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We investigate the electrical conductivity (�) of quark matter via the Kubo formula at finite temperature

and zero quark density (T � 0, � ¼ 0) in the presence of an external strong magnetic field. For this

purpose, we employ the dilute instanton-liquid model, taking into account its temperature modification

with the trivial-holonomy caloron distribution. By doing that, the momentum and temperature depen-

dences for the effective quark mass and model renormalization scale are carefully evaluated. From the

numerical results, it turns out that � � ð0:02–0:15Þ fm�1 for T ¼ ð0–400Þ MeV with the relaxation

time � ¼ ð0:3–0:9Þ fm. In addition, we also parametrize the electrical conductivity as �=T �
ð0:46; 0:77; 1:08; 1:39ÞCEM for � ¼ ð0:3; 0:5; 0:7; 0:9Þ fm, respectively. These results are compatible

with other theoretical estimations, including those from the lattice QCD simulations. It also turns out

that the external magnetic field plays only a minor role for � even for the very strong one B0 �m2
� � 10

and becomes relatively effective for T & 200 MeV. Moreover, we compute the soft photon emission rate

from the quark-gluon plasma, using the electrical conductivity calculated.
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I. INTRODUCTION

QCD at extreme conditions has been one of the most
celebrated subjects in high-energy physics for decades.
The observation of the strong magnetic field B0 �m2

� in
the noncentral heavy-ion collision at the Relativistic
Heavy Ion Collider (RHIC) of Brookhaven National
Laboratory [1–4] triggered abundant research works,
such as the chiral magnetic effect (CME) [5–8], chiral
magnetic wave [9,10], QCD phase structure in the pres-
ence of magnetic fields, related to the magnetic catalysis
[11–13], and electromagnetic properties of QCD matter
[14–19]. In addition to the magnetic field, the transport
coefficients for the hot and/or dense matter is of great
importance in general as well, since they characterize the
physical properties of the matter. In general, those coef-
ficients can be studied by the Kubo formula [20–22].
Among them, in the present work, we want to investigate
the electrical conductivity (�), which corresponds to the
vector-current correlation (VCC) and its spectral func-
tions [18], for quark matter at finite temperature and
zero quark density (T � 0, � ¼ 0). This condition re-
sembles the present heavy-ion collision experimental con-
ditions, such as RHIC and Large Hadron Collider of
CERN, in the presence of the external magnetic field.
We note that the conductivity affects much on the mag-
netic field in terms of the relaxation time [14,19]. The
spectral functions are deeply related to the thermal dilep-
ton production, and the production cross section contains
much information on the hadron properties, produced in
quark-gluon plasma (QGP) [23].

The electrical conductivity was investigated in the hot
phase of theQCDplasma and extracted from a quenched SU

(3) lattice QCD (LQCD) simulation of the Euclidean time
VCC for1:5 � T=Tc � 3, resulting in�=T � 7CEM, where
CEM ¼ P

fe
2
f and ef denotes the electric charge for the

quark with a flavor f, in Ref. [22]. Similarly, the electrical
conductivity was studied with quenched SU(3) LQCD with
the maximum entropy method for VCC in the deconfined
phase T � 1:45Tc in Ref. [18], in which the dilepton pro-
duction rate was studied as well. In that work, the electrical
conductivity turned out to be 1=3&�=ðCEMTÞ&1. Note
that the estimated value for � is about one order larger in
Ref. [22] in comparison to those fromRef. [18]. In Ref. [19],
VCC in quenched SU(2) LQCD simulationwas investigated
with a chirally invariant lattice Dirac operator with a con-
stant external magnetic field. It was observed that �? and
�k, which are perpendicular and parallel to the external

magnetic field, respectively, are almost the same and insen-
sitive to the external magnetic field for T * Tc, whereas
there appear considerable differences between them at
T � 0 with respect to the magnetic field. The electrical
conductivity was also estimated as �? � �k � � ¼
ð0:076� 0:010Þ fm�1 for T � 350 MeV with T ¼
1:12Tc. Beside the LQCD simulations, using the Green-
function method, the electrical conductivity was explored
at finite T and �: T � 100 MeV and � � 400 MeV [14].
At specific choices for the model parameters, the electrical
conductivity resulted in� � 0:04 fm�1, which is similar to
those from Refs. [18,19]. Interestingly, they found that the
electrical conductivity is very insensitive to the external
magnetic field.
Considering the rather unsettled situation for the

