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In this work we derive the expressions of the neutrino mean free path (MFP) and emissivity with non-

Fermi-liquid corrections up to next-to-leading order (NLO) in degenerate quark matter. The calculation

has been performed for both the absorption and the scattering processes. Subsequently the role of these

NLO corrections on the cooling of the neutron star has been demonstrated. The cooling curve shows

moderate enhancement compared to the leading order non-Fermi-liquid result. Although the overall

correction to the MFP and emissivity are larger compared to the free Fermi gas, the cooling behavior is not

altered significantly.
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I. INTRODUCTION

It has been known for quite sometime now that the
degenerate Fermi gas at low or zero temperature gives
rise to a phenomenon which is different from the normal
Fermi-liquid (FL) behavior once the magnetic interactions
are included. This interesting feature is characterized by
the appearance of an anomalous logarithmic term in the
expressions for various physical quantities like specific
heat, entropy etc. [1]. It has also been revealed recently
that at strictly zero temperature, there is a logarithmic
singularity in the inverse group velocity, which leads to
the breakdown of the usual Fermi-liquid picture in the
presence of the magnetic interactions. Historically, such
a deviation from the normal Fermi-liquid behavior was
exposed for the first time in [1], where, the specific heat
of a degenerate gas due to the current-current interactions
was calculated and the result contained the T lnT�1 term
which emanates from the unscreened magnetic interac-
tions. It is to be mentioned here that the non-Fermi-liquid
behavior of highly dense color superconducting QCD
plasma has been studied in great detail [2,3].

For nonrelativistic systems, the magnetic interaction is
suppressed in powers of ðv=cÞ2 and therefore might not be
of much quantitative importance. However, for a dense
plasma where the constituents like quarks or electrons
are moving with a velocity close to the velocity of light,
the magnetic interactions cannot be neglected. In fact, it
has been revealed recently that in many contexts, the
transverse interactions, due to its infrared sensitivity, may
become more important than its longitudinal counterpart in
this kinematic regime. For example, while calculating the
fermion damping rate and energy loss, it has been shown in
Refs. [4,5] that the leading order (LO) contributions come

from the magnetic interaction while the longitudinal inter-
actions contribute only at the subleading order. In fact, it
has been seen that the first two leading order contributions
in the expressions for the fermion damping rate in ultra-
degenerate plasma come from the transverse sector alone.
A similar behavior has also been reported in [6,7] where
the authors have studied the non-Fermi-liquid behavior
(NFL) of the drag and diffusion coefficient in degenerate
plasma. A more elaborate discussion on the NFL aspects
of the cold and dense QED and QCD plasmas has been
presented in [8].
This recently discovered phenomenon of non-Fermi-

liquid behavior, which relates itself to the modified quark
dispersion relation for excitations close to the Fermi sur-
face, also finds important application in astrophysics. For
example, it has been shown that the NFL corrections to the
quark self-energy enhance the neutrino emissivity of un-
gapped quark matter which may exist in the core of neutron
stars [9,10]. Like emissivity, in dense quark matter, the
neutrino mean free path (MFP) also receives significant
NFL corrections as has been demonstrated in [11]. It
might be mentioned here that in all these calculations the
evaluation of the quark self-energy was restricted to the
leading logarithmic order. In [12], on the other hand,
the authors determined the quark dispersion relations in
ultradegenerate relativistic plasmas beyond LO, which, at
zero temperature, is characterized by the appearance of the
fractional higher powers in the energy variable. In another
work, the specific heat of normal degenerate quark matter
has also been calculated where in the higher order terms
the fractional powers also show up [13].
In view of these contemporary investigations, here we

plan to evaluate the neutrino MFP and corresponding
emissivity in normal degenerate quark matter beyond
leading logarithmic order and compare it with the LO
results. Here LO refers to the anomalous logarithmic
term T logð1=TÞ that occurs as the first term in the non-
Fermi-liquid contribution to the fermion self-energy.
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Quantities such as mean free path and emissivity calcu-
lated with this term are called the LO corrections. Next-to-
leading order (NLO) terms include all other terms beyond
the LO that contain the fractional powers of T and up to the
ðT3Þ logð1=TÞ that occur in the expression of the fermion
self-energy. Similarly, quantities calculated with this cor-
rection are labeled as NLO corrections [12]. Equipped with
these results and knowing the specific heat of dense quark
matter up to the order concerned, we investigate the cool-
ing behavior of the neutron star with a dense quark core.

