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We compute next-to-leading order (NLO) perturbative QCD corrections to the correlators of inter-

polating pentaquark currents and their absorptive parts. We employ modular techniques in configuration

space which saves us from the onus of having to do loop calculations. The modular technique is explained

in some detail. We present explicit NLO results for several interpolating pentaquark currents that have

been written down in the literature. Our modular approach is easily adapted to the case of NLO corrections

to multiquark correlators with an arbitrary number of quarks/antiquarks.
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I. INTRODUCTION

The discovery of exotic quark states and bound states of
gluons would be another manifestation of QCD, allowing
for a quantitative check of its features and finding numeri-
cal values of some important QCD parameters. While
glueballs are certainly the most searched for states in
QCD [1], there is also much interest in exotic states in
strong interactions, i.e. states built from quarks within
QCD which differ from the simplest valence quark content
of mesons or baryons (see e.g. Refs. [2,3]). The theoretical
investigation of multiquark states (Qn �Qm, nþm> 3) and
the experimental search for them may provide important
information on the properties of the interaction of quarks
and gluons at large distances. Until recently major efforts
have been directed to the study of the dibaryon spectrum
(n ¼ 6, m ¼ 0), both theoretically and experimentally [4].
This particular sixfold state is rather peculiar as it is close
to the deuteron, building bridges to applications of QCD to
medium-energy nuclear physics [5,6]. In Ref. [2], Jaffe
predicted that there might exist a stable six-quark S-wave
state—a dihyperyon H—which is a singlet with respect to
both color and flavor SUð2Þ (with strangeness�2) with the
quantum numbers JP ¼ 0þ and a mass around 2150 MeV.
The quantum numbers of the H state are identical to the
quantum numbers of the (��) pair of two �ð1115Þ hyper-
ons, and its mass is smaller than the sum of the masses of
the two � hyperons. The H state is therefore stable with
respect to strong interactions and can decay only through
weak interactions. To the best of our knowledge, the fa-
mous dibaryon stateH is the first state to attract attention in
the modern context of QCD. Thereafter there were efforts
to identify some mesons in QCD (scalar mesons as a KK
molecule) with a four quark state in order to explain their
properties and, in particular, their production and decay
patterns [7]. In the intervening years the interest in exotic
states has mainly shifted to tetraquarks and pentaquarks.

The study of bound states in QCD is a difficult problem.
After almost 40 years of research it is clear that the most
promising approach is very likely given by lattice QCD, in
particular, since the computer power and computer algo-
rithms have advanced much since the first introduction of
lattice QCD in the early seventies of the last century
(results are given for instance in Ref. [8]). Besides lattice
QCD, model dependent approaches have been used in
Refs. [9,10], for example, in the framework of the MIT
quark-bag model [11]. It is important to test these model
predictions solely on the basis of fundamental principles of
QCD. Such a test can be made by means of the method of
QCD sum rules, using either the technique of finite-energy
sum rules [12] or that of Borel sum rules [13].
The operator product expansion and QCD sum rules

serve as a solid testing ground for many calculations in
the theory of hadrons. The method of QCD sum rules is
based on the fundamental field theoretic principles of
QCD, and has proved its effectiveness in calculations of
the masses of mesons [13–15] and baryons [16–18].
However, the reliability of perturbative calculations re-
quires a thorough check, in particular, in the uncharted
territory of exotic multiquark states where the collected
experimental material is rather small. It is therefore worth-
while to compute some examples in order to get a feeling
for the structure of the perturbative series. Work in this
direction is under way.
Glueballs have been previously analyzed in the context

of QCD sum rules. The perturbative QCD corrections to
the sum rules were found to be very large [19]. Exotic
mesonic states have been analyzed in Ref. [20]. QCD sum
rules for ordinary three quark baryon states have been
widely studied. In particular, the correlators of baryonic
currents with finite mass heavy quarks have been calcu-
lated at next-to-leading order of perturbative QCD, allow-
ing for further improvements in the precision of QCD sum
rule predictions [21]. It is known that next-to-leading order
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(NLO) perturbative corrections to baryon sum rules are
large [15,21,22]. They are expected to be even larger for
multiquark states with n > 3 quarks. Different aspects of
such n > 3 multiquark states in QCD have already been
discussed some time ago [23]. One feature of n > 3 multi-
quark states is that they have a large internal weight of
color states [3].

