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We investigate the production of highly energetic top-quark pairs at hadron colliders, focusing on the

case where the invariant mass of the pair is much larger than the mass of the top quark. In particular, we set

up a factorization formalism appropriate for describing the differential partonic cross section in the double

soft and small-mass limit, and explain how to resum simultaneously logarithmic corrections arising from

soft gluon emission and from the ratio of the pair-invariant mass to that of the top quark to next-to-next-to-

leading logarithmic accuracy. We explore the implications of our results on approximate next-to-next-to-

leading order formulas for the differential cross section in the soft limit, pointing out that they offer a

simplified calculational procedure for determining the currently unknown delta-function terms in the limit

of high invariant mass.

DOI: 10.1103/PhysRevD.86.034010 PACS numbers: 14.65.Ha

I. INTRODUCTION

Top-quark pair production plays an important role in the
physics programs of hadron colliders such as the Tevatron
and the LHC. While much information about the top quark
is already available, its high production rate at the LHC
will eventually bring studies of its properties into the realm
of precision physics. An especially useful observable is the
differential cross section at large values of the top-pair
invariant mass M. Many models of physics beyond the
Standard Model predict the existence of new particles
which decay into energetic top quarks and whose charac-
teristic signal would be either resonant bumps or more
subtle distortions in the high invariant-mass region of the
differential distribution. In fact, Tevatron measurements of
the forward-backward asymmetry at high values of the pair
invariant mass may already hint at the existence of such
particles [1,2]. Therefore, precision calculations of the pair
invariant-mass distribution within the Standard Model are
well motivated.

The starting point for any study of two-particle inclusive
differential cross sections such as the pair invariant-mass
distribution is the next-to-leading order (NLO) calculations
carried out roughly two decades ago [3]. Recently, these
have been supplemented with soft-gluon resummation at
next-to-next-to-leading logarithmic (NNLL) accuracy in
[4,5], building on the next-to-leading logarithmic (NLL)
results of [6,7]. While such resummed calculations contain
what are argued to be the dominant perturbative correc-
tions at next-to-next-to-leading order (NNLO) and beyond,
they suffer from two potential shortcomings. First,
while they fully determine the coefficients of a subset of
logarithmic plus-distribution corrections which become

large in the soft limit z ¼ M2=ŝ ! 1, with
ffiffiffî
s

p
the partonic

center-of-mass energy, they do not fully determine the
delta-function corrections in this limit at NNLO. The

numerical contribution of these unknown coefficients as
well as less singular terms in the soft limit are typically
estimated through the method of scale variations, but this is
by no means a fail-safe technique and additional informa-
tion about the structure of these terms is valuable. Second,
while [5] uses the parametric counting M�mt, when the
top quarks are truly very boosted this counting breaks
down. One must assume instead that M � mt, and recog-
nize that resummed perturbation theory should also take
into account powers of mass logarithms of the ratio mt=M.
The primary aim of this work is to develop the theoreti-

cal framework needed to describe the invariant-mass dis-
tribution in the double soft and small-mass limit, and to
explore some of its implications for perturbative predic-
tions for the large-M distribution. The basic idea behind
our approach is to weave together current understanding of
factorization in either the small-mass or the soft limit into a
unified description encompassing both. The first compo-
nent is the factorization of partonic cross sections for
highly boosted heavy-quark production worked out in
[8]. In the case at hand, where mt � M, the results of
that work imply that the partonic cross section can be
factorized into a convolution of two functions: the cross
section formassless quark production, and a convolution of
perturbative fragmentation functions for each of the heavy
quarks. Given this form of the cross section for the small-
mass limit, it is then an easy matter to perform the
additional layer of factorization for the soft limit on the
component parts. On the one hand, the massless partonic
cross section in this limit can be factorized into a product of
soft and hard functions using the techniques from [6], and
on the other hand, the fragmentation function can be
factorized into a product of collinear and soft-collinear
functions using the results of [9–13]. A fully resummed
cross section appropriate for both limits is then obtained
by deriving and solving the renormalization-group (RG)
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evolution equations for the different functions separately.
The anomalous dimensions appearing in the RG equations
are known to the level sufficient for resummation of both
mass and soft logarithms to NNLL accuracy. As simple and
obvious as this approach is, it has yet to be fully worked out
for any particular observable in top-quark pair production
at hadron collider experiments.

This formalism for the simultaneous resummation of
soft and mass logarithms in the invariant-mass distribution
is interesting in its own right. Moreover, with use of a
proper matching procedure, it provides supplemental in-
formation to the current state-of-the-art predictions based
on soft-gluon resummation with the counting mt �M [5].
Particularly important in this regard is its use as a tool to
calculate, up to easily quantifiable power corrections in
mt=M, the full NNLO corrections to the massive hard and
soft functions. Together, these pieces determine the coef-
ficient of the delta-function coefficient in the fixed-order
expansion at NNLO, a missing piece in currently available
‘‘approximate NNLO’’ formulas for generic values of the
top-quark mass. Using our factorization formula for
the double soft and small-mass limit, we can calculate
the pieces of the NNLO delta-function correction enhanced
by logarithms of the ratio mt=M. Furthermore, using the
explicit NNLO results for the heavy-quark fragmentation
function [14] and the virtual corrections to massless
q �q ! q0 �q0 [15] and gg ! q �q [16] scattering, we can
very nearly determine the piece of the delta-function co-
efficients which is constant in the limit mt=M ! 0. The
missing piece is the NNLO soft function for massless
partons, related to double real emission for gg ! q �q and
q �q ! q �q scattering in the soft limit. We do not calculate
this function here, but plan to return to it in future work.
While these delta-function pieces of the NNLO partonic
cross section are of N3LL in the counting of soft-gluon
resummation, including them can only make the predic-
tions more precise and potentially strengthen the argu-
ments in favor of the logarithmic counting underlying
approximate NNLO formulas. This is currently an open
point in soft-gluon resummation for the invariant-mass
distribution, where the assumed dominance of logarithmic
corrections is justified mainly through numerical studies
at NLO and arguments based on dynamical threshold
enhancement [17].

The remainder of the paper is organized as follows. First,
in Sec. II, we derive a factorization formula for the partonic
cross section valid in the double small-mass and soft limit.
This fixed-order expression contains large logarithms for
any choice of the factorization scale. We deal with this in
Sec. III by deriving and solving the RG equations for
the component functions of the factorization formula, pre-
senting in addition explicit perturbative results for their
fixed-order expansions. In Sec. IV we combine those
results into an expression for the resummed partonic
cross section at NNLL in perturbation theory, and discuss

different matching procedures needed to take into account
power-suppressed terms away from the double small-mass
and soft limit. In that section we also discuss approximate
NNLO implementations of the NNLL formula. Finally, in
Sec. V, we make preliminary explorations into phenome-
nological consequences of our results. We conclude in
Sec. VI.

II. FACTORIZATION IN THE SOFT
AND SMALL-MASS LIMITS

We study the top-quark pair production process

N1ðP1Þ þ N2ðP2Þ ! tðp3Þ þ �tðp4Þ þ XðpXÞ; (1)

where N1 and N2 are the colliding protons (or proton-
antiproton pair), X is an inclusive hadronic state, and the
top quarks are treated as on-shell particles. Two partonic
channels contribute at lowest order in perturbation theory:
the quark annihilation channel

qðp1Þ þ �qðp2Þ ! tðp3Þ þ �tðp4Þ; (2)

and the gluon fusion channel

gðp1Þ þ gðp2Þ ! tðp3Þ þ �tðp4Þ: (3)

The momenta of the incoming partons are related to the
hadron momenta by the relation pi ¼ xiPi (i ¼ 1, 2). The
relevant Mandelstam invariants are defined as

s ¼ ðP1 þ P2Þ2; ŝ ¼ ðp1 þ p2Þ2;
M2 ¼ ðp3 þ p4Þ2; t1 ¼ ðp1 � p3Þ2 �m2

t ;

u1 ¼ ðp2 � p3Þ2 �m2
t :

(4)

In order to describe the invariant-mass distribution near
the partonic threshold, it is convenient to introduce the
following variables:

z ¼ M2

ŝ
; � ¼ M2

s
;

�t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t

M2

s
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t

ŝ

s
:

(5)

The quantity �t is the 3-velocity of the top quarks in the t�t
rest frame. In the soft limit z ! 1, one has � ! �t.
Moreover, in that limit the scattering angle � is related to
the Mandelstam variables according to

t1 ¼ �M2

2
ð1� �t cos�Þ; u1 ¼ �M2

2
ð1þ �t cos�Þ;

(6)

and M2 þ t1 þ u1 ¼ 0 can be used to eliminate u1 as an
independent variable.
We will be interested in the double differential cross

section with respect to the invariant mass of the top-quark
pair and the scattering angle � in the parton center-of-mass
frame. According to factorization in QCD, the double
differential cross section can be written as a convolution
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of a partonic cross section with parton distribution func-
tions (PDFs). We write this as

d2�

dMd cos�
¼ 8��t

3sM

X
i;j

Z 1

�

dz

z
ffijð�=z;�fÞ

� Cijðz;M;mt; cos�;�fÞ; (7)

where �f is the factorization scale. The parton luminosity

functions ffij are defined as a convolution of PDFs:

ffijðy;�fÞ ¼ fi=N1
ðy;�fÞ � fj=N2

ðy;�fÞ: (8)

Here and throughout the paper the symbol � denotes the
following convolution between two functions

fðzÞ � gðzÞ ¼
Z 1

z

dx

x
fðxÞgðz=xÞ: (9)

When there are several arguments in the functions f and g,
the convolution is always over the first argument. As
described in more detail below, we choose to define the
PDFs with nl ¼ 5 active light flavors, so that all physics
associated with the scale of the top-quark is absorbed into
the perturbative coefficient functions Cij. These coefficient

functions are proportional to differential partonic cross
sections. Our aim is to study the factorization properties
of these partonic cross sections in the double soft
and small-mass limit, where ð1� zÞ � 1 and mt � M.
(More precisely, we work in the limit where the
Mandelstam variables ŝ, t1, u1 � m2

t .) Our strategy is to
first discuss the soft and small-mass limits separately, and
then combine them into a single formula which is true for
both limits simultaneously.

