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The quasiparticle model is extended to investigate the properties of strange quark matter in a strong

magnetic field at finite densities. For the density-dependent quark mass, self-consistent thermodynamic

treatment is obtained with an additional effective bag parameter, which depends not only on the density

but also on the magnetic field strength. The magnetic field makes strange quark matter more stable

energetically when the magnetic field strength is less than a critical value of the order 107 Gauss

depending on the QCD scale �. Instead of being a monotonic function of the density for the QCD scale

parameter �> 126 MeV, the effective bag function has a maximum near 0:3–0:4 fm�3. The influence of

the magnetic field and the QCD scale parameter on the stiffness of the equation of state of the magnetized

strange quark matter and the possible maximum mass of strange stars are discussed.
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I. INTRODUCTION

Since strange quark matter (SQM) was speculated by
Witten as the possible true ground state of strong interac-
tion matter [1], the properties of SQM in bulk, as well as in
finite size, the so called strangelets, have been extensively
studied in the past decades [2–5]. The new form of matter
is possibly produced by terrestrial relativistic heavy-ion
collision experiments [6] or exists in the interior of com-
pact stars [7]. It was found that the stability of SQM is
strongly affected in a strong magnetic field [8]. The large
magnetic fields in nature are normally associated with
astrophysical objects, where the density is much higher
than the nuclear saturation. The typical strength could be of
the order �1012 G on the surface of pulsars [9]. Some
magnetars can have even larger magnetic fields, reaching
the surface value as large as 1014–1015 G [10]. In the
interior of compact stars, the maximum possible magnetic
field strength is estimated as high as �1018 G. The origin
of the strong magnetic fields can be understood in two
ways. One is the amplification of the relatively small
magnetic field during the star’s collapse with magnetic
flux conservation [11]. The other is the magnetohydrody-
namic dynamo mechanism with large magnetic fields gen-
erated by rotating plasma of a protoneutron star [12].

Because a strong magnetic field influences the single
particle spectrum while all quarks are charged, SQM in the
inner part of a compact star may show specific properties.
Specially, for example, the strong magnetic field leads to a
more stable polarized strange quark star (SQS)[13]. In
heavy-ion collisions experiments, the magnitude of a mag-
netic field plays an important role in studying the decon-
finement and chiral phase transitions. In the LHC/CERN

energy, it is possible to produce a field as large as
5� 1019 G [14].
With various phenomenological confinement models,

many works on the properties of magnetized SQM
(MSQM) have been done by a lot of researchers. Based
on the conventional MIT bag model, quark matter in a
strong magnetic field was studied by Chakrabarty [8], and a
significant effect on the equation of state had been found.
Furthermore, the magnetized strangelets at finite tempera-
ture was investigated by Felipe et. al. in their recent work
[15,16]. In Ref. [17], the effect of an external magnetic
field on the chiral dynamics and confining properties of
SQM were discussed in the linear sigma model coupled to
the Polyakov loops. The special properties of MSQM were
also investigated with the Nambu-Jona-Lasinio (NJL)
model [18–21]. The MIT bag model, the two-flavor NJL
model, and the chiral sigma model had also been compared
in studying the MSQM [22].
In literature, the quasiparticle model, where the effec-

tive quark mass varies with environment, was also suc-
cessfully employed by many authors to study the dense
strange quark matter in the absence of an external
magnetic field [23–25]. The main advantage of the
quasiparticle model is that it can explicitly describe
quark confinement and vacuum energy density for bulk
matter [24] and strangelets [26]. The aim of this article
is to extend the quark quasiparticle model to studying
the magnetized quark matter. We find a density- and
magnetic-field-dependent bag function. Accordingly, a
self-consistent thermodynamic treatment is obtained
with the new version of the bag function. The effect of
a magnetic field on the bag function and the stability of
MSQM will be discussed. It is found that the magnetic
field makes SQM more stable when the magnetic field
strength is less than a critical value of the order 107 G
depending on the QCD scale �.
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This paper is organized as follows. In Sec. II, we derive
the thermodynamic formulas in the quasiparticle model
when the magnetic field becomes rather important and
then demonstrate the effective bag function for the case
of both constant and running coupling, respectively. In
Sec. III, the stability properties of MSQM, the effective
bag function, and the mass-radius relation of magnetized
quark stars are investigated, and discussions are shown
about the effect of the magnetic field and QCD scale
parameter. The last section is a short summary.