The outline of the paper is as follows. In Sec. II, we
describe the formalism, where we start with the quark
dispersion relations and the modifications due to NFL
effects followed by evaluation of the MFP for the degen-
erate and nondegenerate neutrinos. These are followed by
the calculation of emissivity of the neutrinos. Section III is
devoted to the study of the cooling process via neutrino
emission. Finally, the results are summarized in Sec. IV
followed by our conclusions in Sec. V.

II. FORMALISM

A. Quark dispersion relation

To calculate the quark dispersion relation in degenerate
plasma one needs to evaluate the quark self-energy. For
this, we consider Fig. 1, where the solid line represents the
fermion propagator and the blob implies that the gluon
propagator used here is a hard dense loop corrected propa-
gator [14]. Mathematically, the quark self-energy can be
written as [3,5,12,13,15]

�ðPÞ ¼ �g2CFT
X

s

Z d3q

ð2�Þ3 ��Sfðið!n �!sÞ;p� qÞ

� �����ði!s;qÞ; (1)

where, P� ¼ ðp0;pÞ, p0 ¼ i!n þ�, q0 ¼ i!s, !n ¼
ð2nþ 1Þ�T and!s ¼ 2�sT are theMatsubara frequencies
for the fermion and the boson, respectively, with integers
n and s. After performing the sum over Matsubara fre-
quency in Eq. (1), i!n þ� is analytically continued to
the Minkowski space so that P� ¼ ðE;pÞ [12]. �ðPÞ can
be written as a combination of quasiparticle and antiquasi-
particle self-energies as [12]

�ðPÞ ¼ �0�
þ
p �þðPÞ � �0�

�
p ��ðPÞ; (2)

where

�0S
�1 ¼ S�1þ �þ

p þ S�1� ��
p ;

S�1� ¼ �½p0 � ðjpj þ��Þ�;
(3)

with the energy projection operators given by

��
p ¼ 1

2
ð1� �0�

ip̂iÞ: (4)

Interactions within the medium severely modify the on-
shell self-energy of the quarks which is manifested in the
slope of the dispersion relation for the relativistic degen-
erate plasma. For quasiparticles with momenta close to the
Fermi momentum pfðiÞ where i denotes the quark flavor,

the one-loop self-energy is dominated by the soft gluon
exchanges [5,6]. For the calculation of the MFP and emis-
sivity one needs to know the modified dispersion relation
which is determined as [14–16]

!� ¼ �ðEpð!�Þ þ Re��ð!�; pð!�ÞÞÞ; (5)

where ! is the quasiparticle/antiquasiparticle energy

which is a solution of the dispersion relation and Epð!Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ð!Þ þm2

q

q
is the kinetic energy. As we are considering

only quasiparticles, we will consider only !þ and denote
!þ by !. The above expression will be used to obtain
dp=d! needed for the phase space evaluation of the mean
free path. The authors of [12] have already calculated the
fermion self-energy with terms beyond LO. Here we quote
the low temperature expansion of the on-shell fermion self-
energy for jpj ¼ E (ultrarelativistic case) [5,12] and notice
that no explicit dependence on the spatial momentum p
occurs [15]:

�þð!Þ¼M21
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(6)

where " ¼ ð!��Þ � T where NFL effects dominate.
The scale of the last logarithm was determined by resum-
ming infrared enhanced contributions. The first term in the
above expression gives the hard part contribution to the
self-energy whereM21 ¼ g2CF�

2=ð4�2Þ andm is given by
m2 ¼ Nfg

2�2=ð4�2Þ and is related to the Debye mass by

m2 ¼ m2
D=2. It is interesting to note here that at higher

order, fractional powers in " appear. This can be attributedFIG. 1. Fermion self-energy with resummed gluon propagator.
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to the dynamical screening for the transverse exchange of
gauge bosons.

