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Renewed look at 7’ in medium
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We revisit the question of whether the U, (1) symmetry is effectively restored in hot and dense medium.
In particular, by generalizing the Witten-Veneziano formula to finite temperature, we investigate whether
the mass of 7’-meson will change in medium due to the restoration of chiral symmetry.
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I. INTRODUCTION

The breaking of the U,(1) symmetry is an operator
relation which remains valid even when the spontaneously
broken chiral symmetry is restored. However, whether its
effect on the n’ mass survives even when chiral symmetry
is restored is a phenomenological question which has
caught the interest of many researchers [1-6]. The question
has recently been revived as the RHIC data on the two pion
Bose-Einstein correlation at \/s = 200 GeV Au + Au col-
lision seems to suggest the quenching of the %’ mass in
medium [7-9]. Its partial quenching in nuclear medium is
also of great interest as such effects could be probed in
finer detail in nuclear target experiments [10—12].

The restoration of Uy (1) symmetry will depend on two
important ingredients; its relation to chiral symmetry
breaking and the effects from topological configurations.
How the former and latter contribute to the n-point corre-
lation functions has been clarified in Refs. [4-6].
Combining both effects, it was shown [5] that in the chiral
limit, with N, flavors, the symmetry will effectively be
restored in correlation functions composed of up to Ny — 1
points [13]. This means, for example, that for N, = 3,
Uy, (1), symmetry will be effectively restored in the two-
point functions when chiral symmetry is restored. Still, the
argument is based on correlation functions and does not
explicitly relate the 7’ mass to the other pseudoscalar
masses. To establish this relation, we revisit the Witten-
Veneziano (WV) formula [14,15] for the 1’ mass in vac-
uum and generalize it to finite temperature. Although the
formula is obtained in the large N limit, we will obtain an
explicit relation which relates the 1’ mass to condensates
and two-point correlation functions at finite temperature.
Therefore, the symmetry restoration pattern observed in
the two-point function will be reflected in the %’ mass. For
the physical case of Ny = 3 with explicit quark masses,
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this result implies that the mass of 1’ will become degen-
erate with the other pseudoscalar mesons up to the quark
masses when chiral symmetry is restored. An attempt to
generalize the WV formula to finite temperature was also
reported in Ref. [16].

The paper is organized as follows. In Sec. 1I, we will
revisit the main results in Ref. [5]. We will then review and
generalize the WV formula in Sec. III. We discuss the 1’
mass in Sec. IV. The summary will be given in the last
section.

II. CORRELATION FUNCTIONS
AND THE U, (1) SYMMETRY

Here, we start with a brief summary of the main result
given in Ref. [5]. The starting point is the Euclidean
partition function of QCD:

Z[J]= / D[Ale™$wDet[p +m, 1= Z[J],. (1)

where Syy = (1/4) [ d*xG?. The second line writes the
partition function in terms of topological configurations
with the topological charge v = (g2/3272) [ d*xGG. The
whole integrand in the first line is a positive definite
quantity [4]; we will define du = D[A]e™SDet[ +m,]
for later convenience. The topological configurations are
always accompanied by n,(n_) number of right-handed
(left-handed) fermion zero modes such that v = n, — n_.
In such topologically nontrivial configurations, the fermion
determinant comes with special chirality such that the
partition function with ¥ = 1 can be written more explic-
itly as follows:

211 = [ DAL e Dl +m,]

X det(fd4x1,_b0(x)mq (//0()6)), (2)

where the prime in the fermion determinant means that
the chiral zero modes ¢ have been explicitly taken out
into the second determinant. Therefore, in the chiral limit
m, =0, the topological configuration does not contribute
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to the partition function as the fermion determinant gives
zero. However, these terms do contribute in the correlation
functions and select out the i’ from the other pseudosca-
lars. Higher topological configurations will contribute at
higher point functions when there are sufficiently many
external legs to saturate the zero modes.

