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We deduce the maximum-entropy state of partons created in proton-proton and nucleus-nucleus

collisions. This state is characterized by a distribution function nðx; p?Þ depending on the light-cone

fraction x and the transverse momentum p? of forward or backward particles, respectively. The mean

transverse momentum hp?i determines the single parameter of the maximum entropy distribution which

is constrained by the sum of all light-cone momentum fractions being unity. The total multiplicity is

related to the transverse area of the colliding Lorentz-contracted hadrons. Assuming parton-hadron

duality, we can compare the model to data from RHIC and LHC.
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I. INTRODUCTION

A great challenge in strong-interaction physics has been
to relate high-energy scattering experiments to the state of
the early Universe. Especially, ultrarelativistic heavy-ion
collisions promise to create a state of hot and dense matter
similar to the quark-gluon plasma [1,2] which dominated
the early Universe approximately one microsecond after
the big bang. The underlying hypothesis is that in nucleus-
nucleus collisions at central rapidities, a hot fireball is
created with a temperature which is higher than the phase
transition or crossover temperature T � 160 MeV from
a hadronic gas to the quark-gluon plasma. Note, in this
fireball, the longitudinal and transverse momenta are
equilibrated. Owing to the extended size of the nuclei
and the large change in entropy between the quark-gluon
plasma and the hadronic gas, the hot matter created in the
collision has been considered as a macroscopic state which
lives long enough to determine the main features of the
collision. This scenario can in principle also be related to
the rapidity distribution of the produced particles if a series
of fireballs spread out along the rapidity axis [3–5] is
constructed.

In this letter, we propose a different picture based mostly
on experimental information. Our goal is to describe the
inclusive cross section of charged particles produced in
proton-proton (pp) collisions

dN

dyd2p?
¼ dN

d lnxd2p?
(1)

¼ d�

�indyd
2p?

(2)

on the basis of a statistical distribution function which
maximizes the entropy of the produced partons given
certain constraints. We consider the light-cone momenta
of the partons with energies � and longitudinal momenta pz

relative to the light-cone momentum of the incoming
proton with ðE;Pz; 0Þ:

x ¼ �þ pz

Eþ Pz

¼ pþ
Pþ

: (3)

On the basis of light-cone momentum conservation, we
then determine the maximum-entropy distribution [6,7] for
a given transverse energy which we call light-cone plasma
distribution. Our approach aims at a macroscopic descrip-
tion of the very soft part of the multiplicity distribution
in hadronic collisions using as little dynamical input as
possible. We refer to the literature for microscopic calcu-
lations of rapidity distributions based on parton shower
Monte Carlo event generators [8] or based on unintegrated
gluon distributions from saturation models [9].
The light-cone plasma distribution is a new state of

matter, different from the thermal quark-gluon plasma
distribution in the early Universe. It agrees rather well
with data when we assume a gradual transition from par-
tons to hadrons, i.e., when we use parton/hadron duality to
relate our model to the measured rapidity distributions.
In the following, we consider symmetric collision part-

ners and discuss the produced partons separately in the
forward and backward hemisphere. We limit ourselves to
gluons only, i.e., to Bose statistics. It is important to
emphasize the light-cone property of the maximum-
entropy distribution. The dynamics of collisions at high
energies is governed by a light-cone Hamiltonian which is
boost-invariant and determines wave functions depending
on transverse momentum and light-cone fractions which
label the eigenstates. The density matrix resulting after the
collision can be built up from an incoherent mixture of
such multiparton states. Without a boost-invariant formu-
lation, one cannot define a number density of partons since
in each reference system, it will be different. In the rest
system of the proton, the gluons will all sit in the strings
holding the quarks together, whereas in a fast-moving
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proton, the virtual gluons materialize as partons carrying a
sizable momentum fraction. Light-cone physics has been
very successful in determining hard exclusive processes
in high-energy collisions [10]. We think that it is also
important to describe soft inclusive cross sections via the
maximum-entropy principle.

The outline of the paper is as follows. In Sec. II, we give
a theoretical motivation for the light-cone plasma distribu-
tion. In Sec. III, we calculate the parameters of the light-
cone distributions for pp collisions at

ffiffiffi
s

p ¼ 200 GeV
and 7000 GeV. In Sec. IV, we consider nucleus-nucleus
collisions as a superposition of pp collisions where the
mean transverse momentum of the partons is broadened.
Section V is devoted to a comparison of the entropy of the
light-cone distribution and the conventional smeared fire-
ball distribution. Section VI gives our conclusions.