Factorization of differential partonic cross sections in
the soft limit has been studied in [5,6,18–26]. In the soft
limit z ! 1, the partonic cross section can be factorized
into a hard function and a soft function according to

Cijðz;M;mt; cos�;�fÞ
¼ Tr½Hm

ijðM;mt; t1; �fÞSm
ijð

ffiffiffî
s

p ð1� zÞ; mt; t1; �fÞ�
þOð1� zÞ; (10)

where we have used that in the soft limit dependence on the
scattering angle can be expressed in terms of t1, see (6).
The superscript m on the hard function Hm

ij and the soft

function Sm
ij indicates that they are computed with finite

top-quark mass, as opposed to the massless hard and soft
functions introduced below. Both of these functions are
matrices in the space of color-singlet operators for Born-
level production. The hard function is related to virtual
corrections to the two-to-two scattering processes
q �qðggÞ ! t�t. The soft function is related to real emissions
in the soft limit, or more precisely to the vacuum expecta-
tion value of a Wilson-loop operator built from time and
light-like Wilson lines associated with soft emissions from
the heavy and light quarks. Note that in this limit, we only

need to consider ij ¼ q �q, gg, since the qg channel is
suppressed by powers of (1� z).
Factorization of differential partonic cross sections for

heavy-quark production in the small-mass limit was con-
sidered in [8].1 It was shown that partonic cross sections in
this limit can be factorized into a product of massless cross
sections with perturbatively calculable heavy-quark frag-
mentation functions. Generically, for a cross section differ-
ential in the energy fraction z ¼ E=Emax of the top quark,
this factorization is written as (see, for instance, [14])

d�t

dz
ðz;mt;�Þ

¼ X
a

Z 1

z

dx

x

d~�a

dx
ðx;mt; �ÞDðnlþnhÞ

a=t

�
z

x
;mt; �

�
; (11)

where d~�a=dx is the MS-renormalized differential cross

section for the production of a massless parton a, andD
ðnfÞ
a=t

is the heavy-quark fragmentation function defined using an
�s withnf active flavors. The sumover themassless partons

labeled by a includes the case a ¼ t, and the heavy quark is
considered massless in the calculation of d~�t. Much as the
PDFs describe radiation collinear to initial-state partons,
the heavy-quark fragmentation functions describe radiation
collinear to the energetic final-state heavy quarks. The
heavy-quark fragmentation functions are however pertur-
batively calculable, since themass of the top quark serves as
a collinear regulator.
In the case of the invariant-mass distribution in top-

quark pair production at hadron colliders, we need to
modify the generic formula (11) in several ways. First,
since this observable contains information about both the
top and the anti-top quark, we need a fragmentation func-
tion for each of them. Second, we must introduce heavy-
flavor coefficients related to matching six-flavor PDFs onto
five-flavor ones, which induces an additional source of
mt-dependence into the formula. Finally, although not
strictly necessary, we will follow [13] and also perform
such a matching for the fragmentation functions. The
matching relations between the PDFs and fragmentation
functions in the nl þ nh� and nl-flavor theories are

DðnlþnhÞ
a=t ðz;mt; �fÞ ¼ Ca=tðz;mt;�fÞ �DðnlÞ

t=t ðz;mt; �fÞ;
(12)

ffðnlþnhÞ
ij ðz; mt; �fÞ ¼ Cij

ffðz;mt;�fÞ � ffðnlÞij ðz; �fÞ:
(13)

1We note that for the total cross section, potentially large
corrections in the limit ŝ � m2

t limit have been considered in,
e.g. [27,28], and that NNLO corrections within this framework
were recently calculated in [29]. These results for the total cross
section are however not applicable to the differential cross
section in the pair invariant mass considered here.
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The heavy-flavor matching coefficients Ca=t and C
ij
ff on the

right-hand side of the above equation are proportional to
powers of nh ¼ 1. They are obtained by comparing par-
tonic matrix elements with and without the top quark as an
active flavor, and are known to NNLO in fixed-order for
both the fragmentation functions [13] and the parton lumi-
nosity functions [30]. We will encounter them again in
Sec. IV, when we discuss the RG running of massless
coefficient functions to scales below the flavor threshold
at �t �mt.

Taking these points into account, the factorization
formula for the coefficient function (7) in the small-mass
limit reads2

Cijðz;M;mt;cos�;�fÞ¼
X
a;b

Cab
ij ðz;M;t1;�fÞ

�DDðnlÞ
ab ðz;mt;�fÞ

�Ca=tðz;mt;�fÞ
�Cb=�tðz;mt;�fÞ
�Cffðz;mt;�fÞþO

�
mt

M

�
; (14)

where the sum is over all parton species a, b 2
ft; �t; q; �q; gg. The functions Cab

ij are the partonic cross

sections obtained from the massless scattering process

ij ! abþ X̂, where X̂ indicates additional final-state

partons. The objects DDðnlÞ
ab are defined as the following

convolution of heavy-quark fragmentation functions:

DDðnlÞ
ab ðz; mt; �fÞ ¼ DðnlÞ

a=t ðz;mt;�fÞ �DðnlÞ
b=�t ðz;mt; �fÞ:

(15)

This convolution of heavy-quark fragmentation functions
is completely analogous to that defining the parton lumi-
nosities in (8). It arises after generalizing (11) to a two-fold
convolution and performing a change of variables.

We are now ready to discuss the joint limit z ! 1 and
mt=M ! 0, which is the main theme of this paper. The key
point is that these two limits are independent and commu-
tative, so that we can take them one-by-one in any order
and obtain the same result. We choose to start from the
factorization formula (14) for the small-mass limit, and
then study the behavior of its component parts in the limit
z ! 1. We thus discuss the factorization of the massless
coefficient functions and the fragmentation function in the
soft limit. The alternate method of starting from the facto-
rization formula (10) for the soft limit and then studying

the factorization of its component parts in the small-mass
limit is discussed in Appendix A.
We first deal with the massless coefficient function

Cab
ij . To factorize it in the soft limit, we observe that

nothing in the derivation of factorization for the massive
coefficient function (10) makes reference to the mass of
the top-quark. Therefore, the form of factorization for the
massless coefficient function is exactly the same. The
result is thus

Ct�t
ijðz;M; t1;�fÞ ¼ Tr½HijðM; t1;�fÞSijð

ffiffiffî
s

p ð1� zÞ; t1;�fÞ�
þOð1� zÞ: (16)

We have used that only a ¼ t contributes to (12) at
leading power in (1� z). The hard function Hij is ob-

tained from virtual corrections to two-to-two scattering
with massless top quarks, and the soft function Sij in-

volves only light-like Wilson lines related to real emis-
sion from massless partons. The top quark is treated as
massless in both the external states and in internal fer-
mion loops, so both the hard and soft function are
defined in a theory with six active massless flavors.
The factorization of the fragmentation functions in the

z ! 1 limit was explained in [9–12], and also within an
effective field-theory framework in [13]. The main result of
those works is that after the matching onto the nl-flavor
theory as in (12), the fragmentation function factorizes into
a product of two functions: one depending on the collinear
scalemt, and the other on the soft-collinear scalemtð1� zÞ.
We write this factorization as

DðnlÞ
t=t ðz;mt;�fÞ¼CDðmt;�fÞSDðmtð1�zÞ;�fÞþOð1�zÞ:

(17)

The fragmentation of �t to �t follows the same factoriza-
tion with the same coefficient functions. The soft func-
tion SD is related to soft-collinear emission and is
equivalent to the partonic shape-function appearing in
B-meson decays [12,13]. The matching coefficient CD is
independent of z and is a simple function related to
virtual corrections.
Combining all of the information above, the factoriza-

tion formula for the partonic cross sections in the joint soft
and small-mass limit is

Cijðz;M;mt; cos�;�fÞ
¼ C2

Dðmt;�fÞTr½HijðM; t1; �fÞSijð
ffiffiffî
s

p ð1� zÞ; t1; �fÞ�
� Cij

ffðz; mt; �fÞ � Ct=tðz;mt; �fÞ � Ct=tðz;mt; �fÞ
� SDðmtð1� zÞ; �fÞ � SDðmtð1� zÞ; �fÞ
þOð1� zÞ þO

�
mt

M

�
: (18)

The factorization formula (18) is the central result of this
section. In the limit in which it is derived, any choice of�f

2We have used a slight abuse of notation and expressed the
dependence on the scattering angle in terms of t1, which is in
general only possible in the soft limit. In converting to the
scattering angle, we keep the exact mass dependence in t1
according to (6), otherwise a t-channel singularity emerges
upon integration over �.
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generates large logarithms in the soft or small-mass limits.
We deal with this problem in the next section using
RG techniques. In deriving and solving the RG equations
it will be useful to introduce the Laplace-transformed
functions

