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The light-quark correlator in the axial-vector channel is used, in conjunction with finite energy QCD

sum rules at finite temperature, in order to (a) establish a relation between chiral-symmetry restoration and

deconfinement, and (b) determine the temperature behavior of the a1ð1260Þ width and coupling. Results

indicate that deconfinement takes place at a slightly lower temperature than chiral-symmetry restoration,

although this difference is not significant given the accuracy of the method. The behavior of the a1ð1260Þ
parameters is consistent with quark-gluon deconfinement, as the width grows and the coupling decreases

with increasing temperature.
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I. INTRODUCTION

The extension of the QCD sum rule method [1] to finite
temperaturewas first proposed inRef. [2], and applied to the
light-quark vector meson system, i.e. the �-meson channel.
Additional theoretical support for the validity of such an
extension was provided later in Ref. [3]. A quark-gluon
deconfinement parameter was also introduced in Ref. [2] in
the form of the squared energy threshold, s0ðTÞ, for the
onset of perturbative QCD (PQCD) in hadronic spectral
functions. Around this energy, and at zero temperature,
the resonance peaks in the spectrum are either no longer
present or become very broad. The smooth hadronic spec-
tral function thus approaches the PQCD regime. With in-
creasing temperatures approaching the critical temperature
for deconfinement, Tc, one would expect hadrons to dis-
appear from the spectral function which should then be
described entirely by PQCD.The analysis of Ref. [2] indeed
showed s0ðTÞ to be a monotonically decreasing function of
the temperature, together with the coupling of the �-meson
to the vector current. Since this analysis was performed in
the zero-width approximation, an important dynamical fea-
ture also signaling deconfinement was overlooked, i.e.
resonance broadening as proposed in Refs. [4,5], and sub-
sequently confirmed in other applications [6].

A link between deconfinement and chiral-symmetry
restoration using QCD sum rules in the axial-vector chan-
nel was first established in Ref. [4], improved in Ref. [7],
and recently updated and extended to finite density in
Ref. [8]. These analyses indicate that the temperature at
which s0ðTÞ vanishes is very close to that at which the
quark condensate, or alternatively the pion decay constant
f�ðTÞ vanishes. Within the accuracy of the method these
results imply that both phase transitions take place at
roughly the same temperature.

The analyses of Refs. [4,7,8] made use of the finite
energy QCD sum rule (FESR) of the lowest dimension
(d ¼ 2) in the axial-vector channel, assuming full satura-
tion of the hadronic spectral function by the pion pole. This

assumption would not be entirely justified if one were to
consider the subsequent two FESR of dimension d ¼ 4 and
d ¼ 6 in order to extract more information from the sum
rules. In fact, already at T ¼ 0 one finds that the values of
the condensates of dimension d ¼ 4 and d ¼ 6 that follow
from the second and third FESR are barely consistent with
results obtained using experimental data [9]. This strongly
suggests additional hadronic contributions, and in fact the
data in this channel include not only the pion pole but also
the a1ð1260Þ resonance. A straightforward theoretical cal-
culation confirms this to be the case.
In this paper we reconsider the light-quark axial-vector

channel using the first three FESR, together with an im-
proved hadronic spectral function involving the pion pole as
well as the a1ð1260Þ resonance. This allows for a more
realistic conclusion on the relation between chiral symmetry
restoration and deconfinement. At the same time, it provides
additional and valuable information on the temperature
behavior of the a1ð1260Þ coupling and hadronic width.
The results indicate that s0ðTÞ vanishes at a critical tempera-
ture some 10% below that for chiral-symmetry restoration.
Within the accuracy of the method this difference is not
significant. The a1ð1260Þ coupling initially increases with
increasing T up to T=Tc ’ 0:7, and then decreases sharply
up to Tc. The hadronic width of the a1ð1260Þ remains
constant up to T=Tc ’ 0:6, increasing sharply thereafter.
This behavior of the coupling and the width are fully con-
sistent with a quark-gluon deconfinement scenario.