II. MOTIVATION FOR THE
LIGHT-CONE DISTRIBUTION

The multiplicity distribution for partons can be moti-
vated from the maximum-entropy principle. For this pur-
pose, we have to find the phase space for a system of
partons which move on the light cone. The entropy of the
partonic system is then proportional to the logarithm of
the integrated phase space. This entropy has finally to be
maximized given certain constraints which take into ac-
count the conservation of light-cone momentum and the
limited transverse energy produced in hadronic collisions.

On the light cone, phase space includes the transverse
spatial coordinate b?, the transverse momentum p?, the
longitudinal light-cone momentum pþ and the longitudi-
nal spatial variable x� ¼ 1=2ðx0 � x3Þ. These variables are
handled like in conventional thermodynamics, i.e., the
phase space multiplied by the gluon degeneracy factor g ¼
2ðN2

c � 1Þ and divided by the Planck constant h3 ¼ ð2�ℏÞ3
gives the number of available quantum states G:

Gb?;p?;pþ;x� ¼ g
d2b?d2p?dpþdx�

ð2�Þ3 (4)

¼ g
d2b?d2p?

ð2�Þ2 dx
d�

2�
: (5)

For high energies, Feynman scaling is a good phenomeno-
logical concept; therefore, we have multiplied and divided
this expression by Pþ ¼ Eþ Pz to obtain the light-cone
momentum x ¼ pþ=Pþ and the longitudinal light-cone
distance � ¼ x�Pþ which are canonically conjugate var-
iables. We refer to Ref. [11] to show the role of � in the
light-cone Hamiltonian of a meson built from a valence
quark and antiquark. We further make the simplifying
assumption that the distribution function and consequently
the entropy are homogeneously distributed in transverse
space. The integration over the b?-coordinate can then be
executed and gives the area L2

?.

An estimate of the integral of the scaled light-cone

distance
R d�

2� is more subtle, since it is not independent

on the rest of the variables. It has to be done separately
for valence and sea partons. Let us describe the fast
moving system by a Lorentz-factor � ! 1. Then, the
valence quarks occupy a decreasing longitudinal extension

�x� � Lz

� whereas the extension of the sea partons remains

fixed. Consequently, the longitudinal distance for valence
quarks scaled with the increasing light-cone momentum
Pþ of the proton is constant and yields form ¼ 0:938 GeV
a factor of Oð1Þ:

Z d�val

2�
� Lz

�

m�

2�
� 1: (6)

For sea partons with x ! 0 the scaled distance diverges,
cf. Ref. [12]:

Z d�sea

2�
� 1

xPþ
Pþ ! 1: (7)

We interpolate the x dependence of these two limiting
cases for the integral over the scaled distance in the
following way:

Z d�

2�
� 1

x
: (8)

A possible prefactor of 1=x cannot be determined more
accurately and has to be absorbed into the transverse area
L2
?. The so-motivated ansatz for the phase space on the

light cone is crucial for all further derivations. It deviates
from the flat measure by the factor 1=x:

Gx;p? ¼ gL2
?
d2p?
ð2�Þ2

dx

x
: (9)

Gluons are bosons; therefore, they can occupy the
phase-space cells in multiples. The binomial of the com-
bined number of particles and states over the number of
states gives the number of possibilities to distribute Nx;p?
gluons, i.e., bosons, on Gx;p? quantum states:

��x;p? ¼ ðGx;p? þ Nx;p? � 1Þ!
ðGx;p? � 1Þ!Nx;p?!

: (10)

The entropy of the system is defined by the logarithm of
the phase space. In Eq. (10), we use Stirling’s formula and
setGx;p? � 1 � Gx;p? for large numbers of quantum states

and particle numbers. Then, one gets the entropy from the
summation of the individual phase space elements:

S ¼ X
lnð��x;p?Þ (11)

¼ X
Gx;p?½ð1þ nx;p?Þ lnð1þ nx;p?Þ � nx;p? lnnx;p?�

(12)
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where the mean occupation number of each quantum state
is defined as

nx;p? ¼ Nx;p?
Gx;p?