The immediate purpose of the present investigation is
to concentrate on a type of exotic multiquark state called
pentaquarks—states with baryon quantum numbers that
contain an additional quark-antiquark pair. These states
have been discovered experimentally by different collab-
orations: LEPS Collaboration (Japan) [24], DIANA
Collaboration (Russia) [25], CLAS Collaboration (USA)
[26], and SAPHIR Collaboration (Germany) [27]. The
results of the present investigation will open the possibil-
ity for a high-precision description of these experimental
data on pentaquarks. The investigation is also important
for further experimental precision studies on these and
related states at DESY (HERMES Collaboration [28])
and CERN (NA49 Collaboration [29]). There is also a
proposal to launch an experimental study of pentaquark
baryons at meson factories [30]. Experimentally these
collaborations are using different apparata and techniques
but theoretically the observed states should be understood
within QCD. While the first principle numerical compu-
tation on the lattice gave rather positive results [31],
analytical methods and in particularly method of
QCD sum rules should definitely be developed for a
reliable identification of the new states in the hadronic
spectrum.

It appears that the experimental confirmation of these
states is problematic at the moment as some collabora-
tions have reconsidered their results and conclusions.
However, there is no doubt that such states are possible
within QCD and the theoretical study should continue. In
case of a definite positive indication from theory the
experimental searches could certainly proceed in a
much more efficient way.

In particular, a dedicated experiment has given a nega-
tive result in the direct search of the pentaquark state [32].
A review of the present experimental situation can be
found in Ref. [33] (see also Ref. [34]). Note that more
lattice studies have become available [35], some with a
negative outcome as concerns the existence of pentaquark
states [36]. This makes the task of the theory even more
challenging. Either one has to show that such states do not
form for some reason, or to suggest a new mass scale of
these states and to identify the appropriate decay modes for
their determination [37]. The first task is difficult in as
much as one touches on the problem of bound state for-
mation and therefore of the (confined) strong coupling. The
latter problem ultimately requires the calculation of per-
turbative corrections to the operator product expansion
used within QCD sum rules.

Sum rule calculations of pentaquarks and corresponding
critical analysis’ have been presented in numerous papers
[38–40]. While the accuracy of the QCD sum rule method
is about �20% at present, the results obtained agree
with experimental claims and model predictions [10].
However, within the QCD sum rule method it is not pos-
sible to predict whether the mass of the lowest pentaquark
state lies above or below the Kp threshold (i.e., whether
it is stable).
The aim of the present paper is to create a framework for

an accurate sum rule analysis of the properties of penta-
quark states. The study of pentaquark states within the
QCD sum rule method requires a precise knowledge of
the absorptive parts of the correlators of the pentaquark
interpolating currents. In this paper we present perturbative
next-to-leading order calculations of the relevant correla-
tors in QCD.

II. NLO CORRECTIONS TO THE
CORRELATION FUNCTION

According to the QCD sum rule approach to hadron
properties, the principal quantity to be analyzed is the
correlation function,

�ðqÞ ¼ i
Z

d4xeiqxh0jTjðxÞ �jð0Þj0i; (1)

where jðxÞ is a local current operator with the quantum
numbers of the hadron state, termed the interpolating
current of the hadron state. The construction of the con-
jugate operator �jðxÞ depends on whether the hadron is a
fermion or a boson. For fermionic states such as the
ordinary baryon states or the pentaquark states dealt with
in this paper, one has �jðxÞ ¼ jyðxÞ�0. For bosonic states
(mesons, tetraquarks, . . .) the conjugate operator is just the
adjoint operator, �jðxÞ ¼ jyðxÞ. The result of the sum rule
analysis depends strongly on the choice of the interpolating
current as has been shown already in the case of the
dibaryon state [23].
In the case of a given pentaquark state the pentaquark

current jðxÞ is a local scalar current with the quantum
numbers of that pentaquark baryon. For instance, take the
ground state pentaquark state �þ. The current is con-
structed from five quark fields, such that its projection
onto the real pentaquark baryon state j�þðpÞi (within the
assumption that this state exists) is nonzero:

h0jjð0Þj�þðpÞi ¼ ��þ ; p2 ¼ m2
�þ : (2)