~cij

�
N;M;mt;cos�;�fÞ¼

Z 1

0
d�e��NCijðz;M;mt;cos�;�f

�
;

~sij

�
ln

M2

�N2�2
f

;t1;�f

�
¼
Z 1

0
d�e��NSijð

ffiffiffî
s

p ð1�zÞ;t1;�fÞ;

~cijt

�
ln

1
�N2
;mt;�f

�
¼
Z 1

0
d�e��NCij

ffðz;mt;�fÞ
�Ct=tðz;mt;�fÞ�Ct=tðz;mt;�fÞ;

~sD

�
ln

mt

�N�f

;�f

�
¼
Z 1

0
d�e��NSDðmtð1�zÞ;�fÞ;

(19)

where � ¼ ð1� zÞ= ffiffiffi
z

p
and �N ¼ Ne	E . In Laplace space,

the factorization formula becomes a simple product of the
different functions and reads

~cijðN;M;mt; cos�;�fÞ

¼ C2
Dðmt;�fÞTr

�
HijðM; t1; �fÞ~sij

�
ln

M2

�N2�2
f

; t1; �f

��

� ~cijt

�
ln

1
�N2

; mt; �f

�
~s2D

�
ln

mt

�N�f

;�f

�

þO
�
1

N

�
þO

�
mt

M

�
: (20)

III. THE MATCHING FUNCTIONS: FIXED-ORDER
EXPANSIONS AND RG EVOLUTION

The component parts of the factorization formula (18)
can be viewed as matching functions in effective theory. In
this section we explain the one-scale calculations needed
to extract the fixed-order expansions of these matching
functions, present their RG equations and the solutions
thereof, and give the ingredients needed to evaluate these
RG-improved matching coefficients at NNLL. While such
NNLL calculations require only the NLO perturbative
expansion of the matching coefficients, we also collect
all current knowledge at NNLO, part of which we will
use in our numerical analysis later on.

A. Hard function

The hard function is related to virtual corrections to the
two-to-two scattering processes underlying Born-level pro-
duction. The method for calculating the hard-function
matrix for the countingM�mt in fixed-order perturbation
theory was described in detail in [5], where results valid
to NLO were given. This boiled down to calculating
color-decomposed UV-renormalized on-shell scattering

amplitudes and subtracting poles in the 4� d ¼ 2
 ! 0
limit using an IR renormalization factor.
There are in fact two ways to calculate the hard function

in the massless case. The first is to setmt ¼ 0 at the start of
the calculation and follow the same procedure as for the
massive case. Then the UV-renormalized scattering ampli-
tudes and the IR renormalization factors change compared
to the massive case, but the method for extracting the hard
function is exactly the same. The second way is to Taylor-
expand the massive result [5] in the limit mt ! 0 and then
convert the result to the massless case using the relation
between massive and massless amplitudes in the small-
mass limit derived in [31]. We have calculated the NLO
hard function using both methods and confirmed that they
agree. This NLO result for massless scattering is not new:
it is actually a special case of the more general results for
four-parton scattering given in [32], using the one-loop
calculations of [33]. We have checked that we reproduce
those results using the procedure described below.
As opposed to the massive case, where only a limited set

of NNLO virtual corrections have been calculated [34–41],
both the one-loop times one-loop and two-loop times Born
interference terms are known for the case of massless two-
to-two scattering [15,42–44]. These results are implicitly
summed over colors and cannot be used to extract the hard
matrix directly, on the other hand they can be used to
extract the contribution of the NNLO hard function to the
approximate NNLO formulas covered below. Although we
do not go through this straightforward but tedious exercise
here, it is an important point that all of the diagrammatic
calculations are in place.
In order to give explicit results valid to NLO we define

expansion coefficients of the hard function H as

H¼�2
s

3

8dR

�
Hð0Þþ�s

4�
Hð1Þþ

�
�s

4�

�
2
Hð2Þ þ���

�
; (21)

where dR ¼ Nc in the quark annihilation channel and
dR ¼ N2

c � 1 in the gluon fusion channel, with Nc ¼ 3

colors in QCD. The LO result Hð0Þ is trivially obtained
from the formulas in [5], which is regular in the limit
mt ! 0. For the q �q channel we have

Hð0Þ
q �q ¼ 0 0

0 2

 !
t21 þ u21
M2

; (22)

and the result for the gg channel is

Hð0Þ
gg ¼

1
N2

c

1
Nc

t1�u1
M2

1
Nc

1
Nc

t1�u1
M2

ðt1�u1Þ2
M4

t1�u1
M2

1
Nc

t1�u1
M2 1

0
BBBB@

1
CCCCA t21 þ u21

2t1u1
: (23)

We do not list the explicit result for the NLO hard function

Hð1Þ, since it has essentially been given in [32]. For what
concerns the quark annihilation channel, we convert those
results to our case by extracting the elements of the hard
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matrix from Eq. (39) of [32]. Subsequently, one needs to
consider crossing symmetry and to permute the arguments
of the various matrix elements according to Hijðs; t; uÞ !
Hijðu; s; tÞ, as explained in Table 1 of [32]. Finally, one

should exchange the element indices 1 $ 2 to match the
notation employed here, and compensate for an overall
factor, so that

Hð0Þ
q �q þ

�

4�
Hð1Þ

q �q ¼ � 1
64�2�2

s

H22ðu; s; tÞ H21ðu; s; tÞ
H12ðu; s; tÞ H11ðu; s; tÞ

 !
;

(24)

where all of the elements of the matrix on the right-hand
side are taken from Eq. (39) of [32]. The gluon fusion case
is slightly more complicated because the authors of [32]
use a different color basis. In that case, the NLO correction
can obtained from Eqs. (56) in [32] through the rotation

Hð1Þ
gg ¼ 4OT

HNLO
11 HNLO

12 HNLO
13

HNLO
12 HNLO

22 HNLO
23

HNLO
13 HNLO

23 HNLO
33

0
BB@

1
CCAO; (25)

where the matrix elements on the right-hand side are from
[32], and

O ¼
1

2Nc

1
2

1
2

1
2Nc

� 1
2

1
2

1 0 0

0
BB@

1
CCA: (26)

In the resummed formulas below we will need an ex-
pression for the hard function evaluated at an arbitrary
scale �f, given its value at an initial scale �h �M where

it contains no large logarithms and the fixed-order expan-
sions above can be applied. This is obtained by deriving
and solving the RG equation. As with the matching coef-
ficient itself, we can derive the RG equation either by
setting mt ¼ 0 from the start and using the exact same
methods as the massive case [5], or we can start from the
massive result and take the limitmt ! 0 using the relations
between massive and massless amplitudes mentioned
above. We have checked that the two methods agree. In
any case, the RG equation for the massless hard function is
completely analogous to the massive case studied in [5]
and is given by (here and below we suppress dependence
on the channels q �q and gg when there is no potential for
confusion)

d

d ln�
HðM; t1; �Þ ¼ �HðM; t1; �ÞHðM; t1; �Þ

þHðM; t1; �Þ�y
HðM; t1; �Þ: (27)

The explicit result for the anomalous dimension matrix to
two-loop order in the color basis of [5] is easily derived by
making use of the general result [45,46] for massless
scattering amplitudes, and reads

�q �q ¼
�
2CF	cuspð�sÞ

�
ln
M2

�2
� i�

�
þ 4	qð�sÞ

�
1

þ Nc	cuspð�sÞ
�
ln
�t1
M2

þ i�

�
0 0

0 1

 !

þ 	cuspð�sÞ ln t
2
1

u21

0 CF

2Nc

1 � 1
Nc

0
@

1
A; (28)

and

�gg¼½ðNcþCFÞ	cuspð�sÞ
�
ln
M2

�2
� i�

�
þ2	gð�sÞ

þ2	qð�sÞ�1þNc	cuspð�sÞ
�
ln
�t1
M2

þ i�

� 0 0 0

0 1 0

0 0 1

0
BB@

1
CCA

þ	cuspð�sÞln t
2
1

u21

0 1
2 0

1 �Nc

4
N2

c�4
4Nc

0 Nc

4 �Nc

4

0
BBB@

1
CCCA: (29)

For convenience, we have collected results for the various
scalar anomalous dimension functions in Appendix C.
Since the evolution equation has the same structure as in

the massive case, it can be solved using the same methods.
In presenting the solution it is convenient to decompose the
anomalous dimension into a logarithmic piece multiplying
the unit matrix and a nonlogarithmic part containing the
nontrivial matrix structure:

�HðM;t1;�Þ¼Að�sÞ
�
ln
M2

�2
� i�

�
1þ�hðM;t1;�sÞ; (30)

where A ¼ 2CF	cusp 	 2�q
cusp in the q �q channel and

A ¼ ðNc þ CFÞ	cusp 	 �g
cusp þ �q

cusp in the gg channel.

