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The isospin-2 �� system provides a useful testing ground for determining elastic hadron scattering

parameters from finite-volume spectra obtained using lattice QCD computations. A reliable determination

of the excited state spectrum of two pions in a cubic box follows from variational analysis of correlator

matrices constructed using a large basis of operators. A general operator construction is presented which

respects the symmetries of a multihadron system in flight. This is applied to the case of �� and allows for

the determination of the scattering phase shifts at a large number of kinematic points, in both S-wave and

D-wave, within the elastic region. The technique is demonstrated with a calculation at a pion mass of

396 MeV, where the elastic scattering is found to be well described by a scattering length parametrization.
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I. INTRODUCTION

QCD is the accepted underlying theory of the strong
interactions, and the properties of the spectrum and inter-
actions of hadrons should be calculable from it using a
suitable regularization scheme for the quark and gluon
fields. A particularly convenient approach is to consider
the theory on a finite lattice of space-time points so as to
admit a numerical method of solution. While significant
progress has been made recently in determining the single
particle spectrum of hadrons, describing the resonances
seen in scattering experiments in terms of eigenstates of
QCD has remained a challenge to lattice calculations.
Direct access to the matrix elements related to decays is
missing in the Euclidean formulations of lattice QCD. In
principle, the relevant hadronic matrix elements can be
inferred indirectly through a detailed study of the spectrum
in a finite-volume lattice box [1,2]. Within this approach,
one can map the discrete spectrum of eigenstates of the
finite volume theory to the infinite volume scattering
parameters, and if present, observe resonant behavior.

Crucial to this approach is the high-precision determi-
nation of multiple excited eigenstate energies with a given
quantum number. Determination of the discrete spectrum
of finite-volume eigenstates follows from analysis of the
time dependence of two-point correlation functions featur-
ing operators of the desired quantum numbers constructed
from quark and gluon fields. For creation and annihilation
at time 0 and t respectively we have

CijðtÞ ¼ h0jOiðtÞOy
j ð0Þj0i:

Inserting a complete set of eigenstates of the Hamiltonian,
this correlator has a spectral decomposition

CijðtÞ ¼
X
n

h0jOijnihnjOy
j j0ie�Ent; (1)

where the sum is over all states that have the same
quantum numbers as the interpolating operators Oi, Oj.

Note that in a finite volume, this yields a discrete set of
energies, En. It is these finite-volume energies that are
related to infinite volume scattering amplitudes through
the Lüscher method [2].
A relatively straightforward sector in which to study

hadron scattering in finite volume is �� in isospin-2. At
low energies, this channel is experimentally observed to be
nonresonant in low partial waves [3–6] and this lack of
resonances ensures a slow variation of phase shifts with
energy. This makes the problem of determining the phase
shift as a function of energy somewhat easier. A difficulty
of this choice of channel is that the interaction between
pions in isospin 2 is weak so that the discrete energies in
finite volume are shifted relatively little from the values
relevant for noninteracting pions. This will require us to
make precision measurements of the energy spectrum in
order to resolve the differences. Within the field theory, the
correlators for this channel do not contain any annihilation
contributions; the only Wick contractions featuring are
those in which the four quark fields in the creation operator
(at t ¼ 0) propagate in time to the annihilation operator
(at t). The absence of quark propagation from t to t reduces
the computational overhead for the calculation.
In a previous publication [7] we presented the first lattice

QCD study of the energy dependence of S- and D-wave
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�� scattering in isospin-2. We limited ourselves to the ��
system overall at rest and found only a handful of points
below the 4� inelastic threshold on the lattice volumes
considered. In this paper we will also consider the ��
system ‘‘in-flight,’’ that is with an overall momentum (sat-
isfying the periodic boundary conditions of the finite cubic
lattice). This allows us to determine the phase shifts at a
larger number of discrete energies below the 4� inelastic
threshold and to map out the energy dependence of the
scattering in more detail. The price to be paid is that the
relevant symmetry group in the lattice calculation is signifi-
cantly reduced. At rest the lattice has a cubic symmetry
whose irreducible representations (‘‘irreps’’) contain mul-
tiple angular momenta, e.g. the ‘‘scalar’’ representation, Aþ

1

contains as well as ‘ ¼ 0, also ‘ ¼ 4 and higher. In flight,

with two pions having total momentum, ~P, the symmetry is
restricted to rotations and reflections which leave the cubic

lattice and the axis defined by ~P invariant. The irreps of this
symmetry group are even less sparse in �� scattering
angular momentum; the ‘‘scalar’’ representations typically
contain ‘ ¼ 0; 2; 4 . . . . In this work we will consider the
effect these higher partial waves have on the determination
of scattering phase shifts for the lowest ‘ values.

In [7], we used only the simplest �c�5c interpolators in
construction of �� correlators. Single-pion correlators
constructed with these operators are saturated by the
ground state only at rather large times, and similarly the
�� correlators receive significant contributions from ex-
cited �? states. The need to consider correlators at large
times increases the degree to which we feel the systematic
effect of the finite temporal extent of the lattice (T).
Limited account was taken of these effects in [7]. In this
paper we take steps to address finite-T effects, first by
using ‘‘optimized’’ pion operators which are saturated
by the ground state pion at earlier times, and second by
explicitly attempting to remove the leading effects of finite
T from the measured correlators. While these effects are
small in absolute terms, determination of the rather weak
I ¼ 2 interaction relies upon precise measurement of small
energy shifts, and as such it is important to account for
even small systematic effects.

Our approach to determining the finite-volume spectrum
is to use a large basis of operators in each symmetry
channel with which we form a matrix of correlation
functions having all relevant operators at the source and
sink. This matrix can be analyzed variationally [8–10],
extracting a spectrum of energy eigenstates which are
orthogonal in the space of operators used. This orthogonal-
ity is particularly useful in cases where levels are close to
degenerate and to extract relatively high-lying states whose
contribution to any single correlation function may be small
relative to the ground state. The excited single-hadron spec-
trum of isovector and isoscalar mesons [11–13] and baryons
[14,15] has been extracted with some success using this
procedure. In the present casewe require a basis of operators

capable of interpolating a pair of pions from the vacuum,
constructed to transform irreducibly in the relevant symme-
try group. The fact that I ¼ 2 is expected to have only
relatively weak interpion interaction strength suggests a
natural basis might be one resembling pairs of noninteract-
ing pions, i.e., pions of definite momentum.
In general our �� creation operators have the form

ð��Þ½ ~k1; ~k2�y~P;�;�
¼ X

~k1 ;
~k2

~k1þ ~k2¼ ~P

Cð ~P;�; �; ~k1; ~k2Þ�yð ~k1Þ�yð ~k2Þ:

Here C are the Clebsch-Gordan coefficients for combining

the two pion operators of definite momentum ~k1, ~k2 so that
the operator overall transforms in the irrep � of the rele-

vant symmetry group for total momentum ~P ¼ ~k1 þ ~k2.
This involves summing over multiple values of momenta
~k1, ~k2 with the same magnitudes, j ~k1j, j ~k2j and related
by allowed lattice rotations. The basis is built up out of
different magnitudes of pion momenta that can sum to give

the same ~P. Much greater detail will be presented later in
this paper.
Using this basis we compute correlators within various

irreps � for various ~P,

C
~P;�;�

½ ~k01; ~k02�;½ ~k1; ~k2�
ðtÞ ¼

D
ð��Þ½ ~k01; ~k02�~P;�;�

ðtÞ � ð��Þ½ ~k1; ~k2�y~P;�;�
ð0Þ
E
;

and for a fixed ~P,�,�we perform variational analysis in a

basis of operators labeled by ½ ~k1; ~k2� leading to a finite-

volume spectrum, Enð ~P;�;LÞ. This spectrum, determined
in the rest frame of the lattice, corresponds to a discrete set
of scattering momenta, pcm, in the center-of-momentum
frame.
The finite-volume spectrum so obtained is related through

the Lüscher formalism [2,9] (as extended in [16–18] to the
case of moving frames) to the phase shifts, �‘ðpcmÞ, for
elastic �� scattering in partial waves of angular momen-

tum, ‘. As discussed earlier, a given irrep� of momentum ~P
contains multiple angular momenta, ‘, and the formalism
relates the finite-volume spectrum to the scattering ampli-
tudes for all relevant ‘ though the following formula:

det

�
e2i�ðpcmÞ � Uð ~P;�Þ

�
pcm

L

2�

��
¼ 0: (2)

Here Uð ~P;�Þðpcm
L
2�Þ is a matrix of known functions and

e2i�ðpcmÞ is a diagonal matrix featuring the scattering phase
shifts f�‘g. In both cases the rows and columns of the
matrices are labelled by the angular momenta, ‘, relevant

for the irrep ð ~P;�Þ. These matrices are formally infinite, but
we may take advantage of the hierarchy �0 � �2 � �4 . . .
relevant at low energies,1 that tends to reduce the effect of
higher ‘ in Equation (2).

1Near threshold, angular momentum conservation requires
�‘ � p2‘þ1

cm .
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We will explore two methods to extract the phase shifts.
The first method, similar to the one used in [7], exploits the
above hierarchy to determine the phase shift in the lowest
contributing partial wave and estimates a systematic un-
certainty from plausible variation of the higher partial
waves.2 The second method parametrizes the momentum
dependence of the phase shifts in ‘ ¼ 0; 2 . . . using effec-
tive range expansions, then by performing a global fit
which attempts to describe many finite-volume momentum
points in many irreps, finds the values of the effective range
expansion parameters.

Computations were performed on anisotropic lattices
with three dynamical flavors of Clover fermions [20,21]
with spatial lattice spacing as � 0:12 fm, and a temporal
lattice spacing approximately 3.5 times smaller, corre-
sponding to a temporal scale a�1

t � 5:6 GeV. This fine
temporal lattice spacing has proven useful in determining
the spectrum of mesons and baryons, as well as the pre-
vious �� I ¼ 2 results [7]. In this work, results are pre-
sented for the light quark I ¼ 2 spectrum at quark mass
parameter atml ¼ �0:0840 and atms ¼ �0:0743 corre-
sponding to a pion mass of 396 MeV, and at lattice sizes
of 163 � 128, 203 � 128 and 243 � 128 with correspond-
ing spatial extents L� 2 fm, �2:5 fm and �3 fm. Some
details of the lattices and propagators used for correlation
constructions are provided in Table I.

Recently, the NPLQCD Collaboration [22] has deter-
mined the ‘ ¼ 0 scattering phase shift on the same ensem-
bles as used in this study, plus an additional larger lattice
volume�4 fm. Their calculation is limited in scope by the
fact that their approach does not project pion operators of
definite relative momentum at the source. We will compare
the results of the different approaches later in this paper.
Other studies of �� I ¼ 2 scattering in lattice QCD
[23–25] have largely limited themselves to the threshold
behavior of the scattering amplitude in S-wave, as ex-
pressed by the scattering length.

Readers who are not concerned with the details of the
calculation can skip to Sec. IX where the results for elastic
scattering are presented. The remainder of the paper is
structured as follows:

Section II outlines the construction of a basis of irreduc-
ible �� operators at rest and in-flight from products of
pion operators of definite momentum. Section III describes
the construction of correlators using the distillation frame-
work. Section IV presents ‘‘optimized’’ single pion opera-
tors constructed as linear combinations of composite QCD
operators with pion quantum numbers. Section V discusses
the determination of the pion mass and anisotropy from
measurements of the pion dispersion relation. Section VI
considers the effects of the finite temporal extent of the
lattice on �� correlators and presents mechanisms for

reducing the role of these effects in the determination of
the discrete energy spectrum. Section VII presents the
finite-volume spectrum obtained on three volumes.
Section VIII discusses the extraction of elastic scattering
phase shifts from finite-volume spectra using the Lüscher
formalism including a study of the possible effect of sub-
leading partial waves within a toy model. Section IX
presents our results for �0;2 in the region of elastic scatter-

ing for 396 MeV pions. Section X summarizes our ap-
proach and results and suggests future applications of the
methodology.

II. OPERATOR CONSTRUCTION

In order to calculate scattering amplitudes we must
extract multihadron energy levels with high precision and
so need interpolating operators that efficiently interpolate
these multihadron states. To achieve this we consider
operators constructed from the product of two hadron

operators projected onto definite total momentum, ~P, and
transforming as a definite irreducible representation of
the appropriate symmetry group, lattice irrep3 �, with
irrep row, �,

½O��ð ~PÞ�y ¼ X
�1 ;�2
~k1 ;

~k2
~k1þ ~k2¼ ~P

Cð ~P��; ~k1�1�1; ~k2�2�2Þ

� ½O�1�1
ð ~k1Þ�y½O�2�2

ð ~k2Þ�y: (3)

Here O�1;�1
ð ~k1Þ and O�2;�2

ð ~k2Þ are hadron operators (for

example, fermion bilinear operators), each projected onto
definite momentum, irrep and irrep row. The Clebsch-
Gordan coefficients, C, and the momenta appearing in the

sum over ~k1 and ~k2 will be discussed later.
A conventional infinite volume continuum analogue

of this construction (for total momentum zero with

~p ¼ ~k1 ¼ � ~k2) would be

TABLE I. The lattice ensembles and propagators used in this
paper. The light and strange quark mass are atml ¼ �0:0840
and atms ¼ �0:0743 described in Ref. [21], corresponding to a
pion mass of 396 MeV. The lattice size and number of configu-
rations are listed, as well as the number of time sources and the
number of distillation vectors Nvecs (to be described in Sec. III)
featuring in the correlator construction.

ðL=asÞ3 � ðT=atÞ Ncfgs Ntsrcs Nvecs

163 � 128 479 12 64

203 � 128 601 5ð ~P¼~0Þ
3ð ~P�~0Þ 128

243 � 128 553 3 162

2We note that Ref. [19] has recently discussed a similar
approach.

3We use ’’lattice irrep’’ to refer to the octahedral group irrep
for a particle at rest and the irrep of the appropriate little group,
discussed later, for a particle at nonzero momentum.
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½O½S;‘�
J;M �y � X

�1�2

Z
dp̂CðJ‘SM; ~pS1�1;� ~pS2�2Þ

� ½OS1�1ð ~pÞ�y½OS2�2ð� ~pÞ�y; (4)

with

C ¼ hS1�1;S2 � �2jS�ih‘0;S�jJ�iDðJÞ�
M� ðp̂Þ;

where Dðp̂Þ is a Wigner-D matrix and S1;2 and �1;2 are

respectively the spins and helicities of hadron 1, 2. The
spins are coupled to S ¼ S1 � S2, ‘ is the partial wave,
J ¼ ‘ � S is the total angular momentum and M is its z
component. However, in all but the simplest cases, multi-
hadron operators constructed by subducing Eq. (4) into
irreducible representations of the lattice symmetry can
mix single-hadron operators transforming in different
lattice irreps. Therefore, we prefer Eq. (3) where such
mixings do not occur. The single-hadron operators trans-
forming in definite lattice irreps can be optimized varia-
tionally, as shown for the pion in Sec. IV.