Since such a current jðxÞ is not unique, the question of its
optimal choice arises immediately (see Appendix B for a
discussion of this issue). We recall that the problem of
choosing the current already arose in the case of baryons
[16,17] where the currents are constructed from three
quark fields. When the current is constructed from five
quark fields as in our case, this problem is much more
complicated, since the number of independent currents
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with the given quantum numbers is much larger (see also
Ref. [40]). The treatment of the current jðxÞ in the most
general form, i.e. in the form of a linear combination of all
the independent local operators with the quantum numbers
of �, is a very cumbersome problem. Therefore we confine
ourselves to the choice of a few of the simplest currents
with the required quantum numbers and analyze the de-
pendence of our results on the properties of these currents.
As in the case of mesons and baryons, we shall construct
the current jðxÞ from quark fields without derivatives.

In accordance with the method of QCD sum rules, we
shall calculate the correlation function (1) by means of
Wilson’s operator expansion, assuming that the vacuum
expectation values of the local operators (the so-called
condensates) are nonzero. The calculations must be per-
formed in the Euclidean region �q2 � 1 GeV2. In this
region, the effective strong interaction constant �s is not
very small and one has to calculate the coefficient func-
tions of the operator expansion at least at NLO in pertur-
bation theory. Therefore, the correlator function II should
be calculated at NLO in �s. The fact that this may be
necessary for calculations of physical quantities in the
framework of the sum rule method is confirmed by pre-
vious applications of the sum rule method, in particular, by
the calculation of baryon masses.

In this paper we explicitly discuss the computational
techniques for the unity operator of the operator product
expansion. The condensate contributions to the correlation
function which have to be incorporated for a consistent
NLO analysis are not discussed in this paper but can be
calculated along the lines presented here. For instance, the
incorporation of the quark condensate requires only minor
modifications of the present methods. Quark condensate
contributions to baryonic sum rules have been e.g. consid-
ered in Ref. [41].

The LO calculation falls into the category of the sunset
diagrams (cf. Fig. 1(a)]. Sunset diagrams are directly cal-
culable in configuration space [42]. These types of dia-
grams also appear in the effective low energy gluon
correlator for light quarks [43]. The corrections are of
two types. The propagator-type corrections depicted in
Fig. 1(b) are straightforward and can be easily added
with no effort at all. The second type of corrections de-
picted in Fig. 1(c) correspond to the irreducible diagrams

of the fish type. They are rather well known in the massless
limit (the more complicated massive case was analyzed in
Ref. [44]). In order to deal with the diversity of interpolat-
ing currents that have been proposed in the literature for
the pentaquark states, we have developed a modular cal-
culation method in configuration space. The modular
method reduces the perturbative calculations of the present
paper to pure algebraic calculations [45].

III. PRESENTATIONOFTHEMODULARMETHOD

As already mentioned, the two required main modules of
our method are the propagator correction S1ðxÞ and the
dipropagator correction S2ðxÞ which read (6x ¼ ��x�)

S1ðxÞjNLO ¼ S1ðxÞjLO
�
1� CF

�s

4�"
ð�2

xx
2Þ"

�

¼ S0ðx2Þ
�
1� CF

�s

4�"
ð�2

xx
2Þ"

�
; (3)

S2ðxÞjNLO¼S0ðx2Þ2
�
6x�6x� ta� ta

�s

4�
ð�2

xx
2Þ"

�
�
�����

��
1

"
þ11

2

�
x�x�þ

�
1

"
þ1

2

�
x2g��

�

þ
�
1

2"
þ1

4

�
����
3 ��3��

�x�x�

��
(4)

where in the Euclidean domain one has

S0ðx2Þ ¼ ��ð2� "Þ
2�2�"ðx2Þ2�"

: (5)

The renormalization scale �x is appropriate for calcula-
tions in configuration space if one wants to avoid the
appearance of lnð4�Þ and �E terms. The scale�x is related

to the scale �� of the MS scheme by

�x ¼ ��e�E=2: (6)

The direct product signs ‘‘�’’ in the dipropagator correc-
tion S2ðxÞ serve to distinguish between the two fermion
lines involved in the gluon exchange. Finally,