II. FINITE ENERGY QCD SUM RULES AT T ¼ 0

We consider the correlator of light-quark axial-vector
currents

���ðq2Þ ¼ i
Z

d4xeiqxh0jTðA�ðxÞ; Ay
�ð0ÞÞj0i

¼ �g���1ðq2Þ þ q�q��0ðq2Þ; (1)

where A�ðxÞ ¼: �dðxÞ���5uðxÞ: is the (charged) axial-

vector current, and q� ¼ ð!; ~qÞ is the four-momentum
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carried by the current. The functions �0;1ðq2Þ are free of

kinematical singularities, an important property needed in
writing dispersion relations and sum rules. Concentrating
on e.g., �0ðq2Þ and invoking the Operator Product
Expansion (OPE) of current correlators at short distances
beyond perturbation theory, one of the two pillars of the
QCD sum rule method, one has

4�2�0ðq2ÞjQCD¼C0Îþ
X
N¼1

C2Nðq2;�2Þ
Q2N

hÔ2Nð�2Þi; (2)

where Q2 � �q2, hÔ2Nð�2Þi � h0jÔ2Nð�2Þj0i, �2 is a
renormalization scale, the Wilson coefficients CN depend
on the Lorentz indexes and quantum numbers of the cur-

rents, and on the local gauge-invariant operators ÔN built
from the quark and gluon fields in the QCD Lagrangian.
These operators are ordered by increasing dimensionality
and the Wilson coefficients are calculable in PQCD. The

unit operator above has dimension d ¼ 0 and C0Î stands
for the purely perturbative contribution. At T ¼ 0 the
dimension d ¼ 2 term in the OPE cannot be constructed
from gauge-invariant operators built from the quark and
gluon fields of QCD. In addition, there is no evidence from
such a term from analyses using the experimentally mea-
sured axial-vector spectral function [9]. The dimension
d ¼ 4 term, a renormalization group-invariant quantity, is
given by

C4hÔ4i ¼ �

6
h�sG

2i þ 2�2ðmu þmdÞh �qqi; (3)

where the second term is negligible in comparison with the
gluon condensate, and thus it will be ignored in the sequel.
The leading power correction of dimension d ¼ 6 is the
four-quark condensate, which in the vacuum saturation
approximation [1] becomes

C6hÔ6i ¼ 704

81
�3�sjh �qqij2; (4)

which has a very mild dependence on the renormalization
scale. This approximation has no solid theoretical justifi-
cation, other than its simplicity. Hence, there is no reliable
way of estimating corrections, which in fact appear to be
rather large from comparisons between Eq. (4) and direct
determinations from data [9]. This poses no problem for
the finite temperature analysis, where Eq. (4) is only used
to normalize results at T ¼ 0, and one is usually interested
in the behavior of ratios.

The second pillar of the QCD sum rule technique is
Cauchy’s theorem in the complex squared energy
s-plane, leading to the FESR (at leading order in PQCD)

ð�ÞðN�1ÞC2NhÔ2Ni¼4�2
Z s0

0
dssN�1 1

�
Im�0ðsÞjHAD

�sN0
N
½1þOð�sÞ�ðN¼1;2;���Þ: (5)

The normalization of the correlator in PQCD is

Im�0ðsÞjQCD ¼ 1

4�
½1þOð�sðsÞÞ�: (6)

At T ¼ 0 the radiative corrections above are known up to
five-loop order, i.e. Oð�4

sÞ, in PQCD. Higher-dimensional
condensates are poorly known [9] and thus will not be
considered here.
In the hadronic sector the spectral function involves the

pion pole followed by the a1ð1260Þ resonance
Im�0ðsÞjHAD ¼ 2�f2��ðsÞ þ Im�0ðsÞja1 ; (7)

where f� ¼ 92:21� 0:14 MeV [10] is the pion decay
constant, the pion mass has been neglected, and a fit to
the ALEPH data [11] in the resonance region gives

1

�
Im�0ðsÞja1 ¼ Cfa1 exp

�
�
�
s�M2

a1

�2
a1

��
; (8)

where Ma1 ¼ 1:0891 GeV, �a1 ¼ 568:78 MeV, and

Cfa1 ¼ 0:048326. Using the first Weinberg sum rule as a

rough estimate gives fa1 ¼ 0:073, and thus C ¼ 0:662.