: (13)

In high-energy collisions the searched-for maximum
entropy distribution has to satisfy the following two
requirements:

X
Gx;p?xnx;p? ¼ 1; (14)

X
Gx;p?p?nx;p? ¼ hE?i: (15)

The first constraint means that the x fractions of all
partons emitted in the positive hemisphere add up to unity,
i.e., their light-cone momenta equal the light-cone momen-
tum of the parent proton. The second constraint defines the
total transverse energy released in the collision in the
positive hemisphere. These constraints are added with
Lagrange parameters 1=� and w to the entropy above.
These two constraints are sufficient to determine the x,
p? dependence of the distribution function since we have
fixed the distribution in coordinate space. The resulting
functional Sþ 1=� � hE?i þ w � 1 can then be varied with
respect to nx;p? to obtain the maximum entropy density:

�ðSþ 1
�

P
p?nx;p? þ w

P
xnx;p?Þ

�nx;p?
¼ 0: (16)

By choosing the cell sizes small, we convert the sums
into integrals over the continuum variables x, p?, and the
discrete distribution nx;p? becomes nðx; p?Þ, the light-cone
plasma distribution function

nðx; p?Þ ¼ 1

eðp?=�Þþxw � 1
: (17)

The light-cone plasma distribution together with the
measure generates a distribution for the Lorentz-invariant
yield of the form

dN

dyd2p?
¼ gL2

?
ð2�Þ2

1

exp
h
p?

�
1
� þ wejyjffiffi

s
p

�i
� 1

: (18)

This is the connection of the maximum-entropy distri-
bution on the light cone with the semi-inclusive cross
section. The factor 1=ð2�Þ2 has its origin in the transverse

phase space cell d2b?d2p?
ℏ2ð2�Þ2 . The distribution is consistent

with the two constraints of light-cone momentum conser-
vation and total transverse energy which have the follow-
ing form in continuum variables. The x integration is
executed in one hemisphere in the cm system, where the
partons released by the proton projectile or target respec-
tively are to be found:

gL2
?
Z d2p?

ð2�Þ2
Z dx

x
xnðx; p?Þ ¼ 1; (19)

gL2
?
Z d2p?

ð2�Þ2
Z dx

x
p?nðx; p?Þ ¼ hE?i: (20)

The phenomenological description of the multiplicity
distribution has three parameters L2

?, �, and w. The

parameter � plays the role of an effective transverse
‘‘temperature.’’ The ‘‘softness’’ w is related to the mean
x. With increasing center-of-mass energies, we expect that
the effective transverse temperature � and the softness w
increase: The collision becomes ‘‘hotter’’ and the particle
distributions ‘‘softer.’’ The effective transverse tempera-
ture � is calculated from the mean transverse momentum
which is equal to the ratio of the transverse energy and
multiplicity in one hemisphere:

hp?i ¼ hE?i=ðN=2Þ (21)

with

N=2 ¼ gL2
?
Z d2p?

ð2�Þ2
Z dx

x
nðx; p?Þ: (22)

For a given L?, � and w, the multiplicity is uniquely
defined when the cut on the x integration is taken as

xmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þm2

�

q
=

ffiffiffi
s

p
. We describe in the next section

how this distribution fits the data.

III. PARAMETERS OF LIGHT-CONE
DISTRIBUTIONS IN PP COLLISIONS

When wewant to relate the theoretical distribution of the
gluon plasma to multiplicities of produced particles, we
must apply a simplified form of parton-hadron duality. We
assume that all particles are pions and replace transverse
momentum by the transverse mass. The interpretation of
the prefactor gL2

? for pions has to be changed. For pions, a

smaller degeneracy factor g� ¼ 3 corresponds to a larger
area L2

?;� ¼ 16
3 L

2
? at freeze-out. The pion multiplicity

distribution then has the following form:

dN

dyd2p?
¼ gL2

?
ð2�Þ2

1

exp
h
m?

�
1
� þ wejyjffiffi

s
p

�i
� 1

(23)

with

m? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þm2

�

q
: (24)

For not too large rapidities, its integral over transverse
momentum can be expanded in powers of m�a:

dN

dy
� �gL2

?�
2

12
�
1þ w� ejyjffiffi

s
p
�
2

�
1� 6m�a

�2
þ 3m2

�a
2

2�2
� . . .