����
3 ¼ �½������ ¼ 1

2
ð������ � ������Þ (7)

is the totally antisymmetric product of three gamma
matrices. Equations (3) and (4) allow one to calculate the
corrections to n-quark/antiquark current correlators of any
composition without having to calculate any integrals. In
Ref. [45] we have presented results for a model current
with five different flavors. In this paper we deal with
several interpolating currents suggested in the literature
including the equal flavor case. Because of flavors appear-
ing twice or more times in the interpolating current, the
Wick contraction will result in a main contribution and
different ‘‘crossover’’ contributions.
Before giving our results for the various interpola-

ting currents, we have to deal with renormalization.
FIG. 1. LO contribution (a) and examples for the NLO propa-
gator (b) and dipropagator corrections (c).
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Corresponding to the propagator and dipropagator correc-
tions, the correlator function is renormalized by the wave
function renormalization factor and the vertex renormal-
ization factor, respectively. Concerning the vertex renor-
malization factor one has to account for mixing effects.
Mixing can occur when gluons are exchanged between
quark lines in the pentaquark correlation function.
Mixing is taken into account through the subtraction of
corresponding vertex divergences generated by an operator
that can admix to the initial current. The general formula
reads

ðc i�c jÞR¼ðc i�c jÞ� �s

4�"

�
1ii0 �1jj0 þ1

4
	��

ii0 �	��
jj0

�

�ðc i0 �c j0 Þ: (8)

Here 	�� ¼ i=2½��; ��� and all numbers are calculated in
Feynman gauge. Note that the part proportional to 	 is
gauge independent. The renormalization within our modu-
lar approach follows from the above line of arguments and
leads to counterterms which are listed in explicit form in
the following.

Once the correlator function is renormalized, we can
calculate the spectral density corresponding to the corre-
lator. For this purpose, instead of calculating explicitly via

�ðqÞ ¼ i
Z

d4xeiqxh0jTjðxÞ �jð0Þj0i (9)

in momentum space, one can use the formulas given in
Appendix A.

IV. RESULTS FOR PENTAQUARKS OF
THE FIRST KIND

The correlators in this section are

h0jTjðxÞ �jð0Þj0i ¼ S0ðx2Þ5ðx2Þ2 6x�jðx2Þ: (10)

We start with different interpolating currents proposed for
the lowest pentaquark state�þ at 1530MeVwith quantum
numbers JP ¼ 1=2þ and S ¼ 1. Reference [38] gives an
overview over pentaquarks which are built up by a diquark,
a meson and a single quark. In the following these currents
will be called pentaquark currents of the first kind. The
interpolating current with isospin I ¼ 0 is given by


0ðxÞ ¼ 1ffiffiffi
2

p �abc½uTa ðxÞC�5dbðxÞ�fueðxÞ �seðxÞi�5dcðxÞ

� ðu $ dÞg: (11)

Because of the two parts of the interpolating current, there
are two diagonal and two mixed bare contributions,

�11

0B

ðx2Þ ¼ 180

�
1þ �s

�
ð�2

xx
2Þ"

�
1

"
þ 13

3

��

� 12

�
1þ �s

�
ð�2

xx
2Þ"

�
3

"
þ 3

��

� 3

�
1þ �s

�
ð�2

xx
2Þ"

�
� 1

"
þ 17

3

��

¼ �22

0B

ðx2Þ;

�12

0B

ðx2Þ ¼ 18

�
1þ �s

�

�
�2

xx
2

�
"
�
7

"
þ 1

3

��

þ 3

�
1þ �s

�
ð�2

xx
2Þ"

�
� 1

"
þ 17

3

��

¼ �21

0B

ðx2Þ: (12)

The counterterms for the current read

��11

0
¼�180

�s

�

�
1

"

�
þ12

�s

�

�
3

"
�7

3

�
�3

�s

�

�
1

"

�
¼��22


0
;

��12

0
¼�18

�s

�

�
7

"
�14

3

�
þ3

�s

�

�
1

"

�
¼��21


0
: (13)

The singularities cancel in the renormalized results which
reads

�11

0R

ðx2Þ ¼ 180

�
1þ �s

�

�
13

3
þ lnð�2

xx
2Þ
��

� 12

�
1þ �s

�

�
16

3
þ 3 lnð�2

xx
2Þ
��

� 3

�
1þ �s

�
ð�2

xx
2Þ"

�
17

3
� lnð�2

xx
2Þ
��

¼ �22

0R

ðx2Þ;
�12


0R
ðx2Þ ¼ 18

�
1þ �s

�
ð5þ 7 lnð�2

xx
2ÞÞ

�

þ 3

�
1þ �s

�

�
17

3
� lnð�2

xx
2Þ
��

¼ �21

0R

ðx2Þ: (14)