II. THERMODYNAMIC TREATMENT IN A
STRONG MAGNETIC FIELD

The important feature of the quasiparticle model is the
medium dependence of quark masses in describing QCD
nonperturbative properties. The quasiparticle quark mass is
derived at the zero-momentum limit of the dispersion
relations from an effective quark propagator by resuming
one-loop self-energy diagrams in the hard dense loop
(HDL) approximation. In this paper, the effective quark
mass is adopted as [24,27,28]

mið�iÞ ¼ mi0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i0

4
þ g2�2

i

6�2

s

; (1)

where mi0 and �i are, respectively, the quark current mass
and chemical potential of the quark flavor i. The constant g
is the strong interaction coupling. One can also use a
running coupling constant gðQ=�Þ in the equations of state
of strange matter instead of a constant g [29]. In our recent
work, by using phenomenological running coupling [26],
the quark masses were demonstrated to decrease with
increasing densities at a proper region.

Here, we assume the g value is in the range of (0, 0.5), as
done in the previous work [24]. The current mass can be
neglected for up and down quarks, while the strange quark
current mass is taken to be 120 MeV in the present calcu-
lations. Because the vanishing current mass is assumed for
up and down quarks, Eq. (1) is reduced to the simple form

mi ¼ g�iffiffiffi
6

p
�
: (2)

Instead of inserting the effective mass mi directly into
the Fermi gas expression, we will derive the expressions
from the self-consistency requirement of thermodynamics.
The quasiparticle contribution of the flavor i to the total
thermodynamic potential density can be written as

�i ¼ � diT

ð2�Þ3
Z 1

0
fln½1þ e�ð�i;p��iÞ=T�

þ ln½1þ e�ð�i;pþ�iÞ=T�gd3 ~p; (3)

where T is the system temperature and di is the degeneracy
factor [di ¼ 3 (color) for quarks and di ¼ 1 for electrons].
All the thermodynamic quantities can be derived from the

characteristic function by obeying the self-consistent
relation [30].
To definitely describe the magnetic field of a compact

star, we assume a constant magnetic field (Bm;z ¼ Bm)

along the z axis. Due to the quantization of orbital motion
of charged particles in the presence of a strong magnetic
field, known as Landau diamagnetism, the single particle
energy spectrum is [31]

"i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

i þ eiBmð2nþ sþ 1Þ
q

; (4)

where pz is the component of particle momentum along the
direction of the magnetic field Bm, ei is the absolute value
of the electronic charge (e.g., ei ¼ 2=3 for the up quark
and 1=3 for the down and strange quarks), n ¼ 0; 1; 2; . . . ,
are the principal quantum numbers for the allowed Landau
levels, and s ¼ �1 refers to quark spin-up and -down state,
respectively. For the sake of convenience, we set 2�¼2nþ
sþ1, where � ¼ 0; 1; 2; . . . . The single particle energy
then becomes [8]

"i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

i þ 2�eiBm

q
: (5)

On application of the quantized energy levels, the integra-
tion over dpxdpy in Eq. (3) is replaced by the rule

Z þ1

�1

Z þ1

�1
dpxdpy ! 2�eiBm

X

s¼�1

X

n

: (6)

Because there is the single degenerate state for � ¼ 0 and
the double degenerate state for � � 0, we assign the spin
degeneracy factor (2� ��0) to the index � Landau level.
The thermodynamic potential density of Eq. (3) in the
presence of a strong field can thus be written as

�iðT;mi; �iÞ ¼ �T
dieiBm

2�2

X

v¼0

ð2� ��0Þ

�
Z 1

0

�

ln

�

1þ exp

�
�i � "i

T

��

þ ln

�

1þ exp

���i � "i
T

���
dpz: (7)

At zero temperature, Eq. (7) is simplified to give

�iðmi;�iÞ¼�dieiBm

2�2

X

v¼0

ð2���0Þ
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

i�MðiÞ2
�

p

0
ð�i�"iÞdpz

¼�dieiBm

2�2

X�max

v¼0

ð2���0Þ
�
1

2
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

i �MðiÞ2
�

q

�1

2
MðiÞ2

� ln

�
�iþð�2

i �MðiÞ2
� Þ1=2

MðiÞ
�

��
; (8)

where MðiÞ
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ 2�eiBm

q
is the quark effective mass

in the presence of a magnetic field. In the case of zero
temperature, the upper limit �max of the summation index �
can be understood from the positive value requirement on
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the logarithm and square-root function in Eq. (8). So
we have