To see this, consider a two-point function of a generic
quark bilinear:

I (x) = (g(x)[q(x), g(0)I'q(0))
— % f A~ T[S, (x, 0TS, (0, )T
+ Tr[S4 (x, x)['] Tr[ S 4(0, 0)I'] + (zero mode),
3)

the first, second and third term being the connected, dis-
connected terms and possible zero mode contribution,
respectively. S, is the quark propagator in the presence
of the gauge field. The traces are over the Dirac and flavor
indices of the quarks. Hence, when I' contains a flavor
matrix, the contributions from the disconnected diagrams
are identically zero.

The results in Refs. [4,5] can be summarized as follows.
When one takes the difference between the two-point
functions of chiral partners, the difference vanishes when
chiral symmetry is restored. When the difference is taken
between those composed of currents which are related by a
chiral transformation and an extra U, (1) transformation,
there will be an extra contribution from the zero modes. As
an example, the difference between a pseudoscalar and 7’
is given as follows in SU(2):

1,0 =11, ()
— 2 [ auITH3, 0751, 0,011

4 J b B0 B0} )

In Ref. [4], it was shown that the first term goes to zero in
the chiral limit when chiral symmetry is restored. This
result is in fact independent of the number of flavors and
also valid when the 75 inside the trace is replaced by other
gamma matrices such as y, or y,7vs.

The zero-mode contributions appearing in the second
term of Eq. (4) come from the topological configuration in
Eq. (2) and are responsible for the appearance of the U, (1)
effect. However, when Ny > 2, the second determinant
in Eq. (2) will have 2N, zero mode lines, and hence the
zero-mode contributions in Eq. (4) will be proportional to

O(ml,;/f 72) and vanish in the chiral limit. Therefore, when
chiral symmetry is restored, the U, (1) breaking effect will
not appear in the two-point functions. However, this does
not necessarily mean that the i’ mass will become degen-
erate with the other pseudoscalar mesons because the
coupling of the currents to the %’ might just go to zero.
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Therefore, let us look at a relation which directly relates
the mass of 7’ to the chiral order parameters.

III. WITTEN-VENEZIANO FORMULA

A. WYV formula at zero temperature

As a first step of this study, we review the derivation of
the WV mass formula [14]. We start with the gluonic
correlation function defined in a pure glue theory:

Uk) =i f d*xe* (T GG(x)GG(0)). (5)

One should note that, in the large N, limit [17], Eq. (5)
scales as order N2. There is also a well-known low-energy
theorem for the correlation function at zero external mo-
mentum U(k = 0) # 0, to whose value we will come back
in the next section.

However, when massless quarks are added to the theory,
the low-energy theorem leads to the vanishing correlation
function U ,q(k = (0) = 0, where the subscript /g means the
presence of light quarks, through the anomaly relation
which relates the pseudoscalar gluon current to axial current
209udYuYsq = Ny3=GG, where Gy, = 1/2€,,,,3G4p-
This seems a little odd, because quark effects are suppressed
in large N, but for the low-energy theorem, the leading N,
effect seems to be canceled by a subleading N, effect. The
answer to this question led to the WV formula.

In terms of the physical states, the correlation functions
looks as follows when light quarks are added:

[{0|GG|n™ glueball)|?

k> — M2
[{0|GG|n'™ meson)|?
- Z k2 _ m%
= Uy(k) + U, (k). (6)

In the spectral form, Eq. (6), the first term in the right-hand
side indicates contributions from glueballs, while the sec-
ond term shows those from the mesons composed of light
quarks. One can show that the residue of the first term is of
order N2 whereas the quark effects are of order N, [18]:

(0|GG|n™ glueball) = N, a,,
(0|GG|n™ meson) = 4/Nc,,.

(7)

Since all the meson masses should have a smooth large N,
limit O(1), the terms of quark effects, U, are suppressed
in 1/N,. as expected. The resolution to the seemingly
inconsistent result comes from noting the existence of
the n’-meson whose mass squared scales as order 1/N,.
One then recovers the consistent low-energy theorem
U1,,(0) = Uy(0) + U,(0) = 0, if the second term is satu-
rated by the ’-meson and scales as N2. From this condi-
tion, one finds
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KOIGGIH?  Nec,
Uy(0) = — duiaea 4 ®)
mn, mn,

By using the U(1), anomaly,

47T 1 47 1
9 I N — 7
OIGGlm) = 2% 5010, 2 ') = ZF Ny
)
Equation (8) becomes as follows:
1 47\2
- _ 2 22
Uy(0) = N.an;(as), (10)

where Ny is the number of light flavors. In Eq. (9), we
made use of f,, = f to lowest order in N,.. Equation (10)
is the celebrated WV formula.