electrical conductivity for hot and dense quark matter as
mentioned above, in the present work, we employ the
dilute instanton-liquid model to study it [24,25]. The
model is characterized by the two phenomenological (in-
stanton) parameters: average inter-(anti)instanton distance*sinam@kias.re.kr
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�R � 1 fm and (anti)instanton size �� � 1=3 fm. In the in-
stanton ensemble, representing the nonperturbative QCD
vacuum, the quarks are delocalized by flipping their hel-
icities. As a result, the quarks acquire their momentum-
dependent effective mass, corresponding to the finite value
for the chiral condensate and manifesting the spontaneous
breakdown of chiral symmetry (SBCS). Moreover, the
momentum-dependent quark mass plays the role of a UV
regulator by construction. Since we are interested in the
case at finite T, the caloron with trivial holonomy is used to
modify the instanton parameters [26,27]. By doing that, the
instanton size �� becomes a smoothly decreasing function
of T, signaling weakening nonperturbative effects of QCD.
In addition, we utilize the fermionic Matsubara formula for
inclusion of T in the relevant physical quantities in hand.
To take into account the external magnetic field, which is
produced in the peripheral heavy-ion collisions, the
Schwinger method is employed [28–30].

Using the Kubo formula for the electrical conduc-
tivity, we compute � as a function of T and the relaxation
time � for the SU(2) light-flavor sector in the chiral limit,
i.e., mu �md � 0. From the numerical results, it turns
out that � � ð0:02–0:15Þ fm�1 for T ¼ ð0–400Þ MeV
with the relaxation time � ¼ ð0:3–0:9Þ fm. In addition,
we also parametrize the electrical conductivity as �=T �
ð0:46; 0:77; 1:08; 1:39ÞCEM for � ¼ ð0:3; 0:5; 0:7; 0:9Þ fm,
respectively. These results are compatible with other theo-
retical estimations, including those from the lattice QCD
simulations. It also turns out that the external magnetic
field plays only a minor role for � even for the very strong
magnetic field B0 � m2

� � 10 and becomes relatively ef-
fective for T & 200 MeV. Moreover, we also compute the
soft photon emission rate from the quark-gluon plasma,
using the electrical conductivity calculated.

The present work is organized as follows: In Sec. II, we
briefly introduce the present theoretical framework. The
numerical results and related discussions are given in
Sec. III. The last section is devoted to the summary, con-
clusion, and future perspectives.

II. THEORETICAL FRAMEWORK

Now, we make a brief explanation for the theoretical
framework for computing the electrical conductivity. We
note that all the calculations are performed in flavor SU(2)
in the chiral limit ðmu;mdÞ ! 0. First, the electrical con-
ductivity can be defined in Euclidean space from the Kubo
formula as follows [14]:

���ðpÞ¼�X
f

e2f
wp

Z d4k

ð2�Þ4 Trc;�½SðkÞ��SðkþpÞ���A: (1)

Here, ef stands for the electrical charge for a light-flavor

(f) quark, i.e., ðeu; edÞ ¼ ð2e=3;�e=3Þ, where e denotes
the unit charge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��EM

p
with the fine structure constant

�EM � 1=137. wp indicates the Matsubara frequency for

the momentum p for �, being proportional to 2�T. Trc;� is

assigned as the trace over the color and Lorentz indices.
The subscript A at ½� � ��A means that we have introduced
the externally induced electromagnetic (EM) vector
field A�. Note that, in Eq. (1), we have taken into account

only the connected-diagram contribution, since the
disconnected-diagram one / ðeu þ edÞ2 contributes to the
electrical conductivity negligibly [18]. The longitudinal
and transverse components for the electrical conductivity
are defined with Eq. (1) as

�?	 lim
wp!0

lim
p!0

½�11;22ðpÞ�; �k 	 lim
wp!0

lim
p!0

½�33ðpÞ�: (2)

To evaluate Eq. (1), we make use of the dilute instanton-
liquid model [24,25]. This model is based on the idea that
the quarks interact with the nontrivial QCD-vacuum con-
figuration, i.e., instanton ensemble, by flipping their chir-
alities. As a result, the quark acquires the dynamically
generated effective mass, and SBCS is explained. The
model is also characterized by the two phenomenological
parameters for the light-flavor sectors: average inter-(anti)
instanton distance �R and average (anti)instanton size ��.
For vacuum, these values are phenomenologically chosen
to be ð �R; ��Þ � ð1; 1=3Þ fm [24,25]. In Euclidean space, the
effective chiral action (EChA) of the model reads