The solution to the RG equation can then be written as

H ðM;t1;�Þ¼UðM;t1;�h;�ÞHðM;t1;�hÞUyðM;t1;�h;�Þ;
(31)

with

UðM; t1; �h;�Þ

¼ exp

�
2SAð�h;�Þ � aAð�h;�Þ

�
ln
M2

�2
h

� i�

��
� uðM; t1; �h;�Þ: (32)

The RG exponents are given by

SAð�h;�Þ ¼ �
Z �sð�Þ

�sð�hÞ
d�

Að�Þ
�ð�Þ

Z �

�sð�hÞ
d�0

�ð�0Þ ;

aAð�h;�Þ ¼ �
Z �sð�Þ

�sð�hÞ
d�

Að�Þ
�ð�Þ ;

(33)
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where �ð�sÞ ¼ d�s=d ln� is the QCD �-function (whose
expansion coefficients are given in Appendix C). The
matrix-valued contribution to the evolution function reads

uðM; t1; �h;�Þ ¼ P exp
Z �sð�Þ

�sð�hÞ
d�

�ð�Þ�
hðM; t1; �Þ: (34)

The exact solution to the RG equation is evaluated as a
series in RG-improved perturbation theory as in [5], where
explicit expressions valid to NNLL order were presented.
Such an NNLL calculation requires the NLO corrections to
both the hard matching function (a one-loop calculation)
and the anomalous dimension (a two-loop calculation).

B. Soft function

The soft function is related to real emission corrections
to massless q �q, gg ! t�t scattering in the soft limit. A more
formal definition in terms of the vacuum expectation value
of aWilson-loop operator was given for the massive case in
[5]. The position-space result for this object can be directly
converted into the Laplace-transformed function (19). We
can adapt that definition to the massless case simply by
changing time-like Wilson lines representing emissions
from massive particles to light-like Wilson lines represent-
ing emissions from massless ones. We will present results
for the Laplace-transformed soft function directly. We
define the perturbative expansion of this function as

~s ¼ ~sð0Þ þ �s

4�
~sð1Þ þ

�
�s

4�

�
2
~sð2Þ þ � � � : (35)

At lowest order, the result depends on whether the initial-
state partons are quarks or gluons, but not on the mass. The
result is

~sð0Þq �q ¼ Nc 0

0 CF

2

 !
(36)

in the quark annihilation channel, and

~sð0Þgg ¼
Nc 0 0

0 Nc

2 0

0 0 N2
c�4
2Nc

0
BBB@

1
CCCA (37)

in the gluon fusion channel.
To obtain the Laplace-transformed soft function at NLO

we evaluate the following position-space integrals [5]

I ijð
; x0; �Þ

¼ � ð4��2Þ

�2�


vi � vj

Z
ddk

e�ik0x0

vi � kvj � k ð2�Þ�ðk
2Þ�ðk0Þ;

(38)

where vi are the light-like four-velocities of the partons
from the Born-level scattering process. When i ¼ j these

integrals vanish since v2
i ¼ 0, while for i � j they are

equal to

I ij ¼ �ð4�Þ
e�
	

�
2


2
þ 2




�
L0 � ln

v1 � v2

2

�

þ
�
L0 � ln

v1 � v2

2

�
2 þ �2

6
þ 2Li2

�
1� v1 � v2

2

��
;

(39)

where

L0 ¼ ln

�
��2x20e

2	E

4

�
: (40)

We make use of this result by expressing the scalar prod-
ucts vi � vj in terms of the Mandelstam variables, by sub-

tracting the IR poles in MS, and by Laplace-transforming
the integrals through the replacement L0 ! �L. This
leads to

~I 12 ¼ �
�
L2 þ �2

6

�
;

~I 13 ¼ ~I 24 ¼ �ðLþ lnðrÞÞ2 � �2

6
� 2Li2ð1� rÞ;

~I 14 ¼ ~I 23 ¼ �ðLþ lnð1� rÞÞ2 � �2

6
� 2Li2ðrÞ;

~I 11 ¼ ~I 22 ¼ ~I 33 ¼ ~I 44 ¼ 0;

(41)

where r ¼ �t1=M
2. One obtains the matrix-valued soft

function in Laplace space by evaluating

~s ð1Þ ¼ X
ði;jÞ

wij
~I ijðL; rÞ; (42)

where the wij are the color matrices from [5], which are

different for the q �q and gg channels, but make no reference
to the parton mass.
To obtain the NNLO correction to the soft function

requires a new calculation which is beyond the scope of
this paper. However, as a compromise, we can use the RG
equation below to derive all of the coefficients proportional
to powers of logarithms in the Laplace-transformed NNLO
correction, whose form is

~s ð2ÞðL;M; t1Þ ¼
X4
n¼0

snðM; t1ÞLn: (43)

The results for the coefficients are fairly lengthy and since
we use them in this paper only for the factorization check
described in Sec. IVB we do not list them here.
The Laplace-transformed functions are the central ob-

jects used in solving the RG equations below. One can also
convert them to the momentum-space functions using a set
of replacement rules. In the case where the first argument
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of the soft function is expressed in terms of
ffiffiffî
s

p ð1� zÞ ¼
Mð1� zÞ= ffiffiffi

z
p

, the resulting distributions are

P0
nðzÞ ¼

�
1

1� z
lnn

�
M2ð1� zÞ2

�2z

��
þ
: (44)

As shown in [5], the momentum-space soft function is
derived from the Laplace-space function by making the
replacements

1 ! �ð1� zÞ; L ! 2P0
0ðzÞ þ �ð1� zÞ ln

�
M2

�2

�
;

L2 ! 4P0
1ðzÞ þ �ð1� zÞln2

�
M2

�2

�
;

L3 ! 6P0
2ðzÞ � 4�2P0

0ðzÞ þ �ð1� zÞ
�
ln3
�
M2

�2

�
þ 4�3

�
;

L4 ! 8P0
3ðzÞ � 16�2P0

1ðzÞ þ 128�3P
0
0ðzÞ

þ �ð1� zÞ
�
ln4
�
M2

�2

�
þ 16�3 ln

�
M2

�2

��
: (45)

In order to translate the P0
n into the conventional Pn

distributions,

PnðzÞ ¼
�

1

1� z
lnnð1� zÞ

�
þ
; (46)

we employ the general relation

P0
nðzÞ¼

Xn
k¼0

n

k

 !
lnn�k

�
M2

�2

��
2kPkðzÞþ

Xk�1

j¼0

k

j

 !
2jð�1Þk�j

�
�
lnjð1�zÞlnk�jz

1�z
��ð1�zÞ

�
Z 1

0
dx

lnjð1�xÞlnk�jx

1�x

��
: (47)

The numerical affects of keeping the power-suppressed
terms proportional to lnmz=ð1� zÞ was discussed in detail
in [5,26].

The soft function obeys a nonlocal RG equation which is
solved using the Laplace transform technique [47]. The RG
invariance of the total cross section implies that the
Laplace-transformed soft function satisfies

d

d ln�
~s

�
ln
M2

�2
;M; t1; �

�

¼ �
�
Að�sÞ lnM

2

�2
þ �syðM; t1; �sÞ

�
~s

�
ln
M2

�2
;M; t1; �

�

� ~s

�
ln
M2

�2
;M; t1; �

��
Að�sÞ lnM

2

�2
þ �sðM; t1; �sÞ

�
:

(48)

We have defined

�sðM; t1; �sÞ ¼ �hðM; t1; �sÞ þ ½2	ð�sÞ þ 2	qð�sÞ�1:
(49)

Note that while the form of the anomalous dimension is
analogous to that in the massive case, it picks up an extra
term 2	q , which is needed to cancel the �-dependence
from the fragmentation function as determined by the RG
equation (57) below.
The solution for the momentum-space soft function

reads

Sð!;M; t1; �fÞ ¼
ffiffiffî
s

p
exp½�4SAð�s;�fÞ þ 4a	ð�s;�fÞ

þ 4a	q ð�s;�fÞ�uyðM; t1; �f;�sÞ
� ~sð@�A

;M; t1; �sÞuðM; t1; �f;�sÞ

� 1

!

�
!

�s

�
2�A e�2	E�A

�ð2�AÞ ; (50)

where one is to set �A ¼ 2aAð�s;�fÞ after performing the

derivatives. For values of 2�A < 0, the!-dependence must
be interpreted in the sense of distributions.
As always in RG-improved perturbation theory, the aim

of a formula such as (50) is to allow one to evaluate the
soft function at an arbitrary scale �f given its result at a

scale �s where it is free of large logarithms. However, the
question of what exactly this �s should be is currently
a source of debate in the literature. We will discuss this
issue in more detail when presenting results for the
RG-improved partonic cross section in Sec. IV.

C. Fragmentation function

The perturbative fragmentation function was calculated
at NNLO for generic values of z in [14]. In this section
we focus on the parts of that result required for the
resummed analysis, namely the leading terms in the soft
limit of the function with nl active flavors defined in (12).
In particular, we list results for the functions SD and CD

appearing in the factorized form (17), determined previ-
ously in [13].
The function SD is related to the partonic shape-function

in B-meson decays and can be derived from the two-loop
calculations in [48]. We define its perturbative expansion in
Laplace space as

~s D ¼ 1þ �s

4�
~sð1ÞD þ

�
�s

4�

�
2
~sð2ÞD þ � � � : (51)

The expansion coefficients with Nc ¼ 3 colors are

~s ð1Þ
D ðL=2Þ ¼ � 4

3
L2 � 8

3
L� 10�2

9
; (52)
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~sð2ÞD ðL=2Þ ¼ 8

9
L4 þ

�
76

9
� 8

27
nl

�
L3 þ

�
� 104

9
þ 76�2

27
þ 16

27
nl

�
L2 þ

�
440

27
þ 416�2

27
� 72�3 þ 16

81
nl � 16�2

27
nl

�
L

� 1304

81
� 233�2

9
þ 1213�4

405
� 1132�3

9
þ
�
� 16

243
þ 14�2

27
þ 88�3

27

�
nl: (53)

It is a nontrivial check on the factorization formula (17) that the plus-distributions in the fragmentation function are all
related to the momentum-space representation of this function, obtained by the set of replacement rules analogous to (45),
but with the substitution Mð1� zÞ= ffiffiffi

z
p ! mtð1� zÞ.