�

(25)
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with

a ¼ 1

�
þ w

ejyjffiffiffi
s

p : (26)

Collider experiments preferentially take data around
central rapidity as a function of the pseudorapidity�which
requires one to only measure the angle of each particle
relative to the beam axis. Since we saturate the reaction
products by pions, charged hadrons make up 2=3 of the
total multiplicity:

dNch

d�d2p?
¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

�

m2
?cosh

2y

vuut dN

dyd2p?
: (27)

In Ref. [13], the
ffiffiffi
s

p
dependence of dNch=d�j�¼0 and

hpTi�¼0 were parameterized as

dNch=d�j�¼0 ¼ 2:716� 0:307 lnsþ 0:0267ln2s (28)

and

hpTi�¼0 ¼ 0:413� 0:0171 lnsþ 0:00143ln2s: (29)

We use these parameterizations as experimental inputs.
The theoretical constraint of light-cone momentum
conservation [cf. Eq. (14) or (19)] serves as third input
to determine the three unknown parameters L?, � and
w of the light-cone plasma distribution. Unlike in
eþe�-collisions, it cannot be expected that the total
center-of-mass energy is available for particle production.
This may be described by subtracting from the cm energy
the energy of the leading particles Eleading, cf. Ref. [14].

Therefore, we will represent results with a K factor which
reduces the effective cm energy and is defined as

K
ffiffiffi
s

p ¼ ffiffiffi
s

p � 2hEleadingi: (30)

A realistic consideration of the gluons which do not alone
carry the light-cone momentum of the proton would go in
the same direction.

Figures 1 and 2 show the comparison of the light-cone
plasma distribution with the data from RHIC [15] and LHC
[13]. One sees that the light-cone plasma distribution for
K ¼ 0:5 can reproduce the main features of the data
quite well. In Table I, we have compiled the parameters
L?, � and w determined from dNch=d�j�¼0 and the mean

transverse momentum hpTi at � ¼ 0 for these energies.
From the table, one can see that the increase of the rapidity
distribution at � ¼ 0 is of order �2 [cf. Eq. (25)].
A further test of the light-cone plasma distribution is

given by a measurement of the multiplicity distribution as a
function of transverse momentum for different rapidities.
In Fig. 3, we plot two experimental transverse momentum
spectra for charged hadrons (ðhþ þ h�Þ=2) at � ¼ 0
(upper points) [16] and for positive pions at� ¼ 3:3 (lower
points) [17] at the same cm energy of

ffiffiffi
s

p ¼ 200 GeV. The
full drawn curves represent the corresponding light-cone
plasma distributions at these rapidities. They fit the inclu-
sive cross sections up to 1 GeV=c rather well. For higher
momenta, significant contributions from hard scattering
are expected. The plasma distribution describes the falloff
of the cross sections with transverse momentum by an
effective transverse temperature �effðyÞ which depends on
rapidity y:

–4 –2 0 2 4

0.5

1.0

1.5

2.0

2.5

3.0
dNch d

FIG. 1 (color online). Data points show the charged-particle
pseudorapidity distribution in pp collisions at

ffiffiffi
s

p ¼ 200 GeV
from Ref. [15]. The curves represent the light-cone plasma
distributions (solid line K ¼ 0:5, dotted line K ¼ 1:0).
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FIG. 2 (color online). Data points show the charged-particle
pseudorapidity distribution in pþ p collisions at

ffiffiffi
s

p ¼
7000 GeV from Ref. [13]. The curves represent the light-cone
plasma distributions (solid line: K ¼ 0:5, dotted line K ¼ 1:0).

TABLE I. For different cm energies and K ¼ 0:5, we present
the size parameter L?, the effective transverse temperature � and
the softness w of the light-cone distributions. The following
columns show the experimental input: the multiplicity
dNch=d� and the mean transverse momentum hpTi at pseudor-
apidity � ¼ 0.

ffiffiffi
s

p
(TeV)

L?
(fm)

�
(GeV) w dNch=d�j�¼0

hpTj�¼0i
(GeV)

0.20 1.34 0.183 3.44 2.20 0.39

0.90 1.25 0.216 5.36 3.48 0.45

2.76 1.28 0.252 6.81 4.56 0.50

7.00 1.20 0.288 8.21 5.65 0.56
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dN

dyd2p?
¼ gL2

?
ð2�Þ2

1

exp½m?=�effðyÞ� � 1
(31)

with

�effðyÞ ¼ �

1þ w� expjyj= ffiffiffi
s

p : (32)

Due to light-cone momentum conservation, the effective
temperature decreases with increasing rapidity. Therefore,
the transverse momentum spectra fall off faster at larger
rapidities. It would be good to test the light-cone plasma
distribution over a larger domain in y or � and p?.