Seff ¼ �Spc;f;� ln½i =D� iMðD2Þ�; (3)

where Spc;f;� stands for the functional trace over the color,

flavor, and Lorentz indices, while MðD2Þ stands for the
momentum-dependent effective quark mass from the quark
zero-mode solution in the instanton vacuum [25]. Note
that D indicates the U(1) covariant derivative iD� ¼
i@� þ efA�. In this way, we induce the external EM field

to EChA: the Schwinger method [28–30]. From EChA, one
can derive the light-quark propagator under the external
EM field in the momentum space as [31]

SðKÞ ¼ 6K þ iM2
K

K2 þM2
K

� 6K þ i½Mk þ 1
2
~Mkð� � FÞ�

k2 þM2
k

: (4)

Here, K� 	 k� þ efA� and � � F 	 ���F
��. F�� stands

for the photon field strength tensor. The effective quark
mass and its derivative ~Mk in Eq. (4) are defined by [31]

Mk ¼ M0

�
2

2þ ��2k2

�
2
; ~Mk ¼ � 8M0 ��

2

ð2þ ��2k2Þ3 ; (5)

where M0 and �� denote constituent-quark mass at zero
virtuality and average (anti)instanton size, respectively.
From Ref. [32], M0 is determined as about 350 MeV
for 1= �� � 600 MeV to reproduce the pion weak-decay
constant F�.
Now, wewant to explain briefly how to modify �� andM0

as a function of T, using the caloron solution. Details can
be found in Ref. [27]. An instanton distribution function
for arbitrary Nc and Nf can be written with a Gaussian
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suppression factor as a function of T and an arbitrary
instanton size � for pure-glue QCD [26]:

dð�; TÞ ¼ CNc
�b

RS	̂
Nc|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

c

�b�5 exp½�ðANc
T2 þ �	�n ��2Þ�2�:

(6)

We note that the CP-invariant vacuum was taken into
account in Eq. (6), and we assumed the same analytical
form of the distribution function for both the instanton and
the anti-instanton. Note that the instanton packing fraction
n 	 1= �R4 and �� have been taken into account as functions
of T implicitly. We also assigned the constant factor in the
right-hand side of the above equation as C for simplicity.
The abbreviated notations are also given as

	̂¼�b ln½�RS�cut�; �	¼�b ln½�RShRi�;

CNc
¼ 4:60e�1:68�RSNc

�2ðNc � 2Þ!ðNc � 1Þ! ; ANc
¼ 1

3

�
11

6
Nc � 1

�
�2;

�¼ 27

4

�
Nc

N2
c � 1

�
�2; b¼ 11Nc � 2Nf

3
: (7)

Note that we defined the one-loop inverse charges 	̂ and �	
at certain phenomenological cutoff �cut and hRi � �R. �RS

denotes a scale, depending on a renormalization scheme,
whereas V3 is for the three-dimensional volume. Using the
instanton distribution function in Eq. (6), we can compute
the average value of the instanton size ��2 straightforwardly
as follows [33]:

�� 2ðTÞ ¼
R
d��2dð�; TÞR
d�dð�; TÞ ¼ ½A2

Nc
T4 þ 4� �	�n�12 � ANc

T2

2 �	�n
;

(8)

where � ¼ ðb� 4Þ=2. It can easily be shown that Eq. (8)
satisfies the following asymptotic behaviors [33]:

lim
T!0

��2ðTÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�
�	�n

s
; lim

T!1 ��2ðTÞ ¼ �

ANc
T2

: (9)

Here, the second relation of Eq. (9) indicates a correct
scale-temperature behavior at high T, i.e., 1= �� � � / T.
Substituting Eq. (8) into Eq. (6), the caloron distribution
function can be evaluated further:

dð�; TÞ ¼ C�b�5 exp½�F ðTÞ�2�;
F ðTÞ ¼ 1

2
ANc

T2 þ
�
1

4
A2
Nc
T4 þ � �	�n

�
1=2

:
(10)