The coefficient CD is related to virtual corrections to the fragmentation function and is a simple function independent of
z. Since the NNLO correction to the fragmentation function obtained in [14] was not split into real and virtual corrections,
it is not possible to obtain the coefficient directly from that work. Instead, it must be determined by using the result for the
shape-function given above along with the factorization formula (17) for the fragmentation function. Defining expansion
coefficients in analogy to (51), we have (with Nc ¼ 3 colors)

Cð1Þ
D ðmt;�Þ ¼ 4

3

�
L2
m þ Lm þ 4þ �2

6

�
; (54)

Cð2Þ
D ðmt;�Þ ¼ 8

9
L4
m þ

�
20

3
� 8

27
nl

�
L3
m þ

�
406

9
� 28�2

27
� 52

27
nl

�
L2
m þ

�
2594

27
þ 248�2

27
� 232�3

3
� 308

81
nl � 16�2

27
nl

�
Lm

þ 21553

162
þ 107�2

3
� 749�4

405
þ 260�3

9
þ 16�2

9
ln 2�

�
1541

243
þ 74�2

81
þ 104�3

27

�
nl; (55)

with Lm ¼ lnð�2=m2
t Þ. We discuss a possible cross-check

of this result in Appendix A.
In the factorization formula for the invariant-mass dis-

tribution we need the convolution of two fragmentation
functions, which up to NNLO has the form

DDðz; mt; �Þ ¼ �ð1� zÞ þ 2

�
�s

4�

�
Dð1Þðz; mt; �Þ

þ
�
�s

4�

�
2½2Dð2Þðz; mt; �Þ

þDð1Þðz; mt; �Þ �Dð1Þðz; mt; �Þ�: (56)

The convolutions between the different plus-distributions
in the last term can be evaluated by employing the methods
illustrated in [49]. For the reader’s convenience we collect
the relevant convolutions in Appendix B.

The RG equation for the fragmentation function is a
nonlocal one. It is given by

d

d ln�
DðnlÞ

t=Hðz;mt; �Þ ¼ Pqqðz;�Þ �DðnlÞ
t=Hðz;mt; �Þ; (57)

where Pqq is a time-like Altarelli-Parisi splitting function

whose structural form in the soft limit is

Pqqðz; �Þ ¼ 2�q
cuspð�sÞ

ð1� zÞþ þ 2	qð�sÞ�ð1� zÞ: (58)

From this equation, and the fact the SD is equivalent to
the perturbative shape-function from B-meson decays
[12,13], the RG equations for the function CD can be
derived. The RG equation for CD is local, while that for
SD is nonlocal and solved using the Laplace transform

technique. The result for the RG-improved fragmentation
function reads

Dðz;mt;�fÞ
¼exp½2S�q

cusp
ð�ds;�dhÞþ2a	Sð�ds;�dhÞ

þ2a	q ð�f;�dhÞ�
�
mt

�ds

��2a�qcusp
ð�f;�dhÞ

�CDðmt;�dhÞ~sDð@�d
;�dsÞe

�	E�d

�ð�dÞ
�
mt

�ds

�
�d 1

ð1�zÞ1��d
;

(59)

with �d ¼ 2a�q
cusp

ð�f;�dsÞ. The explicit results for the

anomalous dimension 	S can be found in [13] as well as
in Appendix C of this paper. While it is obvious that the
scale choice �dh �mt eliminates large logarithms in the
coefficient functionCD, the choice of the scale�ds is again
a debatable point which we come back to later on.

D. The heavy-flavor coefficients

The definition of the heavy-flavor coefficients Ct=t and

Cij
ff was given in (12). The partonic matrix elements needed

to evaluate those expressions to NNLO are known from
[14] for the fragmentation functions and [30] for the PDFs.
Rather than give the results separately, we quote only the
result for the Laplace-transformed combination of the three
functions appearing in (19). Expressed in terms of �s with
five active flavors, the result is
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~cq �qt ðL;mt; �Þ ¼ 1þ nh

�
�s

4�

�
2
��

32

9
L2
m � 320

27
Lm þ 896

81

�
L

þ 16

3
L2
m �

�
16

9
þ 64�2

27

�
Lm

þ 7592

243
� 64�2

81

�
þ � � � (60)

~cggt ðL;mt;�Þ
¼1�nh

�s

4�

4

3
Lmþnh

�
�s

4�

�
2
��

52

9
L2
m�520

27
Lmþ1456

81

�
L

þ8

3
L2
m�

�
32�2

27
þ200

9

�
Lmþ2228

243
�16�2

9

þ32�3
9

þ4nh
9

L2
m

�
þ��� (61)

If desired, these can be converted to momentum-space by
the set of replacements (45) with � ¼ M.

The RG equations for the heavy-flavor coefficients
Cff and Ct=t follow from the fact that the parton luminosity

and fragmentation functions in the nh þ nl flavor theory
obey the standard Altarelli-Parisi equations in the soft
limit. This implies

d

d ln�
Ct=tðz; mt; �Þ

¼ ½Pnhþnl
qq ðz;�Þ � Pnl

qqðz;�Þ� � Ct=tðz;mt;�Þ; (62)

d

d ln�
Cij
ffðz; mt; �Þ

¼ 2½Pnhþnl
ij ðz;�Þ � Pnl

ij ðz; �Þ� � Cij
ffðz;mt; �Þ; (63)

where we have used that nondiagonal evolution is sup-
pressed by powers of (1� z). The function Pgg is defined

in analogy with (58) after the obvious replacements, and
both �g

cusp ¼ CA	cusp and 	
g can be read off to two loops

from Appendix C. The superscripts indicate the number of
active flavors to be used in both �s and the coefficients of
the anomalous dimensions themselves. When expressed in
terms of a common five-flavor coupling, the anomalous

dimensions Pnhþnl
ij pick up explicit powers of lnmt=�

related to the �s decoupling relation

�ðnhþnlÞ
s ¼ �ðnlÞ

s

�
1þ nh

2

3
Lm

�ðnlÞ
s

4�
þ . . .

�
: (64)

The logarithms associated with this decoupling are the
reason why the explicit results (61) look slightly different
from what one might expect from the form of the Altarelli-
Parisi kernel in the soft limit in (58). One can easily show,
however, that the RG equations (63) are indeed satisfied.
We note that for the NNLL analysis, we need only the NLO
correction from ~cggt , which contains no large logarithms for
�t �mt. Beyond NNLL accuracy, however, such a choice

leads to large logarithms in 1� z that are not resummed.
While it is conceivable that one could derive a method for
resumming logarithms between the scales mtð1� zÞ and
mt within the heavy-flavor coefficients, we will leave this
as an open point in our current analysis of resummation in
the double soft and small-mass limit.

IV. THE PARTONIC CROSS SECTION
AT NNLL AND APPROXIMATE NNLO

In this section we derive the final expression for the
resummed partonic cross section at NNLL in the double
soft and small-mass limit. We discuss a few points having
to do with its practical implementation, and then turn to its
approximate NNLO implementation.

A. Partonic cross section at NNLL

To derive the final result for the resummed partonic cross
section at a scale �f we insert the RG-improved results for

the hard, soft, and fragmentation functions presented above
into the factorization formula (18). The convolution inte-
grals can be performed analytically usingZ 1

z
dz0

1

ð1� z0Þ1��1

1

ð1� z=z0Þ1��2


 �ð�1Þ�ð�2Þ
�ð�1 þ �2Þ

1

ð1� zÞ1��1��2
; (65)

where the approximation is true in the limit z ! 1. We can
also simplify the various products of evolution matrices by
employing the relations

uðM;cos�;�f;�sÞuðM;cos�;�h;�fÞ¼uðM;cos�;�h;�sÞ;
aAð�s;�hÞþaAð�h;�fÞ¼aAð�s;�fÞ;
SAð�h;�fÞ�SAð�s;�fÞ¼SAð�h;�sÞ

�aAð�s;�fÞln�h

�s

:

(66)

The only subtlety is related to the treatment of heavy-
quark threshold effects at �t �mt. However, this is a
standard problem in RG-improved perturbation theory
involving heavy quarks, and we deal with it in the usual
way [50]. To understand the logic, it suffices to consider a
hypothetical observable involving three widely separated
scales M � mt � �0, which satisfies a factorization for-
mula of the form CðM;�ÞDðmt;�ÞFð�0; �Þ. If C is a
coefficient function whose RG running is known, and the
goal is to evolve it from a high scale �M �M to the scale
�0 below the heavy-flavor threshold, one uses the follow-
ing schematic equation:

CðnlÞðM;mt;�0Þ ¼ UðnlÞðM;�0; �tÞMhðmt;�tÞUðnlþnhÞ

� ðM;�t;�MÞCðnlþnhÞðM;�MÞ: (67)
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In words, one uses six-flavor evolution functions UðnlþnhÞ
above the flavor threshold at �t, and five-flavor evolution

functions UðnlÞ below it. The change in the number of
flavors induces a matching coefficient Mh at the flavor
threshold. It is determined by requiring that the partonic
cross section in the nf and nf � 1 flavor theories be equal

at the scale �t:

CðnfÞðM;�tÞhDFiðnfÞ ¼Cðnf�1ÞðM;mt;�tÞhDFiðnf�1Þ; (68)

where the hiðfÞ denotes a partonic matrix element in
the theory with f massless flavors evaluated at the
scale �t.
The generalization of this simple picture to our case is

straightforward. The role of the coefficient C is played by
the massless hard and soft functions, and that of the heavy-
flavor matching coefficient Mh by the convolution of
the three functions appearing in the second line of (18).
The explicit result reads

Cðz;M;mt;cos�;�fÞ ¼ exp

�
4S�q

cusp
ð�ds;�dhÞþ 4a	ð�t;�fÞþ 4a	q ð�t;�dhÞþ 4a	Sð�ds;�dhÞ

þ 2a�q
cusp

ð�dh;�dsÞ lnm
2
t

�2
ds

�
nf¼5

exp½4a	ð�s;�tÞþ 4a	q ð�s;�tÞ�nf¼6

�Tr

�
UðM;t1;�h;�sÞHðM;t1;�hÞUyðM;t1;�h;�sÞ� ~s

�
ln
M2

�2
s

þ @�0 ;M; t1;�s

��
nf¼6

�
�
~cijt ð@�0 ;mt;�tÞ~dd

�
ln
m2

t

�2
ds

þ@�0 ;mt;�dh;�ds

��
nf¼5

e�2	E�
0

�ð2�0Þ
1

ð1� zÞ1�2�0 þOð1� zÞþO
�
mt

M

�
:

(69)

We have defined �0 ¼ ½2aAð�s;�tÞ�nf¼6þ½2aAð�t;�fÞþ
2a�q

cusp
ð�f;�dsÞ�nf¼5 and in addition ~ddðL;mt;�dh; �dsÞ ¼

½CDðmt;�dhÞ~sDðL=2; �dsÞ�2. We have indicated with the
subscripts the number of active massless flavors nf to be
used in evaluating the running coupling constant and per-
turbative functions in the various parts of the formula. This
number of active flavors is chosen according to the physi-
cal picture of the schematic example (67) above, namely
that of integrating out heavy degrees of freedom until
reaching a scale under the flavor threshold below which
the remaining degrees of freedom are factorized into the
PDFs. However, it is formally true for any value of the
factorization scale. It thus provides a convenient way to use
the standard PDFs with five light flavors even when �f is
far above the heavy-flavor threshold at �t �mt, as it
explicitly resums any large logs in mt=M in the partonic
cross section for such a scale choice.

The result (69) is the final expression for the resummed
partonic cross section in momentum-space. It can be eval-
uated perturbatively at NNLL order using the results given
in the previous section. There are two important issues in
terms of its numerical evaluation. The first is a technical
one having to do with the choice of matching scales, the
second is a practical one having to do with the power
corrections away from the soft and small-mass limits. We
end this section on the resummed cross section by discus-
sing these in turn.

As alluded to several times in the previous section, the
philosophy of RG-improved perturbation theory is to use
RG evolution factors to evaluate the matching functions
at an arbitrary scale �f given their value at an initial

scale where they do not involve large logarithms. This

RG running then exponentiates large corrections appearing
when �f is parametrically far from the natural scale. For

the hard function and the coefficient CD, which obey
local RG equations, the choice is straightforward: one
uses�h �M and�dh �mt. For the massless soft function
and the function SD, the correct choice of this scale is less
obvious. If the goal is to resum logarithms of (1� z) in
the partonic cross sections, then the natural scales are
Mð1� zÞ and mtð1� zÞ. However, such choices are ill-
defined at the level of the momentum-space result (69).
Partonic logarithms can be resummed by choosing the
scales �s and �ds at the level of the Laplace-transformed
functions (19) and performing the inverse transform back
to momentum-space numerically, but at the cost of intro-
ducing the Landau-pole singularity familiar from Mellin-
space implementations of soft-gluon resummation for
top-quark pair production [51–57]. An alternate method
is to choose the two scales as numerical functions of M, in
such a way that the logarithmic corrections to the hadronic
cross section arising from those in the partonic one are
minimized after convolutions with the PDFs [17]. The
fixed-order expansions of the resulting expressions at any
finite order in the logarithmic counting are then of a differ-
ent structure than those in the partonic cross section
[26,58]. Studying the numerical differences between these
methods would be an interesting exercise, but since we will
not do detailed phenomenology in the current paper we
leave this issue aside.
Dealing with the power corrections away from the

double soft and small-mass limit is also important,
although considerably more straightforward technically.
The standard method is to include these corrections at
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NLO in fixed-order perturbation theory, thus obtaining
NLOþ NNLL accuracy. This is accomplished by evaluat-
ing partonic cross sections d�̂ as

d�̂ð�fÞ¼d�̂NNLLðf�igÞjmt!0;z!1

þ
�
d�̂NLOð�fÞ�d�̂NNLLðf�ig¼�fgÞjmt!0;z!1

�
;

(70)

where by f�ig we mean the set of scales �h, �s; . . .
appearing in (69). Such a resummation formula is useful
only at values of the invariant mass where mt=M is truly
small. It is straightforward to extend the matching proce-
dure to take into account in addition the set of higher-order
mt=M corrections determined from soft-gluon resumma-
tion at NNLL with the counting mt �M used in [5], thus
yielding a result useful for the full range of M, but we do
not give the explicit results here.

B. Partonic cross section at approximate NNLO

The resummed formula from the previous subsection
can be used as a means of extracting what can be argued
to be dominant part of the full NNLO correction in fixed-
order perturbation theory. This truncation of the resummed
expansion is of course not valid if the logarithms are truly
large, but it is easy to imagine a situation where (1� z) and
mt=M are good expansion parameters for the fixed-order
corrections, but not necessary so small that logarithmic
corrections beyond NNLO are numerically important. In
this section we focus on such approximate NNLO formulas
based on our NNLL results, and explain how the results in
this paper can offer an improvement on those previously
derived in [4,5].
It is convenient to discuss the approximate NNLO for-

mulas at the level of Laplace-transformed coefficients. The
general expression for the NNLO correction in Laplace
space reads

~cðN;M;mt;cos�;�fÞ¼�2
s

�
~cð0ÞðM;mt;cos�;�fÞþ

�
�s

4�

�
~cð1ÞðN;M;mt;cos�;�fÞþ

�
�s

4�

�
2
~cð2ÞðN;M;mt;cos�;�fÞþOð�3

sÞ
�
;

~cð2ÞðN;M;mt;cos�;�fÞ¼
X4
n¼0

cð2;nÞðM;mt;t1;�fÞlnn M2

�N2�2
f

þO
�
1

N

�
: (71)

The terms cð2;nÞ for n ¼ 1, 2, 3, 4 are determined exactly by
NNLL soft-gluon resummation for arbitrary mt [4]. On the
other hand, only parts of the cð2;0Þ coefficient are deter-
mined by the NNLL calculation, namely its�-dependence
and the contribution from the product of NLO corrections
to the hard and soft functions. To determine this coefficient
exactly would require the massive hard and soft functions
at NNLO in fixed-order perturbation theory, which are
parts of the N3LL calculation.

We now discuss to what extent the results from this
paper can improve the NNLO approximation described
above. For the pieces proportional to the Laplace-space
logarithms there is no possible improvement to the exact
results as a function of mt. However, it is a nontrivial
check on the factorization formula (20) that its expansion
in fixed-order reproduces these results in the limit
mt=M ! 0. We have confirmed explicitly that this is the
case, also for the nh pieces after converting the results for
the massless hard and soft functions to a theory with five

active flavors using (64). For the cð2;0Þ term, on the other
hand, we can take the further step of determining exactly
the terms enhanced by logarithms of M=mt. Moreover,
since the NNLO fragmentation function is known, and all
diagrammatic calculations needed to extract the contribu-
tion of the two-loop hard function to this term are in
place, the only piece needed to fully determine this
coefficient in the limit mt=M ! 0 is the NNLO massless
soft function. This is a much simpler calculation than that
for generic top-quark mass, and once completed it will

provide valuable insight into the uncertainties in approxi-
mate NNLO calculations based on NNLL resummation
alone.
Given results for the Laplace-space coefficients, we can

obtain a result in momentum-space by making the replace-
ments in (45). The momentum-space coefficient then takes
the form

Cð2Þðz;M;mt; cos�;�Þ

¼ D3

�
ln3ð1� zÞ
1� z

�
þ
þD2

�
ln2ð1� zÞ
1� z

�
þ

þD1

�
lnð1� zÞ
1� z

�
þ
þD0

�
1

1� z

�
þ

þ C0�ð1� zÞ þ RðzÞ: (72)

The coefficients D0; . . . ; D3 and C0 are functions of the
variables M, mt, t1, and �. The plus-distributions Di are
determined by the approximate NNLO formula in Laplace-
space; explicit results were given in [4]. These plus-
distribution coefficients are exact, valid for generic values
of the top-quark mass. To determine the delta-function
coefficient exactly would also require the unknown pieces

of the cð2;0Þ coefficient, in other words the NNLO hard and
soft functions. Without these pieces, there is an ambiguity
as to what to include in this term. Parts of these are directly

related to those in Laplace-transformed coefficient cð2;0Þ,
and parts are related to whether to include the results from
inverting the Laplace transform via the replacements (45);
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we will always specify our means of dealing with these
ambiguities when giving numerical results later on.