Here we concentrate on the operators to be used to study
two-pion states; the generalization to other multihadron
states is given in Appendix A. The flavor structure of the
operators, for example the projection of �� onto definite
overall isospin, I, determines which combinations of Wick
contractions appear in the calculation of the correlators
(Sec. III). Because this flavor structure generally factorizes
from the spin and spatial structure we will not discuss it in
detail here. However, because we are considering two
identical pions, Bose symmetry requires the overall wave
function to be symmetric under the interchange of the two
pions. Therefore, in the I ¼ 2 case we are considering here
or I ¼ 0, the symmetric flavor part requires a symmetric
spatial part (even partial waves with positive parity).
In contrast, I ¼ 1 requires an antisymmetric spatial
piece (odd partial waves with negative parity). In addition,
these operators have definite charge-conjugation parity,
C ¼ þ1, for neutral combinations, generalizing to G par-
ity for charged combinations; for brevity, in the following
we omit the C-parity labels.

A. Single-hadron operators

Respecting the reduced symmetry of a finite cubic lat-
tice, the JP ¼ 0� pion at rest subduces onto the one-
dimensional�P ¼ A�

1 irrep of the double-cover octahedral
group with parity, OD

h . In Refs. [11,12] we discussed how

operators with a definite continuum JP and Jz-component

M, OJP;Mð ~k ¼ ~0Þ, can be constructed out of fermion
bilinears featuring gauge-covariant derivatives and Dirac
gamma matrices; the extension to baryons was descri-
bed in Ref. [14]. The appropriate lattice operators were
formed by subducing these continuum operators into
octahedral group irreps. Table II summarizes how differ-
ent integer continuum J subduce into octahedral group
irreps—here we focus on the irreps relevant for mesons

but the discussion applies equally to the irreps appropriate
for half-integer spin. In the case of a JP ¼ 0� operator
subducing to �P ¼ A�

1 this subduction is trivial,

O ½0��
A�
1
ð~0Þ ¼ O0�ð~0Þ:

At nonzero momentum, ~k, the symmetry is reduced
further: the relevant symmetry group is the little group,

the subgroup of allowed transformations which leave ~k
invariant [26]. In an infinite volume continuum the little

group is the same for each ~k; with only the constraints
arising from rotational symmetry, states are now labeled by
the magnitude of helicity, j�j, rather than J. On a finite
cubic lattice with periodic boundary conditions the allowed

momenta are quantized, ~k ¼ 2�
L ðn;m; pÞ where n, m, p are

integers, and in general there are different little groups for
different types of momentum. We denote the little group

for ~k by LGð ~kÞ and for convenience define LGð~0Þ ¼ OD
h .

The pion subduces onto the one-dimensional � ¼ A2 irrep

of the appropriate little group [at least for all j ~kj2 <
14ð2�L Þ2]. Table II shows the pattern of subductions of the

helicities into the little group irreps. In Ref. [27] we
presented a method to construct subduced helicity opera-

tors, O½JP;j�j�
�;� ð ~kÞ, and showed that these are useful for

TABLE II. The pattern of subductions of the continuum spin,

J 	 4 (for ~P ¼ ~0), and helicity, j�j 	 4 (for ~P � ~0), into lattice
irreps, � [26]. Here ~� 
 Pð�1ÞJ , ~P is given in units of 2�

L and n,

m are nonzero integers with n � m. We show the double-cover
groups but only give the irreps relevant for integer spin.

~P LGð ~PÞ �P JP

[0, 0, 0] OD
h A�

1 0�; 4�; . . .
T�
1 1�; 3�; 4�; . . .

T�
2 2�; 3�; 4�; . . .

E� 2�; 4�; . . .
A�
2 3�; . . .

~P LGð ~PÞ � j�jð~�Þ
½0; 0; n� Dic4 A1 0þ; 4; . . .

A2 0�; 4; . . .
E2 1; 3; . . .
B1 2; . . .
B2 2; . . .

½0; n; n� Dic2 A1 0þ; 2; 4; . . .
A2 0�; 2; 4; . . .
B1 1; 3; . . .
B2 1; 3; . . .

½n; n; n� Dic3 A1 0þ; 3; . . .
A2 0�; 3; . . .
E2 1; 2; 4; . . .

½n;m; 0�, ½n; n;m� C4 A1 0þ; 1; 2; 3; 4; . . .
A2 0�; 1; 2; 3; 4; . . .
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studying mesons with nonzero momentum on the lattice.
For a JP ¼ 0� operator subduced into the A2 irrep the
construction is again trivial,

O ½0�;0�
A2

ð ~kÞ ¼ O0�ð ~kÞ:
When we use the variational method to find the optimal

linear combination of operators to interpolate a pion, we
will include in the basis operators of other J subduced into

A�
1 (for ~k ¼ ~0) and other helicity � subduced into A2

(for ~k � ~0). The pattern of subductions is given in
Table II; the subduction coefficients for zero momentum
are given in Ref. [12] and those for nonzero momentum are

given in Appendix A. Henceforth, we will use �ð ~kÞ as a
shorthand to represent OA�

1
ð ~k ¼ ~0Þ or OA2

ð ~k � ~0Þ as

appropriate.

B. Multihadron operators

In general, a �� creation operator can be constructed
from the product of two single-pion creation operators,

ð��Þ½ ~k1; ~k2�y~P;�;�
¼ X

~k12f ~k1g?
~k22f ~k2g?
~k1þ ~k2¼ ~P

Cð ~P;�; �; ~k1; ~k2Þ�yð ~k1Þ�yð ~k2Þ; (5)

where �ð ~kÞ is a single-pion operator and C is a Clebsch-
Gordan coefficient for �1 ��2 ! � with �1;2 ¼ A�

1 of

OD
h if ~k1;2 ¼ ~0 and �1;2 ¼ A2 of LGð ~k1;2Þ if ~k1;2 � ~0, and

where � is an irrep of LGð ~PÞ. For present purposes, the
particular construction of �ð ~kÞ from quark and gluon fields

is not important. It is only necessary that �ð ~kÞ transforms
in the appropriate lattice irrep.

The sum over ~k1;2 is a sum over all momenta in the stars

of ~k1;2, which we denote by f ~k1;2g?, and by which we mean

all momenta related to ~k1;2 by an allowed lattice rotation. In

other words, the sum is overR ~k1;28R 2 OD
h ; the restriction

that ~k1 þ ~k2 ¼ ~P is equivalent to requiring R 2 LGð ~PÞ.
We will write ~k1, ~k2 and ~P in units of 2�

L , using square

TABLE III. The two-pion operators for each ~P; also shown is LGð ~PÞ—we show the double-

cover groups but only give the irreps relevant for integer spin. Example momenta ~k1 and ~k2 are

shown; all momenta in f ~k1g? and f ~k2g? are summed over in Eq. (5). Swapping around ~k1 and ~k2
gives the same operators up to an overall phase. The irreps given in parentheses do not occur for
two identical bosons with a symmetric flavor coupling (e.g. �� in I ¼ 0 or 2) because of the
constraints arising from Bose symmetry.

~P ~k1 ~k2 �ðPÞ

[0, 0, 0] OD
h [0, 0, 0] [0, 0, 0] Aþ

1

[0, 0, 1] ½0; 0;�1� Aþ
1 , E

þ, (T�
1 )

[0, 1, 1] ½0;�1;�1� Aþ
1 , T

þ
2 , E

þ, (T�
1 , T

�
2 )

[1, 1, 1] ½�1;�1;�1� Aþ
1 , T

þ
2 , (T

�
1 , A

�
2 )

[0, 0, 2] ½0; 0;�2� Aþ
1 , E

þ, (T�
1 )

[0, 0, 1] Dic4 [0, 0, 0] [0, 0, 1] A1

½0;�1; 0� [0, 1, 1] A1, E2, B1

½�1;�1; 0� [1, 1, 1] A1, E2, B2

½0; 0;�1� [0, 0, 2] A1

½0;�1;�1� [0, 1, 2] A1, E2, B1

½�2; 0; 0� [2, 0, 1] A1, E2, B1

½�1;�1;�1� [1, 1, 2] A1, E2, B2

[0, 1, 1] Dic2 [0, 0, 0] [0, 1, 1] A1

[0, 1, 0] [0, 0, 1] A1, (B1)

½�1; 0; 0� [1, 1, 1] A1, B2

[1, 1, 0] ½�1; 0; 1� A1, A2, (B1, B2)

½0; 1;�1� [0, 0, 2] A1, B1

½0;�1; 0� [0, 2, 1] A1, B1

½1;�1; 1� ½�1; 2; 0� A1, A2, B1, B2

½1;�1; 0� ½�1; 2; 1� A1, A2, B1, B2

[1, 1, 1] Dic3 [0, 0, 0] [1, 1, 1] A1

[1, 0, 0] [0, 1, 1] A1, E2

[2, 0, 0] ½�1; 1; 1� A1, E2

½1;�1; 0� [0, 2, 1] A1, A2, 2E2

½�1; 0; 0� [2, 1, 1] A1, E2
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braces to indicate the suppression of the dimensionful

factor, i.e. ~P ¼ ½1; 0; 0� denotes a momentum of 2�L ð1; 0; 0Þ.
The Clebsch-Gordan coefficients, C, can be determined

by a group theoretic construction.When ~P ¼ ~k1 ¼ ~k2 ¼ ~0,
there is only one momentum direction in the sum and C are
just the usual Clebsch-Gordan coefficients for OD

h [28]. In

the case of two pions the only relevant Clebsch-Gordan
is the trivial A�

1 � A�
1 ! Aþ

1 , C ¼ 1, giving a two-pion
operator in the Aþ

1 irrep.

For the two-pion system with ~k1 � ~0 but overall at rest,
~P¼ ~k1þ ~k2¼ ~0, ~k2 ¼ � ~k1, the Clebsch-Gordans required

are those for A2ðf ~k1g?Þ�A2ðf ~k2g?Þ!�P with A2 of

LGð ~k1Þ and �P of OD
h . The irreps, �P, arising are given

in Ref. [29] and summarized in Table III. We discuss how
to calculate the corresponding explicit Clebsch-Gordan
coefficients using the induced representation and give
values in Appendix A.

For the remaining case, ~P � ~0, we require the Clebsch-

Gordan coefficients for A2ðf ~k1g?Þ � A2ðf ~k2g?Þ ! �, or if
~k2 ¼ ~0, A2ðf ~k1g?Þ � A�

1 ð~0Þ ! � and correspondingly for
~k1 ¼ ~0. Again, these are calculated using the induced
representation as discussed in Appendix A and we give
the irreps which arise in Table III.

In this work we restrict ourselves to ~P ¼ ½0; 0; 0�,
[0, 0, 1], [0, 1, 1] and [1, 1, 1], and the various combina-

tions of ~k1 and ~k2 used are given in Table III. Because the
two pions are identical bosons, Bose symmetry requires
them to be symmetric under interchange and we only
use operators with the correct symmetry for isospin-2.
However, for completeness, those operators with the wrong
symmetry are shown in parentheses in the table.

We want to use these operator constructions at both
the source and the sink of correlation functions. This re-
quires us to be able to project single-pion operators onto a
given momentum at arbitrary times, something that can be
achieved efficiently using the distillationmethodology [30].

III. DISTILLATION AND
CORRELATOR CONSTRUCTION

Within distillation [30], we construct operators capable

of interpolating a single pion of momentum ~k from the
vacuum as

�yð ~k; tÞ ¼ X
~x

ei
~k� ~x½ �ch��

y
t h�c �ð ~x; tÞ; (6)

where the �t are, in general, operators acting in space,
color, and Dirac spin on a time slice, t, whose explicit
construction is described in detail in Ref. [27]. The quark
fields c in Eq. (6) are acted upon by a distillation smearing
operatorh� that emphasizes the lowmomentum quark and
gluon modes that dominate low mass hadrons. This smear-
ing operator is defined as

h
ij
�ð ~x; ~y; tÞ ¼

XNvecs

n¼1

e�
2�n=4�i

nð ~x; tÞ�jy
n ð ~y; tÞ; (7)

where �n, �
i
nð ~x; tÞ are the nth eigenvalue and eigenvector

(in color, i, and position, ~x) of the gauge-covariant three-
dimensional Laplacian operator on a time slice, t. In the
present study, the smearing weight � is set to 0 and
the number of vectors used is Nvecs ¼ 64, 128, 162 on
the L=as ¼ 16, 20, 24 lattices respectively (a shorthand
h is used to represent h�¼0).
The outer-product nature of the distillation smearing op-

erator is such that correlators can be factorized into products
of factors containing only propagation and factors contain-
ing only operator construction. The propagation factors, 	
(called ‘‘perambulators’’), and momentum projected opera-
tors, �, are constructed as matrices in the space of the

eigenvectors (the distillation space): where 	nmðt0;tÞ¼
�y
n ðt0ÞM�1ðt0; tÞ�mðtÞ and �nmðtÞ¼�y

n ðtÞ�t�mðtÞ, and M is
the lattice representation of the Clover-Dirac operator for the
light quarks used in this study.
As outlined in Sec. II, two-hadron operators are con-

structed from sums over products of two single-hadron
operators of definite momentum, as in Eq. (5). The result-
ing correlators for the�� operators are of the generic form

Cijðt0; tÞ ¼ h0jð��Þiðt0Þ � ð��Þyj ðtÞj0i; (8)

where each operator � is of the bilinear form given in
Eq. (6). For isospin-2, quark integration leads to only Wick
contractions featuring quark propagation from source time
t to sink time t0; there are no annihilation contributions.
The resulting traces are over the set of eigenvectors used in
Eq. (7) which is much smaller than the full lattice space,
allowing for the efficient computation of the correlation
functions. In particular, it is the factorization of the smear-
ing operator that allows for the projection of both the
source and sink operators onto definite interpion momen-
tum, something that is not possible in the traditional
‘‘point-all’’ method. This factorization allows for the con-
struction of the full hermitian correlation matrix among
source and sink operators in Eq. (8), and hence makes
possible the application of the variational method [8–10].
In this method, the manifest orthogonality among states
provides the essential key for determining high lying ex-
cited states and separating nearly degenerate states.
To increase statistics, the correlation functions in Eq. (8)

are averaged over multiple time sources. The number of
time sources, along with the number of eigenvectors of the
Laplacian,Nvecs, and the number of configurations for each
of the three volumes used in this study are shown in Table I.