B. MFP of the degenerate neutrinos

The degenerate neutrinos refer to the case where the
neutrino chemical potential (��) is much larger than the
temperature. In the interior of a neutron star, there are two
distinct phenomena for which the neutrino mean free path
is calculated, one is absorption and the other involves
scattering of neutrinos [17]. To calculate the MFP for the
absorption process we consider the simplest � decay re-
actions; i.e. the absorption process and its inverse [17–19],

dþ �e ! uþ e�; (7)

uþ e� ! dþ �e: (8)

The corresponding mean free paths are denoted by labsmean

and lscattmean.
The neutrino MFP is related to the total interaction rate

due to neutrino emission averaged over the initial quark
spins and summed over the final state phase space and
spins. It is given by [17]

1

labsmeanðE�; TÞ
¼ g0

2E�

Z d3pd

ð2�Þ3
1

2Ed

Z d3pu

ð2�Þ3
1

2Eu

�
Z d3pe

ð2�Þ3
1

2Ee

ð2�Þ4

� �4ðPd þ P� � Pu � PeÞjMj2
� fnðpdÞ½1� nðpuÞ�½1� nðpeÞ�
þ nðpuÞnðpeÞ½1� nðpdÞ�g; (9)

where, g0 is the spin and color degeneracy, taken to be
6, and E, p and np are the energy, momentum and distri-

bution functions for the corresponding particle. jMj2
is the squared invariant amplitude and is given by
jMj2 ¼ 64G2cos2�cðPd � P�ÞðPu � PeÞ. Here G ’ 1:435�
10�49 erg-cm3 is the weak coupling constant. Here, we
work with the two flavor system as the interaction involv-
ing strange quark is Cabibbo suppressed. We now consider
the case of degenerate neutrinos i.e. when �� � T. So in
this case both the direct Eq. (7) and the inverse Eq. (8)
processes can occur. Consequently, the � equilibrium
condition becomes �d þ�� ¼ �u þ�e. Now, to carry
out the momentum integration, d3pd and d3pu can be
evaluated as

d3pd ¼ 2�
pfðdÞ
pfð�Þpdp

dpd

d!
d!;

d3pu ¼ 2�
pfðuÞpfðeÞ

p
dEe

dpu

d!
d!;

(10)

where we define p 	 jpd þ p�j ¼ jpu þ pej. dpð!Þ=d!
can be evaluated from the modified dispersion relation as
follows [15]:

d!

dpð!Þ ’
dEpð!Þ
dpð!Þ þ

@Re�þð!Þ
@!

d!

dpð!Þ ;
dpð!Þ
d!

¼
�
1� @Re�þð!Þ

@!

�
Epð!Þ
pð!Þ ; (11)

where @Re�þ=@p ’ 0, since p does not appear explicitly
in the expression for �þð!Þ. Neglecting the quark-quark
interactions, the leading order result is obtained as

1

labs;Dmean

��������LO
’ 2

3�5
G2

FCFcos
2�c
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�
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�½ðE����Þ2þ�2T2�ðg�Þ2 log
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4g�

�2T

�
:

(12)

The NLO result is evaluated as

1

labs;Dmean

��������NLO
’ 8

�3
G2

FCFcos
2�c

�3
e

�2
�

�
1þ1

2

�
�e

�

�
þ 1

10

�
�e

�

�
2
�

�½ðE����Þ2þ�2T2�
�
�
a1T

2=3ðg�Þ4=3þa2T
4=3ðg�Þ2=3

þa3

�
1�3log

�
0:209g�

T

��
T2

�
; (13)

where the constants are

a1 ¼ 22=3

9
ffiffiffi
3

p
�5=3

; a2 ¼ � 140� 24=3

189
ffiffiffi
3

p
�7=3

; (14)

and

a3 ¼ 6144� 256�2 þ 36�4 � 9�6

432�4
: (15)

To arrive at the Fermi-liquid result, one can use the free-
dispersion relation to arrive at

1

labs;Dmean

��������FL
¼ 4

�3
G2

Fcos
2�c

�2�3
e

�2
�

�
1þ1

2

�
�e

�

�
þ 1

10

�
�e

�

�
2
�

�½ðE����Þ2þ�2T2�: (16)