In order to calculate the spectral density we have to treat
the first order correction and the counterterm separately.
The reason is that these two contributions have different x2

powers. The general procedure for the calculation of the
spectral density is left to Appendix A. The result for the
spectral density reads

�ðsÞ¼ s5

604800ð4�Þ8

�
�
A0þ�s

�

�
B1þC1þ512

105
B0þB0 ln

�
��2

s

���
; (15)

where A0 is the LO contribution, B0 and B1 are the singular
and finite parts of the NLO result, respectively, and
C0ð¼ �B0Þ and C1 are the singular and finite parts of the
counterterm. Collecting all contributions one obtains
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�
0B¼372þ60
�s

�

�
9

"
þ25

�
¼A0þ�s

�

�
B0

"
þB1

�
;

��
0
¼60

�s

�

�
�9

"
þ28

15

�
¼�s

�

�
C0

"
þC1

�
:

(16)

The spectral density finally reads

�
0
ðsÞ¼ s5

604800ð4�Þ8
�
372þ60

�s

�

�
9ln

�
��2

s

�
þ7429

105

��

¼ 31s5

50400ð4�Þ8
�
1þ�s

�

�
45

31
ln

�
��2

s

�
þ7429

651

��
: (17)

The perturbative correction can be seen to be rather large,
cf. 7429=651ð�s=�Þ. For the remaining currents proposed
in Ref. [38], one has


1ðxÞ ¼ 1ffiffiffi
2

p �abc½uTa ðxÞC�5dbðxÞ�fueðxÞ �seðxÞi�5dcðxÞ

þ ðu $ dÞg; (18)


0
1ðxÞ¼

1ffiffiffi
2

p �abc½uTa ðxÞC��dbðxÞ�f���5ueðxÞ �seðxÞi�5dcðxÞ

�ðu$dÞg; (19)


2ðxÞ¼ 1ffiffiffi
2

p �abcf½uTa ðxÞC��ubðxÞ����5deðxÞ �seðxÞi�5dcðxÞ

þðu$dÞg; (20)


0
2ðxÞ¼�abc½uTa ðxÞC��ubðxÞ����5ueðxÞ�seðxÞi�5ucðxÞ:

(21)

Again we only give results for the spectral densities. They
read

�
1
ðsÞ ¼ s5

2100ð4�Þ8
�
1þ �s

�

�
1

6
ln

�
��2

s

�
þ 517

105

��
; (22)

�
0
1
ðsÞ ¼ 17s5

6300ð4�Þ8
�
1þ �s

�

�
2255

408

��
; (23)

�
2
ðsÞ ¼ s5

525ð4�Þ8
�
1þ �s

�

�
� 7

6
ln

�
��2

s

�
þ 377

360

��
; (24)

�
0
2
ðsÞ¼ s5

525ð4�Þ8
�
1þ�s

�

�
�11

6
ln

�
��2

s

�
�15877

10080

��
:

(25)

The perturbative corrections can become as large as
2255=408ð�s=�Þ.

V. PENTAQUARKS OF THE SECOND KIND

Pentaquarks of the second kind consist of two diquarks
and one antiquark. Three possible choices are given

in Ref. [31], and, with some small deviations, in
Refs. [46,47]. They read

�þ1 ðxÞ ¼ �abc�aef�bgh½uTe ðxÞCdfðxÞ�
� ½uTg ðxÞC�5dhðxÞ�C�sTc ðxÞ; (26)

�
þ;�
2 ðxÞ ¼ �abc�aef�bgh½uTe ðxÞC�5dfðxÞ�

� ½uTg ðxÞC���5dhðxÞ�C�sTc ðxÞ; (27)

�
þ;�
3 ðxÞ ¼ �abc�aef�bgh½uTe ðxÞCdfðxÞ�

� ½uTg ðxÞC���5dhðxÞ��5C�sTc ðxÞ: (28)

First we consider the case when the Lorentz index � in the
correlator is contracted. One then has

��1ðsÞ ¼
s5

1575ð4�Þ8
�
1þ �s

�

�
2 ln

�
��2

s

�
þ 1021

70

��
; (29)

��2ðsÞ¼
s5

1575ð4�Þ8
�
1þ�s

�

�
5

8
ln

�
��2

s

�
þ2963

336

��
¼��3ðsÞ:

(30)

The perturbative correction to ��1 is the largest of all the

cases treated in this paper with 1021=70ð�s=�Þ. When the
Lorentz index is not contracted, we obtain an ordinary and a
crossover contribution for the correlators

���
�i
ðxÞ ¼ h0jT�þ;�

i ðxÞ ��þ;�
i ð0Þj0i; i ¼ 2; 3; (31)

which are the same for both currents, namely,

���;o
�iB

ðxÞ ¼ �384x26xðx2g�� � 2x�x�ÞS0ðx2Þ5

�
�
1þ�s

�
ð�2

xx
2Þ"

�
10

3"
þ 15

��

þ 256x4�� 6x��S0ðx2Þ5�s

�
ð�2

xx
2Þ"

�
1

"
þ 1

2

�
;

(32)

���;x
�iB

ðxÞ

¼384x2 6xðx2g���2x�x�ÞS0ðx2Þ5�s

�
ð�2

xx
2Þ"

�
1

"
�1

2

�

�192x4��6x��S0ðx2Þ5�s

�
ð�2

xx
2Þ"

�
1

"
þ1

2

�
: (33)

The total contribution is

���
�iB

ðxÞ ¼ �384x2 6xðx2g�� � 2x�x�ÞS0ðx2Þ5

�
�
1þ�s

�
ð�2

xx
2Þ"

�
8

3"
þ 31

2

��

þ 64x4��6x��S0ðx2Þ5�s

�
ð�2

xx
2Þ"

�
1

"
þ 1

2

�
: (34)

The counterterm reads
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����
�i
ðxÞ ¼ �s

�

1

"
S0ðx2Þ5½896x2 6xðx2g�� � 2x�x�Þ

� 64x4��6x���: (35)

For the calculation of the absorptive part of (34) and (35)
related to x26xðx2g�� � 2x�x�Þ one has to extend the con-
siderations of AppendixA to tensors of rank 3, resulting in a
spectral density

��i1 ¼
s4

2520ð4�Þ8
�
1þ �s

�

�
7

3
ln

�
��2

s

�
þ 9613

360

��
: (36)

For the calculation of the absorptive part related to x4�� 6x��

one can use Appendix A directly to obtain

��i2 ¼
s5

9450ð4�Þ8
�
�s

�

�
ln

�
��2

s

�
þ 1129

210

��
: (37)

VI. CONCLUSION

The quark condensate h �qqi is the only dimensionful
quantity number that appears in the sum rule analysis since
we assume factorization for the vacuum expectation value
of the six quark operators [48]). Inclusion of terms �ms

should not substantially change the quantitative results as
the mass of the strange quark is small [49]. It therefore
follows from dimensional arguments that the mass of the

pentaquark baryon is m� � ðjh �qqijÞ1=3 as long as power
corrections determine the mass. Consequently, m� should
not change by more than �10% if h �qqi varies by 30%.
Such a variation is quite possible because of the uncertain-
ties in the light quark masses determined from the numeri-
cal value of the light quark condensate as calculated from
the partially conserved axial current relation for the pion.
The analogous expression for the strange quark condensate
obtains some corrections due to the s-quark mass which are
well under control [50]. Nevertheless, this still leaves the
uncertainty whether the pentaquark state is above or below
the threshold.

We recall in this respect that the high accuracy of the
MIT quark-bag model permitted Jaffe to conclude that the
dibaryon state H lies below the �� threshold and is there-
fore stable. The same conclusion was drawn from a model
calculation based on chiral solitons in Ref. [10]. However,
for a model independent approach, the relatively low
accuracy of the method in the determination of the mass
(�15%) does not make it possible to draw any conclusion
about whether the mass of the exotic baryon lies below or
above the KN threshold.