B. WYV formula at finite temperature

Consider the correction to Eq. (10) at finite temperature.
As mentioned before, the correlation function in Eq. (5) is
order N2, as can be seen by the two loops representing two
gluon lines in Fig. 1(a). At finite temperature, the thermal
correction could come from the thermal gluon or quark
interactions. Figures 1(b) and 1(c) show the thermal cor-
rections to Uy(k) while Figs. 1(d) and 1(e) show those to
U, (k).

The dominant thermal gluonic contribution to Uy(k)
comes from Fig. 1(b) and scales as N2 as in the vacuum
scaling. The scaling comes as follows:

(N,) X ( !
which comes from the internal loop, two coupling and
the number of external thermal gluons, respectively.
The contributions where the gluons couple directly to the
currents scale the same as in Fig. 1(b). On the other hand,
the contributions from thermal quarks to Uy(k) scales as
follows:

ﬁmv=mwx (11)

(mw{ﬁw

SR,
e

(d) (e)

fw»=mmx (12)

FIG. 1. Two sets of diagrams.
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where the factors are the same as before except for the last
factor, which comes from the number of external quark
lines, as can be seen from Fig. 1(c). Therefore, in the large
N, limit, the thermal gluonic effect scales the same as in
the leading vacuum scaling and will contribute to modify-
ing Uy(k).

As for the modification in the quark loops U, (k), the
thermal gluonic effects are shown in Fig. 1(d), and the
thermal quark effects in Fig. 1(e). Both scale as O(N,.), and
can thus be neglected in the leading-order correction.

If the system is in the confined state, the hadronic side
will be saturated by color singlet glueballs, mesons and
nucleons. Here, the dominant contribution comes from the
nucleons. One can show that the contribution from the
nucleons to all figures in Fig. 1 scale as O(N,) because
the nucleon contains N, quarks. On the other hand, the
contributions from mesons or glueballs are suppressed in
1/N, as the number of constituents are finite. Hence,
hadron effects can be neglected until near the crossover
point where the density of states increases, after which one
can use the quark and gluon degrees of freedom.

Therefore, same arguments hold as in the vacuum.
Namely, the addition of quarks somehow has to cancel
the leading N, behavior at k = 0. This cancellation cannot
be done by collective states, as quark collective states are
also suppressed in the large N, limit, and hence has to
come from a modified 1’ contribution. All in all, a similar
equation to Eq. (8) will hold at finite temperature, with
[{0lGG|n')| now defined at finite temperature at 7’ mo-
mentum zero. Moreover, it should be noted that the 7’
mass we are discussing now could be different from that of
the pole mass as we are discussing the scalar part of the
mass, which survives at k* — 0. A simplified example
would be to assume that the small energy and momentum
self-energy has the following form, with a(T) and b(T)
being the small corrections:

S = a(Dk + b(D)K* + m(T). (13)

The pole mass at k— 0 would be Jm? + m*(T)/
V1 —a(T). But the mass we are talking about is

Jm? + m*(T).
Nevertheless, U, has a nontrivial correction at finite
temperature as we will see in the following sections.

IV. ' MASS AT FINITE TEMPERATURE

A. Low-energy theorem

Now, U,(0) can be obtained from the low-energy theo-
rem. Here, we use the derivation using the heavy quark
expansion [19]. For technical reasons, we start from a
slightly different definition of the correlation function

P(k)=i f d4xel‘k'X<T Sa ) (14)
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It can be shown [19] that in the absence of light quarks,
2 d a
- — G2>, 15
3272 d(—1/4g%) < P (15)

from which we can obtain Uy(0) = (%)ZP(O).
Now, any matrix element with canonical dimension d
should be proportional to the dth power of the scale

P(k = 0) =

872
A =M,exp| ——), 16
0 Xp( bg%) ( )
where b = 11 — %N + and M|, is the ultraviolet cutoff [20].
Hence, the gluon condensate at finite temperature and
density should be of the following form:

o), v o

where d = 4 and f is a generic function specifying the
temperature and density dependence of the gluon conden-
sate. Then Eq. (15) becomes