IV. OPTIMIZED PION OPERATORS

In our previous study of �� isospin-2 scattering [7] we
made use only of the simplest composite QCD operators
capable of interpolating a pion, � �ch��5h�c [Eq. (6)
with � ¼ �5] where the distillation smearing operator h�
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in Eq. (7) took on two different values of the smearing
weight �. As well as interpolating the ground-state pion
from the vacuum, this operator has significant amplitudes
to interpolate various excited states with pion quantum
numbers (�?). In correlation functions, the contribution
of the excited states will die away more rapidly than the
ground state [see the decomposition in Eq. (1)], but at
modest times, the excited states are present to some degree,
as shown in Fig. 1. For consideration of �� scattering,
these excited-state contributions are an unwanted pollution
in our correlators that ideally we would like to be absent.
Their presence forces us to analyze �� correlators only at
large times where effects of the finite-temporal extent of
the lattice are more keenly felt.

In principal if we could find an operator which has
increased overlap onto the ground-state pion and reduced
overlap onto low-lying excited states, its use would lead to
�� correlators that are truly dominated by �� at smaller
times, with the contribution of unwanted ��? being re-
duced. Our approach to finding such an ‘‘optimized’’
single-pion operator is to variationally diagonalize a matrix
of single-hadron correlators in a basis of operators, taking
as our optimized operator the linear combination of basis
operators having lowest energy.

The basis of operators used is as described in Sec. II A
and presented in detail in Refs. [11,12,27]. It corresponds
to fermion bilinears with Dirac gamma matrices and
gauge-covariant derivatives4 between them, constructed

to be of definite spin or helicity in a continuum theory
and then subduced into irreducible representations of the
octahedral group or the appropriate little group. For
the pion this is A�

1 for zero momentum and A2 for all the
nonzero momenta that we consider.
The variational analysis corresponds to the solution of

the generalized eigenvalue problem [8–10]

CðtÞvðnÞ ¼ �nðtÞCðt0ÞvðnÞ; (9)

where the state energies are obtained from fits to �nðtÞ �
e�Enðt�t0Þ. The optimal combination of operators, Oi, to

interpolate state jni from the vacuum is �y
n ¼ P

iv
ðnÞ
i Oy

i .
Our implementation of the variational method is described
in Ref. [12].
In Fig. 2 we show, for a range of momenta, the improve-

ment obtained using the ‘‘optimized’’ pion operators
alongside the simple �ch�5hc operators, where clearly
the correlators computed with the optimized operators
relax to the ground state more rapidly than the simpler
operators, typically at or before 10at from the source
[a time comparable with the values of t0 found to be
optimal in the solution of Eq. (9)].
Use of these optimized operators will lead to some

confidence when dealing with �� correlators where for
times * 10at away from the source, we will be able to
largely neglect the contribution of ��? states.

V. PION MASS AND DISPERSION RELATION

As well as the volume dependence of energies of multi-
hadron states owing to hadron interactions suggested by
the Lüscher formalism, there can also be exponential
dependence of single-hadron energies on L. We can at-
tempt to determine any such behavior for the pion by

FIG. 1 (color online). Contributions of ground state (n ¼ 0)
pion (horizontal red solid line) and excited pion states (other
solid lines) to the single pion correlator at zero momentum,
CðtÞ ¼ hð �ch�5hc ÞðtÞ � ð �ch�5hc Þð0Þi and Nvecs ¼ 162 on
the 243 lattice. Summed contribution of all states indicated by
the top (gray) curve. Excited state pions are observed to con-
tribute significantly until t * 20at. (Excited state contributions
determined from the results of variational analysis using a large
operator basis, see the text.)

FIG. 2 (color online). Effective masses [throughout this paper
we define the effective mass of a correlator CðtÞ to be

meff ¼ 1
3at

log½ CðtÞ
Cðtþ3atÞ� ] of single-pion correlators computed us-

ing �ch�5hc (darker shades, squares) and ‘‘optimized’’ opera-
tors, �n¼0 (lighter shades, circles). Shown for a range of
momenta on the L=as ¼ 24 lattice.

4In this work we use all operators with the correct quantum
numbers constructed from any possible gamma matrix and up to
three derivatives (for an operator at rest) or up to one derivative
(for an operator at nonzero momentum).
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computing its mass on the three volumes at our disposal.
In Fig. 3 we show the pion mass extracted on our three
lattice volumes where there is seen to be very little

volume dependence ðm�ðL=as¼24Þ
m�ðL=as¼16Þ ¼ 0:990ð4ÞÞ. In [20], the

NPLQCD Collaboration suggests a 
PT motivated form
for the L dependence,

m�ðLÞ ¼ m� þ c
e�m�L

ðm�LÞ3=2
: (10)

Fitting to this form we find atm� ¼ 0:06906ð13Þ and
atc ¼ 0:24ð10Þ in good agreement with NPLQCD’s
0.069073(63)(62), 0.23(12)(7) respectively. We use
atm� ¼ 0:06906ð13Þ as our best estimate for the pion
mass in all subsequent calculations.5

A complication which arises from our use of an aniso-
tropic lattice is the need to determine the precise value of
the anisotropy, �, which relates the spatial lattice spacing
as to the temporal lattice spacing at ¼ as=�. The anisot-
ropy appears in the dispersion relation of a free particle,
where the periodic boundary conditions in space lead to
allowed momenta ~p ¼ 2�

L ðnx; ny; nzÞ for integer nx, ny, nz,
so that

ðatEn2Þ2 ¼ ðatmÞ2 þ 1

�2

�
2�

L=as

�
2
n2; (11)

if we assume that mesons on the lattice have a continuum-
like dispersion relation. Whether this is a good descrip-
tion will be determined by explicit fits to extracted pion
energies at various momenta. In Fig. 4 we show pion
energies on the three volumes along with a fit to Eq. (11)
with � as a free parameter. The fit is acceptable leading
to � ¼ 3:444ð6Þ. Using other parametrizations of the
dispersion relation (adding a p4 term, using cosh/sinh
etc. . .), lead to fits which are indistinguishable within

the thickness of the line in Fig. 4 and to compatible
values of �. In the remainder of the paper we use
� ¼ 3:444ð6Þ as our best estimate.6

VI. EFFECTS OF FINITE TEMPORAL EXTENT

Our extractions of finite-volume �� energy spectra fol-
low from analysis of the time dependence of correlation
functions and the form of these time dependencies is af-
fected by the finite temporal extent of the lattice. The size of
finite-T effects are generically determined by the size of
e�m�T , which while small on these lattices, is large enough
for its effects to be visible, particularly in the �� sector.
As an explicit example of a systematic effect whose

origin will turn out to be the finite temporal extent of the
lattice, we show in Fig. 5 the effective mass of a very
simple ‘‘��’’ correlator. The same ‘‘��’’ operator,P

~x½ �ch�5hc �ð ~xÞ �P ~y½ �ch�5hc �ð ~yÞ appears at source

(tsrc ¼ 0) and sink (t). The effective mass of the raw
correlator is observed to continue falling after appearing
to briefly plateau near an energy equal to twice the pion
mass. This behavior can occur if the correlator features, as
well as a sum of exponentially decaying time dependencies
corresponding to discrete energy eigenstates, as in Eq. (1),
also a contribution that is constant in time. Such a term

FIG. 3 (color online). Pion mass as a function of lattice spatial
volume. Volume dependence fitted with Eq. (10).

FIG. 4 (color online). Pion dispersion relation. Fit as described

in the text. Lower plot shows �̂ðn2; LÞ 

2�

L=as

ffiffiffiffi
n2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðatEn2

Þ2�ðatmÞ2
p and the

fitted value of � ¼ 3:444ð6Þ.

5Fitting the same data to a constant leads to atm� ¼
0:06928ð18Þ with a somewhat poorer fit, 
2=Ndof ¼ 3:0.

6In correlated fitting to obtain atm� and � simultaneously we
find a relatively small correlation between the parameters and for
error propagations in the remainder of the calculation we treat
them as independent variables.
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can be eliminated by considering the shifted correlator,

Ĉ�tðtÞ 
 CðtÞ � Cðtþ �tÞ. An effective mass of this con-
struction with �t ¼ 3at is also shown in Fig. 5 where it is
observed to plateau to an energy slightly above twice the
pion mass.7 A direct estimate of the size of the constant
term comes from fitting CðtÞ to the formX

n

Ane
�Ent þ c; (12)

where fAng, fEng and c are the fit parameters. A fit to the
raw correlator over a time region 15 ! 43 with two expo-
nentials and a constant gives a 
2=Ndof ¼ 0:7 and atE0 ¼
0:13966ð4Þ, A0¼8:76ð8Þ�104 and c ¼ 26:4ð13Þ, indicat-
ing a statistically significant constant term. We propose that
the origin of the constant term is the finite temporal extent of
the lattice and notice that 2A0e

�m�T ¼ 25:4ð2Þ is very close
to the fitted value of c. In the remainder of this section we
will attempt to describe the effect of finite T on our com-
puted �� correlators at rest and in flight.

A. Finite-T effects for correlators at rest

Let us begin by considering a correlator constructed
using pion interpolating fields of definite momentum,

C
~k01; ~k

0
2

~k1; ~k2
ðtÞ ¼ h��

~k01
ðtÞ��

~k02
ðtÞ � �þ

~k1
ð0Þ�þ

~k2
ð0Þi;

where in this section the operator �þ interpolates a
positively charged pion from the vacuum. In practice we
will always project these products into definite little group

irreps, �, for a given ~P ¼ ~k1 þ ~k2 ¼ ~k01 þ ~k02 as described
in Sec. II. With antiperiodic boundary conditions in
the finite time direction, two-point correlators have the
decomposition8

CðtÞ ¼ hO0ðtÞOð0Þi ¼ tr½e�HTO0ðtÞOyð0Þ�=tr½e�HT�
/ X

n;m

e�EnTeðEn�EmÞthnjO0ð0ÞjmihmjOyð0Þjni; (13)

in terms of eigenstates of the Hamiltonian, Hjni¼Enjni,
which will be discrete in a finite spatial volume. The
contribution to this sum we are interested in is the only
one to survive in the limit T ! 1 and is of the formX
n

h0j����jð�þ�þÞnihð�þ�þÞnj�þ�þj0ie�En
��t

¼ X
n

ðZn
��Þ2e�En

��t; (14)

where jð�þ�þÞni are I ¼ 2 eigenstates.
At finite T there are other terms in the sum in Eq. (13),

the largest being of formX
~p; ~q

e�E�ð ~pÞTh��
~p j��

~k01
ðtÞ��

~k02
ðtÞj�þ

~q ih�þ
~q j�þ

~k1
ð0Þ�þ

~k2
ð0Þj��

~p i

which has a time dependence of

z2~k1
z2~k2

½�~k01; ~k1
�~k02; ~k2

þ �~k01; ~k2
�~k02; ~k1

�
� ½e�E�ð ~k01ÞTe�ðE�ð ~k02Þ�E�ð ~k01ÞÞt

þ e�E�ð ~k02ÞTe�ðE�ð ~k01Þ�E�ð ~k02ÞÞt�; (15)

where z ~k 
 h�þ
~k
j�þ

~k
j0i. As a first example, consider the

case of correlators in the �� rest frame, ~P ¼ ~0, C
~k;� ~k
~k;� ~k

ðtÞ,
where this term becomes

2ðz ~kÞ4e�E�ð ~kÞT (16)

which is simply a constant in time.
We may now address the observation made at the start of

this section that the correlator constructed with ~k ¼ ~k0 ¼
½0; 0; 0� has a clear constant term. Our analysis above
suggests that its magnitude would be 2ðz½000�Þ4e�m�T , while

the leading T-independent term is of form ðZð0Þ
��Þ2e�Eð0Þ

��t. In
the limit of weakly interacting pions we would expect

Zð0Þ
�� ! ðz½000�Þ2 and as such c ! 2A0e

�m�T . This appears

to hold true to a rather good approximation in the data.
We expect other finite-T terms to be negligibly small in

practice; in particular a term often considered in single-
particle analysis, Z2e�ETeEt, which turns exponentially
decaying time dependence into cosh-like time dependence
can be ignored here. It is suppressed by at least e�2m�T and
only becomes relevant close to t ¼ T=2 while we consider
correlators only at earlier times.9

FIG. 5 (color online). Effective masses of a ‘‘��’’ correlator
as described in the text. Raw correlator (red squares) and shifted
correlator (green diamonds).

7The very slow relaxation to the plateau is mainly due to not
using optimised pion operators in this construction.

8See [31] for a discussion of these finite-T effects on the
spectrum of single particle systems and [32] for discussion of
many-hadron states.

9In practical terms, while the constant term could contribute
�10% of the correlator at t ¼ 48, the extra term ‘‘in the cosh’’
would only be at the 1% level. Other contributions featuring
h�þ�þ��j�þ�þj��i formally appear at Oðe�m�TÞ, but their t
dependence ensures that they provide negligible contributions to
the correlators.
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In Fig. 6 we show further evidence for the presence of
the constant term in �� correlators. These correlators,
evaluated on the L=as ¼ 24 lattice, using optimized pion

operators, have ~P ¼ ½0; 0; 0� and use �~k1
�~k2

products

projected into definite irreps �P constructed from the

lowest allowed j ~k1j, j ~k2j as detailed in Sec. II (Eþ ! ~k ¼
½1; 0; 0�, Tþ

2 ! ~k ¼ ½1; 1; 0�). The results of the correlator
fits [of the form given in Eq. (12)] are presented in
Table IV, where we see that the size of the constant

term is in rather good agreement with 4A0e
�E�ð ~kÞT , the

value in a noninteracting theory (see the Clebsch-Gordan
coefficients in Appendix A for the appropriate combina-
tion of pion momenta). Clearly the ‘‘polluting’’ constant
term plays a significant role in the correlator as early as
t� 25at and if we want to use timeslices beyond this
point in variational analysis, we will need to take some
account of its presence.
Our solution is to completely remove the effect of all

time-independent terms from correlators, by instead of
considering CðtÞ, using shifted correlators,

Ĉ �tðtÞ ¼ CðtÞ � Cðtþ �tÞ; (17)

which exactly cancel contributions constant in time for any
choice of �t � 0. The desired �� contributions, Eq. (14),
are changed only by a rescaling of the Zn

�� to

Ẑ n
�� ¼ Zn

��½1� e�En
���t�1=2: (18)

This is just a change in scale of overlaps that for a
given state, n, is common to all operators. Shifting then
does not violate any of the conditions for carrying out a
variational analysis and we can proceed with use of

Ĉ�tðtÞ in Eq. (9) to yield the finite-volume energy
spectrum En

��.

