1 limit
induces unknown systematic uncertainties when extracting
continuum physics.

One possible way to tackle these problems is to improve
the lattice action (or Hamiltonian) so that finite errors
become higher order in a. There have been several pro-
posals on this subject:
(a) For the fermionic sector, Hamber and Wu, in 1983,

proposed an improved lattice action [8] by adding
next-nearest-neighbor interaction terms to the
Wilson quark action so as to remove the OðaÞ error.
Several numerical simulations [9–11] of hadron
spectroscopy have been performed by using the
Hamber-Wu action. In 1994, we proposed several
improved lattice Hamiltonians for fermions [12] to
reduce the errors from OðaÞ to Oða2Þ. In 1999, we
showed that our improved theory leads to a signifi-
cant reduction of finite errors through the calcula-
tions of the quark condensate and the vector mass of
ð1þ 1Þ-dimensional QCD [13].

(b) For the gluonic sector, Luo et al., in 1999, proposed
an improved Kogut Susskind lattice Hamiltonian [14]
to reduce the errors from Oða2Þ to Oða4Þ. This im-
provement has been tested in ð2þ 1Þ-dimensional
SU(2) LGT through the calculations of the vacuum
wave function and 0þþ glueball mass [15] in 2003.
The results showed that this improved theory leads to
a significant reduction of violation of scaling.

As mentioned above, the glueball wave functions can give
more physical information than the glueball masses. As a
further test, in this paper we shall compute the 0þþ glueball
wave function of ð2þ 1Þ-dimensional SU(2) gauge field
theory using the improvedKogut Susskind latticeHamiltonian.

II. IMPROVED LATTICE HAMILTONIAN
AND TRUNCATED EIGENVALUE EQUATION

OF GLUEBALL STATE

In SU(2) LGT,TrUþ
p ¼ TrUp, so that all loopswith crossing

can be transformed into loops without crossing. According to
the improvedKogut Susskind lattice Hamiltonian [14], we have
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where g is the dimensionless coupling constant that is related to
the lattice spacing a and the invariant charge e by g2 ¼ e2a,
E�
i ðxÞ is the color-electric field,

P
pTrUp is the square looph,

and
P

x; i<jRij is the rectangular loop

In order to study the glueball state, one needs detailed
information on the structure of the vacuum wave function.

The vacuum wave function in exponential form is
written as

j�i ¼ eRj0i; (2)

where R contains closed loops and the state j0i is defined as
E�
i ðxÞj0i ¼ 0.
Substituting H and j�i in the eigenvalue equation

(namely, Schrödinger equation) Hj�i ¼ E�j�i, using
the relation

e�RHeR ¼ H � ½R;H� þ 1

2!
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� 1

3!
½R; ½R; ½R;H��� þ � � � ; (3)

and the commutation relations
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(4)

we can obtain the eigenvalue equation of the vacuum state
for the improved Hamiltonian:
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Defining the order of a loop graph as the number of
plaquettes involved, we expand R in the order of graphs:

R ¼ R1 þ R2 þ R3 þ � � � : (6)

The lowest order loop graph (i.e. the first order graph) is
R1 ¼ C1h. Given R ¼ R1, from Eq. (5), we can obtain the
second-order loop graphs:

where the coefficients Ci will be given by solving the
algebraic equations.

Given R ¼ R1 þ R2, from Eq. (5), we can obtain not
only the whole of the third-order loop graphs, but also a
part of the fourth-order loop graphs, and so on.

Let R contain up to the Nth-order graphs:

R ¼ R1 þ R2 þ � � � þ RN; (8)

and we obtain the truncated eigenvalue equation of the
vacuum state for the improved gluonic Hamiltonian at
the Nth order:
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The 0þþ glueball wave function in exponential form is
written as

j�i ¼ ðG� hGiÞj�i ¼ ðG� hGiÞeRj0i; (10)

whereG consist of closed loops, which is also expanded up
to the Nth-order loop graphs

G ¼ G1 þG2 þ � � � þGN: (11)

Here GN is the Nth-order loop graphs, according to the
same rules as RN .
In a similar way of educing Eq. (9), we obtain the

truncated eigenvalue equation of the glueball state for
the improved Hamiltonian at the Nth order:
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where �m is the mass gap.

III. CALCULATION OF 0þþ GLUEBALLWAVE
FUNCTION

In this paper we compute the wave function up
to the third-order loop graphs. From the termsP

x;i½E�
i ðxÞ;R1�½E�

i ðxÞ;R2�,
P

x;i½E�
i ðxþiÞ;R1�½E�

i ðxÞ;R2�,
and

P
x;i½E�

i ðxþiÞ;R2�½E�
i ðxÞ;R1�, we can obtain the

third-order loop graphs for the vacuum wave function:
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Substituting R1, R2, and R3 in Eq. (9), we obtain nonlinear equations for the coefficients Ciði ¼ 1; 2; 3; . . . ; 28Þ.
Numerically solving these nonlinear equations, we can obtain Ci as the functions of 1=g

2.
Equally, we expand G up to the third-order loop graphs:

Substituting R and G in Eq. (12), we can obtain the nonlinear equations for the coefficients Biði ¼ 1; 2; 3; . . . ; 28Þ.
Numerically solving these equations, we obtain Bi as a function of 1=g2.

In the continuum limit, the long wavelength glueball wave function of ð2þ 1Þ-dimensional SU(2) gauge field theory is

j�i ¼ exp

�
��0

ZZ
TrF2ðx; yÞdxdy� �2

ZZ
Tr½DiFðx; yÞ�2dxdyþ higher order terms

�
; (15)

where �0 and �2 are the expansion coefficients of the long wavelength glueball wave function, Fðx; yÞ is the field strength
tensor, and Di is the covariant derivative.

�0 and �2 are the linear combination of the coefficients Bi, from expanding
P

pTrUp in order of a. Analyzing the long

wavelength limit of all graphs up to the third order, we obtain

�0 ¼ g4

2e2
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þ B18 þ B19 þ B20 þ B21 þ 9B22 þ B23 þ B24 þ 9B25 þ B26 þ 9B27 þ B28Þ; (16)
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Substituting Bi (i ¼ 1; 2; 3; . . . ; 28) in Eqs. (16) and (17),
we obtain �0 and �2 as the functions of 1=g

2.

IV. NUMERICAL RESULTS AND DISCUSSIONS

It is well known that SU(2) LGT in ð2þ 1Þ
dimensions is super-renormalizable, and possesses a
simple scaling property, that is, when the lattice spacing
a goes to zero,

e2�0 � const; e6�2 � const as a ! 0: (18)

Figures 1(a) and 1(b) show e2�0 and e6�2 as functions
of 1=g2 in the coupling region 1 � 1=g2 � 6 and 3 �
1=g2 � 6, respectinely.

In this work we have computed the 0þþ glueball wave
function of ð2þ 1Þ-dimensional SU(2) LGT using the
improved lattice gauge field Hamiltonian and the truncated
eigenvalue equation method. Our calculation can be car-
ried out up to a deep weak coupling region 1=g2 ¼ 6:0
(namely, � ¼ 24:0), with a good scaling behavior, while
using the unimproved Hamiltonian the calculations can
only be carried out up to the intermediate coupling region
1=g2 ¼ 2:4 (namely,� ¼ 9:6), which would result in large
uncertainty. In other words, from the test of the glueball
wave function for ð2þ 1Þ-dimensional SU(2) LGT, we see
that the improved Hamiltonian indeed leads to much better
results.
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FIG. 1. e2�0 and e6�2 versus 1=g2.
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