In this paper we have calculated NLO perturbative cor-
rections to the correlator of various pentaquark currents and
their absorptive parts. We have shown that such a calcula-
tion can be done by purely algebraic means for any given
interpolating current using the modular methods developed
by us in detail. As it turns out, the NLO corrections to the
correlators are large. As the coupling constant is large at
the relevant energy scale [51], the large perturbative �s

corrections will heavily change the relative weight of the
perturbative and the nonperturbative condensate terms. It
would be interesting to find out how the large NLO correc-
tions to the absorptive parts of the current correlators affect
the sum rule analysis of pentaquark states. This would form
the subject of a separate publication.
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APPENDIX A: EXPLICIT DERIVATION
OF THE SPECTRAL DENSITY

The momentum space representation of the correlator
function can be obtained from the configuration space
representation by using the integration formula

�ðpÞ ¼ 2��þ1
Z 1

0

�
px

2

���
J�ðpxÞ�ðxÞx2�þ1dx; (A1)

where � ¼ 1� " and J�ðzÞ is the Bessel function of the
first kind. In the case that the correlation function �ðxÞ ¼
ðx2Þ�� is a simple power in x2, the integral can be obtained
analytically. The result is

��ðp2Þ ¼ ��þ1

�
p2

4

�
����1 �ð�þ 1� �Þ

�ð�Þ : (A2)

The corresponding spectral density is given by the discon-
tinuity of the correlation function where the discontinuity
of the correlation function (in the Euclidean domain!) lies
along the negative real axis. One obtains

��ðsÞ¼ 1

2�i
Disc��ð�sÞ¼��þ1

�
s

4

�
����1 1

�ð�Þ�ð���Þ :
(A3)

In order to calculate the spectral density, we have to use the
scalar correlation function. The vector-type correlation
function of the pentaquarks (as well as those of all states
composed of fermions) can be obtained from the derivative
of this scalar correlation function Fðx2Þ. One has

@�Fðx2Þ ¼ 2x�
@Fðx2Þ
@x2

¼ x�fðx2Þ: (A4)

Given the function fðx2Þ, the scalar correlation function is
obtained by integrating over x2=2. In case of pentaquarks,
we have

fðx2Þ ¼ ðS0ðx2ÞÞ5ðx2Þ2
�
Aþ �s

�
ð�2

xx
2Þ"B

�
; (A5)
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where A contains the LO contribution and the counterterm and where B contains the NLO contribution. Recalling the x2

dependence of S0ðx2Þ in Eq. (5), one obtains

Fðx2Þ¼1

2

���ð2�"Þ
2�2�"

�
5Z �

ðx2Þ5"�8Aþ�s

�
ð�2

xÞ"ðx2Þ6"�8B

�
dx2

¼1

2

���ð2�"Þ
2�2�"

�
5
�ðx2Þ5"�7

5"�7
Aþ�s

�
ð�2

xÞ" ðx
2Þ6"�7

6"�7
B

�
: (A6)

For the corresponding spectral density one has

�FðsÞ ¼ 1

2

���ð2� "Þ
2�2�"

�
5
�2�" �

� ðs=4Þ5�4"A

ð5"� 7Þ�ð7� 5"Þ�ð6� 4"Þ þ
�s

�
ð�2

xÞ" ðs=4Þ5�5"B

ð6"� 7Þ�ð7� 6"Þ�ð6� 5"Þ
�

¼ ��2�"ðs=4Þ5�4"

2�ð8� 5"Þ�ð6� 4"Þ
���ð2� "Þ

2�2�"

�
5
�
Aþ �s

�

�
��2

s

�
"
Bð1þ ðc ð8Þ þ c ð6Þ þ 2�EÞ"Þ

�

¼ ðs=4Þ5�4"�ð2� "Þ5
64�8�4"�ð8� 5"Þ�ð6� 4"Þ

�
Aþ �s

�

�
��2

s

�
"
B

�
1þ 512

105
"

��
; (A7)

where we have made use of the expansion �ða� "Þ ¼ �ðaÞð1� "c ðaÞ þOð"2ÞÞ and where we have incorporated the
scale change �x ¼ e�E ��=2. Here c ðaÞ ¼ �0ðaÞ=�ðaÞ is the polygamma function. We then use

A ¼ A0 þ �s

�

�
C0

"
þ C1

�
; B ¼ B0

"
þ B1; (A8)

where A0 is the LO contribution, B0 and B1 are the singular respectively finite NLO contribution, and C0 and C1 are the
singular respectively finite contribution of the counterterm (C0 ¼ �B0). One finally obtains

�FðsÞ ¼ ðs=4Þ5�4"�ð2� "Þ5
64�8�4"�ð8� 5"Þ�ð6� 4"Þ �

�
A0 þ �s

�

�
B0 þ C0

"
þ B0 ln

�
��2

s

�
þ 512

105
B0 þ B1 þ C1

��

¼ s5

604800ð4�Þ8
�
A0 þ �s

�

�
B0 ln

�
��2

s

�
þ 512

105
B0 þ B1 þ C1

��
: (A9)

Because the singularities cancel one can set " ¼ 0 in the last step.