� � �max � int

�
�2

i �m2
i

2eiBm

�

; (9)

where ‘‘int’’ means the number before the decimal point.
Accordingly, the pressure P, the energy density E,

and the free energy density F for SQM at zero temperature
read [32]

P ¼ ��f � B�; (10)

E ¼ F ¼ �f þ
X

i

�ini þ B�: (11)

Here, �f ¼ P
i�i is the free quasiparticle contribution

with the summation index going over all flavors consid-
ered. The notation B� denotes the effective bag function,
and it can be divided into two parts:�i-dependent part and
the definite integral constant part, i.e., B� ¼ P

iBið�iÞ þ
B0 (i ¼ u, d, and s) where B0 is similar to the conventional
bag constant and Bið�iÞ is the chemical potential depen-
dent function to be determined.

The derivative of the thermodynamic potential density
�i with respect to the quark effective mass mi has an
analytical expression, i.e.,

@�i

@mi

¼ @�i

@MðiÞ
�

@MðiÞ
�

@mi

¼ dieiBm

2�2

X�max

v¼0

ð2� ��0Þmi ln

�
�i þ ð�2

i �MðiÞ2
� Þ1=2

MðiÞ
�

�
:

(12)

The quark particle number density of the component i is
given as

ni ¼ dieiBm

2�2

X�max

�¼0

ð2� ��0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

i �MðiÞ2
�

q
: (13)

In the literature, there are three methods to construct
a consistent set of thermodynamical functions with the
effective quark masses. One is applied in the quark mass
density-dependent model in Refs. [33,34], where all ther-
modynamic quantities are derived by direct explicit func-
tion and implicit function dependent relations. The second
is the treatment in the NJL model, where the dynamical
quark masses are solutions of the gap equation coupling the
quark condensates [21,35]. The energy and pressure func-
tions are modified accordingly. The third method is to get a
self-consistent thermodynamical treatment with an effec-
tive bag constant to describe the residual interaction [36].
The effective bag constant acts as a part of a modified
pressure function. Here, we employ the third method. The
following requirement is introduced and applied as in
Refs. [24,37],

�
@P

@mi

�

�i

¼ 0: (14)

From a physical viewpoint, the constraint can make the
formula of particle number function consistent with stan-
dard statistical mechanics. From Eqs. (10) and (11), it can
be understood that the effective bag constant leads an
additional term in the modification in the energy and
pressure functions.
Considering Eq. (14), we have the vacuum energy den-

sity Bið�iÞ through the following differential equation:

dBið�iÞ
d�i

d�i

dmi

¼ �@�f

@mi

: (15)

If we assume the vanishing current quark mass, one can
integrate Eq. (15) under the condition Bið�i ¼ 0Þ ¼ 0 and
have

Bið�iÞ ¼ �
Z �i

0

@�f

@m�
i

��������T¼0;�i

dmi

d�i

d�i

¼ �dieiBm

2�2

X�max

�¼0

ð2� ��0Þ

�
Z �i

�c
i

�2�i ln

��i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

i �MðiÞ2
�

q

MðiÞ
�

�
d�i; (16)

where the lower limit of the integration over�i is different
from that in Ref. [24]. Its critical value �c

i should satisfy

�c2
i �m2

i � 2�eiBm 	 0: (17)

To reflect the asymptotic freedom of QCD, the calcu-
lation must be changed by including the running coupling
constant. The approximate expression for the running
quantity gð�Þ reads [38],

g2ðT ¼ 0; �Þ ¼ 48�2

29

�
ln

�
0:8�2

�2

���1
; (18)

where � is the QCD scale parameter, the only free
parameter in the theory determined by experiments. The
magnitude of � controls the rate at which QCD coupling
constant runs as a function of exchanged momentum Q2

(see Ref. [29]). After applying the running coupling
constant (18), the effective bag function in Eq. (16) is
changed into

Bið�iÞ ¼ �
Z �i

0

@�f

@m�
i

��������T¼0;�i

dmi

d�i

d�i

¼ �dieiBm

2�2

X�max

�¼0

ð2� ��0Þ
Z �i

�c
i

mi

� ln

��i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

i �MðiÞ2
�

q

MðiÞ
�

�
dmið�i; gð�iÞÞ

d�i

d�i;

(19)
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where the lower limit of the integration �c
i satisfies

Bið�c
i ¼ 0Þ. Differently from the constant coupling case,

the critical value �c
i can be obtained by inserting the

running coupling constant in Eq. (18) into the condition
(17). The value of �c

i depends not only on the chemical
potential of quarks but also on the Landau energy level.

