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In view of the recent neutrino oscillation data pointing to a nonvanishing value for the smallest mixing

angle (�z), we derive and find explicit realizations of the ðZ2Þ3 flavor symmetry which characterizes, for

the neutrino mass matrix, uniquely a variant of the tripartite form, originally conceived to lead to the

tribimaximal mixing with �z ¼ 0, so as to allow now for a nontribimaximal pattern with nonzero �z. We

impose this flavor symmetry in a setting including the charged leptons and we see that it can make room,

through higher-order terms involving new standard model singlet scalars, for the mass hierarchy of

charged leptons. Moreover, within a type-I seesaw mechanism augmented with the flavor symmetry,

certain patterns occurring in both the Dirac and the Majorana neutrino mass matrices can accommodate all

types of mass hierarchies in the effective neutrino mass matrix, but no lepton/baryon asymmetry can be

generated. Finally, we discuss how type-II seesaw mechanism, when supplemented with the flavor

symmetry, could be used to interpret the observed baryon asymmetry through leptogenesis.
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I. INTRODUCTION

Neutrino oscillation experiments have established
that neutrino flavor and mass states do mix [1]. The three
flavor states ð�e; ��; ��Þ are quantum linear combinations

of the three light mass states ð�1; �2; �3Þ through a unitary
mixing matrix U�

L parameterized by three rotation angles
ð�x; �y; �zÞ and three phases [�ðDirac phaseÞ, � and

�ðMajorana phasesÞ] as follows:

M�¼U�
LM

diag
� ðU�

LÞT;
Mdiag

� ¼diagðm1;m2;m3Þ;

U�
L¼

cxcz sxcz sz

�cxsysz�sxcye
�i� �sxsyszþcxcye

�i� sycz

�cxcyszþsxsye
�i� �sxcysz�cxsye

�i� cycz

0
BB@

1
CCA

�diagðei�;ei�;1Þ; (1)

where M� is the effective neutrino mass matrix, which is
symmetric, assuming the neutrinos are of Majorana type,
mi’s are the masses of the neutrino mass states, and with
sx � sin�x, cy � cos�y and so on.

Our convention for parametrizing the mixing matrix in
Eq. (1) is related to the standard convention used, say, in
the recent data analysis of Ref. [2], in that the mixing

angles coincide in the two conventions but with different
nomenclatures; strictly speaking,

�x � �12; �y � �23; �z � �13: (2)

As to the phases, one needs to decompose the unitary
mixing matrix U�

L as

U�
L ¼ R23ð�yÞ � Rzð�Þ � R12ð�xÞ � P; (3)

where R12 and R23 represent rotations around the z and x
axes respectively, whereas Rzð�Þ and P depend on the
convention adopted. The standard parametrization, de-
noted by a superscript tilde, consists of taking

~Rzð�Þ ¼
cz 0 sze

�i�

0 1 0

�sze
i� 0 cz

0
BB@

1
CCA;

~P ¼ diagð1; eið�2=2Þ; eiðð�3þ2�Þ=2ÞÞ;
(4)

where �2 and �3 designate the Majorana phases. On the
other hand, in the parametrization we adopt, which has
the advantage that the Dirac phase � does not appear in the
effective mass term of the neutrinoless double beta decay
[3], we have

Rzð�Þ ¼
cz 0 sz

0 e�i� 0

�sz 0 cz

0
BB@

1
CCA; P ¼ diagðei�; ei�; 1Þ:

(5)

One can show, by calculating some rephasing invariant
quantities [4], that the Dirac phase is the same for both

*elashin@ictp.it
†mabbas1978@yahoo.com
‡nchamoun@th.physik.uni-bonn.de
§snasri@uaeu.ac.ae

PHYSICAL REVIEW D 86, 033013 (2012)

1550-7998=2012=86(3)=033013(11) 033013-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.033013


parametrizations while the Majorana phases in the two
parametrizations are related through simple linear
relations

� ¼ ��3

2
; � ¼ �2 ��3

2
: (6)

Likewise, one can diagonalize the charged lepton mass
matrix linking the left-handed leptons to their right-handed
(RH) counterparts, and thus being not necessarily symmet-
ric, albeit now by a bi-unitary transformation

Ml ¼ Ul
Ldiagðme;m�;m�ÞðUl

RÞy: (7)