IV. NUCLEUS-NUCLEUS COLLISIONS

It is possible to extend the parametrization of the multi-
plicity distributions to nucleus-nucleus collisions. We can
use the universality of the light-cone plasma distribution
originating from pp collisions. In heavy-ion (A-A) colli-
sions, we multiply the underlying pp multiplicity by
the number of participating nucleons Npart and take into

account the increase of hp?i with centrality:

dNAA
ch

d�d2p?
¼ Npart

2

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

�

m2
?cosh

2y

vuut dNðhp?iÞ
dyd2p?

: (33)

In principle, colliding rows of nucleons contain varying
numbers of nucleons in projectile and target nucleus which
may lead to a small shift in the total cm rapidity and total
cm energy. But these corrections are minor kinematic
corrections in A-A collisions. In p-A collisions, however,
the kinematics of the different row configurations is
expected to be more important. In both p-A and A-A
collision, the increase of the mean transverse momentum
hp?i with the number of participants is an important
feature of the collision which has to be taken into account.
The initial parton distributions in the projectile nucleus
will be broadened by the interaction with the nucleons in
the target nucleus and vice versa.

We parameterize the hpTi data from the STAR experi-
ment [18] as

hpTij�¼0 ¼ p0 þ ðp1 � p0Þð1� expð�ðNpart � 2Þ=p2ÞÞ
(34)

TABLE II. For
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV AuþAu collisions, the table
gives the centralities, the number of participants Npart, mean trans-

verse momentum hpTi and dNAA
ch =d�=ðNpart=2Þ at �¼0 together

with the resulting light-cone plasma parameters for K ¼ 1.

Centrality Npart hpTi (GeV) 1
Npart=2

dNAA
ch

d�
� (GeV) w

45–50% 65 0.478 2.96 0.238 4.516

25–30% 150 0.509 3.63 0.253 5.184

0–3% 361 0.516 3.81 0.263 5.650

0.0 0.5 1.0 1.5

0.001

0.01

0.1

1

pT GeV c

E
d3 N

d3 p
c3

G
eV

2

FIG. 3 (color online). Transverse momentum dependence of
the inclusive cross section at

ffiffiffi
s

p ¼ 200 GeV for charged had-
rons (ðhþ þ h�Þ=2) at � ¼ 0 (upper points) [16] and positive
pions at � ¼ 3:3 (lower points) [17]. The respective plasma
distributions for K ¼ 0:5 are shown as full lines.
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dNch d
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b)

a)

0 2 4

200
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800
dNch d

0 3

c)

FIG. 4 (color online). Charged particle pseudorapidity distribu-
tions from Phobos [15] inAuþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼200GeV

for the following centrality classes: a) 45–50%, b) 25–30% and
c) 0–3%. Data are compared with the theoretical curves obtained
from the light-cone plasma distributions (K ¼ 1).
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with

p0 ¼ 0:390GeV=c; (35)

p1 ¼ 0:516 GeV=c; (36)

p2 ¼ 52: (37)

We will show in a separate publication how the observed
broadening can be estimated by considering the multiple
scattering of partons in pp collisions using the thickness
and density [19] of the other nucleus. Here, we use the
observed experimental transverse momentum broadening
[18] to fit the input � and w values, cf. Table II. Note that
for increasing mean transverse momentum, the softness w
increases because of the light-cone momentum sum rule. In
Table II, we show for each centrality the hp?i of charged
hadrons [18] and the scaled central rapidity density [15].
To determine the light-cone plasma parameters � and w,
we fix L? ¼ 1:12 fm.

The theoretical rapidity distributions in Figs. 4(a)–4(c)
reproduce the variation of the measured rapidity distribu-
tions rather well for K ¼ 1. Since for fixed energy, the size
of the nucleon-nucleon overlap area L2

? is constant, the

increase of dNAA
ch =d� at � ¼ 0 is due to the number of

participants and �2, cf. Eq. (25) and (33). The central
multiplicity divided by the number of participants
(cf. Fig. 5) illustrates the increase originating from the
higher mean transverse momentum or effective transverse
temperature �.

In Fig. 6, we give the dependence of the mean transverse
momentum on rapidity for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The data

points are from STAR [20], and the curve is calculated
for central collisions of gold nuclei (Au-Au) collisions.
As shown before for pp collisions, the conservation of
light-cone momentum makes the effective transverse
temperature decrease for larger rapidities.

V. ENTROPY OF THE LIGHT-CONE PLASMA
AND THE THERMAL PLASMA

It is instructive to compare the light-cone plasma distri-
bution with a sum of thermal distributions boosted along
the z axis [3–5]. Thereby, one mimics the wide rapidity
plateau seen in data:

dNbt
0 ðy; p?Þ

dyd2p?
¼ gL2

?Lz

ð2�Þ3
Ep

eEp=T � 1
; (38)

dNbtðy; p?Þ
dyd2p?