III. PROPERTIES OF MAGNETIZED STRANGE
QUARK MATTER

In this section, the properties of MSQM are studied with
the new version of the quasiparticle model in the presence
of a strong magnetic field. We will investigate the proper-
ties with a density- and magnetic-field-dependent bag
function. Then, we discuss the effect of the QCD scale
parameter and the strong magnetic field on the effective
bag function and strange quark stars.

A. The stability property of bulk MSQM

As is usually done, the SQM is treated as a mixture of u-,
d-, s- quarks and electrons with neutrinos entering and
leaving the system freely. To obtain the equations of state
(EoS) of MSQM, a set of equilibrium conditions—the
weak equilibrium, baryon number conservation, and elec-
tric charge neutrality—should be considered by the follow-
ing relations [8,15,39–41]:

�u þ�e ¼ �d ¼ �s; (20)

nu þ nd þ ns ¼ 3nB; (21)

2

3
nu � 1

3
nd � 1

3
ns � ne ¼ 0: (22)

Equation (20) is the chemical equilibrium condition
maintained by the weak-interaction processes such as
sþ u ! uþ d and s ! uþ eþ ��e, etc., Eq. (21) is
from the definition of the baryon number density nB, and
Eq. (22) is the charge neutrality condition. For a given
baryon number density nB, we can obtain the four chemical
potentials�u,�d,�s, and�e by solving the four equations
in Eq. (20)–(22). Other thermodynamic quantities, such as
the energy density and pressure, can then be calculated
from the formulae derived in the previous section. A little
difference is that the Maxwell contribution has been in-
cluded in our numerical calculations, i.e., the quasiparticle
contribution �f is replaced by [42–44]

� ¼ �f þ B2
m

2
; (23)

where the second term is the pure Maxwell contribution of
the magnetic field itself.

In Fig. 1, the energy per baryon of MSQM is shown
as functions of the density for several g values. For com-
parison purposes, we have also plotted the previous re-
sults in Ref. [26] by setting Bm ¼ 0. The solid curves

are for MSQM, while the dotted ones are for
the corresponding nonmagnetized SQM. The two groups
of curves have apparently similar density behavior.
Obviously, however, the MSQM has lower energies than
the nonmagnetized SQM. To show the effect of different
coupling constants, we adopt three values of g.
In the quasiparticle model, the parameter g stands for the

coupling strength, and it is related to the strong interaction
coupling constant �s by g ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4��s

p
. Therefore, the g

value has a large effect on the stability of SQM [45]. To
satisfy the requirement of QCD asymptotic freedom, the
running property of the coupling parametrization should be
considered. In Fig. 2, we show the running coupling con-
stant as functions of the baryon number density nB. The
three lines are obtained with different values of�. It is very
obvious from Fig. 2 that the running coupling g is a
decreasing function of the density. With a bigger � value,
the coupling g is also bigger at any fixed density.
In Fig. 3, we show the same quantities as in Fig, 1 with

the running coupling constant, respectively, for the two
values of the different magnetic field 1017 G (dashed lines)
and 1018 G (solid lines). It is clearly seen that the energy
per baryon increases with increasing the QCD scale
parameter �, i.e., SQM has a lower energy per baryon
with smaller � value at a fixed strong magnetic field. This
effect of the QCD scale parameter is consistent with the
constant coupling case in Fig. 1, because larger � means
bigger coupling as indicated by Eq. (18).
An obvious observation from Fig. 3 is that there is a

minimum energy per baryon for each pair of the parame-
ters � and Bm. In Fig. 4, therefore, we show how the
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FIG. 1. The energy per baryon versus the density at fixed
coupling constant g ¼ 2, 3, 4 for magnetic field strength Bm ¼
1017 G. Compared with the nonmagnetized strange quark matter
(the dotted curves with Bm ¼ 0), the magnetized case has a
lower energy per baryon.