Equation (8) is valid up to s ¼ 1:2 GeV2, after which it
becomes constant up to s ’ 1:5 GeV2. This fit together
with the ALEPH data is shown in Fig. 1 up to s ’
1:5 GeV2 (the FESR determine s0 ¼ 1:44 GeV2). The
pion decay constant is related to the quark condensate
through the Gell-Mann-Oakes-Renner relation

2f2�M
2
� ¼ �ðmu þmdÞh0j �uuþ �ddj0i: (9)

Chiral corrections to this relation are at the 5% level [12],
and at finite temperature deviations are negligible except
very close to the critical temperature [13].
The first three FESR can now be used in order to

determine the PQCD threshold s0, and the d ¼ 4 and
d ¼ 6 condensates. These results will subsequently be
used to normalize all finite temperature results. The value
of s0 obtained by saturating the hadronic spectral function

FIG. 1. The ALEPH data in the axial-vector channel [11], and
in the resonance region together with the fit, Eq. (8) in the region
relevant to the FESR.
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with only the pion pole, and to leading order in PQCD, is
s0 ’ 0:7 GeV2, as in Refs. [4,7,8]. This value increases
substantially to a more realistic s0 ¼ 1:15 GeV2 once the
a1ð1260Þ contribution is taken into account, and becomes
s0 ¼ 1:44 GeV2 with PQCD to five-loop order. Results for
the leading condensates obtained from the FESR of dimen-
sion d ¼ 4, 6 are in good agreement with direct determi-
nations from data [9] at the corresponding value of s0,
which is to be expected as Eq. (8) provides a very good fit.

III. FINITE ENERGY QCD SUM RULES AT T � 0

The extension of the QCD sum rule method to finite
temperature implies a T-dependence in the OPE, as well
as in the hadronic parameters. Regarding the former, both
the Wilson coefficients as well as the vacuum condensates
become temperature-dependent. In particular, the strong
coupling �sðQ2; TÞ now depends on two scales, the ordi-
nary QCD scale �QCD associated with the momentum

transfer, and the critical temperature scale Tc associated
with temperature. In principle, this poses no problems in the
asymptotic freedom region and at very high temperatures,
T � Tc, where PQCD can be applied. However, the QCD
sum rule method approaches Tc from below (starting from
T ¼ 0), so that the presence of this second scale is problem-
atic. No satisfactory solution to this problem exists, so that
analyses must be carried out at leading order in PQCD. This
circumstance is of little consequence, since basically all
hadronic parameters would hardly ever be measured with
the same precision as at T ¼ 0. At this order in PQCD there
are two thermal corrections to Eq. (6), namely one in the
timelike region (q2 > 0), the so called annihilation term
which in the static limit (q ! 0) is

Im�þ
0 ð!; TÞ ¼ 1

4�

�
1� 2nF

�
!

2T

��
; (10)

and one in the spacelike region, the so-called scattering
term, originating in a cut centered at the origin on the
real axis in the complex energy ! � ffiffiffi

s
p

-plane of width
�jqj � ! � jqj [2]. In the static limit this is given by

Im��
0 ð!; TÞ ¼ 4

�
�ð!2Þ

Z 1

0
ynF

�
y

T

�
dy ¼ �

3
T2�ð!2Þ;

(11)

where nFðzÞ ¼ 1=ð1þ e�zÞ is the Fermi thermal function,
and the chiral limit was assumed. These perturbative
results are valid for T � 0 at the one-loop level in QCD,
so that temperature effects develop smoothly from their
T ¼ 0 values. Nonperturbative contributions will be added
later in the framework of the OPE. It should be clear from
Eqs. (10) and (11) that we are not considering here the case
of finite chemical potential. In this connection there is the
Roberge-Weiss periodicity [14], which is a remnant of the
Z3 symmetry in the pure gauge limit. This interesting
phenomenon refers to the thermodynamical potential of
QCD in the presence of an imaginary chemical potential