Y S Y LT
P(k = 0) b(d T “auwa)m' (18)

Now, combining Egs. (8) and (18), one finds,

3a,\2 [0|GG|n)* 2 9 9

(&)Mz_(d#__#_)(ﬂgz) _

4ar m, b oT o/ \m T,
(19)

But now since we can make the identification of the left-
and right-hand side only in the large N, limit, the right-
hand side should be calculated in the quenched approxi-
mation. This means that one should just read off the
temperature dependence of the gluon condensate from
the lattice calculation for pure gauge theory, and also
take b = 11. Thus, the n’ mass is given by

S N 1
K 4 E(d - TﬁxﬁG >T,puregauge

(20)

B. Gluonic part

In order to evaluate the in-medium 7’ mass from
Eq. (20), all we need are the temperature dependence of
the gluon condensate and the coupling of GG to n'. First,
let us consider the denominator of Eq. (20). It has been
known for a long time that the gluon condensate has
contribution from the perturbative and nonperturbative
parts. Moreover, it was also known that at the critical
temperature, the nonperturbative contribution changes
abruptly, but does not vanish completely, and retains
more than half of its nonperturbative value [21-23].

The effect of subtracting out the second term in the
denominator of Eq. (20) is to get rid of the perturbative
correction, or the seemingly scale-breaking effect which is
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0.10 ———————————————— —
I >
Rl
0.0 4<((,/,T)>(V;é; o 1
<
>
(5]
g L ]
000 — = ———— -~ _ 1
T(3/0T)<(a/m) G*> T~ ]
—0.05F 1 1 1 1 N 1
0.10 0.12 0.14 0.16 0.18 0.20
T [GeV]

FIG. 2 (color online). T-dependence of gluon condensate
and its derivative fitted to Wuppertal-Budapest lattice data in
full QCD.

not related to scale breaking but due to the introduction of
an external scale parameter 7. The leading perturbative
correction to the gluon condensate is proportional to g#7*
[24,25]. Therefore, assuming that the temperature depen-
dence is of the form

(ﬁ G2> = Go(T) + ag'T*, @1)
T T

we find

(d - T%)(% 62>T = <d - T%)GO(T), 22)

if the temperature dependence of g, is neglected [26]. The
only temperature dependence which survives is Gq(T),
whose scale dependence is coming from dimensional
transmutation and not from the external temperature
only. It is the nonperturbative part which dominates the
behavior of the right-hand side of Eq. (20).

In the dotted line of Fig. 2, we show a resonance gas
model result for the gluon condensate [27], which has been
fit to reproduce the Wuppertal-Budapest’s full QCD data of
the trace anomaly [28]: The gluon condensate part is
obtained by taking the chiral limit in the resonance gas
model, which corresponds to subtracting out the fermion
part in the trace anomaly. The dashed and solid lines are
obtained by operating on the temperature-dependent op-
erators as needed in Eq. (20).

As we discussed before, for the gluon condensate, one
has to use the lattice result obtained in the pure-gauge
theory calculation. The critical temperature in such a cal-
culation Tpyre—gauge ~ 260 MeV is known to be around
100 MeV larger than that from a full QCD calculation
Tocp [25,29]. On the other hand, while the expected
change of the gluon condensate is more abrupt in the
pure-gauge calculation, the actual change in the conden-
sate value itself at the critical temperature is found to be
similar to the full calculation [30]. This means that the
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change of the gluon condensate can be effectively ne-
glected up to temperatures near Tocp, and using the full
lattice calculation as it appears in Fig. 2 will be an estimate
of the maximum reducing effect to the »’ mass expected
from the denominator of Eq. (20). As we will see in the
next section, the dominating impact will come from the
change in the coupling (0|GG|7’).

C. Coupling to %’

The final step in obtaining the mass of 1’ using Eq. (20),
when chiral symmetry is restored, is estimating the change
of the coupling {0|GG|n'). For that purpose, let us consider
U,,(k) in Eq. (5) in the full theory, but rewrite it in terms of
the quark axial current using the anomaly relation.