The instanton packing fraction n can be computed self-
consistently, using the following equation:

n
1
�F ðTÞ ¼ ½C�ð�Þ�1�; (11)

where we replaced NT=V3 ! n, and �ð�Þ stands for the �
function with an argument �. Note that C and �	 can be
determined easily using Eqs. (8) and (12), incorporating
the vacuum values for n � ð200 MeVÞ4 and �� �
ð600 MeVÞ�1: C � 9:81� 10�4 and �	 � 9:19. Finally,
for estimating the T dependence of M0, one needs to
consider the normalized distribution function, defined as
follows:

dNð�; TÞ ¼ dð�; TÞR
d�dð�; TÞ ¼

�b�5F �ðTÞ exp½�F ðTÞ�2�
�ð�Þ :

(12)

Here, the subscript N denotes the normalized distribution.
For brevity, we want to employ the large-Nc limit to
simplify the expression for dNð�; TÞ. In this limit, as under-
stood from Eq. (12), dNð�; TÞ can be approximated as a

-function:

lim
Nc!1dNð�; TÞ ¼ 
½�� ��ðTÞ�: (13)

The trajectory of this 
 function projected on the �-T plane
is depicted in the left panel of Fig. 1 by the thick-solid line.
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FIG. 1. Left: dNð�; TÞ on the �-T plane. The trajectory on the curve represents ��ðTÞ in Eq. (8). Right: Momentum-temperature
dependent effective quark mass in Eq. (14).
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Using Eq. (13), we can write finally the (jkj, T)-dependent
M as follows:

Mk ¼ M0

� ffiffiffiffiffiffiffiffiffiffi
nðTÞp

��2ðTÞffiffiffiffiffiffiffiffiffi
nð0Þp

��2ð0Þ
��

2

2þ k2 ��2ðTÞ
�
2
; (14)

where we used M0 � 350 MeV at T ! 0. Note that �� and
n are functions of T in Eq. (14). We show the momentum-
temperature dependent effective quark mass in Eq. (14) in
the right panel of Fig. 1. As shown there, the effective
quark mass is a smoothly decreasing function of momen-
tum as well as temperature as expected.

Considering all the ingredients discussed above and
plugging Eq. (4) into Eq. (1), we obtain the following
expression for the transverse components of � with
ð�; �Þ ¼ ð1; 1Þ or (2,2) and F12 ¼ B0 in the z direction:

���ðpÞ¼
X
f

4e2fNc
��

wp

�
Z d4k

ð2�Þ4
�kðkþpÞ

2 þM2
k�2 ~M2

kðefB0Þ2
½k2þM2

k�½ðkþpÞ2þM2
k�
�
: (15)

For the longitudinal one ð�;�Þ ¼ ð3; 3Þ, one removes
the term proportional to B2

0 in Eq. (15). Since we are

interested in the finite T case, we introduce the fermionic
Matsubara formula for Eq. (15) and then have the follow-
ing expression:

���ðpÞ¼
X
f

8e2fNcT
��

wp

X
n

Z d3k

ð2�Þ3

�
� k2þwkðwkþwpÞ

2 þM2
k�2 ~M2

kðefB0Þ2
½k2þw2

kþM2
k�½k2þðwkþwpÞ2þM2

k�
�
:

(16)

Here, n 
 0 for representing the retarded Green function.

For definiteness, we made use of p ¼ ð~0; wpÞ in deriving

Eq. (16). Note that we have simplified the mass functions
in Eq. (17) by replacing the four momentum into three
momentum, k ! k, in comparison to Eq. (15):

Mk�M0ðTÞF2
k; Fk¼ 2

2þ ��2ðTÞk2 ;

~Mk�� 8M0ðTÞ ��2ðTÞ
½2þ ��2ðTÞk2�3 ;

(17)

where M0ðTÞ and ��ðTÞ are given in Eqs. (14) and (13).We
verified that this simplification does not make considerable
changes in the numerical results but does make the ana-
lytical and numerical calculations much easier. Note that
the fermionic Matsubara frequency for the loop wk is
defined with the finite relaxation time � for computing
the finite electrical conductivity as in Ref. [14]:

wk ¼ wn

�
1þ 1

2�jwnj
�
: (18)