B. Finite-T effects for correlators in-flight

The unwanted contributions to correlators ‘‘in flight’’

( ~P � ~0) are not time-independent and cannot be removed
by simply shifting in time. Following Eq. (13), they take
the generic form

ðz ~k1Þ2ðz� ~k1þ ~PÞ2½�~k01; ~k1
þ �~k01;� ~k1þ ~P�

� ½e�E�ð ~k01ÞTe�ðE�ð� ~k01þ ~PÞ�E�ð ~k01ÞÞt

þ e�E�ð� ~k01þ ~PÞTe�ðE�ð ~k01Þ�E�ð� ~k01þ ~PÞÞt�;
where the contributions of largest magnitude occur if either
~k01 or � ~k01 þ ~P are equal to zero as then the finite-T
suppression factor is only e�m�T . The largest ‘‘polluting’’
term in this case would not be a constant but rather have a
time dependence �e��E�t where �E� is the energy gap

between a single pion of momentum ~k and one with

momentum ~P� ~k. In the case ~P ¼ ~0 this reverts to a
constant in time as expected.
Consider the concrete example of a correlator

with �þ
½000��

þ
½100� at the source and ��

½000��
�
½100� at the sink.

FIG. 6 (color online). Fits to diagonal �� correlators with
~P ¼ ½0; 0; 0� using the lowest allowed j ~kj that gives rise to irrep

�P. Correlator is plotted via e2E�ð ~kÞtCðtÞ such that in the limit of
noninteracting pions and T ! 1 we would have a horizontal
line. The solid red line shows the result of the fit using Eq. (12)
while the orange dashed line shows the result of excluding the
constant contribution, which should correspond to the T ! 1
behavior. Fit parameters given in Table IV.

TABLE IV. Fits, using two exponentials in Eq. (12), to diagonal �� correlators with
~P ¼ ½0; 0; 0� using the lowest allowed j ~kj that gives rise to irrep �P.

Irrep ~k 
2=Ndof E0=2E�ð ~kÞ c 4A0e
�E�ð ~kÞT

Eþ [1, 0, 0] 0.9 1.0014 (17) 7:9ð5Þ � 10�6 7:8� 10�6

Tþ
2 [1, 1, 0] 0.9 1.0002 (16) 6:9ð11Þ � 10�7 4:9� 10�7
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In this case, as well as the desired term which is
approximately10

� ðz½000�Þ2ðz½100�Þ2e�ðm�þE½100�
� Þt; (19)

we would have ‘‘polluting’’ terms

� ðz½000�Þ2ðz½100�Þ2ðe�m�Te�ðE½100�
� �m�Þt

þ e�E½100�
� Te�ðm��E½100�

� ÞtÞ; (20)

where as shown in Fig. 7, the first of these polluting terms
is expected to dominate the pollution for the time regions
we consider. We can observe the effect of this leading

pollution term in fits to correlators having ~P ¼ ½1; 0; 0�
computed on the L=as ¼ 24 lattice using optimized pion
operators—in Fig. 8 we show the irreps � ¼ A1, B1, B2,
constructed using the smallest allowed magnitudes of pion
momentum. The fit form (which neglects the subleading
pollution) isX

n

Ane
�Ent þ ce�ðE�ð ~kmaxÞ�E�ð ~kminÞÞt (21)

with fAng, fEng and c as fit variables, using fixed E�ð ~kÞ
obtained from the dispersion relation [Eq. (11)].

It would appear that these diagonal correlators can be
reasonably well described by the fit form proposed indicat-
ing a small but statistically significant impact of finite-T
effects on the correlators. We will need to address these
terms in any variational extraction of the in-flight ��
spectrum. Our approach is to remove the worst of the

FIG. 7 (color online). Simulated contributions to a correlator

( ~k1 ¼ ½0; 0; 0�, ~k2 ¼ ½1; 0; 0�) of the desired (T ! 1, red) term,
Eq. (19), and two ‘‘polluting’’ (finite-T) terms from Eq. (20)—
the first term (leading, green dashed) and the sum of the two
terms (leading plus subleading, blue, dash-dotted). Observe that
in the time region we will consider, the leading term dominates
over the subleading term.

FIG. 8 (color online). Fits to diagonal �� correlators with
~P ¼ ½0; 0; 1� using the lowest allowed j ~k1j, j ~k2j that gives rise

to irrep �. Correlator is plotted via eðE�ð ~k1ÞþE�ð ~k2ÞÞtCðtÞ such that

in the limit of noninteracting pions and T ! 1 we would have a

horizontal line. The solid red line shows the result of the fit using

Eq. (21) while the orange dashed line shows the result of

excluding the contribution proportional to c, which should

correspond to the T ! 1 behavior.

10This would be exact for noninteracting pions, in �� I ¼ 2
scattering the interaction is weak so the approximation should be
a reasonable guide.
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pollution exactly and settle for approximate reduction of
less acute terms. The largest polluting term has a time

dependence / e�E�ð ~kminÞTe��Emint where ~kmin is the lowest
momentum that appears in any of the correlators making
up our correlator matrix, and �Emin is whatever positive
energy gap appears in the corresponding time dependence.
This term can be converted into a constant by forming the
following weighted correlator,

~CðtÞ ¼ e�EmintCðtÞ; (22)

and the constant term can be removed by then shifting the
weighted correlator,

~̂C �tðtÞ ¼ ~CðtÞ � ~Cðtþ �tÞ: (23)

We refer to these as weighted-shifted correlators. The
exact same weighting and shifting procedure is applied to
every element of the matrix of correlators such that the
effect of the weighting is to shift all energies down by a
common�Emin. This can be corrected for by adding�Emin

to the variationally obtained spectrum.
In summary, while finite-T effects are modest in our

two-pion correlators, precision extraction of a �� energy
spectrum requires that we account for them in our analysis.

Through appropriate weighting and shifting of correlators
before applying the variational method, we believe that we
are able to remove the leading systematic effects leaving
only subleading effects that we find to be smaller than our
level of statistical uncertainty.

VII. FINITE-VOLUME SPECTRUM

We compute correlator matrices in each irrep ~P,� using
the basis of operators defined in Sec. II. After modifying
the correlator matrix with the appropriate weighting and/or
shifting as described in the previous section, the spectrum
is obtained by solution of the generalized eigenvalue prob-
lem, Eq. (9). Each irrep is considered independently and
the entire procedure is repeated on each of the three lattice
volumes. The two-pion operators used are given in Table V

and the number of operators for each ~P and irrep are given
in Table VI. We illustrate the method here with the ex-

ample of the ~P ¼ ½1; 0; 0�, � ¼ A1 irrep on the L=as ¼ 24
lattice.

A. Example of ~P¼ ½0; 0; 1�, �¼A1

As an explicit example of our variational fitting proce-

dure consider the ~P ¼ ½0; 0; 1�, A1 irrep evaluated on the

TABLE V. The two-pion operators used presented for each ~P on various volumes; also shown

is LGð ~PÞ. We give only the irreps that we considered in this work. Example momenta ~k1 and ~k2
are shown; all momenta in f ~k1g? and f ~k2g? are summed over in Eq. (5).

~P Volumes ~k1 ~k2 �ðPÞ

[0, 0, 0], OD
h 163, 203, 243 [0, 0, 0] [0, 0, 0] Aþ

1

[0, 0, 1] ½0; 0;�1� Aþ
1 , E

þ
[0, 1, 1] ½0;�1;�1� Aþ

1 , T
þ
2 , E

þ
[1, 1, 1] ½�1;�1;�1� Aþ

1 , T
þ
2

[0, 0, 2] ½0; 0;�2� Aþ
1 , E

þ

[0, 0, 1], Dic4 163, 203, 243 [0, 0, 0] [0, 0, 1] A1

½0;�1; 0� [0, 1, 1] A1, E2, B1

½�1;�1; 0� [1, 1, 1] A1, E2, B2

½0; 0;�1� [0, 0, 2] A1

203, 243 ½0;�1;�1� [0, 1, 2] A1, E2, B1

½�2; 0; 0� [2, 0, 1] A1, E2, B1

½�1;�1;�1� [1, 1, 2] A1, E2, B2

[0, 1, 1], Dic2 163, 203, 243 [0, 0, 0] [0, 1, 1] A1

[0, 1, 0] [0, 0, 1] A1

½�1; 0; 0� [1, 1, 1] A1, B2

[1, 1, 0] ½�1; 0; 1� A1, A2

½0; 1;�1� [0, 0, 2] A1, B1

203, 243 ½0;�1; 0� [0, 2, 1] A1, B1

½1;�1; 1� ½�1; 2; 0� A1, A2, B1, B2

½1;�1; 0� ½�1; 2; 1� A1, A2, B1, B2

[1, 1, 1], Dic3 163, 203, 243 [0, 0, 0] [1, 1, 1] A1

[1, 0, 0] [0, 1, 1] A1

[2, 0, 0] ½�1; 1; 1� A1

203, 243 ½1;�1; 0� [0, 2, 1] A1

½�1; 0; 0� [2, 1, 1] A1
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L=as ¼ 24 lattice. Our basis of operators here is obtained
by applying Eq. (5) and is thus of the form

ð��Þ½ ~k1; ~k2�y½001�;A1
¼ X

~k12f ~k1g?
~k22f ~k2g?

~k1þ ~k2¼½001�

Cð½0; 0; 1�; A1; ~k1; ~k2Þ�yð ~k1Þ�yð ~k2Þ

(24)

with constructions using the pion momenta given in Table V.
This gives a correlation matrix, CðtÞ, of dimension 7. In
order to remove the largest finite-T effects, as discussed in
the previous section, the weighted-shifted correlation ma-

trix, ~̂CðtÞ is formed, using �Emin¼E�ð½0;0;1�Þ�m�. This
matrix is analyzed using Eq. (9)—for t0 ¼ 14at, the ob-
tained principal correlators, �nðtÞ, are shown in Fig. 9 along
with fits of the form

�ðtÞ ¼ ð1� AÞe�Eðt�t0Þ þ Ae�E0ðt�t0Þ; (25)

where E, E0 > E and A � 1 are the fit parameters. The
second exponential allows for the excited state11 pollution
expected to be present for t & t0 (our reported spectra are
just the values of E, E0 is discarded). The fits are very good
and the absence of any significant upward curvature at larger
t (as in Fig. 7) suggests that our weighting-shifting proce-
dure has removed the bulk of the finite-T pollution.12

The solution of Eq. (9) also provides eigenvectors

vðnÞ which can be converted into overlaps, ZðnÞ
½ ~k1; ~k2�



hð��Þn; ½0; 0; 1�; A1jð��Þy½ ~k1; ~k2�½001�;A1

j0i using ẐðnÞ
½ ~k1; ~k2�

¼
ðv̂ðnÞy ~̂Cðt0ÞÞ½ ~k1; ~k2�e

~Ent0=2. Our method of solution of the

generalized eigenvalue problem treats each time slice in-

dependently such that we actually obtain vðnÞðtÞ and thus

ẐðtÞ. This time dependence is fitted to a constant (or a
constant plus an exponential if that is required to get a good
fit) and the resulting constant is rescaled to undo the effect
of the shifting of the correlators in the manner prescribed
by Eq. (18).
The overall quality of description of the correlators by

the variational solution can be seen in Fig. 10 along with an
indication of how much each jð��Þni state contributes to
each of the diagonal correlators. These contributions are
reconstructed from the results of the variational analysis by
building the sum in Eq. (14) state-by-state. The descrip-
tion, as one would expect, is excellent for t > t0; indeed the
ability to get a good description of the correlators using
only the number of states equal to the basis size is our
condition to determine an appropriate value of t0 [33]. That
we are able to countenance a value as low as t0 ¼ 14at is
due to our use of optimized pion operators so that ��?

contributions to the correlators are much reduced.
It is apparent in Fig. 10 that the basis of operators,

defined by Eq. (24), is rather close to a diagonalizing basis
and this can be clearly seen in Fig. 11 which shows the Z

values for each state n and each operator ½ ~k1; ~k2�. This
indicates that the finite-volume �� eigenstates are close to
being states of definite pion momentum which agrees with
the expectation that the I ¼ 2 interpion interaction strength
is weak and the observation of only small shifts from
noninteracting �� energies. It is interesting to note that
the largest deviations from diagonal behavior, i.e., the
largest mixing of the noninteracting state basis, occurs
for levels which are very close in energy. This is precisely
what we would expect from perturbation theory, where
small energy denominators enhance mixing of near-
degenerate states. That we are able to resolve this mixing
with a high degree of confidence is an advantage of our use
of a variational approach.

B. Volume dependence of �� spectra

We perform this analysis procedure independently for

each ( ~P, �) on each volume. The energies obtained are in
the frame in which the lattice is at rest, and can be more
usefully expressed in the �� center-of-momentum frame,

Ecm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
lat � j ~Pj2

q
ðatEcmÞ ¼

�
ðatElatÞ2 � 1

�2

�
2�

L=as

�
2
n2~P

�
1=2

;

(26)

where we use the anisotropy, �, determined from the pion
dispersion relation in Sec. V. In Figs. 12–15 we show the
volume dependence of the extracted center-of-momentum
frame energy spectrum along with the energies of pairs
of noninteracting pions carrying various allowed lattice
momenta.

TABLE VI. The number of two-pion operators used for each ~P
and irrep on the various lattice volumes.

~P �ðPÞ 163 203, 243

[0, 0, 0] Aþ
1 5 5

Eþ 3 3

Tþ
2 2 2

[0, 0, 1] A1 4 7

E2 2 5

B1 1 3

B2 1 2

[0, 1, 1] A1 5 8

A2 1 3

B1 1 4

B2 1 3

[1, 1, 1] A1 3 5

11By ‘‘excited states’’ here we might have several types,
including �� with large relative momenta, ��? and other
inelastic contributions.
12Such upward curvature is seen in variational analysis of the
raw correlator matrix, CðtÞ.
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FIG. 9 (color online). Principal correlators from solution of Eq. (9) applied to the weighted-shifted correlator matrix ~̂CðtÞ for ~P ¼
½0; 0; 1�, � ¼ A1 with t0 ¼ 14at. Plotted is eEðt�t0Þ�ðtÞ against t=at along with fits to the time dependence according to Eq. (25). Also
plotted in the bottom-right are the effective masses of the principal correlators (with the energy weighting �Emin corrected) and the fit
values E superimposed as horizontal bands. All energies are those in the frame in which the lattice is at rest.
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FIG. 10 (color online). Diagonal elements of the weighted-shifted correlation matrix for ~P ¼ ½0; 0; 1�, � ¼ A1: ~̂C
½ ~k1; ~k2�
½ ~k1; ~k2�ðtÞ and their

reconstruction using terms in the sum over states in Eq. (14). Plotted is e
~Eð0Þ
��t ~̂CðtÞ.
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In all cases we observe small energy shifts, with the
largest shifts in A1 irreps, reflecting the expected strongest
interaction in S-wave scattering.