WEN et al. PHYSICAL REVIEW D 86, 034006 (2012)

034006-4



minimum energy of MSQM varies with the magnetic field
strength. The QCD scale parameter is taken to be 180 MeV
(the upper dashed curve) and 120 MeV (the lower solid
curve), respectively. It is found on each curve that there is
another minimum value corresponding to a critical mag-
netic field strength Bc

m. For the values of � ¼ 120 MeV
and 180 MeV, the corresponding Bc

m equals 2:15� 1017 G
and 2:34� 1017 G, respectively. When the magnetic field
strength is less than Bc

m, the minimum energy per baryon

decreases with increasing the strength of the magnetic
field. When the magnetic field strength exceeds Bc

m, or,
equivalently, when the magnetic energy scale approaches
the QCD scale, i.e.,

ffiffiffiffiffiffiffiffiffi
eBm

p � 76:9 MeV, the field energy
itself will have a considerable contribution to the energy of
SQM, and hence the energy per baryon increases with the
magnetic field strength. In Fig. 3, the magnetic field
strength is taken to be the corresponding critical value.
Because we study magnetized strange quark matter in

the ‘‘unpolarized’’ approximation, it is appropriate to esti-
mate the maximum magnetic field strength when such an
approximation can be reliable. To this end, in principle, we
can investigate the polarized quarks with spin up (þ) and
down (�) by introducing the polarization parameter �i as
[13,41]

�i ¼ nðþÞ
i � nð�Þ

i

nðþÞ
i þ nð�Þ

i

; (24)

where nðþÞ
i and nð�Þ

i denote the number density of spin-up
and -down i-type quarks. For the sake of simplicity, we
assume a common polarization rate � for u-, d-, and
s-quarks, i.e., �u ¼ �d ¼ �s ¼ �. In Sec. II, the summa-
tion for fixed spin s ¼ þ1 or s ¼ �1 should go over the
principal quantum numbers n instead of �. The degeneracy
factor (2� ��0) in Eqs. (7), (8), (12), and (13) should be
deleted because the spin degeneracy disappears for polar-
ized particles. The polarization parameter 0 � � � 1 will
decrease with increasing the number density. Assuming a
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FIG. 2. The running coupling constant g versus the baryon
number density at different � values with the magnetic field
Bm ¼ 1017 G. The upper lines correspond to larger values of �.
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larger value of the polarization � ¼ 0:6, the energy is
enlarged by 4.5%. In fact, even for very larger magnetic
field Bm ¼ 5� 1018 G, the parameter � remains in the
range (0.01–0.02) when the density nB > 0:2 fm�3 [13].
We do the numerical calculation and find that the free
energy per baryon will be enlarged by 0.8% at � ¼ 0:1.
So the effect of the unpolarized approximation on the
discussion of the stability of SQM is very small, especially
when the magnetic strength is less than 1018 G which is an
estimated maximum possible strength of the interior mag-
netic field.

B. The effective bag function for MSQM

The effective bag function B� is generally used to rep-
resent the vacuum energy density for dense QCD matter
[46]. Comparing it with the standard statistical mechanics,
one can recover the thermodynamics consistency of system
density and/or temperature-dependent Hamiltonian with
the extra term B�. The meaning of B� plays an important
role in studying properties of quark matter. The interpre-
tation of B� was first given by Gorenstein and Yang in
Ref. [37]. In the quasiparticle model, because the disper-
sion relation is density- and/or temperature-dependent, B�
is regarded as the system energy in the absence of quasi-
particle excitations, which cannot be discarded from the
energy spectrum [47]. In this sense, B� acts as the bag
energy or bag pressure through the application in a bag-like
model. One can interpret the confinement mechanism con-
sidering B� as the difference of perturbative vacuum and
physical vacuum.

In addition to the constant value B0 of the bag model,
the expression of B� has been developed in several
different forms. Li, Bhalerao, and Bhaduri obtained the
temperature-dependent bag constant in the QCD sum-rule
method [48]. Song obtained a �- and T-dependent bag
constant by incorporating a one-loop correction in imaginary
time formulation of finite temperature field theory [49],

B�ð�;TÞ¼B0�
�

1

162�2
�4þ1

9
�2T2þ7�

30
T4

�
: (25)

In the work of Burgio [50], the Gaussian parametrization of
density dependence of B� is employed as,