The observed neutrino-mixing matrix comes from the
mismatch between Ul

L and U�
L, in that one can put experi-

mental constraints on the elements of the flavor-mixing
matrix V ¼ ðUl

LÞyU�
L. If one works in the flavor basis

where MlM
y
l is diagonal, then Ul

L ¼ 1 is the identity

matrix, and the whole measured flavor-mixing matrix
originates from U�

L.
The authors of Ref. [5] noticed that, dropping the phases

on which no definite experimental measurements exist up
till now, the experimental constraints impose a specific
pattern named tribimaximal (TB):

U�
L ’ VTB �

ffiffiffiffiffiffiffiffi
2=3

p
1=

ffiffiffi
3

p
0

�1=
ffiffiffi
6

p
1=

ffiffiffi
3

p
1=

ffiffiffi
2

p

1=
ffiffiffi
6

p �1=
ffiffiffi
3

p þ1=
ffiffiffi
2

p

0
BB@

1
CCA; (8)

amounting to �x ¼ arcsinð 1ffiffi
3

p Þ, �y ¼ 	
4 and �z ¼ 0.

The author of Ref. [6] showed that the TB pattern is
equivalent to a certain form for the M� in the flavor basis
called ‘‘tripartite’’

Mdiag
� ¼ðVTBÞTMTB

� VTB,MTB
� ¼MAþMBþMC; (9)

where

MA ¼ A

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA; MB ¼ B

�1 0 0

0 0 1

0 1 0

0
BB@

1
CCA;

MC ¼ C

1 1 �1

1 1 �1

�1 �1 1

0
BB@

1
CCA;

(10)

with neutrino eigen masses related to the tripartite coef-
ficients via

m1¼A�B; m2¼A�Bþ3C; m3¼AþB;

A¼ðm1þm3Þ=2; B¼ðm3�m1Þ=2; C¼ðm2�m1Þ=3:
(11)

We showed in Refs. [7,8] thatMA þMB has a Uð1Þ under-
lying symmetry which is broken byMC, however a residual
ðZ2Þ3 symmetry is left unbroken and this remaining sym-
metry (called henceforth S symmetry) characterizes
uniquely the tripartite form, and hence the TB pattern.
More explicitly, we determined the set of invertible matri-
ces S which leave the neutrino mass matrix corresponding
to the TB pattern unchanged under congruency (or what
was called in Ref. [9] the form-invariance condition)

STM�S ¼ M�: (12)

We have found that this set includes eight elements form-
ing a subgroup of the nonsingular 3� 3 complex matrices
under matrix multiplication. Moreover, this subgroup is
isomorphic to the multiplicative group ðZ2Þ3 with three
generators, whence the name.
From a mathematical viewpoint, the form of VTB is just a

unitary matrix whose elements are expressed in terms
of simple numbers via algebraic operations. One would
wonder thus what would be the consequences on the flavor
S symmetry had the experimental data led to different
values. In Ref. [10], relations between residual Z2 symme-
tries and patterns not conforming to the TB mixing pattern
were studied.
Actually, and despite the phenomenological success of

the TB pattern [11], it is important, in light of the recent
neutrino data best fit [2,12–15] amounting to �x ¼ 33:58�,
�y ¼ 40:40�, and �z ¼ 8:33�, to restudy the question of

the ðZ2Þ3 S symmetry, possessed by the neutrino mass
matrix, in the case of TB mixing but with nonzero �z
(which we would call a non-TB mixing pattern and denote
it by ‘‘NTB’’), and find an explicit form of this flavor S
symmetry different from the specific form we found in
Ref. [7] corresponding to the TB case. The object of this
paper is to present such a study with the cosmological
consequences for the baryogenesis.
For this, we follow the method detailed in Ref. [7] which

amounts to finding the generators of the ðZ2Þ3 S symmetry
in the diagonalized basis by imposing the form-invariance
condition, then deducing the corresponding generators of
the ðZ2Þ3 S symmetry in the flavor basis. We find also a
‘‘variant’’ tripartite form characterizing the NTB pattern

TABLE I. The present ([2]) and past ([16]) global-fit results for the three neutrino mixing angles ð�x; �y; �zÞ, with their 2� ranges
(95% confidence level). We show also the corresponding values in the generic and the special NTB patterns, and in the TB pattern.

Parameter Present best fit Present 2� range NTB NTB0 Past best fit Past 2� range TB

�x 33:58� ½31:95�; 36:09�� 35:27� 35:27� 34:08� ½31:11�; 37:50�� 35:27�

�y 40:40� ½36:87�; 50:77�� 45� 45� 41:55� ½35:86�; 51:97�� 45�

�z 8:33� ½6:29�; 11:68�� �z 8:13� 5:44� ½0�; 10:30�� 0�
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for generic �z. Although all the formulas are derived with a
general �z � 0, we nonetheless, for numerical applications
and definite discussions, would specify the NTB pattern to
the case �z ¼ arcsinð 1ffiffiffiffi

50
p Þ matching, to a good approxima-

tion, the recent best fitted data, and would denote this
special case by a subscript zero mark.