[15]. At finite temperature there are in principle additional
contributions to the OPE, Eq. (2), in the form of nondiag-
onal (Lorentz-noninvariant) condensates. In the case of
nongluonic operators these are highly suppressed [6,16],
so that they can be safely ignored. A gluonic twist-two term
in the OPE was considered in Ref. [17], but it is at least 2
orders of magnitude smaller than the standard gluon con-
densate at the temperatures considered here. At dimension
d ¼ 2 there is evidence for the presence of a non-gauge-
invariant condensate at high temperatures [18]. However, at
the temperatures explored in the present analysis this con-
densate can be safely neglected.
In the hadronic sector and at finite temperature, masses,

couplings, and widths become T-dependent. Hadronically
stable particles, e.g. the pion, with �ð0Þ ¼ 0 develop a
width, although this effect is far less pronounced than in
the cases where �ð0Þ � 0. The important parameters sig-
naling deconfinement are the hadronic width and coupling,
but not the mass. In fact, the latter is just the real part of the
hadron propagator in the complex squared energy plane,
while the width is its imaginary part. A vanishing mass at
T ¼ Tc would not signal deconfinement, unless the width
diverges at such a temperature. But then the value of the
mass becomes irrelevant, it could just as well retain its zero
temperature value, or increase. This is actually what QCD
sum rule analyses show [6], i.e., the hadronic mass is
essentially constant in a wide range of temperatures, in-
creasing or decreasing slightly very close to Tc, depending
on the channel, and the width diverges at T ¼ Tc. A
notable exception are the scalar, pseudoscalar, and vector
charm-anticharm states which survive beyond Tc [19].
Finally, there is in principle a hadronic counterpart to
Eq. (11) originating in current-pion scattering. However,
in the axial-vector channel this term is loop suppressed, as
the current only couples to an odd number of pions.
The temperature behavior of the quark condensate,

equivalently f2�, is shown in Fig. 2 in the chiral limit (solid
curve) as determined in the framework of the Schwinger-
Dyson equation [20], and for finite quark masses from a fit
to lattice QCD results (dotted curve) [8,21]. The critical
temperature is Tc ¼ 197 MeV. In the sequel we concen-
trate on the chiral limit as we will find that the FESR have
solutions only up to T ’ ð0:85–0:90ÞTc, a region where the
quark condensate is essentially unique, as may be appre-
ciated from Fig. 2. In fact, in this temperature region the
quark condensate in the chiral limit is essentially the same
as that for finite quark masses. The fact that the FESR have
solutions only in this region implies that this method
cannot shed any light on the issue of whether deconfine-
ment is a crossover or a sharp phase transition.
The gluon condensate is shown in Fig. 3 from a fit to

lattice QCD determinations (dotted curve) [22], together
with a smoothed fit, both adjusted to Tc ¼ 197 MeV. This
smooth fit is needed to avoid instability in the FESR due to
the sharp break in the lattice QCD curve.
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Making use of the above information the first three
thermal FESR become

8�2f2�ðTÞ ¼ 4

3
�2T2 þ

Z s0ðTÞ

0
ds

�
1� 2nF

� ffiffiffi
s

p
2T

��

� 4�2
Z s0ðTÞ

0
ds

1

�
Im�0ðs; TÞja1 ; (12)

� C4hÔ4iðTÞ ¼ 4�2
Z s0ðTÞ

0
dss

1

�
Im�0ðsÞja1

�
Z s0ðTÞ

0
dss

�
1� 2nF

� ffiffiffi
s

p
2T

��
; (13)

C6hÔ6iðTÞ ¼ 4�2
Z s0ðTÞ

0
dss2

1

�
Im�0ðsÞja1

�
Z s0ðTÞ

0
dss2

�
1� 2nF

� ffiffiffi
s

p
2T

��
: (14)

These equations determine the continuum threshold
s0ðTÞ, the coupling of the a1ð1260Þ to the axial-vector
current, fa1ðTÞ, and its width �a1ðTÞ, using as input the

thermal quark condensate (or f2�ðTÞ), the thermal d ¼ 4, 6
condensates, and assuming the a1ð1260Þ mass to be
temperature-independent, as evidenced by results in
many different channels [6,19,23].