B�ðnBÞ ¼ B1 þ ðB0 � B1Þ expð��ðnB=n0Þ2Þ; (26)

where the parameters B1, �, and n0 are given in Ref. [50].
The effective bag constants in these previous works are all
monotonically decreasing functions of the density and tem-
perature [51]. In our present work, the effective bag function
B� is associated with amagnetic field and consequently has a
different density behavior. We thus plot the effective bag
function B� versus the baryon number density with different
� values in Fig. 5. The dashed lines are for the magnetic
field strength Bm ¼ 1017 G, while the solid lines are for a
higher magnetic strength Bm ¼ 1018 G. The open circles
indicate nonmagnetized SQM. The numerical results show

an important property that the effective bag function B�
remains decreasing monotonously with increasing densities
for smaller� ¼ 120 MeV. But for larger value� ¼ 180 or
200MeV, the bag functionB� has a maximum value at about
2–3 times the nuclear saturation density 0:16 fm�3.
Generally, when the QCD scale parameter is bigger than
the critical value 126 MeV, the effective bag function is not
a monotonic function and reaches a maximum value B�

max at
the density range 0:3–0:4 fm�3.
Since the QCD scale parameter � plays a great role on

the effective bag function B�, we plot the bag function B�
of stable SQM, i.e., P ¼ 0, versus � on the left axis in
Fig. 6. If one requires that the bag function B� should be a
nonmonotonic decreasing function of the density, the �
value should be bigger than the critical value 126MeV. The
corresponding baryon number density nB marked by a
dashed line on the right axis is also plotted. The bag
function B� and the baryon number density nB all increase
with the QCD parameter �.

C. Mass-radius relation of magnetized
strange quark stars

Strange quark stars, a family of compact stars consisting
completely of deconfined u, d, s quarks, have attracted a
lot of researchers. The gravitational mass (M) and radius
(R) of compact stars are of special interest in astrophysics.
The strange quark stars were studied by many authors as
self-bound stars different from neutron stars. It is pointed
out that the possible configuration of compact stars, such as
the strange hadrons, hyperonic matter, and quark matter
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core, can soften the equations of state of neutron stars
[52–54]. In this section, we calculate the mass-radius
relation of magnetized SQS together with the effective
quark mass scale. Using the EoS of MSQM in the proceed-
ing sections, we can obtain M and R by numerically solv-
ing Tolman-Oppenheimer-Volkoff (TOV) equations when
fixing a central pressure Pc. Varying continuously the cen-
tral pressure, we can obtain a mass-radius relationMðRÞ in
Fig. 7. The stable branches of the curves must satisfy the

condition dM=dPc > 0. In this way, we can find the maxi-
mum mass along the same curve, which is denoted by full
dots in Fig. 7. Other solutions, on the left side of the
maximum mass, are unstable and collapsible.
It is seen fromFig. 7 that themaximummass is biggerwith

a smaller � value and an extremely large magnetic field.
However, it is still not as big as the recently observed
maximum mass of PSR J1614-2230 [55]. This may mean
that a simple ordinary phase cannot explain the large mass.
Some new phases, e.g., the superconductivity phase in dense
matter [56–58], should be further studied in the future.

IV. SUMMARY

We have extended the quark quasiparticle model
to study the properties of strange quark matter in a
strong magnetic field at finite density. The self-consistent
thermodynamic treatment is obtained through an addi-
tional bag function. The bag function depends not only
on the quark chemical potentials but also on the magnetic
field strength Bm. By comparison with the nonmagnetized
quark matter, we find that the magnetic field can enhance
the stability of SQM when the magnetic field strength is
lower than a critical value of the order 1017 G. But when
the magnitude of the magnetic field is larger than the
critical value Bc

m, the magnetic energy will have a con-
siderable contribution to the energy of SQM. So the
energy per baryon of MSQM increases with increasing
the field strength. Because the quark masses depend
on the corresponding chemical potential, an additional
effective bag function, which depends not only on the
chemical potentials but also on the magnetic field
strength, appears in both the energy density and pressure.
The effective bag function has a maximum at about
2–3 times the saturation density when the QCD scale
parameter is larger than 126 MeV. Although an unpolar-
ized approximation is assumed, we find the energy per
baryon would increase by 0.8% for the usual polarization
parameter when nB > 0:2 fm�3.
On application of the new equation of state of the

magnetized strange quark matter in ordinary phase to
calculate the mass-radius relation of a quark star, it is
found that the maximum mass does not explain the the
newly observed maximum mass of about two times the
solar mass. This means that other phases, e.g., super-
conductivity and/or mixed phases, might be necessary
to explain the new astronomic observations, and further
studies are needed.
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