VIII. PHASE SHIFTS FROM
FINITE-VOLUME SPECTRA

The formalism to relate the amplitude for two-particle
elastic scattering in partial waves labeled by angular mo-
mentum ‘, to the spectrum of states in a finite cubic spatial
volume, is laid down in [2], with extensions to the case of a
moving frame presented in [16–18]. Because we are con-
sidering �� scattering in isospin-2 where only even ‘
occur, there is a one-to-one correspondence between the
irreps of the symmetry group relevant for the Lüscher
formalism in a moving frame and the little group irreps13

and so we will refer to the little group irreps.
The formalism can be compactly expressed in a single

equation,

det

�
EðpcmÞ � Uð ~P;�Þ

��
pcmL

2�

�
2
��

¼ 0: (27)

U is a formally infinite-dimensional matrix of known
functions whose rows and columns are each labeled by
the pair ð‘; nÞ, U‘n;‘0n0 . f‘g are the angular momenta which

subduce into the irrep, �, and n is an index indicating the
nth embedding of that ‘ into this irrep; the pattern of these
subductions is given in Table VII. U is a function of the

dimensionless variable q2 ¼ ðpcmL
2� Þ2, featuring the center-

of-momentum frame scattering momentum and the spatial
length of the cubic lattice, L.
E is a diagonal matrix, independent of L, which encodes

the scattering amplitude through the elastic scattering

phase shifts, �‘ðpcmÞ, as E‘n;‘0n0 ¼ e2i�‘ðpcmÞ�‘0‘�n0n.

U is conveniently expressed in terms of a matrix M as
U ¼ ðMþ i1ÞðM� i1Þ�1 where we can obtain the ele-
ments of M using

FIG. 11 (color online). ‘‘Matrix’’ plot of values of ZðnÞ
½ ~k1 ; ~k2�

normalized according to
ZðnÞ
½ ~k1 ; ~k2�

maxn½ZðnÞ
½ ~k1 ; ~k2�

� so that the largest overlap

across all states for a given operator ½ ~k1; ~k2� is unity.

FIG. 12 (color online). Extracted center-of-momentum
frame energy spectra for ~P ¼ ½0; 0; 0� irreps Aþ

1 , Eþ, Tþ
2 .

The curves represent noninteracting pion pair energies,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ j ~k1j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ j ~k2j2
q

whose uncertainty is determined

by the uncertainty on atm� and � determined in Sec. V. The
shaded area represents opening of inelastic (4�) threshold.

13We note that the symmetry group relevant for the Lüscher
formalism here is the subgroup of OD

h under which ~P ! � ~P
rather than the constraint for little groups that ~P ! ~P. The irreps
are similar to those of the little groups but have an additional
‘‘parity’’ label.
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FIG. 13 (color online). As Fig. 12 for ~P ¼ ½0; 0; 1�.
FIG. 14 (color online). As Fig. 12 for ~P ¼ ½0; 1; 1�.
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Mð ~P;�;�Þ
‘n;‘0n0 ðq2Þ��;�0��;�0 ¼ X

�̂¼�j�j
m¼�‘...‘

X
�̂0¼�j�0 j

m0¼�‘0 ...‘0

S ~�;��
~P;�;�

Dð‘Þ�
m� ðRÞ

�Mð ~PÞ
‘m;‘0m0 ðq2Þ

� S ~�;�0
~P;�;�0D

ð‘0Þ
m0�0 ðRÞ: (28)

In this equation, R is a rotation carrying the Jz quantization

axis ð0; 0; PÞ into ~P, with Dð‘Þ
m�ðRÞ relating Jz values, m,

to helicities, �. A convention for constructing R is given

in [27]. S ~�;�
~P;�;�

is the subduction from helicity � to the �th

row of the lattice irrep � (see Appendix A). Different
magnitudes of helicity, j�j, j�0j give rise to the different
embeddings n, n0. The ‘‘reflection parity’’, ~�
Pð�1Þ‘¼þ
for a system of two pseudoscalars. Mð ~PÞ

‘m;‘0m0 is the same

object defined in Eq. (89) of [16] where it is expressed in
terms of a known linear combination of generalized zeta
functions of argument q2.
One potential use of Eq. (27) is to take a scattering

problem where the amplitudes are known and find the
corresponding spectrum of states in a certain finite-volume
box. For a known set of scattering phase shifts, f�‘ðpcmÞg,
the finite-volume spectrum on an L� L� L spatial lattice
can be obtained by solving Eq. (27) for discrete values of
pcm which give discrete values of Elat. Of course in prac-
tice, for any given lattice irrep, �, we need to truncate the
infinite ð‘; nÞ basis to the set of phase shifts f�‘ðpcmÞg
known to us. Fortunately, at low scattering momentum
there is a hierarchy in �‘ðpcmÞ which follows from angular
momentum conservation, �‘ðpcmÞ � p2‘þ1

cm , such that
�0 � �2 � �4 . . . , and we may be justified in making a
finite truncation in ‘.

A. A toy model of �� scattering

In order to demonstrate the formalism, we will briefly
break away from analysis of lattice QCD obtained finite-
volume spectra to consider a simple toy model of �� scat-
tering in which the scattering amplitudes are known to us.
The toy model is built from an effective range parametriza-
tion of elastic scattering in ‘ ¼ 0, 2, 4 partialwaves.We have

p2‘þ1
cm cot�ðpcmÞ ¼ 1

a‘
þ 1

2
r‘p

2
cm (29)

with parameters

a0 ¼ �0:8 GeV�1; r0 ¼ þ2:5 GeV�1;

a2 ¼ �2:4 GeV�5; r2 
 0;

a4 ¼ �5:0 GeV�9; r4 
 0;

which happens to reasonably describe the experimental ��
I¼2 scattering data up to amomentumpcm�0:6GeV [3–6].
Given this parametrization and the choice m� ¼

0:396 GeVwe solve Eq. (27) for the finite-volume spectrum

in several irreps, ð ~P;�Þ, over a range of volumes,
L ¼ 2:0 ! 5:0 fm. In Fig. 16 we show the center-of-
momentum frame finite-volume energy spectrum for one

example irrep ~P ¼ ½0; 0; 1�, � ¼ A1. At each volume we
show the spectrum obtained from three different scattering
parametrizations: the green squares show the spectrum with
only S-wave scattering (�2 ¼ �4 
 0), the blue circles in-
clude also D-wave scattering (�4 
 0), and the black dia-
monds correspond to all of �0;2;4 being described by the

effective range parametrizations given above. We observe
that the contribution of higher partial waves to determining
the finite-volume energy varies with excitation level.

FIG. 15 (color online). As Fig. 12 for ~P ¼ ½1; 1; 1�.

TABLE VII. The pattern of subductions of I ¼ 2 �� partial
waves, ‘ 	 4, into lattice irreps, �, where N is the number of
embeddings of this ‘ in this irrep. This table is derived from

Table II by considering the subductions of the ‘ for ~P ¼ ~0 and

the various helicity components for each ‘ for ~P � ~0. Here ~P is
given in units of 2�

L and n, m are nonzero integers with n � m.

We show the double-cover groups but only give the irreps
relevant for integer spin.

~P LGð ~PÞ �ðPÞ �� ‘N

[0, 0, 0] OD
h Aþ

1 01, 41

Tþ
1 41

Tþ
2 21, 41

Eþ 21, 41

½0; 0; n� Dic4 A1 01, 21, 42

A2 41

E2 21, 42

B1 21, 41

B2 21, 41

½0; n; n� Dic2 A1 01, 22, 43

A2 21, 42

B1 21, 42

B2 21, 42

½n; n; n� Dic3 A1 01, 21, 42

A2 41

E2 22, 43

½n;m; 0� C4 A1 01, 23, 45

½n; n;m� A2 22, 44
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The problem to be solved in lattice QCD is actually the
inverse of that just described—we start with the finite-
volume spectrum determined through analysis of correla-
tion functions and want to find the phase shifts as a
function of scattering momentum. If a given irrep received
contributions from only a single ‘ this would be relatively
simple—we would solve Eq. (27) for unknown �‘ðpcmÞ by
inputting the determined value of pcm extracted from Elat

using Eq. (26). The toy model construction indicates the
potential difficulty with such a naive approach—Eq. (27)
depends on the value of many �‘ simultaneously and on the
face of it this is an underconstrained problem.

Within the toy model we can explore the effect of the
simplest possible assumption that higher partial waves

contribute only negligibly—consider the spectrum in ~P ¼
½0; 0; 1�,� ¼ A1 for L ¼ 3:5 fm. In Fig. 17(a) we show the
extracted �0 for the lowest four energy levels as a function
of a supplied value14 of �2 (and with �4 ¼ 0). The naive
assumption of �2 ¼ 0 is seen to give reasonable estimates
of �0 for the lowest two levels, but to be significantly
discrepant for the next two levels. Varying �2 between

FIG. 17 (color online). Lowest four energy levels (n ¼ 0, 1, 2, 3) in the toy model with volume L ¼ 3:5 fm in irrep ~P ¼ ½0; 0; 1�, A1.
(a) Sensitivity of �0 extracted from Eq. (27) as a function of assumed values of �2 in range�2j�exact

2 jwith �4 ¼ 0. (b) Sensitivity of �0

extracted from Eq (27) as a function of assumed values of �4 in range �2j�exact
4 j with �2 ¼ �exact

2 . Boxes on far left indicate exact
values of �0 at the corresponding scattering momenta. Arrows on x axis indicate exact values of �2;4.

FIG. 16 (color online). Finite-volume spectrum for the toy model of effective-range parametrizations in the irrep ~P ¼ ½0; 0; 1�, A1.
Green squares indicate the spectrum including only ‘ ¼ 0 scattering, blue circles include ‘ ¼ 0, 2, and black diamonds include ‘ ¼ 0,
2, 4. Note that for many of the energy levels the squares, circles, and diamonds lie on top of each other. Red curves show noninteracting
energies of pion pairs with momenta ~k1, ~k2.

14Included in Eq. (27) in E as a fixed parameter.
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�2j�exact
2 j (which we know because this is a toy model)

gives the curves shown. Figure 17(b) shows the sensitivity
to �4 assuming that �2 is known exactly.

In this exercise we explicitly see that the influence of
higher partial waves can vary significantly between levels;
for n ¼ 0, 1, 3 the influence of �2;4 is modest and given a

‘‘reasonable’’ estimate of their magnitude we could assign
a systematic error on �0 that would encompass the exact
result. On the other hand, no information can be obtained
from level n ¼ 2 without very precise knowledge of both
�2 and �4 at the corresponding scattering momentum. This
will not be possible in any practical calculation and we
must be careful to identify those cases where an energy
level shows such extreme sensitivity.

Thus, even if our main aim is only to determine �0ðpcmÞ,
we see that it is incumbent upon us to also estimate �‘>0.
The easiest way to do this is to analyze the finite-volume
spectra of irreps which receive no contribution from ‘ ¼ 0,
see Table VII. Typically any irrep that features ‘ ¼ 2 will
also feature ‘ ¼ 4 so we have a similar problem of esti-
mating �2 given no knowledge of �4. Fortunately in the
case under consideration where the interactions are weak
we encounter situations in which energy levels in two
different irreps have very similar energy values. For ex-

ample with ~P ¼ ½0; 0; 1�, the lowest level in E2 and the
lowest level in B1 are both very close to the noninteracting

( ~k1 ¼ ½0;�1; 0�, ~k2 ¼ ½0; 1; 1�) level and correspond to
pcm values of 0.03934, 0.03950 GeV, respectively. In this
case, to the extent that �2;4ðpcmÞ do not change signifi-

cantly over the small difference in pcm, and the functions
in U are not rapidly varying over the corresponding range
in q2, we can solve the coupled system of two Eqs. (27) (for
E2 and B1) for the two unknowns �2, �4. This is demon-
strated in Fig. 18(a) where the simultaneous solution of the
two equations is seen to be reasonably close to the exact
values. A similar extraction for two levels in E2, B2 is
shown in Fig. 18(b).

Several level pairings of this type can be identified and
an estimate of a few discrete values of �2, �4 can be made
as shown by the purple points in Fig. 19. Fitting these
points with an effective-range parametrization, or using
some other method to interpolate between the discrete
points, we obtain our desired estimates of �2, �4 for use
in determination of �0.
The extracted values of �0 shown in Fig. 19 correspond

to solving Eq. (27) for each energy level in the A1 repre-

sentation for ~P ¼ ½0; 0; 0�, [0, 0, 1], [0, 1, 1], [1, 1, 1] with
�2, �4 fixed at our best estimate from interpolation be-
tween the determined �2, �4 points. The error bars indicate
the uncertainty in �0 obtained by varying �2, �4 within an
assumed 100% uncertainty. We observe that following
such a procedure leads to a reasonable reproduction of
the originally input toy-model phase shifts. Note that we
used only a single volume to obtain this result—using
multiple volumes will further improve the determination.

FIG. 18 (color online). Simultaneous solution of two equations (27) for �2;4. Open black square shows exact values with uncertainty
indicating the variation in �exact

2;4 over the momentum region between the two determined pcm. (a) ~P ¼ ½0; 0; 1�, n ¼ 0 in E2 and n ¼ 0

in B1. (b) ~P ¼ ½0; 0; 1�, n ¼ 1 in E2 and n ¼ 0 in B2.

FIG. 19 (color online). Phase shifts, �0;2;4ðpcmÞ extracted from
L ¼ 3:5 fm spectrum using the method described in the text.
Uncertainty in �0 indicates the effect of a conservative assumed
uncertainty on �2;4. Some points with very large uncertainty not

shown. Toy model input phase shifts shown by the curves.
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An alternative approach to dealing with the contribution
of higher partial waves is to parametrize all �‘ðpcmÞ one
expects to contribute significantly in terms of a relatively
small number of variable parameters. By performing a
global fit to all energy levels simultaneously, varying the
parameters, one can attempt to find a description of the
finite-volume spectrum that is best in a least-squares sense.
Clearly in the case of this toy model, one could use the
parametrization given in Eq. (29) and by varying parame-
ters a0, r0, a2, a4 come to an exact description of the
spectrum. We do not present this trivial result here, but
we will return to this ‘‘global fitting’’ method in the next
section when we consider the finite-volume spectrum ob-
tained from lattice QCD computations.