IV. RESULTS AND CONCLUSIONS

The FESR have solutions for the three parameters, s0ðTÞ,
fa1ðTÞ, and �a1ðTÞ, up to T ’ ð0:85–0:90ÞTc, a temperature

at which s0ðTÞ reaches its minimum. An inspection of
Fig. 2 shows that at such temperatures the thermal quark
condensate, or equivalently f�ðTÞ, is independent of
whether the chiral limit (massless quarks) is assumed or
not. A short extrapolation to T ¼ Tc is to be understood for
all results in the sequel. An inspection of Eq. (12) shows
that disregarding the a1ð1260Þ contribution, s0ðTÞ would
vanish at a lower critical temperature than f�ðTÞ (or h �qqi	
ðTÞ). In fact, making the very rough approximation of
neglecting the thermal factor nFð

ffiffiffi
s

p
=2TÞ in the second

term on the right-hand side of Eq. (12) leads to s0ðTÞ ’
8�2f2�ðTÞ � ð4=3Þ�2T2. This feature remains valid even
after including the a1ð1260Þ in the FESR, as shown in
Fig. 4, corresponding to the solution for s0ðTÞ using all
three FESR. In any case, this 10% difference is well within
the accuracy of the method. The behavior of the width is
shown in Fig. 5, and that of the coupling in Fig. 6. The rise

FIG. 2. The quark condensate h �qqiðTÞ=h �qqið0Þ ¼ f2�ðTÞ=f2�ð0Þ
as a function of T=Tc in the chiral limit (mq ¼ M� ¼ 0) with

Tc ¼ 197 MeV [20] (solid curve), and for finite quark masses
from a fit to lattice QCD results [21] (dotted curve).

FIG. 3. The gluon condensate C4hO4iðTÞ=C4hO4ið0Þ as a func-
tion of T=Tc from lattice QCD results [22]. Solid squares and
circles correspond to two and four quark flavours, respectively,
and error bars are the size of the points. The dotted curve is a fit
to these data and the solid curve a smoothed fit.

FIG. 4. The continuum threshold s0ðTÞ=s0ð0Þ signaling decon-
finement (solid curve) as a function of T=Tc, together with
f2�ðTÞ=f2�ð0Þ ¼ h �qqiðTÞ=h �qqið0Þ signaling chiral-symmetry res-
toration (dotted curve).

C. A. DOMINGUEZ, M. LOEWE, AND Y. ZHANG PHYSICAL REVIEW D 86, 034030 (2012)

034030-4



of the width, and the fall of the coupling are indicative of a
transition to a quark-gluon deconfined phase at T ¼ Tc,
and provide additional support for the interpretation of
s0ðTÞ as a phenomenological order parameter for quark-
gluon deconfinement. It should be stressed that resonance
broadening as obtained here is the result of an interplay
between QCD and hadronic information. Hence, it is
directly related to quark-gluon deconfinement, in contrast
to width results at finite T from purely hadronic models
such as e.g. the sigma model [24], which reflect a purely
hadronic (absorption) effect in a medium.

We comment in closing on other independent ap-
proaches to this topic. The phase structure of QCD has
also been analyzed from the perspective of the Nambu-
Jona-Lasinio model [25] in its different versions, e.g.,
the nonlocal realization [26], and the Polyakov-Nambu-
Jona-Lasinio model [27]. In these frameworks the
Polyakov loop is usually considered as an order parameter
for the deconfinement phase transition. The nonlocal

character of the interactions emerges in a natural way in
the context of these approaches to low-energy quark dy-
namics, leading to a momentum dependence in the quark
propagator that can be made consistent with lattice QCD
results [28]. The nonlocal Nambu-Jona-Lasinio model
with a Gaussian regulator has been discussed recently in
the framework of the real time formalism [29]. This model
involves the propagation of quasi-particles, and the appear-
ance of complex poles is interpreted as a confinement
signal.
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and K. Schilcher, J. High Energy Phys. 05 (2010) 064.

[13] C. A. Dominguez, M. S. Fetea, and M. Loewe, Phys. Lett.
B 387, 151 (1996).

[14] A. Roberge and N. Weiss, Nucl. Phys. B275, 734 (1986).
[15] This topic, beyond the scope of this paper, will be ana-

lyzed in future work.
[16] V. L. Eletsky, Phys. Lett. B 352, 440 (1995).
[17] F. Klingl, S. Kim, S.H. Lee, P. Morath, and W. Weise,

Phys. Rev. Lett. 82, 3396 (1999).
[18] E. Megias, E. Ruiz-Arriola, and L. L. Salcedo, Phys. Rev.

D 81, 096009 (2010).
[19] C. A. Dominguez, M. Loewe, J. C. Rojas, and Y. Zhang,

Phys. Rev. D 81, 014007 (2010); 83, 034033 (2011).
[20] S.-x. Qin, L. Chang, H. Chen, Y.-x. Liu, and C.D. Roberts,

Phys. Rev. Lett. 106, 172301 (2011).
[21] A. Bazavov et al., Phys. Rev. D 80, 014504 (2009); M.