All the same, we stress that the special value �z ¼
arcsinð 1ffiffiffiffi

50
p Þ is not a result from any theoretical consideration,

but suggested only by experiment, whereas the general
results are independent of the explicit value of �z. In fact,
we could as well leave the values of �x and �y as free

parameters. However, the resulting expressions are cumber-
some enough not to be of practical use, and we have opted to
keep these two mixing angles fixed to their TB values
consistent with experiment. This was motivated in particular
by the fact that, compared to the previous oscillation data in
Ref. [16], the new data (e.g., Ref. [2]) did not signal a
palpable change in the values of �x and �y in contrast to

�z where the former data were consistent with the value
�z ¼ 0 rejected now by the present data (see Table I).

As in Ref. [7], we show that imposing the flavor S
symmetry in a complete lepton setting, coupled to scalar
fields singlet with respect to the standard model (SM)
group but with suitably chosen Yukawa couplings, can
lead in a natural way to the charged lepton mass hierarchy.
Moreover, by assuming the canonical type-I seesaw
mechanism formula

M� ¼ MD
�M

�1
R ðMD

� ÞT; (13)

where MR is the heavy Majorana mass matrix for the RH
neutrinos, and MD

� is the Dirac neutrino mass matrix, one
can accommodate the different possible neutrino mass
patterns provided the neutrino components transform in a
specific way under the S symmetry. However, as with the
case of the TB pattern in Ref. [7], we show that we need to
call for type-II seesaw mechanism in order to account for
the observed baryon to photon density.

The plan of the paper is as follows. In Sec. II, we find an
explicit realization of the ðZ2Þ3 S symmetry leading to the
observed NTB pattern. In Sec. III, we impose the symme-
try on the charged leptons and discuss their mass hierarchy.

In Sec. IV, we show within type-I seesaw scenario how we
can obtain the different types of neutrino mass hierarchies.
We show also why we shall need in Sec. V the other type-II
seesaw mechanism in order to explain the baryon asym-
metry generated by lepton asymmetry. We end up by a
summary in Sec. VI.

II. UNDERLYING SYMMETRY
OF THE NTB PATTERN

We review here the approach of form invariance, which
we used in Ref. [7], in order to find an explicit form of the
ðZ2Þ3 S symmetry leading to the NTB pattern defined by

�y ¼ arcsin
1ffiffiffi
2

p ; �x ¼ arcsin
1ffiffiffi
3

p ; �z � 0; (14)

which would correspond to a flavor-mixing matrix:

VNTB ¼

ffiffi
2
3

q
cz

czffiffi
3

p sz

� 1ffiffi
6

p ð1þ ffiffiffi
2

p
szÞ 1ffiffi

3
p

�
1� szffiffi

2
p
�

czffiffi
2

p

1ffiffi
6

p ð1� ffiffiffi
2

p
szÞ � 1ffiffi

3
p

�
1þ szffiffi

2
p
�

czffiffi
2

p

0
BBBBBBBB@

1
CCCCCCCCA
; (15)

We see that seeking unitary matrices S satisfying the
form-invariance formula [Eq. (12)] is equivalent to finding
unitary matrices U satisfying this invariance in the diago-
nalized basis:

UTMdiag
� U ¼ Mdiag

� ; (16)

provided

S ¼ V� � U � VT: (17)

The different values of the mi’s lead, via Eq. (16), auto-
matically to

U ¼ diagð�1;�1;�1Þ; (18)

and thus, denoting by Ii the reflection across the ith axis
(x ¼ 1, y ¼ 2, z ¼ 3: e.g., I1 � Ix ¼ diagð�1;þ1;þ1Þ),
we find the symmetries Sis, which characterize the NTB
pattern for generic �z,