B. Lattice QCD data

We now return to consideration of the finite-volume
spectrum presented in Sec. VII. The first step in our
‘‘level-by-level’’ approach is to solve for �2;4 using pairs

of simultaneous Eqs. (27). Pairs of levels below inelastic

threshold that can be used to yield estimates for �2;4 are

presented in TableVIII and are displayed by the filled points
in Figs. 20 and 21. �4 is observed to be statistically compat-
ible with zero throughout the elastic region. There are also
levels in irreps whose leading contribution is from ‘ ¼ 2
that do not pair and cannot be analyzed using a simulta-
neous solution—these are considered in isolation,where the
(small) role of �4 is estimated and included as a systematic
error, they are shown by the open points in Fig. 20.
Each of these �2, �4 data sets can be described well by a

scattering length fit, p2‘þ1
cm cot�‘ðpcmÞ ¼ 1=a‘, and the

resulting fit function is used to estimate the size of �2;4 at
any pcm in the elastic region when determining �0 values
from A1 irreps. As indicated in the previous subsection, a
systematic error on �0 due to imperfect knowledge of �2;4

is assigned by assuming a 100% error on the estimated
values of �2;4. The resulting �0 points are displayed in
Fig. 22 where it is observed that the uncertainty from
imperfect knowledge of �2;4 is typically much smaller

that the statistical uncertainty.
We now consider the second approach described above

where the �‘ðpcmÞ are parametrized and by varying a small
number of parameters a best description of all the finite

TABLE VIII. Levels with very similar pcm values used in simultaneous solution of
equations (27).

L=as Levels atpcm �2=
 �4=



24 [0, 0, 0], Eþ, n ¼ 1 0.10766(23)(8) �0:39ð82Þð67Þ �0:17ð32Þð22Þ
[0, 0, 0], Tþ

2 , n ¼ 0 0.10764(23)(8)

24 [0, 0, 1], B1, n ¼ 0 0.08427(25)(11) �0:40ð47Þð39Þ �0:05ð26Þð16Þ
[0, 0, 1], E2, n ¼ 0 0.08418(25)(11)

24 [0, 0, 1], B2, n ¼ 0 0.11412(29)(8) �1:60ð80Þð64Þ �0:78ð69Þð55Þ
[0, 0, 1], E2, n ¼ 1 0.11393(28)(8)

20 [0, 0, 1], B1, n ¼ 0 0.10174(35)(9) �1:59ð54Þð36Þ �0:018ð36Þð17Þ
[0, 0, 1], E2, n ¼ 0 0.10131(37)(9)

FIG. 21 (color online). �4 values in elastic scattering region
determined from finite-volume spectra. Filled points determined
by simultaneous solution of equations (27) (innermost error bar
statistical uncertainty, outermost error bar reflects combined
statistical uncertainty and uncertainty in atm�, � with errors
added in quadrature).

-15

-10

-5

 0

 5
 0.002  0.004  0.006  0.008  0.01  0.012  0.014

FIG. 20 (color online). �2 values in elastic scattering region
determined from finite-volume spectra. Filled points determined
by simultaneous solution of equations (27) (innermost error bar
statistical uncertainty, outermost error bar reflects combined
statistical uncertainty and uncertainty in atm�, � with all errors
added in quadrature). Open points determined from single levels,
with effect of �4 estimated (innermost error bar statistical
uncertainty, outermost error bar reflects combined statistical
uncertainty and uncertainty in atm�, � and �4).
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volume spectra is obtained in a ‘‘global fit.’’ Our procedure
is to minimize a 
2 with respect to the variable parameters
in the parametrization, which we denote collectively by
faig. The 
2 describes the similarity between the extracted
finite-volume spectrum and the spectrum predicted by the
parametrization on the appropriate volumes,


2ðfaigÞ¼
X
L

X
~P�n

~P0�0n0

½pcmðL; ~P�nÞ�pdet
cmðL; ~P�n;faigÞ�

�C�1ðL; ~P�n; ~P0�0n0Þ
�½pcmðL; ~P0�0n0Þ�pdet

cmðL; ~P0�0n0;faigÞ�: (30)

Here we have pdet
cmðL; ~P�n; faigÞ which is the particular

solution of Eq. (27) which is nearest to pcmðL; ~P�nÞ
(with the parameters set to the particular values faig). The
data covariance, C, accounts for the correlation between
determined energies computed on the same lattice configu-
rations—different volumes correspond to independently
generated lattice ensembles and hence are not correlated.

Statistical errors on the parameters, faig, are determined
by�
2 ¼ 1. Errors from the imperfect knowledge of atm�

and � are estimated by repeating the 
2 minimisation vary-
ing the mass and anisotropy within their respective errors.

We treat these as independent systematic errors, although
they would naturally be reduced with increased numbers of
gauge-field configurations at each lattice volume.
Fits with effective range and scattering length parame-

trizations [Eq. (29)] were attempted. These fits never
indicated the need to include significant strength in the
‘ ¼ 4 wave. A successful fit to all energy levels with an
effective range parametrization of ‘ ¼ 0 and scattering
length in ‘ ¼ 2 gives the following parameter values and
correlations,

a‘¼0 ¼ ð�4:45� 0:18� 0:06Þ � at
r‘¼0 ¼ ð�3:7� 1:8� 0:7Þ � at

a‘¼2 ¼ ð�1:20� 0:29� 0:17Þ � 103 � a5t

1 0:9 0:4
1 0:2

1

2
64

3
75 
2=Ndof ¼ 116=46;

where the second set of uncertainties reflects variation of atm� and � within their uncertainties. We see that the
effective range in ‘ ¼ 0 is barely significant and is strongly correlated with the scattering length. The degree of correlation
between ‘ ¼ 0 and ‘ ¼ 2 is mild. Given the lack of significance for r0, a fit with just a scattering length was attempted,
yielding

a‘¼0 ¼ ð�4:13� 0:07� 0:06Þ � at
a‘¼2 ¼ ð�1:08� 0:28� 0:19Þ � 103 � a5t

1 0:5
1

� �

2=Ndof ¼ 121=47;

FIG. 22 (color online). �0 values in elastic scattering region
determined from finite-volume spectra. Innermost error bar is the
statistical uncertainty, middle error bar combined statistical
uncertainty and uncertainty in (atm�, �), outermost error bar
reflects total uncertainty including imperfect knowledge of �2;4

(all errors added in quadrature). Some points with very large
uncertainty not shown.

FIG. 23 (color online). Upper: �0ðpcmÞ obtained through
‘‘global fits’’ to finite-volume spectra using effective range and
scattering length parametrizations. Lower: �2ðpcmÞ obtained
through ‘‘global fits’’ to finite-volume spectra using a scattering
length parametrizations. Also shown for comparison, the ‘‘level-
by-level’’ analysis previously presented in Figs. 20 and 22.
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where the quality of fit is insignificantly degraded. Clearly
there is no need to invoke higher terms in the effective range
expansion to describe the data. A fit to only those irreps
where ‘ ¼ 2 is leading yields a‘¼2 ¼ ð�1:51� 0:31�
0:21Þ � 103 � a5t with 
2=Ndof ¼ 31=16, in reasonable
agreement with the values obtained above. These various
fits are shown in Fig. 23 along with the points determined
using the ‘‘level-by-level’’ approach described earlier where
good agreement between the two methods is observed.

IX. RESULTS

In Fig. 24 we show the�� ‘ ¼ 0 elastic scattering phase
shift for m� ¼ 396 MeV as a function of center-of-
momentum frame scattering momentum as extracted
from finite-volume spectra. Discrete points correspond to
a ‘‘level-by-level’’ analysis in which the Lüscher equation
is solved for �0ðpcmÞ at each obtained pcm with some
justified assumptions made about the size of �2;4 at this

scattering momentum, and with the degree of uncertainty
about the higher ‘ partial waves reflected in a systematic
error. The curves are the result of ‘‘global fits’’ to all the
finite-volume energy levels assuming either an effective
range parametrization or just a scattering length, either of
which are able to describe the energy spectrum well. The
best estimates for the scattering length and effective range
expressed in units of the pion mass on this lattice are

m� � a‘¼0 ¼ �0:307� 0:013;

m� � r‘¼0 ¼ �0:26� 0:13;

but there is a very high degree of correlation (0.9)
between these values, and a pure scattering length
of m� � a‘¼0 ¼ �0:285� 0:006 can describe the data
just as well.

FIG. 24 (color online). Extracted I ¼ 2 �� elastic scattering phase shift in S-wave, �0ðpcmÞ, as obtained from analysis of finite-
volume spectra with m� ¼ 396 MeV. Center-of-momentum frame scattering momentum expressed in units of the temporal lattice
spacing. The momentum region plotted is entirely elastic, with the 4� threshold opening at ðatpcmÞ2 ¼ 0:014. Points correspond to an
analysis treating each energy level independently. The innermost error bar is the statistical uncertainty, the middle error bar reflects
combined statistical uncertainty and uncertainty in ðatm�; �Þ, and the outermost error bar shows the total uncertainty including
imperfect knowledge of �2;4 (all errors added in quadrature). Curves indicate a global analysis of all energy levels describing the phase

shift by a scattering length or an effective range parametrization.

FIG. 25 (color online). Extracted I ¼ 2 �� elastic scattering
phase shift in D-wave, �2ðpcmÞ, as obtained from analysis
of finite-volume spectra with m� ¼ 396 MeV. Center-of-
momentum frame scattering momentum expressed in units of
the temporal lattice spacing. Momentum region plotted is en-
tirely elastic, with the 4� threshold opening at ðatpcmÞ2 ¼
0:014. Points correspond to an analysis treating energy regions
locally as described earlier in the manuscript. The inner error bar
is the statistical uncertainty, and the outer error bar reflects the
combined statistical uncertainty and uncertainty in atm�, � and
the value of �4 (errors added in quadrature). Curves indicate a
global analysis of all energy levels describing the phase shift by a
scattering length.
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Figure 25 shows the �� ‘ ¼ 2 elastic scattering phase
shift which can be well described by a scattering length
of m5

� � a‘¼2 ¼ ð�1:89� 0:53Þ � 10�6. Statistically
significant signals for elastic scattering in the ‘ ¼ 4
wave were not observed and we estimate that m9

� �
ja‘¼4j & 1� 10�4.

We note here that the same L=as ¼ 16, 20, 24 lattice
ensembles (plus a larger L=as ¼ 32 ensemble) were used
by NPLQCD to extract �0ðpcmÞ in [22]. They considered
many of the same frames, but limited themselves to the

‘‘scalar’’ irreps (Aþ
1 for ~P ¼ ½0; 0; 0� and A1 for ~P �

½0; 0; 0�), and they did not use a variational basis of
operators. A comparison of results is shown in Fig. 26
where low-lying levels are observed to have energies
(and hence phase shifts) that agree well, but where
discrepancies appear at higher energies. The most

significantly discrepant points [at ðatpcmÞ2 � 0:0017 and
�0:008] in the NPLQCD analysis correspond to levels
which are either nearly degenerate with another level

(the ~P ¼ ½0; 1; 1� ground state15) or are highly excited

( ~P ¼ ½0; 0; 0� second excited level). Since in our analysis
we see no such discrepancies it may be that the variational
method more reliably determines energies in cases where
orthogonality of states is important.
In our somewhat limited previous analysis of �� I ¼ 2

scattering [7], we considered three pion masses and ob-
served no significant dependence of the energy variation of
�0 on the pion mass, which appeared to agree rather well
with the experimental data. In Fig. 27 we show our
�0;2ðpcmÞ obtained at m� ¼ 396 MeV along with the ex-

perimental data taken from [3–6]. Our data points have the
absolute energy scale of the scattering momentum set
using the �-baryon mass procedure suggested in [21],

pcm ¼ ðatpcmÞ m
phys

�

ðatm�Þ with ðatm�Þ ¼ 0:2951ð22Þ on these

lattices [14]. Also shown is the�� I ¼ 2 ‘ ¼ 0 phase shift
obtained using experimental information in multiple chan-
nels from a constrained analysis provided by the Roy
equations, which implement manifestly crossing symmetry
and the chiral behavior of the scattering amplitudes
[34,35].

X. SUMMARY

A crucial step in the extraction of hadronic resonance
properties is the determination of their resonant scattering
behavior. Within a Euclidean quantum field theory, the
relevant elastic scattering matrix elements can be inferred
indirectly through a systematic study of the spectrum
within a finite volume. In this paper, we extend our pre-
vious study [7] determining the ‘ ¼ 0 and ‘ ¼ 2 wave
phase shifts in the �� I ¼ 2 system, investigating more

FIG. 26 (color online). Our �0 extraction (colored points) compared with those of NPLQCD (gray points) over the elastic region
(left) and zoomed in to small scattering momentum (right).

FIG. 27 (color online). Extracted I ¼ 2 �� elastic
S-wave(red), D-wave(blue) scattering phase shift (for m� ¼
396 MeV, all errors combined). Shown in gray the experimental
data from [3–6] and the constrained analysis using Roy equa-
tions [34,35] (black line, gray band). For the heavy pion mass the
entire region plotted is elastic while for the experimental data
only p2

cm < 0:058 GeV is elastic.

15See Fig. 14.
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thoroughly the effects of operator basis, finite temporal
extent, as well as the role of higher partial waves.

With access to only modest lattice volumes, in order to
map out the energy dependence with a significant number of
points, we determined the excited state spectrum in moving
frames. This was achieved by constructing a basis of ��
operators transforming irreducibly under the reduced sym-
metry of a moving particle in a cubic box. Variational analy-
sis of matrices of correlators built in this operator basis leads
to extraction of excited state energies with high precision.

The construction of a basis of operators with suitable
quantum numbers corresponding to the�� system in flight
is a significant extension beyond the previous work, and
has allowed for the determination of the phase shifts at
many discrete energies below the 4� inelastic threshold.
This increased operator basis, covering many irreducible
representations, allows for more constraints on the contri-
butions of higher partial waves. However, the weakness of
�� scattering in the isospin-2 channel presents a particular
challenge to extraction from finite-volume methods. The
changes in energy with respect to noninteracting pions
determine the phase shift and since these are small it is
important to take care over systematic effects that may be
small in absolute terms but which could be large on the
scale of the energy shifts.