Since quarks and electrons are assumed to be massless, the
chemical equilibrium condition gives pfðuÞ þ pfðeÞ ¼
pfðdÞ þ pfð�Þ, which we use to derive Eq. (15). We have

further assumed that �d ��u ¼ �. Next we calculate the
MFP for the quark-neutrino scattering process,

qi þ �eð�eÞ ! qi þ �eð�eÞ; (17)

for each quark component of flavor ið¼ u or dÞ. Including
the NFL corrections through the phase space and assuming
mqi=pfi 
 1, we obtain

1

lscatt;Dmean

��������FL
¼ 3

4�
nqiG

2
F � ½ðE� ���Þ2 þ �2T2��ðxiÞ;

(18)
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1

lscatt;Dmean

��������LO
’ 1

8�3
nqiCFG

2
F½ðE� ���Þ2 þ �2T2�

��ðxiÞg2 log
�
4g�

�2T

�
; (19)

1

lscatt;Dmean

��������NLO
’ 3

2�
nqiCFG

2
F½ðE� ���Þ2 þ �2T2��ðxiÞ

�
�
a1g

4=3

�
T

�

�
2=3 þ a2g

2=3

�
T

�

�
4=3

þ a3

�
1� 3 log

�
0:209g�

T

���
T

�

�
2
�
; (20)

where nqi is the number density of quark of flavor i,

given by

nqi ¼ 6
Z d3p

ð2�Þ3
1

e�ðEqi
��qi

Þ ; (21)

where 6 is the quark degeneracy factor. mqi is the mass of

the quark, �0 	 4G2
Fm

2
e=� [20,21] and �ðxiÞ is defined in

[11] where xi ¼ ��=�qi if �� <�qi and xi ¼ �qi=�� if

�� > �qi . The contributions from the Fermi liquid, LO

and NLO are added to obtain the MFP for the correspond-
ing process. Further, one can combine lscattmean with labsmean to
define total mean free path as [22]

1

ltotalmean

¼ 1

labsmean

þ 1

lscattmean

: (22)

In addition to the inclusion of the NLO terms, the Fermi-
liquid term and the LO term agree with that of [11].

C. Mean free path of nondegenerate neutrinos

We now derive MFP for nondegenerate neutrinos i.e.
when �� 
 T beyond the Fermi-liquid contribution. For
nondegenerate neutrinos the inverse process (8) is dropped.
We are considering only depopulation of neutrinos as in the
nondegenerate (untrapped) case of repopulation or when
the reverse reaction is assumed to be zero. Hence, we
neglect the second term in the curly braces of Eq. (9)
[17,18]. For free quarks, the matrix element vanishes
[17,23,24], since u, d quarks and electrons are collinear
in momenta. The inclusion of strong interactions between
quarks relaxes these kinematic restrictions resulting in a
nonvanishing squared matrix amplitude. We can neglect
the neutrino momentum in an energy conserving relation
due to the thermal production of the neutrinos [17].
Following the procedure described in [15,25,26] the MFP
for the Fermi-liquid case, LO and NLO are obtained as

1

labs;ND
mean

��������FL
¼ 3CF	s

�4
G2

Fcos
2�c�d�u�e

ðE2
� þ �2T2Þ

ð1þ e��E�Þ ;
(23)

1
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mean

��������LO
’ C2

F	s

2�6
G2

Fcos
2�c�e

ðE2
� þ �2T2Þ

ð1þ e��E�Þ ðg�Þ2

� log

�
4g�

�2T

�
; (24)

1

labs;ND
mean

��������NLO
’ 3C2

F	s

�4
G2

Fcos
2�c�

2�e

ðE2
� þ �2T2Þ

ð1þ e��E�Þ
�

�
b1g

4=3

�
T

�

�
2=3 þ b2g

2=3

�
T

�

�
4=3

þ b3

�
1� 3 log

�
0:209g�

T

���
T

�

�
2
�
; (25)

where the constants are evaluated as

b1 ¼ 25=3

9
ffiffiffi
3

p
�5=3

; b2 ¼ � 280� 24=3

189
ffiffiffi
3

p
�7=3

(26)

and

b3 ¼ 6144� 256�2 þ 36�4 � 9�6

216�4
: (27)