Cheng et al., Phys. Rev. D 81, 054504 (2010).

[22] G. Boyd and D. E. Miller, arXiv:hep-ph/9608482; D. E.
Miller, arXiv:hep-ph/0008031.

[23] C. A. Dominguez and M. Loewe, Z. Phys. C 58, 273
(1993).

[24] H. Leutwyler and A.V. Smilga, Nucl. Phys. B B342, 302
(1990); C.A. Dominguez, M. Loewe, and J. C. Rojas,
Phys. Lett. B 320, 377 (1994).

[25] S. Klevansky, Rev. Mod. Phys. 64, 649 (1992); M.
Buballa, Phys. Rep. 407, 205 (2005).

[26] R. D. Bowler and M.C. Birse, Nucl. Phys. A582, 655
(1995); D. Gomez Dumm, A.G. Grunfeld, and N.N.
Scoccola, Phys. Rev. D 74, 054026 (2006).

[27] P. N. Mesinger and M.C. Ogilvie, Phys. Lett. B 379, 163
(1996); K. Fukushima, Phys. Lett. B 591, 277 (2004); V.
Pagura, D. Gomez-Dumm, and N.N. Scoccola, Phys. Lett.
B 707, 76 (2012).

[28] S. Noguera and N.N. Scoccola, Phys. Rev. D 78, 114002
(2008).

[29] M. Loewe, P. Morales, and C. Villavicencio, Phys. Rev. D
83, 0965005 (2011).

C. A. DOMINGUEZ, M. LOEWE, AND Y. ZHANG PHYSICAL REVIEW D 86, 034030 (2012)

034030-6

http://dx.doi.org/10.1016/j.physrep.2005.06.007
http://dx.doi.org/10.1016/j.physrep.2005.06.007
http://dx.doi.org/10.1007/JHEP05(2010)064
http://dx.doi.org/10.1016/0370-2693(96)01021-0
http://dx.doi.org/10.1016/0370-2693(96)01021-0
http://dx.doi.org/10.1016/0550-3213(86)90582-1
http://dx.doi.org/10.1016/0370-2693(95)00539-W
http://dx.doi.org/10.1103/PhysRevLett.82.3396
http://dx.doi.org/10.1103/PhysRevD.81.096009
http://dx.doi.org/10.1103/PhysRevD.81.096009
http://dx.doi.org/10.1103/PhysRevD.81.014007
http://dx.doi.org/10.1103/PhysRevD.83.034033
http://dx.doi.org/10.1103/PhysRevLett.106.172301
http://dx.doi.org/10.1103/PhysRevD.80.014504
http://dx.doi.org/10.1103/PhysRevD.81.054504
http://arXiv.org/abs/hep-ph/9608482
http://arXiv.org/abs/hep-ph/0008031
http://dx.doi.org/10.1007/BF01560345
http://dx.doi.org/10.1007/BF01560345
http://dx.doi.org/10.1016/0550-3213(90)90192-G
http://dx.doi.org/10.1016/0550-3213(90)90192-G
http://dx.doi.org/10.1016/0370-2693(94)90673-4
http://dx.doi.org/10.1103/RevModPhys.64.649
http://dx.doi.org/10.1016/j.physrep.2004.11.004
http://dx.doi.org/10.1016/0375-9474(94)00481-2
http://dx.doi.org/10.1016/0375-9474(94)00481-2
http://dx.doi.org/10.1103/PhysRevD.74.054026
http://dx.doi.org/10.1016/0370-2693(96)00447-9
http://dx.doi.org/10.1016/0370-2693(96)00447-9
http://dx.doi.org/10.1016/j.physletb.2004.04.027
http://dx.doi.org/10.1016/j.physletb.2011.11.064
http://dx.doi.org/10.1016/j.physletb.2011.11.064
http://dx.doi.org/10.1103/PhysRevD.78.114002
http://dx.doi.org/10.1103/PhysRevD.78.114002
http://dx.doi.org/10.1103/PhysRevD.83.096005
http://dx.doi.org/10.1103/PhysRevD.83.096005