Uk =i [ d*xe* (T GG(x)GG(0))

= k#kvifd4xeik-x< 4 )2
CVSNf

X (T giy,vsq(x)giy,ysq(0))
—{T 3v,9x)qv,90))], (23)

where we have subtracted out the contribution from the
conserved vector current. Using the previous terminology,
when chiral symmetry is restored, the connected piece will
cancel, as they are the same as the difference between
flavored chiral partners, and only the disconnected pieces
will remain. Assuming that the spectral sum starts from the
7', we find Eq. (23) can then be written as follows:

0lGGIn")? 4 \2
U(k):—w_..._,k,ukvf( 77)
k—mn, CVSNf

X % [dM[Tr[SA(x, x)iy ,¥s) Tr[SA(0, 0)iy, ¥s]
= Ti[S4(x, x)y,, ] Tr[S4(0, 0)y, 1] (24)

However, the disconnected pieces are all of the same order
in m, when chiral symmetry is restored.

Tr[Sa(x, x)] ~ Tt[S,(x, x)I'] ~ O(m,), (25)

where I' is a Hermitian gamma matrix [4]. This is so
because the chiral order parameter can be written as
(Gq) = — % [duTiS,(0,0)] = —7p(A = 0), the density
of zero eigenvalues of the Dirac operator in the presence of
the gauge field [31]. Hence, when chiral symmetry is
restored and the density of zero eigenvalues vanishes,
both Egs. (24) and (25) disappear. Since Eq. (24) is valid
for any k other than zero for which the low-energy theorem
is obtained, for both the leading and subleading N, terms,
we find that

OIGGIn') ~ O(m,), (26)
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when chiral symmetry is restored. Therefore, going back to
Eq. (20) and making use of the previous discussions, we
find that when chiral symmetry is restored,
Gq)—0

m2, 125, @7)
in the chiral limit. One concludes that in the large N, limit
of QCD, 7' mass will become degenerate with the other
Goldstone bosons. It is interesting to note that a similar
conclusion was obtained in Ref. [16]: that the anomalous

U, (1) ' mass squared vanishes at high T as the chiral
quark condensate (Gq).

V. CONCLUSIONS

It should be noted that the n’ mass which is being
quenched [in Eq. (27)] is the part of the mass which comes
from the breaking of the U, (1) symmetry. Going back to
Eq. (10) and substituting the vacuum value of Eq. (18), one

finds
8 1<as
mI: [ — JR—
K 3Bf. \7

where we have used f, =130 MeV and (:G?) =
(0.35 GeV)* [32]. This is smaller than the vacuum value
of the i’ mass as expected. Assuming that the pseudoscalar
mesons do not change their mass toward the crossover
point, it is this extra U, (1) mass of 5’ which is going to
be quenched in the chiral symmetry restored phase.
Naively, an analogous relation to Eq. (28) can be obtained
at finite temperature by substituting Eq. (9) to Eq. (20).
However, it should be noted that Eq. (9) is not valid at finite
temperature as the time and space component of the pion
decay constant are no longer identical in the medium [34].
Moreover, no quenched lattice calculation exists for both
decay constants near the phase transition point. That is why
we derived a general relation between the coupling of the
pseudoscalar gluon operator to the 1’ and the chiral order
parameter.

A few remarks are in order. First, in the quenched
approximation, the changes of order parameters take place
only near the phase transition point. This suggests that the
effect of mass quenching might only be visible when the
hadronization temperature is close to the crossover point as
in the case of RHIC or LHC energies, for example. Second,
it is hard to make a quantitative estimate on how much of
this mass is quenched in the nuclear medium, as the effects
of density are subleading in the large N, limit. However,
assuming Eq. (20) is an exact relation, we can use Eq. (24)
to approximate (0|GG|n') o Ti{S,(x, x)] = (Gg) and then
use it in Eq. (20) to deduce m,; = (gq), assuming that the
change in the gluon condensate is small in nuclear me-
dium. Therefore, if the chiral order parameter reduces by
20% in nuclear medium, the U, (1) breaking part of the 1’
mass will also reduce by the same fraction.

\1/2
G > =~ 464 MeV, (28)
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