Here, wn ¼ ð2nþ 1Þ�T and n 2 I . We want to make an
assumption: It is clear that the term 1=ð2jwnjÞ in Eq. (18)
becomes its maximum and most effective when n ¼ 0.
Hence, it is reasonable to replace jwnj ! jw0j ¼ �T in
the parentheses in the right-hand side of Eq. (18).
Moreover, if we consider wp � 2�T, wk in Eq. (18) can

be simplified further as follows:

wn

�
1þ 1

2�T�

�
� wn

�
1þ 1

wp�

�
: (19)

In what follows, we will use Eq. (19) rather than Eq. (18)
for the Matsubara frequency in the calculations.
The summations over n in Eq. (16) can be developed

neatly as follows:X
n

T

½�2w2
n þ E2

k�
¼ 1

4�Ek

tanh

�
Ek

2�T

�
;

X
n

T

½�2w2
n þ E2

k�2
¼ 1

16�2TE3
k

sech2
�
Ek

2�T

�

�
�
�T sinh

�
Ek

�T

�
� Ek

�
; (20)

where we have defined a notation as � 	 1þ 1=ðwp�Þ.
Combining Eqs. (2), (19), and (20) we have the following
final expression for � for wp ! 0:

�?¼X
f

e2fNc�

�Z d3k

ð2�Þ3F
2
kðk2Þ

�
tanhð��EkÞ

Ek

�

þ��

2

Z d3k

ð2�Þ3F
2
kðk2Þ

�
�
sech2ð��EkÞ

E3
k

�
sinhð2��EkÞ

2��
�Ek

��

�½M2
k�4 ~M2

kðefB0Þ2�
�
: (21)

The energy of the quark is given by Ek ¼ ðk2 þM2
kÞ1=2.

We note that we inserted F2
kðk2Þ in the integrals in Eq. (21)

to tame the UV divergence smoothly in integrating over k,
instead of setting a three-dimensional cutoff. �k can be

easily obtained by putting B0 ¼ 0 in Eq. (21).
Finally in this section, we want to discuss briefly the

chiral phase transition of the present model. One can
explore the chiral structure via the chiral (quark) conden-
sate h �qqi within the present model [27,34]:

h �qqi ¼ �NcNf

Z d3k

ð2�Þ3
M2

k

Ek

�
1� expð� 3Ek

T Þ
1þ expð� 3Ek

T Þ
�
: (22)

From the numerical results given in Ref. [34], the chiral
condensate turns out to be a smoothly decreasing function
of T, which is rather different from the universal class
pattern of the chiral phase transition; i.e., there appears
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the second-order phase transition for the SU(2) light-flavor
sector in the chiral limit mq ! 0. We note that, if the

meson-loop correction (MLC), which relates to the 1=Nc

correction, is taken into account, the correct second-order
phase transition was observed for the vanishing current-
quark mass, giving Tc � 160 MeV [34]. Since we have not
taken into account the MLC contribution in the present
work, the chiral phase transition structure of the present
theoretical framework is distinctive from that of the reality
so that the inclusion of MLC can change the numerical
results for � to a certain extent. We, however, note that the
MLC contribution is ineffective for VCC� hJ�J�i in the

chiral limit in general [35]. Hence, it is rather safe to ignore
the MLC contribution for the electrical conductivity as in
the present work, despite the problematic issue on the
chiral structure at finite T as discussed above. We would
like to leave this interesting task for the inclusion of the
MLC contribution for the future.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results for �
and make comparisons with other theoretical results
mainly from the LQCD simulation data. In the left panel

of Fig. 2, we show the numerical results of �? (thick) and
�k (thin) for different � values, � ¼ ð0:1; 0:3; 0:5; 0:9Þ fm
in (solid, dotted, dashed, dot-dashed) lines, respectively, as
functions of T. As for the external magnetic field, we set it
to be B0 ¼ m2

� � 10 as a trial. Note that this value of B0 is
still far stronger than that observed in the RHIC experiment
[1–4]. From the figure, it turns out that � is a rapidly
increasing function of T and shows the obvious increases
beyond T � 200 MeV. By comparing those cases with and
without B0, we also find that the effect from the external
magnetic field is considerably small and only relatively
effective in the low-T region T & 200 MeV. Hence, we
can conclude from the present model that �? � �k 	 �.
For reference, we list � values for some typical tempera-
tures in Table I, in which one can easily see that� is almost
linear for T & 150 MeV and increases monotonically
after that temperature. For instance, at Tc � 180 MeV,
which is close to the transition temperature of QCD,
calculated from the full LQCD simulations [36,37],
we have � ¼ ð0:023; 0:039; 0:054; 0:070Þ fm�1 for � ¼
ð0:1; 0:3; 0:5; 0:9Þ fm. It is worth mentioning that, in the
recent LQCD simulations [38–41], the transition tempera-
ture was obtained as Tc � 155 MeV, which is lower
than those from Refs. [36,37]. At Tc � 155 MeV, for