APPENDIX B: ON THE CHOICE FOR THE
INTERPOLATING CURRENT

Formally, the QCD sum rule method dictates a priori the
only condition for the choice of the current: it must possess
the required quantum numbers. However, a posteriori
(after the fit) positive results can be obtained only for
‘‘physical’’ currents. In particular, the two requirements
formulated below are usually necessary. This may be an
indication that there exists a criterion which makes it
possible to select the optimal (physical) current from the
set of currents with the quantum numbers of the given
channel. This argument was also given in Ref. [5], in which
the deuteron mass was calculated by the same method.

The choice of the interpolating current is crucial in this
respect and has to be considered very carefully. The physi-
cal current � satisfies the following two requirements.
First, there exists a nonzero nonrelativistic limit for it
[i.e. if the quark field c ðxÞ is represented in the standard
manner in terms of the small and large components, the
term containing only the large component will be nonzero].
We note that in Refs. [16,52] it was already pointed out that

the existence of a nonrelativistic limit is a desirable prop-

erty for the construction of currents when employing the

QCD sum rule method. The demand for the existence of

such a limit is quite natural as the results should be repro-

ducible in some effective potential model of constituent

quarks. Second, the color (and flavor) structure is impor-

tant. This will be explained in some detail in the following.
According to Ref. [31], ‘‘the qqqq �q state can be decom-

posed into a pair of color singlet states as qqq and q �q [. . .].
For instance, one can start a study with a simple minded
local operator for the�þð1540Þ, which is constructed from
the product of a neutron operator and aKþ operator such as
� ¼ �abcðdTaC�5ubÞdcð�se�5ueÞ. The two-point correlation
function composed of this operator, in general, couples not
only to the � state (single hadron) but also to the two-
hadron states such as an interacting KN system. Even
worse, when the mass of the qqqq �q state is higher than
the threshold of the hadronic two-body system, the two-
point function should be dominated by the two-hadron
states. Thus, a specific operator with as little overlap with
the hadronic two-body states as possible is desired in order
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to identify the signal of the pentaquark states [. . .].’’ And
following Ref. [38], ‘‘isospin and color structure guarantee
that these currents will never couple to a Kþn molecule or
any other Kþn intermediate state [. . .].’’ This is the reason
to use a nontrivial color structure in the previous paper.

We briefly comment also on a second choice of currents
with nontrivial flavor structure which was not considered in
this paper. If we represent the current � in the form of a
product ‘‘singlet � singlet’’ with respect to color, i.e., in
the form � ¼ �ðxÞ��ðxÞ, where each of the operators �,
� is a color singlet and � is a string of Dirac �matrices, we
can choose

� ¼ �A4

A3
ðxÞ�A3

A4
ðxÞ; (B1)

where the color-singlet operator � is a flavor octet,

ð�A4

A3
Þ� ¼ �a1a2a3ðc a1

A1
C�5c

a2
A2
Þðc a3

B1
Þ�

� 1

2
�A1A2B2

�
B1

A3
A4

B2
� 1

3
B1

B2
A4

A3

�
: (B2)

Here � is a spinor index. The flavor octet (B2) has the
quantum numbers of the baryon octet and has e.g. been
used in Refs. [16,17] to calculate the properties of light
baryons within the QCD sum rule method. Thus, if the
current � is represented in the form ‘‘singlet � singlet’’
with respect to color, it has to have the structure
‘‘octet � octet’’ with respect to flavor (each color singlet
is a flavor octet). Physically, the following picture emerges.
The colorless state � splits into two colorless clusters
which separate at large distances to become a meson and
a baryon. As a result, we conclude that the current� is the
most physical current in the sense that it has a nonrelativ-
istic limit and that it is constructed as a ‘‘octet � octet’’
state with respect to flavor.
One can introduce interpolating currents including

space-time derivatives of the field operators. This is, for
instance, needed for the description of the orbital excita-
tions of hadrons. The calculational techniques developed in
this paper can also be applied to these cases. However, in
this paper we have restricted our discussion to interpolating
currents without derivatives.
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