Similarly, for the scattering of nondegenerate neutrinos in
quark matter with appropriate phase space corrections, we
obtain

1

lscatt;ND
mean

��������FL
¼ C2

Vi
þ C2

Ai

5�
nqiG

2
F

E3
�

�
; (28)

1

lscatt;ND
mean

��������LO
’C2

Vi
þC2

Ai

30�3
nqiG

2
FCF

E3
�

�
g2 log

�
4g�

�2T

�
; (29)

1

lscatt;ND
mean

��������NLO
’ðC2

Vi
þC2

Ai
ÞnqiG2

FCF

�
�
b01

T2=3g4=3

�5=3
þb02

T4=3g2=3

�7=3

þb03
�
1�3log

�
0:209g�

T

���
T2

�3

��
; (30)

where the constants are

b01 ¼
25=3

45
ffiffiffi
3

p
�8=3

; b02 ¼ � 56� 24=3

189
ffiffiffi
3

p
�10=3

; (31)

and

b03 ¼
6144� 256�2 þ 36�4 � 9�6

1080�5
: (32)

Here, we have assumed mqi=pfi 
 1. Thus, the total MFP

for nondegenerate neutrinos is obtained by summing up the
contributions from the absorption and scattering parts to
get the expression of the MFP of the nondegenerate neu-
trinos up to the NLO terms. So, we get the expression of the
MFP of the nondegenerate neutrinos up to the NLO terms.
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D. Emissivity of nondegenerate neutrinos

The total emissivity of the nondegenerate neutrinos is
obtained by multiplying the neutrino energy with the in-
verse of the MFP with appropriate factors and integrating
over the neutrino momentum. The relation between neu-
trino emissivity and the neutrino mean free path is thus
obtained as [27]

" ¼
Z d3p�

ð2�Þ3 E�

1

lð�E�; TÞ : (33)

Using the mean free path for the nondegenerate neutrinos,
we obtain

"� "0 ¼ "LO þ "NLO; (34)

where

"0 ’ 457

630
G2

Fcos
2�c	s�eT

6�2 (35)

is the usual Fermi-liquid contribution which agrees with
the result presented in Ref. [17]. At the LO we have
obtained

"LO ’ 457

3780
G2

Fcos
2�cCF	s�eT

6 ðg�Þ2
�2

ln

�
4g�

�2T

�
; (36)

which is in agreement with the result quoted in Ref. [9].
Now, following the procedure in [9,11], we obtain the NLO
contribution to the neutrino emissivity as

"NLO ’ 457

315
G2

Fcos
2�cCF	s�eT

6

�
c1T

2 þ c2T
2=3ðg�Þ4=3

� c3T
4=3ðg�Þ2=3 � c4T

2 ln

�
0:656g�

�T

��
; (37)

where the constants are evaluated as

c1 ¼ �0:0036�2; c2 ¼ 22=3

9
ffiffiffi
3

p
�5=3

;

c3 ¼ 40� 21=3

27
ffiffiffi
3

p
�7=3

;

(38)

and

c4 ¼ 6144� 256�2 þ 36�4 � 9�6

144�4
: (39)

The NFL correction only appears in the phase space inte-
gral of the MFP [11] and subsequently in the expression of
the emissivity [9]. It is actually related to the unscreened
transverse interaction [5]. The factor of T6 can be under-
stood easily. Naively, we can see that one power of T is
obtained from the phase space integral of a degenerate
fermion. Further, we obtain a T3 from the phase space
integral of the neutrino. One power of T from the energy
conserving � function is cancelled by a power from the
emitted neutrino energy. It is to be noted that for excita-
tions near the Fermi surface, the angular integrals give no
temperature dependence. Now putting the standard values
[9,11] for the parameters, the corrections can be compared
with the results given in [9].