 = 0.3 fm
 = 0.5 fm
 = 0.7 fm
 = 0.9 fm
 = 5.0 fm

SU(3) LQCD, Gupta
SU(3) LQCD, Aarts 
SU(3) LQCD, Ding 
SU(2) LQCD, Buividovich 

 = 0.3 fm
 = 0.5 fm
 = 0.7 fm
 = 0.9 fm
 = 5.0 fm

Gupta
Aarts
Ding
Buividovich

FIG. 2 (color online). Left: electrical conductivity � as functions of temperature T for different relaxation times � ¼ ð0:3–0:9Þ fm.
The thick line indicates the case with B0 ¼ 0ð�kÞ, whereas the thin ones for B0 ¼ m2

� � 10ð�?Þ, in Eq. (21). SUðNcÞ LQCD

estimations are taken from Gupta [22], Aarts et al. [42], Ding et al. [18], and Buividovich et al. [19]. Right: Soft photon emission rate
in Eq. (24), R� in Eq. (24) as functions of T for different �’s in the same manner with the left panel. For all the curves in the left and

right panels, we have chosen Tc � 180 MeV as a trial.

TABLE I. Typical values of � in Eq. (23) [fm�1] at B0 ¼ 0 for different T and � values.

T ¼ 0 T ¼ 100 MeV T ¼ 200 MeV T ¼ 300 MeV T ¼ 400 MeV

� ¼ 0:3 fm 0.020 0.021 0.024 0.031 0.049

� ¼ 0:5 fm 0.034 0.036 0.040 0.053 0.083

� ¼ 0:7 fm 0.048 0.050 0.056 0.074 0.116

� ¼ 0:9 fm 0.062 0.064 0.072 0.095 0.149
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instance, we have � ¼ ð0:022; 0:037; 0:052; 0:067Þ fm�1

for � ¼ ð0:1; 0:3; 0:5; 0:9Þ fm. Hence, we conclude that
there is only a small change in � (� a few percent) for
different Tc values below 200 MeV as shown in the left
panel of Fig. 2.

For practical applications as in the LQCD simulations
[22,42], it is quite convenient to parametrize the present
numerical results for � as follows:

�ðTÞ ¼ CEM

X
m¼1

CmTm;
Cm

fmm�1
2 R: (23)

Here, we define CEM ¼ P
fe

2
f � 0:051 for the SU(2) light-

flavor sector. Obtained coefficients up to m ¼ 3 are given
in Table II. As shown in the coefficients, the electrical
conductivity can be parametrized almost linearly with
respect to T, i.e., jC2;3j � 0. Hence, we can approximate

them as �=T � ð0:46; 0:77; 1:08; 1:39ÞCEM for � ¼
ð0:3; 0:5; 0:7; 0:9Þ fm, respectively.

In Refs. [22,42], employing the SU(3) quenched LQCD
simulations, it was estimated that �=T ¼ 7CEM for 1:5<
T=Tc < 3 and �=T ¼ ð0:4� 0:1ÞCEM for T=Tc � 1:5, re-
spectively. Note that there is one order difference between
these � values, although the temperature ranges are not
overlapped. In the left panel of Fig. 2, we depict these two
LQCD values from Ref. [22] (square) and Ref. [42] (cir-
cle), using Tc � 180 MeV as a trial, although the transition
temperatures are slightly higher than this value in general
in the quenched LQCD simulations. It is shown that the
data point from Ref. [42] is consistent with our numerical
result for � � 0:3 fm. On the contrary, the data point from
Ref. [22] for T ¼ 270 MeV is much larger than ours for
� ¼ ð0:3–0:9Þ fm. We verified that, in order to reproduce
it, � becomes about 5 fm in our model calculation as shown
in the left panel of Fig. 2 in the dot-dashed line. In
Ref. [43], the characteristic � was estimated using
Ref. [22], resulting in about ð2:2T=TcÞ fm with a conser-
vative estimate of the QGP medium size. Taking T �
270 MeV ¼ Tc � 1:5 MeV, it is given that � � 5 fm,
which is consistent with our model estimation as shown
in the left panel of Fig. 2. Similarly, at T � 1:45Tc, it was
suggested that �=T � ð1=3� 1ÞCEM in Ref. [18]. If we
choose Tc � 180 MeV again, this result provides that � ¼
ð0:022–0:067Þ fm�1, which is drawn in the left panel of
Fig. 2 (triangle), and it corresponds to � � ð0:3–0:7Þ fm in
comparison with our results. Moreover, the typical time