The decomposition (72) is the natural one for studying
the NNLO correction within the framework of soft-gluon
resummation. However, it is worth mentioning that another
way to estimate higher-order corrections would be to in-
stead focus on the leading terms in themt=M expansion, as
determined by factorization formula (14) for the small-
mass limit. Given NNLO fragmentation functions and the
NLO massless scattering kernels Cij for generic values of

z, it would then be possible to study to what extent the
leading terms in the soft limit reproduce the singular
logarithmic corrections in the limit mt=M ! 0. While
such a calculation would be interesting and valuable as a
means of studying power corrections to soft-gluon resum-
mation, it is clearly beyond the scope of this work to pursue
this idea further.

V. NUMERICAL STUDIES

In this section we perform short numerical studies of our
results. Since a detailed analysis of soft-gluon resumma-
tion for the pair-invariant-mass distribution was carried out
with the counting mt �M in [4,5], our main motivation is
to study to what extent these results can be improved
through the additional layer of resummation in the small-
mass limit mt � M.

When arguing that resummation is required in a certain
limit, a typical first step is to check to what extent the
corrections at a given order in perturbation theory are
related to the logarithmic pieces. If the logarithms account
for the bulk of the corrections, it is an obvious improve-
ment to use the resummed formula to include subsets of
higher-order corrections related to them. Comparisons of
NLO corrections in the z ! 1 limit with exact fixed-order
results were performed in [4,5,26]. It was shown there that
the logarithmic plus-distributions, determined by an NLL
calculation, account for a bit more than half of the NLO
corrections, while these logarithms plus the delta-function
term, determined by an NNLL calculation, account for
essentially all of it. Moreover, it was observed that the
perturbative corrections at the scale �f ¼ M are rather

large at high values of the invariant-mass. The main ques-
tion we seek to answer in this section is whether this is due
to the small-mass logarithms. If so, it would be necessary
to supplement the phenomenological results of [5] with the
small-mass resummation derived here.

We address this question at NLO by isolating the terms
which can give rise to large logarithms in mt=M. This is
easily done by expanding the resummed formula (69)
to NLO in �sð�fÞ, for the choice �h ¼ �s ¼ M,

�dh ¼ �ds ¼ �t ¼ mt. The NLO corrections proportional
to mass logarithms are determined by the NLL calculation,
and when expressed in a theory with five active massive
flavors, they read (normalized to the Born-level Laplace-

space coefficient ~cð0Þ)

2�s

4�

��
�q
cusp;0 ln

M2

m2
t

þ�cusp;0 ln
M2

�2
f

��
1

1�z

�
þ

þ
��
2

3
�q �qNhþ	

q

0

�
ln
M2

m2
t

þ
�
��0þ	

0

�
ln
M2

�2
f

�
�ð1�zÞ

	
:

(73)

We have checked numerically that for �f �M these

small-mass logarithms make up only a small part of the
NLO corrections in the z ! 1 limit (which in turn account
for most of the full correction), even for values of M as
high as 3–5 TeV at the LHC with

ffiffiffi
s

p ¼ 7 TeV. The NLL
corrections determined by soft-gluon resummation for ar-
bitrarymt, which include also plus-distributions containing
no small-mass logarithms, make up a much larger part of
the exact NLO correction. We will therefore view small-
mass resummation as supplementary to that, a means of
improvement rather than a substitute. The point is that the
mass logarithms generated at NLL in the small-mass limit
are a subset of the NNLL corrections in soft-gluon resum-
mation for generic mt, so including them may be advanta-
geous. We now study this statement in more detail.
To do so, we define different approximations to the NLO

corrections at the level of the Laplace-space coefficient,
which reads

~cð1ÞðN;M;mt; cos�;�fÞ

¼ X2
n¼0

cð1;nÞðM;mt; t1; �fÞlnn M2

�N2�2
f

þO
�
1

N

�
: (74)

Momentum-space results are obtained through the replace-

ment rules (45). The coefficients cð1;2Þ and cð1;1Þ thus de-
termine the plus-distribution coefficients. We will take the
exact expression for these, valid for arbitrary mt. We then
distinguish between three approximations, which differ

only in their treatment of cð1;0Þ:
(1) use no information, i.e. cð1;0Þ ¼ 0;
(2) use the information from the NLO fragmentation

function, the heavy-flavor matching coefficients,
and �s decoupling in the massless hard and soft
functions, thereby including all terms enhanced by
lnmt=M for �f �M;

(3) use the information from approximation 2 plus the
constant pieces of the massless NLO hard and soft
functions.

These three approximations add progressively more infor-
mation to the Laplace-space coefficients: the first is NLL in
soft-gluon resummation, the second contains parts of the
NNLL correction enhanced by small-mass logarithms, and
the third includes the entire NNLL correction but expanded
in the limitmt=M ! 0. We show the NLO correction to the
invariant-mass distribution obtained from these three ap-
proximations in Table I. We also show the ‘‘exact’’ result
obtained from the leading terms in the z ! 1 limit, for
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arbitrary top-quark mass. We see that the first approxima-
tion accounts for about 50%–60% of the exact answer. The
second approximation is a small improvement, and can
account for up to 75% of the exact answer for high invari-
ant mass. The third is a big improvement over the first two,
especially at lower values of the invariant mass, and ac-
counts for nearly the entire correction in the z ! 1 limit
already at M ¼ 1500 GeV.

We now discuss approximate NNLO corrections, and
how they change upon including extra information from
the small-mass limit. Following our NLO analysis, we take
the Laplace-transformed coefficient (71) as the fundamen-
tal object. As mentioned in the previous section, the terms

cð2;nÞ for n ¼ 1, 2, 3, 4 are known exactly for arbitrary mt,
since they are part of the NNLL calculation. We keep the
full mass dependence of these terms in our NNLO approxi-
mation, and convert them to momentum-space results as in
(45). We then consider two approximations for the constant

term cð2;0Þ:
(a) use no information, i.e. cð2;0Þ ¼ 0;
(b) use the information from the NNLO fragmenta-

tion function, plus the nh terms arising from
�s-decoupling and the heavy-flavor coefficients,
thereby including all terms enhanced by (up to
two) powers of lnmt=M for �f �M.

The first of these is a pure NNLL calculation in soft-gluon
resummation for arbitrary mt, while the second is NNLL
plus the part of the N3LL correction enhanced by small-
mass logarithms (as well as some unenhanced terms
associated with the fragmentation function, heavy-flavor
coefficients, and �s-decoupling to second order). The re-
sults for the NNLO correction corresponding to these
choices are shown in Table II. The two approximations

are numerically rather close to one another. This shows that
logarithms enhanced by powers of lnmt=M do not lead to
large corrections. Moreover, at higher values of the invari-
ant mass the NNLO corrections can be even larger than the
NLO ones. This motivates all-orders soft-gluon resumma-
tion instead of NNLO expansions, which was indeed the
approach taken in [5]. However, the only way to know the
size of the missing N3LL corrections is to calculate them,
and it will be interesting to return to this issue once they are
known in the mt=M ! 0 limit.

VI. CONCLUSIONS

The pair invariant-mass distribution is an important ob-
servable for top-quark physics at hadron colliders. In this
paper we set up a framework for dealing with potentially
large perturbative corrections at high values of invariant
mass. In particular, we gave explicit factorization and
resummation formulas appropriate in the double soft
(z ! 1) and small-mass (mt � M) limit of the differential
cross section, along with the ingredients needed to evaluate
them to NNLL order. While many of the ideas and pertur-
bative calculations needed to accomplish such a resumma-
tion were already available in the literature, this is the first
time they have all been combined for a description of the
invariant-mass distribution in top-quark pair production at
hadron colliders. With small modifications the methods
can also be used for the double soft and small-mass limit
of single-particle inclusive observables such as the pT or
rapidity distribution of the top quark.
We deferred a detailed phenomenological study of our

results to future work. However, a short numerical study of
the invariant-mass distribution at the LHC with a center of
mass energy of 7 TeV revealed the following features.
First, it is not obvious that small-mass logarithms of the
ratio mt=M are so large that they need to be resummed,
even for values of the invariant mass as high as 3–5 TeV.
On the other hand, already for values of the invariant mass
of around 1.5 TeV, the leading terms in the mt=M ! 0
limit, including the constant pieces as well as the loga-
rithms, provide an excellent approximation to the full
correction within the soft limit. We thus envision the
main utility of the results obtained here as a means of
adding parts of the N3LL corrections to soft-gluon resum-
mation for arbitrary values ofmt, as an expansion inmt=M.
The missing piece of this analysis is the NNLO soft func-
tion for massless two-to-two scattering. Once completed,
the calculation of this function will provide valuable infor-
mation into the importance of higher-order corrections to
the NLOþ NNLL results for the invariant-mass distribu-
tion presented in [5].
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APPENDIX A: SMALL-MASS LIMITS OF
MASSIVE HARD AND SOFT FUNCTIONS

Our derivation of the factorization formula (18) used as a
starting point the small-mass factorization formula (14) for
the differential partonic cross section. In this appendix we
briefly discuss the alternative derivation starting from the
factorization formula (10) and studying the properties of
the massive hard and soft functions in the small-mass limit.
For simplicity, we neglect contributions of heavy-quark
loops, which give rise to additional terms proportional
to nh taken into account by the heavy-flavor matching
coefficient (19)