¼
Z ymax

�ymax

du
dNbt

0 ðy� u; p?Þ
dyd2p?

: (39)

For a comparison of entropies, the same transverse area
of the system (L? ¼ 1:12 fm) has to be chosen, and the
same constraints have to be included for both distributions.
As constraints, we use the mean transverse energy, the
multiplicity and the light-cone momentum sum rule. We
take as an example the light-cone distribution for pions
corresponding to

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV central Au� Au col-

lisions and compare it with a the boosted thermal inclusive
particle distribution. Both distributions are divided by the
number of participants.
The thermal spectra at fixed rapidity have a rather

different functional form, but we can fit the tempera-
ture to reproduce the transverse energy. The interval
½�ymax;ymax� can be adjusted to be in agreement with the
constraint of light-cone momentum conservation. Since the
transverse extension of the volume is fixed, the remaining
longitudinal extension Lz of the volume is then fitted to the
total multiplicity. We find the following values for the
boosted thermal fireball:

T ¼ 0:189 GeV; (40)

ymax ¼ 4:0; (41)

Lz ¼ 3:4 fm: (42)

The boosted thermal distribution may more appropriately
describe a series of hadronic fireballs formed later in the
collision at a lower temperature.

0 50 100 150 200 250 300 350
0

1

2

3

4

Npart

dN
ch

d
0

N
pa

rt
2

FIG. 5 (color online). The experimental (blue points with error
bars) [15] and theoretical (red points, K ¼ 1 for all centralities)
scaled central multiplicities in Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV are shown as a function of the number of participants.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

p T
G

eV
c

FIG. 6 (color online). Mean pT as a function of � in central
Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV compared to data from

STAR [20].
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In order to compare entropies, we substitute our light-
cone distribution and the corresponding boosted thermal
distribution function into Eq. (12) for the entropy:

nx;p? ¼ 1

eðm?=�Þþxw � 1
; (43)

nbtx;p? ¼ Lz

2�

Z ymax

�ymax

du
m? coshðy� uÞ

expðm? coshðy� uÞ=TÞ � 1
: (44)

The impact parameter dependence is homogeneous in an
area of size L2

?.
We obtain for the light-cone distribution and the boosted

thermal distributions rather similar entropy values with a
larger entropy for the light-cone distribution as it should be:

Slc ¼ 142:4; (45)

Sbt ¼ 141:1: (46)

This minimal difference does not favor the light-cone
distribution strongly. Comparing the shapes of the rapidity
distributions in Fig. 7, however, one sees that the boosted
thermal distribution does not agree as well with the data as
the faster-falling light-cone distribution. One should also
consider that the smearing function of the thermal distri-
bution is theoretically not fixed, and the above choice is

arbitrary; in fact, also a Gaussian averaging has been
proposed [5]. All fireballs at varying rapidities have the
same longitudinal extension Lz in spite of boosting:

Lz ¼ V=L2
?: (47)

Owing to the light-cone sum rule, there are only two
parameters in the light-cone distribution. This smaller
number of input parameters together with the maximum
entropy argument and the better agreement with the data
favor the light-cone plasma distribution.

VI. CONCLUSIONS

In regard of the simplicity of the maximum-entropy
ansatz, the light-cone plasma distribution is very success-
ful. Minimal experimental information about the mean
transverse momentum and the active area of the colliding
hadrons optimally account for rapidity and transverse
momentum distributions in nucleon-nucleon and nucleus-
nucleus collisions. Therefore, many other features of
heavy-ion collisions should be reconsidered. The entropy
of fireballs distributed uniformly in rapidity is only slightly
smaller than the entropy of the light-cone distribution.
Conceptually, however, the light-cone distribution pre-
sented in this paper emphasizes the nonequilibrium nature
of the collision process. Its parameters, an effective trans-
verse temperature and (longitudinal) softness, reflect the
asymmetry of transverse and longitudinal momenta of the
produced particles. In nuclei, multiple scattering of partons
leads to an increase of the mean transverse momentum
of produced particles which correlates strongly with the
central rapidity density. In the future, we plan to include
different distributions for quarks and gluons and study
fluctuations in more detail. This may lead to slight changes
of the rapidity and transverse distributions. Such an ex-
tended model would also allow us to calculate specific
hadronic spectra.
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