scale of � was given by �T ¼ 0:5, giving � � 0:38 fm at
T � 1:45Tc [18]. Interestingly, this time scale is quite
compatible with ours. In those LQCD data, it should be
noticed that the unrenormalized vector currents for the
Kubo formula �hJ�J�i were employed in Refs. [22,42],

whereas Ref. [18] made use of the renormalized one.
Hence, one may expect systematic errors for � given in
Refs. [22,42]. To estimate those errors is, however, clearly
beyond our scope.
In Ref. [19], the quenched SU(2) LQCD was performed,

and the electrical conductivity was also estimated as � ¼
ð0:076� 0:010Þ fm�1 at T ¼ 350 MeV with the transition
temperature �313 MeV, taking into account T ¼ 1:12Tc.
To be consistent with others using Tc ¼ 180 MeV
as above, we depict the data point of Ref. [19] at T ¼
1:12� 180 MeV � 202 MeV in the left panel of Fig. 2
(diamond), although it was evaluated at T ¼ 350 MeV.
Being different from other LQCD data, Ref. [19] presented
the longitudinal and transverse components of� separately
in the presence of the external magnetic field. Those
LQCD data showed that �? � �k beyond Tc for arbitrary

values of B0, whereas �? � �k at T ¼ 0 and the differ-

ence between them is enhanced by increasing B0.
Qualitatively, this observation of the LQCD results is con-
sistent with ours as indicated by the thick and thin lines in
the left panel of Fig. 2. In our calculations, �k (thin) is

smaller than �?, mainly because of the negative sign in
front of the term / ðefB0Þ2 in Eq. (23) in the vicinity

of T � 0. On the contrary, �k becomes larger than �? at

T ¼ 0 in Ref. [19].
However, we note that, if we consider the finite number

difference between the instanton and anti-instanton num-
bers, i.e., �N 	 NI � N �I � 0 [31], which are not taken
into account in the present work and correspond to the
UAð1Þ QCD anomaly via the finite chiral quark density
related to CME [5–8], the conductivity increases with
respect to the external magnetic field. In other words, to
observe sizable values for the electrical conductivity en-
hanced by the external magnetic fields, it is necessary to
have the UAð1Þ QCD anomaly explicitly in the model, in
addition to the anomaly-independent terms [31].
Beside the LQCD data, there were several theoretical

estimations for the electrical conductivity via effective
approaches using the Green-function method [14] and
chiral perturbation theory [44]. In Ref. [14], the electrical
conductivity was computed for finite temperature and
quark density, T ¼ 100 MeV and � ¼ 400 MeV, which

TABLE II. The coefficients C1;2;3 for Eq. (23) for different � values.

� ¼ 0:3 fm � ¼ 0:5 fm � ¼ 0:7 fm � ¼ 0:9 fm

C1 0.46 0.77 1.08 1.39

C2 [fm] 4:00� 10�6 6:66� 10�6 9:33� 10�6 1:20� 10�6

C3 [fm2] �4:87� 10�5 �4:87� 10�6 �4:88� 10�5 �4:88� 10�5
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may correspond to the future heavy-ion collision facilities,
such as Facility for Antiprotons and Ions Research (FAIR)
of Gesellschaft für Schwerionenforschung (GSI) and
Nuclotron-based Ion Collider fAcility (NICA) of Joint
Institute for Nuclear Research as noted there. By choosing
� ¼ 0:9 fm, it was given that � � 0:04 fm�1. Note that
this value corresponds to � ¼ ð0:5–0:7Þ in our results for
zero density. In other words, by increasing the quark
density, the electrical conductivity decreases at a certain
temperature, as expected.