We reduced the contribution of excited pion-like meson
states to our �� correlators by using optimized pion
operators. These operators are constructed from a linear
combination of composite QCD operators with pion quan-
tum numbers and their important property is that they relax
to the ground state faster than any single simple operator
construction. The reduced contribution of ��? states to
our correlators allows analysis at earlier Euclidean times.

At larger Euclidean times, the effect of the finite tem-
poral extent of the lattice can be observed, distorting the
time dependence from the desired sum of exponentials
corresponding to discrete state energies. We have explicitly
accounted for the largest unwanted finite-T effects leaving
subleading effects which are somewhat smaller than the
statistical uncertainty.

The reduced symmetry of a cubic box at rest is such that
�0 always appears with some sensitivity to �4, but the very
small value of �4 throughout the elastic region is such that
the rest-frame spectrum is mostly independent of �4. On
the other hand, the symmetry of a cubic box is further
reduced when placed in flight and �0 extractions become
sensitive to the value of �2, which is not necessarily
negligibly small. We investigated the effects that nonzero
values of �2;4 can have on the finite-volume spectrum using

a toy model showing that some energy levels can show
significant sensitivity.

We attempted to account for the effects of higher partial
waves on the extraction of �0;2, finding that they are gen-

erally small (except in a limited number of sensitive cases
identified in the toy model analysis). We associated a

systematic error with our imperfect knowledge of them
that was found to be always smaller than the statistical
uncertainty. We found that the finite volume energies could
be well described by a scattering length parametrization in
both ‘ ¼ 0 and ‘ ¼ 2 over the elastic region. The fit could
be moderately improved by adding an effective range in
‘ ¼ 0, albeit with a significant correlation between the
effective range and scattering length. The fits did not
indicate the need for significant strength in the ‘ ¼ 4wave.
The calculations reported in this paper were performed

at only a single pion mass of 396 MeV. While they dem-
onstrate that the procedure outlined can indeed determine
scattering phase shifts with a high degree of confidence, the
obtained results cannot be directly compared with experi-
mental data. Future calculations using lighter pion masses
will be required, as will eventual consideration of other
systematic effects such as the lattice spacing dependence.
The results presented in this paper supersede those pre-
sented in [7] which considered only rest-frame correlators
using unoptimized pion operators and where finite-T
effects were not fully accounted for.
The techniques developed in this calculation are a neces-

sary ingredient to future investigations of resonances in
hadron-hadron scattering that arise from the strong interac-
tions. At unphysical pion masses, the phase space available
for decays can be small as seen in studies of the I ¼ 1 ��
sector [36–39] giving rise to a rapid variation of phase shift
with energy. Thus, the formalism and construction of opera-
tors in flight developed in this work will be necessary to
compute a sufficient number of energies within the reso-
nance region to allow for a reliable determination of reso-
nance parameters. To compute these energies, the operator
basis used in the variational method will feature both single
and multihadron constructions. Annihilation diagrams will
arise, which as shown in the isoscalar meson sector [13], can
be efficiently constructed using the ‘‘distillation’’ method.
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APPENDIX A: MULTIPARTICLE OPERATORS

In this appendix we give a generalisation of and further
details for our multiparticle operator construction. In
Sec. A 1 we describe our general multiparticle operator
construction and in Sec. A 2 discuss the method used to
calculate the Clebsch-Gordan coefficients. In Sec. A 3 we
state our conventions for the lattice irreps and choices of
rotations before giving some example Clebsch-Gordan
coefficients in Sec. A 4. Further Clebsch-Gordan coeffi-
cients are given in supplementary material [40].

1. Operator construction

Here we describe our construction of multiparticle op-
erators, generalising the discussion in Sec. II. We will
consider two-particle operators but the procedure can be
applied iteratively to construct multiparticle operators for a
larger number of particles.
In Refs. [11,12] we discussed how operators with a defi-

nite continuum JP and spin component M, OJP;Mð ~p ¼ ~0Þ,
can be constructed out of gauge-covariant derivatives and
Dirac gamma matrices. The appropriate lattice operators

TABLE IX. Subduction coefficients, S ~�;�
�;�, for integer spin, j�j 	 4 and with s 
 signð�Þ;

other notation is defined in the text.

Group j�j~� �ð�Þ S ~�;�
�;�

Dic4 ½0; 0; n� 0þ A1ð1Þ 1

0� A2ð1Þ 1

1 E2
1
2

� �
ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p

2 B1ð1Þ ð�s;þ þ ~��s;�Þ=
ffiffiffi
2

p
2 B2ð1Þ ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p

3 E2
1
2

� �
ð��s;þ þ ~��s;�Þ=

ffiffiffi
2

p

4 A1ð1Þ ð�s;þ þ ~��s;�Þ=
ffiffiffi
2

p
4 A2ð1Þ ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p

Dic2 ½0; n; n� 0þ A1ð1Þ 1

0� A2ð1Þ 1

1 B1ð1Þ ð�s;þ þ ~��s;�Þ=
ffiffiffi
2

p
1 B2ð1Þ ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p
2 A1ð1Þ ð�s;þ þ ~��s;�Þ=

ffiffiffi
2

p
2 A2ð1Þ ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p
3 B1ð1Þ ð�s;þ þ ~��s;�Þ=

ffiffiffi
2

p
3 B2ð1Þ ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p
4 A1ð1Þ ð�s;þ þ ~��s;�Þ=

ffiffiffi
2

p
4 A2ð1Þ ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p

Dic3 ½n; n; n� 0þ A1ð1Þ 1

0� A2ð1Þ 1

1 E2
1
2

� �
ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p

2 E2
1
2

� �
ð��s;þ � ~��s;�Þ=

ffiffiffi
2

p

3 A1ð1Þ ð�s;þ � ~��s;�Þ=
ffiffiffi
2

p
3 A2ð1Þ ð�s;þ þ ~��s;�Þ=

ffiffiffi
2

p

4 E2
1
2

� �
ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p

C4 ½n;m; 0� ½n; n;m� 0þ A1ð1Þ 1

0� A2ð1Þ 1

1 A1ð1Þ ð�s;þ � ~��s;�Þ=
ffiffiffi
2

p
1 A2ð1Þ ð�s;þ þ ~��s;�Þ=

ffiffiffi
2

p
2 A1ð1Þ ð�s;þ þ ~��s;�Þ=

ffiffiffi
2

p
2 A2ð1Þ ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p
3 A1ð1Þ ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p
3 A2ð1Þ ð�s;þ þ ~��s;�Þ=

ffiffiffi
2

p
4 A1ð1Þ ð�s;þ þ ~��s;�Þ=

ffiffiffi
2

p
4 A2ð1Þ ð�s;þ � ~��s;�Þ=

ffiffiffi
2

p
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were formed by subducing these continuum operators into
octahedral group irreps,

½O½JP�
�P;�

ð~0Þ�y ¼ X
M

S�;�
J;M ½OJPð~0Þ�y;

where �P is an irrep of OD
h , � is the irrep row and S�;�

J;M are

subduction coefficients discussed in Refs. [11,12,14].

In Ref. [27] we discussed how to construct helicity
operators,16

½OJP;�ð ~pÞ�y ¼ X
m

DðJÞ
m�ðRÞ½OJP;mð ~pÞ�y; (A1)

TABLE XI. Rotations, Rlat, used for momenta of type ½0; 0; n�, as described in the text; here n is a nonzero integer.

Little group ~pref ½n; 0; 0� ½0; n; 0� ½0; 0; n� ½�n; 0; 0� ½0;�n; 0� ½0; 0;�n�
Dic4 ½0; 0; n� 0 0 1

0 1 0
�1 0 0

0
@

1
A 0 �1 0

0 0 1
�1 0 0

0
@

1
A 1 0 0

0 1 0
0 0 1

0
@

1
A 0 0 �1

0 �1 0
�1 0 0

0
@

1
A 0 1 0

0 0 �1
�1 0 0

0
@

1
A �1 0 0

0 1 0
0 0 �1

0
@

1
A

TABLE XII. Choice of representation matrices for the Dic4 little group. I denotes the identify transformation, Rð�Þ denotes a
rotation around the z axis by � and� denotes a reflection in the yz plane (x ! �x). Note that, because we are considering only irreps
relevant for integer spin, the representation matrices for Rð�þ 2�Þ are the same as those for Rð�Þ.
Irrep I Rð�Þ Rð3�=2Þ Rð�=2Þ � Rð�Þ� Rð�=2Þ� Rð3�=2Þ�
A1 1 1 1 1 1 1 1 1

A2 1 1 1 1 �1 �1 �1 �1

E2
1 0
0 1

� � �1 0
0 �1

� �
0 i
i 0

� �
0 �i
�i 0

� �
1 0
0 �1

� � �1 0
0 1

� �
0 �i
i 0

� �
0 i
�i 0

� �
B1 1 1 �1 �1 1 1 �1 �1
B2 1 1 �1 �1 �1 �1 1 1

TABLE XIII. As Table XII but for the Dic2 little group.

Irrep I Rð�Þ � Rð�Þ�
A1 1 1 1 1

A2 1 1 �1 �1
B1 1 �1 1 �1
B2 1 �1 �1 1

TABLE X. Rotations, Rref , used, as described in the text; here n is a nonzero integer.

Little group ~pref � � c

Dic4 ½0; 0; n� 0 0 0

Dic2 ½0; n; n� �=2 �=4 ��=2
Dic3 ½n; n; n� �=4 cos�1ð1= ffiffiffi

3
p Þ 0

C4 ½0; n; 2n� �=2 cos�1ð2= ffiffiffi
5

p Þ 0

C4 ½n; n; 2n� �3�=4 �cos�1ð ffiffiffiffiffiffiffiffi
2=3

p Þ 0

TABLE XIV. As Table XII but for the Dic3 little group.

Irrep I Rð2�=3Þ Rð4�=3Þ Rð�Þ� Rð�=3Þ� Rð5�=3Þ�
A1 1 1 1 1 1 1

A2 1 1 1 �1 �1 �1

E2
1 0
0 1

� � � 1
2 � i

ffiffi
3

p
2

� i
ffiffi
3

p
2 � 1

2

 ! � 1
2

i
ffiffi
3

p
2

i
ffiffi
3

p
2 � 1

2

 !
�1 0
0 1

� � 1
2 � i

ffiffi
3

p
2

i
ffiffi
3

p
2 � 1

2

 !
1
2

i
ffiffi
3

p
2

� i
ffiffi
3

p
2 � 1

2

 !

16Here we give expressions for creation operators.
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where � is the helicity, JP refers to the spin and parity of the

operator with ~p ¼ ~0 andD is aWigner-Dmatrix; a summary
of our conventions is given in Appendix A 3 and we refer to
Ref. [27] for more details, for example, on the choice of R.
From these we constructed subduced helicity operators,

½O½JP;j�j�
�;� ð ~pÞ�y ¼ X

�̂¼�j�j
S ~�;�̂
�;�½OJP;�̂ð ~pÞ�y;

where � is an irrep of LGð ~pÞ (the little group for mo-
mentum ~p), � is the irrep row and ~� 
 Pð�1ÞJ. The
subduction coefficients, S ~�;�̂

�;�, which were discussed in

Ref. [27], are given in Table IX. Note that here we give
subductions coefficients for creation helicity operators
which transform like states, i.e. under a rotation by �
about the axis defined by ~p they transform as R�j�i ¼
e�i��j�i. In Ref. [27] we showed that these subduced
helicity operators are useful for studying mesons with
nonzero momentum on the lattice.
In general, a two-particle creation operator with total

momentum ~P can be constructed from the product of two
single-particle operators,

½O½�1f ~k1g?;�2f ~k2g?�
�� ð ~PÞ�y ¼ X

�1;�2; ~k12f ~k1g?; ~k22f ~k2g?; ~k1þ ~k2¼ ~P

Cð ~P��; ~k1�1�1; ~k2�2�2Þ½O�1�1
ð ~k1Þ�y½O�2�2

ð ~k2Þ�y;

where �1;2ð�1;2Þ and �ð�Þ are respectively irreps(irrep
rows) of LGð ~k1;2Þ and LGð ~PÞ. C are the Clebsch-Gordan
coefficients for �1ðf ~k1g?Þ ��2ðf ~k2g?Þ ! �ð ~PÞ which we
discuss in the following section. The sum over ~k1;2 is a sum
over all momenta in the stars of ~k1;2, f ~k1;2g?, i.e. all mo-
menta related to ~k1;2 by an allowed lattice rotation. In other
words, the sum is over R ~k1;28R 2 OD

h ; the restriction that
~k1 þ ~k2 ¼ ~P is equivalent to requiring R 2 LGð ~PÞ.

2. Induced representation method for calculating
Clebsch-Gordan coefficients

We use the projection formula with the induced repre-
sentation [41] to construct the Clebsch-Gordan coefficients
for �1 ��2 ! � where �1, �2 and � are each irreps of,
respectively, groups G1, G2 and G. For our purposes, these
groups will be the double cover of the octahedral group,
OD

h , or a little group � OD
h .

A group, G, can be partitioned into cosets by a subgroup
H � G. Two elements x, y 2 G are in the same left
coset17 if and only if y�1x 2 H. One coset, containing
the identity element, will be the subgroup H itself.
The number of cosets n ¼ jGj=jHj. A coset representative
is one element from the coset; ~R1; ~R2; . . . ; ~Rn are a set of n
coset representatives, one from each coset (a transversal).

If� is a j�j-dimensional irrep ofH, then � ¼ �ðHÞ " G
is a (nj�j)-dimensional unitary representation of G in-
duced from irrep � of H. It is defined for R 2 G by

�ðRÞir;js ¼
(
�ð ~R�1

i R ~RjÞrs if ~R�1
i R ~Rj 2 H

0 otherwise.
(A2)

Here i, j label the coset and r, s the rows and columns of
the irrep �.

To make this more concrete, consider the double-
cover octahedral group with parity, G ¼ OD

h (jGj ¼ 96),
and the little group for momentum ~pref ¼ ½0; 0; 1�,
H ¼ Dic4 (jHj ¼ 16). There must be 6 left cosets
with this little group and these correspond to the 6
momenta in f ~prefg?. If R1 and R2 are in the same coset,
then R2 ~pref ¼ R1R

�1
1 R2 ~pref ¼ R1RH ~pref where RH 2 H.