III. COOLING PROCESS VIA
NEUTRINO EMISSION

The temperature of the neutron star with a quark matter
core shows a dependency with time. To analyze the cooling
of the star [28–30], the specific heat capacity of the quark
matter core needs to be taken into consideration along with
the emissivity via the cooling process [17,31],

@u

@t
¼ @u

@T

@T

@t
¼ cvðTÞ @T@t ¼ �"ðTÞ; (40)

where u is the internal energy, t is time and we have
assumed that there is no surface emission. The NFL effects
on the specific heat capacity of the degenerate quark matter
were calculated recently in [13]. The specific heat capacity
for a non-color-superconducting degenerate quark matter
is given as [13]

Cv � C0v
Ng

¼ g2eff�
2T

36�2

�
ln

�
4geff�

�2T

�
þ �E � 6

�2

 0ð2Þ � 3

�
� 40

22=3�ð83Þ
ð83Þ
27

ffiffiffi
3

p
�11=3

T5=3ðgeff�Þ4=3

þ 560
21=3�ð103 Þ
ð103 Þ
81

ffiffiffi
3

p
�13=3

T7=3ðgeff�Þ2=3 þ 2048� 256�2 � 36�4 þ 3�6

180�2
T3

�
ln

�
geff�

T

�
þ �c� 7

12

�

þOðT11=3=ðgeff�Þ2=3Þ þOðg4�2T lnTÞ; (41)

where the coupling constant g is related to geff as

g2 ¼ 2g2eff
Nf

; (42)

and Nf is the number of quark flavors. The contribution
from the free part is given as

C 0
v ¼ NNf

�2T

3
: (43)

Using the above expression for specific heat and the emis-
sivity expression up to NLO, we analyze the cooling
behavior of the neutron star.
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IV. RESULTS

An estimation of the MFP of neutrinos with the tem-
perature is been presented in this section. For this purpose,
we have assumed the quark chemical potential to be
500 MeV. This is in good agreement with the high density

�6�0 (�0 being nuclear matter saturation density) at the
core. The chemical potential may well have a time depen-
dence. This would gain significance for terms beyond order
T3 since T=ðg�Þ 
 1. We have also taken �e ¼ 15 MeV
and 	s ¼ 0:1. In the left-hand panel of Fig. 2 we note there
is a considerable decrease in MFP of degenerate neutrinos
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due to NLO corrections over the Fermi-liquid result. In the
right-hand panel of Fig. 2 the LO correction is compared
with the NLO correction and it is seen that the MFP with
NLO correction is reduced marginally as compared to LO
correction. Similar features have been observed in the case
of the MFP of nondegenerate neutrinos as displayed in
Fig. 3. This marginal difference in the MFP between NFL
LO and NLO corrections also leads to a marginal differ-
ence in the emissivity for the two cases. This is shown in
Fig. 4. These small reductions are reflected in the margin-
ally enhanced emissivity of the nondegenerate neutrinos
which has been shown in the left-hand panel of Fig. 4. We
find that there is a modest increase in the emissivity of the

neutrinos. The right-hand panel of Fig. 4 gives a compari-
son of the NFL corrections to the specific heat already
reported in [13]. The complicated cooling equation cannot
be solved analytically and we have resorted to numerical
calculation. We observe that the cooling of a neutron star is
marginally faster in the case of NFL (NLO) as compared to
the Fermi-liquid result (shown in Fig. 5).

V. SUMMARYAND DISCUSSIONS

In this work, we calculated the MFP of degenerate and
nondegenerate neutrinos for both the scattering and the
absorption processes. We then found the expression for
neutrino emissivity for nondegenerate neutrinos with NLO
corrections. It is seen that both MFP and emissivity contain
terms at the higher order which involve fractional powers
in (T=�). We have found that there is a decrease in the
MFP due to NLO corrections. We reconfirm that the lead-
ing order correction to the quantities like MFP or emissiv-
ity are significant compared to the Fermi-liquid results.
The NLO corrections, which we derive here, have, how-
ever, been found to be numerically close to the LO results.
We have also examined the cooling behavior of a neutron
star by incorporating NLO correction to the specific heat
and emissivity which affect the results considerably com-
pared to the simple Fermi-liquid case.
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