Finally, we would like to estimate the (differential) soft
photon (wp ! 0) emission rate from QGP for the dilepton

decay rates, which is related to the electrical conductivity
as follows [18,22]:

R� 	 lim
wp!0

wp

dR�

d3jpj ¼
3�EM

2�2
�T: (24)

The numerical results for R� in Eq. (24) are given in the

right panel of Fig. 2 for different � values as in the left
panel of Fig. 2. We also depict the other theoretical esti-
mations there, using Eq. (24). It turns out that the value of
R� increases rapidly in the vicinity of T ¼ 0. Beyond that,

the slope of R� becomes relatively stable with respect to

T. Although one can easily have numerical values for R�

from the numbers given in Table I by multiplying
3�EMT=ð2�2Þ, for the convenience of readers, R� for

some temperatures are listed in Table III.

IV. SUMMARYAND CONCLUSION

We have investigated the electrical conductivity of quark
matter at finite temperature and zero quark density (T � 0,
� ¼ 0), using the dilute instanton-liquid model. The in-
stanton parameters, i.e., the average instanton size and
inter-(instanton) distance, were modified as functions of
T according to the caloron distribution. Employing the
Kubo formula, we computed it in the presence of the
external magnetic field in the order of B0 � m2

� � 10.
We compared our results with the LQCD data as well as
effective theories. Important observations of the present
work are listed as follows:

(i) The electrical conductivity is an increasing function
of T and the values for � depend on the relaxation

time � of the quark matter. Note that we modify the
effective quark mass into a decreasing function of T
as well as jkj, playing the role of a natural UV
regulator and signaling the reduction of the nonper-
turbative QCD effects at finite T. Typically, we have
� � ð0:02–0:15Þ fm�1 for T ¼ ð0–400Þ MeV with
the relaxation time � ¼ ð0:3–0:9Þ fm.

(ii) Recent theoretical estimations including the
quenched LQCD data are well reproduced for
� ¼ ð0:3–0:7Þ fm for a wide T range. From the
numerical calculations, it turns out that the one
order larger �, estimated in the early LQCD data
[22], corresponds to � � 5 fm, which is much
larger than other values. This value � � 5 fm is
consistent with a conservative estimate of the
QGP-medium size.

(iii) The external magnetic field provides only negli-
gible effects on the electrical conductivity even
for the very strong one in the order of B0 �
m2

� � 10. However, if we consider the UAð1Þ
anomaly, which is the main source for CME and
produced from the number difference between the
instanton and anti-instanton in the present theo-
retical framework, this situation can be altered to
a certain extent.

(iv) Using the numerical results obtained, the electrical
conductivity is parametrized for T ¼ ð0–400Þ MeV
with�¼CEMðC1TþC2T2þC3T3þ���Þ and, in this
parametrization, the coefficients for T2 and T3 are
almost negligible in comparison to C1. As a result,
we have �=T � ð0:46; 0:77; 1:08; 1:39ÞCEM for
� ¼ ð0:3; 0:5; 0:7; 0:9Þ fm, respectively. These re-
sults are again compatible with other theoretical
estimations.

To understand QCD at extreme conditions, the transport
coefficients for quark matter are very important physical
quantities to be studied. In the present work, we have
shown that the instanton model reproduced compatible
results for the electrical conductivity with other theoretical
calculations including the LQCD data and estimated it as a
function of T for different relaxation times of the matter for
the first time. Hence, it is quite promising and challenging
to investigate other coefficients as well within the same
theoretical framework. Other transport coefficients such as
the shear and bulk viscosities are under investigation, and
related works will appear elsewhere.

TABLE III. Typical values of R� in Eq. (24) [fm�2] at B0 ¼ 0 for different T and � values.

T ¼ 100 MeV T ¼ 200 MeV T ¼ 300 MeV T ¼ 400 MeV

� ¼ 0:3 fm 1:181� 10�5 2:700� 10�5 5:229� 10�5 11:021� 10�5

� ¼ 0:5 fm 2:024� 10�5 4:500� 10�5 8:940� 10�5 18:667� 10�5

� ¼ 0:7 fm 2:811� 10�5 6:297� 10�5 12:482� 10�5 26:089� 10�5

� ¼ 0:9 fm 3:600� 10�5 8:100� 10�5 16:025� 10�5 33:511� 10�5
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