But from the definition of the little group, RH ~pref ¼
~pref , and therefore R2 ~pref ¼ R1 ~pref . The converse can
also be shown to be true. Therefore, each left coset can
be labelled by ~p 2 f ~prefg? with elements R such that
R ~pref ¼ ~p.
Therefore, in Eq. (A2), the indices i, j refer to a par-

ticular momentum direction, ~p 2 f ~prefg?. In effect the
induced representation splits up R into a piece RH in the
little group [giving �ðRHÞ] and a piece which rotates
the momentum direction from ~pref to ~p. The freedom to
choose a particular coset representative for each coset is
the same freedom as the choice of lattice rotation R which
rotates ~pref to ~p (see Ref. [27]). It is not important which
particular element is chosen as the representative but this
choice should be made consistently; we discuss our con-
ventions in Sec. A 3.
Once the induced representations, �i ¼ �iðGiÞ " G

(i ¼ 1, 2), have been constructed, the Clebsch-Gordan
coefficients can be generated using the projection formula
in the same way as Clebsch-Gordan coefficients for OD

h �
OD

h ! OD
h . The projection formula gives

½O��ð ~PÞ�y ¼ j�j
jGj

X
R2G

�ðRÞ���0

� X
j1;�

0
1
;j2;�

0
2

�1ðRÞj1�0
1;i1�1

�2ðRÞj2�0
2;i2�2

� ½O�1�
0
1
ðf ~p1g?j1Þ�y½O�2�

0
2
ðf ~p2g?j2Þ�y; (A3)

TABLE XV. As Table XII but for the C4 little group.

Irrep I Rð�Þ�
A1 1 1

A2 1 �1

17Note that if H is not a normal subgroup, the left and right
cosets are different.
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TABLE XVII. Clebsch-Gordan coefficients for A1½0; n; n� � A1½0; n; n� ! �½0; 0; 0� where � is the row of � and n is a nonzero
integer.

� �

½n; n; 0�
½�n;�n; 0�

½0; n; n�
½0;�n;�n�

½n; 0; n�
½�n; 0;�n�

½n;�n; 0�
½�n; n; 0�

½0; n;�n�
½0;�n; n�

½�n; 0; n�
½n; 0;�n�

½�n; n; 0�
½n;�n; 0�

½0;�n; n�
½0; n;�n�

½n; 0;�n�
½�n; 0; n�

½�n;�n; 0�
½n; n; 0�

½0;�n;�n�
½0; n; n�

½�n; 0;�n�
½n; 0; n�

Aþ
1 1 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p 1ffiffiffiffi

12
p

Eþ 1 � 1ffiffi
6

p 1
2
ffiffi
6

p 1
2
ffiffi
6

p � 1ffiffi
6

p 1
2
ffiffi
6

p 1
2
ffiffi
6

p � 1ffiffi
6

p 1
2
ffiffi
6

p 1
2
ffiffi
6

p � 1ffiffi
6

p 1
2
ffiffi
6

p 1
2
ffiffi
6

p

2 0 � 1
2
ffiffi
2

p 1
2
ffiffi
2

p 0 � 1
2
ffiffi
2

p 1
2
ffiffi
2

p 0 � 1
2
ffiffi
2

p 1
2
ffiffi
2

p 0 � 1
2
ffiffi
2

p 1
2
ffiffi
2

p

Tþ
2 1 0 � i

2
ffiffi
2

p � 1
2
ffiffi
2

p 0 i
2
ffiffi
2

p 1
2
ffiffi
2

p 0 i
2
ffiffi
2

p 1
2
ffiffi
2

p 0 � i
2
ffiffi
2

p � 1
2
ffiffi
2

p

2 i
2 0 0 � i

2 0 0 � i
2 0 0 i

2 0 0

3 0 � i
2
ffiffi
2

p 1
2
ffiffi
2

p 0 i
2
ffiffi
2

p � 1
2
ffiffi
2

p 0 i
2
ffiffi
2

p � 1
2
ffiffi
2

p 0 � i
2
ffiffi
2

p 1
2
ffiffi
2

p

T�
1 1 � 1

4 � i
4 � i

4 � 1
4 � 1

4 þ i
4 � i

4
1
4

1
4 � i

4
i
4 � 1

4
1
4 þ i

4
i
4

1
4

2 0 1
2
ffiffi
2

p 1
2
ffiffi
2

p 0 � 1
2
ffiffi
2

p 1
2
ffiffi
2

p 0 1
2
ffiffi
2

p � 1
2
ffiffi
2

p 0 � 1
2
ffiffi
2

p � 1
2
ffiffi
2

p

3 1
4 � i

4 � i
4

1
4

1
4 þ i

4 � i
4 � 1

4 � 1
4 � i

4
i
4

1
4 � 1

4 þ i
4

i
4 � 1

4

T�
2 1 1

4 þ i
4 � i

4 � 1
4

1
4 � i

4 � i
4

1
4 � 1

4 þ i
4

i
4 � 1

4 � 1
4 � i

4
i
4

1
4

2 0 1
2
ffiffi
2

p � 1
2
ffiffi
2

p 0 � 1
2
ffiffi
2

p � 1
2
ffiffi
2

p 0 1
2
ffiffi
2

p 1
2
ffiffi
2

p 0 � 1
2
ffiffi
2

p 1
2
ffiffi
2

p

3 1
4 � i

4
i
4 � 1

4
1
4 þ i

4
i
4

1
4 � 1

4 � i
4 � i

4 � 1
4 � 1

4 þ i
4 � i

4
1
4

TABLE XVI. Clebsch-Gordan coefficients for A1½0; 0; n� � A1½0; 0; n� ! �½0; 0; 0� where �
is the row of � and n is a nonzero integer.

� �
½n; 0; 0�
½�n; 0; 0�

½0; n; 0�
½0;�n; 0�

½0; 0; n�
½0; 0;�n�

½�n; 0; 0�
½n; 0; 0�

½0;�n; 0�
½0; n; 0�

½0; 0;�n�
½0; 0; n�

Aþ
1 1 1ffiffi

6
p 1ffiffi

6
p 1ffiffi

6
p 1ffiffi

6
p 1ffiffi

6
p 1ffiffi

6
p

Eþ 1 � 1
2
ffiffi
3

p � 1
2
ffiffi
3

p 1ffiffi
3

p � 1
2
ffiffi
3

p � 1
2
ffiffi
3

p 1ffiffi
3

p

2 1
2 � 1

2 0 1
2 � 1

2 0

T�
1 1 � 1

2 � i
2 0 1

2
i
2 0

2 0 0 1ffiffi
2

p 0 0 � 1ffiffi
2

p

3 1
2 � i

2 0 � 1
2

i
2 0

TABLE XVIII. Clebsch-Gordan coefficients for A1½n; n; n� � A1½n; n; n� ! �½0; 0; 0� where � is the row of � and n is a nonzero
integer.

� �
½n; n; n�

½�n;�n;�n�
½�n; n; n�
½n;�n;�n�

½n;�n; n�
½�n; n;�n�

½n; n;�n�
½�n;�n; n�

½�n;�n; n�
½n; n;�n�

½n;�n;�n�
½�n; n; n�

½�n; n;�n�
½n;�n; n�

½�n;�n;�n�
½n; n; n�

Aþ
1 1 1ffiffi

8
p 1ffiffi

8
p 1ffiffi

8
p 1ffiffi

8
p 1ffiffi

8
p 1ffiffi

8
p 1ffiffi

8
p 1ffiffi

8
p

Tþ
2 1 � 1

4 � i
4

1
4 � i

4 � 1
4 þ i

4
1
4 þ i

4
1
4 þ i

4
1
4 � i

4 � 1
4 þ i

4 � 1
4 � i

4

2 i
2
ffiffi
2

p � i
2
ffiffi
2

p � i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p � i
2
ffiffi
2

p � i
2
ffiffi
2

p i
2
ffiffi
2

p

3 1
4 � i

4 � 1
4 � i

4
1
4 þ i

4 � 1
4 þ i

4 � 1
4 þ i

4 � 1
4 � i

4
1
4 þ i

4
1
4 � i

4

A�
2 1 i

2
ffiffi
2

p � i
2
ffiffi
2

p � i
2
ffiffi
2

p � i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p � i
2
ffiffi
2

p

T�
1 1 � 1

4 � i
4

1
4 � i

4 � 1
4 þ i

4 � 1
4 � i

4
1
4 þ i

4 � 1
4 þ i

4
1
4 � i

4
1
4 þ i

4

2 1
2
ffiffi
2

p 1
2
ffiffi
2

p 1
2
ffiffi
2

p � 1
2
ffiffi
2

p 1
2
ffiffi
2

p � 1
2
ffiffi
2

p � 1
2
ffiffi
2

p � 1
2
ffiffi
2

p

3 1
4 � i

4 � 1
4 � i

4
1
4 þ i

4
1
4 � i

4 � 1
4 þ i

4
1
4 þ i

4 � 1
4 � i

4 � 1
4 þ i

4
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where ~P ¼ f ~p1g?j1 þ f ~p2g?j2 is fixed, �, �ð0Þ
1 , �ð0Þ

2 label irrep

rows, and i1, j1 and i2, j2 label the different momenta in
the sets f ~p1g? and f ~p2g? respectively. Note that this

is written for operators which transform as R̂Oy
��¼P

�0�ðRÞ�0�O
y
��0 . After forming the appropriate linearly

independent combinations,18 the Clebsch-Gordan coeffi-
cients can be read off up to a phase choice and normal-
isation. We choose the phase so that our resulting
correlators are real.

When ~P ¼ f ~p1g?j1 þ f ~p2g?j2 ¼ ~0, G ¼ OD
h and the

sum is over all R 2 OD
h . In this case it is sufficient to

consider i1 ¼ i2 ¼ 1 to generate all the Clebsch-Gordan
coefficients.

When ~P ¼ f ~p1g?j1 þ f ~p2g?j2 � ~0, G is a little group and

the sum over R is restricted to those elements in the little
group. A particular choice of i1 and i2 can be made such

that ~P ¼ f ~p1g?i1 þ f ~p2g?i2 ; because R is in the little group,

the rotations of ~p1 and ~p2 will automatically ensure that ~P
is fixed.

3. Lattice and little group conventions and rotations

As described in Ref. [27], we break the (active) rotation
R appearing in Eq. (A1) into two stages: R ¼ RlatRref . The
first rotation, Rref , takes ð0; 0; j ~pjÞ into ~pref , where ~pref is a
reference direction for momenta of type ~p (i.e. for f ~pg?).

In Table X we give the specific rotations that we use for
Rref . We use the same convention as in Ref. [27], namely

that a rotation R�;�;c ¼ e�i�Ĵze�i�Ĵye�ic Ĵz rotates around

the z axis by c , then around the y axis by � and finally
around the z axis by � (with a fixed coordinate system). In
Table XI we give the rotations, Rlat, for each momentum of
the form ½0; 0; n�; these correspond to the coset represen-
tatives discussed in Sec. A 2. Rotations, Rlat, for other types
of momenta are given in supplementary material [40].
In Tables XII, XIII, XIV, and XV, we give our choice

of representation matrices for, respectively, the little
groups Dic4, Dic2, Dic3 and C4. For Dic2, Dic3 and C4,
the rotations and reflections refer to a coordinate system
which has been transformed using Rref , so that ~p defines
the new z axis. Note that the convention is such that states

in little group irrep � (row �) transform as R̂j��i ¼P
�0��0�j��0i.

4. Clebsch-Gordan coefficients

Clebsch-Gordan coefficients for zero total momentum

( ~P ¼ ~k1 þ ~k2 ¼ ~0) with ~k1¼ ~k2¼ ~0 are given in Ref. [28].

Example Clebsch-Gordan coefficients for ~P ¼ ~0with ~k1 ¼
� ~k2 � ~0 are presented in Tables XVI, XVII, and XVIII;
others are given in supplementary material [40]. We show
Clebsch-Gordan coefficients for A1 � A1 ! �; those for
A2 � A2 are identical, and those for A1 � A2 and A2 � A1

follow by switching the target irrep’s parity, �� ! ��.
The cases of nonzero total momentum where ~k1 ¼ ~0 and

~P ¼ ~k2 � ~0 (or ~k2 ¼ ~0 and ~P ¼ ~k1 � ~0) are trivial be-
cause there is only one momentum in the sum. We have

C ð�ð�Þ½ ~P� � Aþ
1 ½0; 0; 0� ! �ð�Þ½ ~P�Þ ¼ 1;

where � is the irrep row; those for other target irreps and
rows are zero. In addition,

C ð�ð�Þ½ ~P� � A�
1 ½0; 0; 0� ! �0ð�0Þ½ ~P�Þ ¼ 1;

where if � ¼ A1, A2, B1, B2 then �0 ¼ A2, A1, B2, B1

respectively and if �ð�Þ ¼ E2ð1Þ, E2ð2Þ then �0ð�0Þ ¼
E2ð2Þ, E2ð1Þ respectively (the rows are swapped around).
The coefficients for other target irreps and rows are zero.

For nonzero total momentum and ~k1, ~k2 � ~0 we present
some examples of Clebsch-Gordan coefficients in
Table XIX; others are given in supplementary material
[40]. We show Clebsch-Gordan coefficients for A1 � A1 !
�; those for A2 � A2 are identical, and those for A1 � A2

and A2 � A1 follow by replacing the target irrep �ð�Þ ¼
A1, A2, B1, B2, E2ð1Þ, E2ð2Þ by �ð�Þ ¼ A2, A1, B2, B1,
E2ð2Þ, E2ð1Þ respectively.

TABLE XIX. Clebsch-Gordan coefficients for A1½0;�n;0��
A1½0;n;n�!�½0;0;n� (top) and A1½�n;�n;0��A1½n;n;n�!
�½0;0;n� (bottom) where � is the row of � and n is a nonzero
integer.

� �
½n; 0; 0�
½�n; 0; n�

½0; n; 0�
½0;�n; n�

½�n; 0; 0�
½n; 0; n�

½0;�n; 0�
½0; n; n�

A1 1 1
2

1
2

1
2

1
2

E2 1 0 � iffiffi
2

p 0 iffiffi
2

p

2 � 1ffiffi
2

p 0 1ffiffi
2

p 0

B1 1 � 1
2

1
2 � 1

2
1
2

� �
½n; n; 0�

½�n;�n; n�
½n;�n; 0�
½�n; n; n�

½�n; n; 0�
½n;�n; n�

½�n;�n; 0�
½n; n; n�

A1 1 1
2

1
2

1
2

1
2

E2 1 � i
2

i
2 � i

2
i
2

2 � 1
2 � 1

2
1
2

1
2

B2 1 i
2 � i

2 � i
2

i
2

18Linear combinations of �0, �1, �2; it is sufficient to consider
one particular i1 and i2.
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