We begin by recalling that the massive hard matrix is
related to UV-renormalized virtual corrections to color-
decomposed amplitudes for two-to-two scattering. These
IR-divergent quantities are rendered finite through multi-
plication by a renormalization matrix Zm. We define the
bare and renormalized quantities according to

lim

!0

Z�1
m ð
;M;mt; t1; �ÞjMð
;M;mt; t1Þi

¼ jMrenðM;mt; t1; �Þi; (A1)

where the quantity on the right is finite in the limit 
 ! 0.
We write the analogous relation for massless amplitudes as

lim

!0

Z�1ð
;M; t1; �ÞjMð
;M; t1Þi ¼ jMrenðM; t1; �Þi:
(A2)

We can use these together with the relation between mas-
sive and massless scattering amplitudes in the small-mass
limit [31] to derive a relation between the massless and
massive hard functions. To do so, we first use

jMð
;M;mt; t1Þi ¼ Z½q�ð
;mt; �ÞjMð
;M; t1Þi (A3)

where Z½q� is the object given to NNLO in Eqs. (37) and

(38) of [31]. Here and in the remainder of this appendix we
have neglected terms which vanish in the limitmt ! 0. We
then multiply both sides of (A3) by the massive renormal-
ization factor, use (A1) to deduce that both sides are finite,
and then observe that (A2) implies that

Z½q�ð
;mt; �ÞZ�1
m ð
;M;mt; t1; �Þ

¼ fðmt;�ÞZ�1ð
;M; t1; �Þ: (A4)

The function f is a scalar matching correction which is
finite in the limit 
!0. From this relation and the definition

of the hard matrix in terms of the IR-renormalized color-
decomposed amplitudes, it then follows that

H m
ijðM;mt; t1; �Þ ¼ f2ðmt;�ÞHijðM; t1; �Þ: (A5)

Since when neglecting terms proportional to nh the only mt

dependence in the factorization formula for the partonic
cross section is through the fragmentation function, it
must also be true that

Sm
ijð

ffiffiffî
s

p ð1� zÞ; mt; t1; �Þ

¼ Sijð
ffiffiffî
s

p ð1� zÞ; t1; �Þ � CDðmt;�ÞSDðmtð1� zÞ; �Þ
fðmt;�Þ

� CDðmt;�ÞSDðmtð1� zÞ; �Þ
fðmt;�Þ : (A6)

Finally, we recall that the soft function is related to real
gluon emission in the soft limit, a statement independent of
whether the final-state quarks are massive or massless. Since
all real emission contributions in the fragmentation function
are associated with the function SD, we expect

fðmt;�Þ¼? CDðmt;�Þ; (A7)

which would imply a simple relation between the massive
and massless soft functions in (A6) through a double con-
volution with partonic shape functions. We have checked
that (A6) and (A7) are satisfied for the NLO functions, and
for the part of the NNLO functions determined by approxi-
mate NNLO formulas. In addition, we can use (A7) as a
consistency check between various NNLO calculations
available in the literature, namely those for the renormaliza-
tion factors in (A4), that for the fragmentation function,
and that for the shape-function. We find nearly total agree-
ment, with the exception of a piece related to theCACF color
factor. In particular, we find that direct evaluation of (A4) to
NNLO yields

fðmt;�Þ ¼ CDðmt;�Þ � 4�2CACF

�
�s

4�

�
2
: (A8)

Unfortunately, we have not been able to resolve the source of
this discrepancy.

APPENDIX B: CONVOLUTIONS
OF PLUS-DISTRIBUTIONS

Let us define the function

fðz; �Þ 	 e�2�	E

2�ð2�Þ
1

ð1� zÞ1�2�
: (B1)

Representations of plus-distributions can be obtained by
taking derivatives of f with respect to � and by subse-
quently expanding the result in the limit � ! 0. One finds
for example, with a test function g,
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(B2)

These representations are useful when one wants to
calculate the convolution of plus-distributions. Consider
for example the following convolution:�

1

1� z

�
þ
�
�

1

1� z

�
þ
¼
Z 1

z

dx

x

�
1

1� x

�
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1

1� z=x

�
þ
:

(B3)

By employing the differential representation found above
one finds�

1

1� z

�
þ
�
�

1

1� z

�
þ

¼ @�1
@�2

Z 1

z

dx

x
fðx; �1Þf

�
z

x
; �2

�







�1!0;�2!0
: (B4)

The integration gives

Z 1

z

dx

x
fðx; �1Þf

�
z

x
; �2

�

¼ e�2ð�1þ�2Þ	E

4�ð2�1 þ 2�2Þ2
F1ð2�1; 2�2; 2ð�1 þ �2Þ; 1� zÞ

� ð1� zÞ�1þ2ð�1þ�2Þ: (B5)

Since we are only interested in the terms which are singular
in the z ! 1 limit, for the purposes of our calculation one
can actually set 2F1 ! 1. The limits for �i ! 0 are then
considerably easier to evaluate. To do so, one makes the
following analytic continuation in the integral in (B5):

ð1� zÞ�1þ2ð�1þ�2Þ ! ð1� zÞ�1þ2ð�1þ�2Þ þ �ð1� zÞ
2ð�1 þ �2Þ :

(B6)

One can then safely take the derivatives with respect �1

and �2 in Eq. (B4) and take the limit for vanishing �i to
obtain�

1

1� z

�
þ
�
�

1

1� z

�
þ
¼ 2

�
lnð1� zÞ
1� z

�
þ
� �2�ð1� zÞ:

(B7)

The same kind of procedure can be employed to calcu-
late other convolutions. For example

�
lnð1�zÞ
1�z

�
þ
�
�

1

1�z

�
þ

¼@�2

��
@2�1

4
þ�2

�Z 1

z

dx

x
fðx;�1Þf

�
z

x
;�2

�







�1!0

�







�2!0

¼3

2

�
ln2ð1�zÞ
1�z

�
þ
��2

�
1

1�z

�
þ
þ�3�ð1�zÞ; (B8)
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1� z
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¼
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4
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���
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4
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�

�
Z 1

z

dx

x
fðx; �1Þf

�
z

x
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�







�1!0
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�2!0
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ln3ð1� zÞ
1� z

�
þ
� 2�2

�
lnð1� zÞ
1� z

�
þ

þ 2�3

�
1

1� z

�
þ
� �ð4Þ

4
: (B9)

APPENDIX C: ANOMALOUS DIMENSIONS

The anomalous dimension 	cusp, introduced in (28)

and (29), has the following expansion in powers of �s:

	cuspð�sÞ¼�s

4�

�
	
cusp
0 þ

�
�s

4�

�
	
cusp
1 þ

�
�s

4�

�
2
	
cusp
2 þOð�3

sÞ
�
:

(C1)

Completely analogous expansions hold for 	q, 	g, 	S,
and 	. The coefficients of the expansion in (B8) are
[59]

	
cusp
0 ¼ 4; 	

cusp
1 ¼

�
268
9 � 4�2

3

�
CA � 80

9 TFnf;

	cusp
2 ¼ C2

A

�
490

3
� 536�2

27
þ 44�4

45
þ 88

3
�3

�

þ CATFnf

�
� 1672

27
þ 160�2

27
� 224

3
�3

�

þ CFTFnf

�
� 220

3
þ 64�3

�
� 64

27
T2
Fn

2
f: (C2)

The coefficients in the expansion of 	q and 	g up to
Oð�2

sÞ are [60,61]

	q
0 ¼ �3CF;

	q
1 ¼ C2

F

�
� 3

2
þ 2�2 � 24�3

�

þ CFCA

�
� 961

54
� 11�2

6
þ 26�3

�

þ CFTFnf

�
130

27
þ 2�2

3

�
; (C3)

and [17,60]
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	g
0 ¼ � 11

3
CA þ 4

3
TFnf;

	g
1 ¼ C2

A

�
� 692

27
þ 11�2

18
þ 2�3

�
þ CATFnf

�
256

27
� 2�2

9

�
þ 4CFTFnf: (C4)

The coefficients in the expansion of 	S up to Oð�2
sÞ are

[12,13,48]

	S
0 ¼ �2CF;

	S
1 ¼ CF

��
110

27
þ �2

18
� 18�3

�
CA þ

�
8

27
þ 2

9
�2

�
TFnf

�
:

(C5)

The coefficients in the expansion of PDF anomalous
dimensions up to Oð�2

sÞ are
	
q

0 ¼3CF;

	
q

1 ¼C2
F

�
3

2
�2�2þ24�3

�
þCFCA

�
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6
þ22�2

9
�12�3

�

�CFTFnf

�
2

3
þ8�2

9

�
; (C6)

and

	
g

0 ¼ 11

3
CA � 4

3
TFnf;

	
g

1 ¼ C2
A

�
32

3
þ 12�3

�
� 16

3
CATFnf � 4CFTFnf:

(C7)

for the gluon and quark PDFs respectively.
Finally, we define expansion coefficients for the QCD �

function as

�ð�sÞ ¼ �2�s

�
�0

�s

4�
þ �1

�
�s

4�

�
2 þ �2

�
�s

4�

�
3 þ . . .

�
;

(C8)

where to three-loop order we have

�0 ¼ 11

3
CA � 4

3
TFnf;

�1 ¼ 34

3
C2
A �

20

3
CATFnf � 4CFTFnf;

�2 ¼ 2857
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�
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9
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A

�
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þ
�
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9
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27
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�
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Fn

2
f: (C9)
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