S1 ¼ ðVNTBÞ� � diagð�1; 1; 1Þ � ðVNTBÞT ¼
1� 4c2z=3 2czð1þ

ffiffiffi
2

p
szÞ=3 2czð�1þ ffiffiffi

2
p

szÞ=3
2czð1þ

ffiffiffi
2

p
szÞ=3 2ð� ffiffiffi

2
p

sz þ c2zÞ=3 c2z=3

2czð�1þ ffiffiffi
2

p
szÞ=3 c2z=3 2ð ffiffiffi

2
p

sz þ c2zÞ=3

0
BB@

1
CCA;

S2 ¼ ðVNTBÞ� � diagð1;�1; 1Þ � ðVNTBÞT ¼
1� 2c2z=3

ffiffiffi
2

p
czð�

ffiffiffi
2

p þ szÞ=3
ffiffiffi
2

p
czð

ffiffiffi
2

p þ szÞ=3ffiffiffi
2

p
czð�

ffiffiffi
2

p þ szÞ=3 ð2 ffiffiffi
2

p
sz þ c2zÞ=3 ð1þ c2zÞ=3ffiffiffi

2
p

czð
ffiffiffi
2

p þ szÞ=3 ð1þ c2zÞ=3 ð�2
ffiffiffi
2

p
sz þ c2zÞ=3

0
BB@

1
CCA;

S3 ¼ ðVNTBÞ� � diagð1; 1;�1Þ � ðVNTBÞT ¼
c2z �s2z=

ffiffiffi
2

p �s2z=
ffiffiffi
2

p

�s2z=
ffiffiffi
2

p
s2z �c2z

�s2z=
ffiffiffi
2

p �c2z s2z

0
BB@

1
CCA:

(19)
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The three matrices (Si, i ¼ 1, 2, 3) represent the generators
of the ðZ2Þ3-symmetry satisfied by the neutrino mass
matrix.

Taking into consideration that the form-invariance for-
mula involves the matrix S quadratically, and that, say,
S1S2 ¼ �S3, we have thus proved, for each generic value
�z, the following:

ð8S 2 hS1; S2; S3i; ST �M� � S ¼ M�Þ
, ð8S 2 hS1; S2i; ST �M� � S ¼ M�Þ
, ½ðVNTBÞT �M� � VNTB ¼ Mdiag

� �:
(20)

We would like now to find a variant of the tripartite form
that would characterize the generic NTB pattern so as to
generalize the equivalence formula of Eqs. (9) and (10).
For this we note that the matrix Rzð�Þ [Eq. (5)], when the
phases are dropped, becomes R13ð�zÞ the rotation around
the y-axis, so we have

VNTB ¼ R23ð�yÞ � R13ð�zÞ � R12ð�xÞ;
VTB ¼ VNTBð�z ¼ 0Þ; (21)

where the rotation matrices are given by

R12ð�xÞ �
cx sx 0
�sx cx 0
0 0 1

0
@

1
A;

R23ð�yÞ �
1 0 0
0 cy sy
0 �sy cy

0
B@

1
CA

R13ð�zÞ �
cz 0 sz
0 1 0

�sz 0 cz

0
@

1
A:

(22)

We get then

VNTB ¼ W � VTB;

W ¼ R23

�
�y ¼ 	

4

�
R13ð�zÞR�1

23

�
�y ¼ 	

4

�

¼
cz

szffiffi
2

p szffiffi
2

p

� szffiffi
2

p 1þcz
2 � 1�cz

2

� szffiffi
2

p � 1�cz
2

1þcz
2

0
BBBB@

1
CCCCA:

(23)

Using the equality,

ðVTBÞT �MTB
� �VTB¼ðVNTBÞT �MNTB

� �VNTB¼M
diag
�

�diagðm1;m2;m3Þ;
(24)

we can relate the neutrino mass matrices in the NTB and
the TB patterns with each other in the following way:

MNTB
� ¼ W �MTB

� �WT: (25)

At this stage, it would be useful if the sought form for
MNTB

� characterizing uniquely the generic NTB pattern
varies slightly from the tripartite form [Eqs. (9) and (10)
], and hence called hereafter a ‘‘generic’’ modified tripar-
tite form. To fix the ideas, we choose a pattern where the
diagonal elements of MNTB

� ‘‘resemble’’ their counterparts
in the tripartite form of MTB

� , in that we impose

MNTB
� ð1; 1Þ ¼ Az � Bz þ Cz;

MNTB
� ð2; 2Þ ¼ Az þ Cz;

MNTB
� ð3; 3Þ ¼ Az � Cz:

(26)

Now, by equating the diagonal elements in both sides of
Eq. (25), one can express the ðAz; Bz; CzÞ in terms of the
tripartite form coefficients ðA; B; CÞ, then by inverting
these expressions one can find the nondiagonal elements
of MNTB

� in terms of ðAz; Bz; CzÞ

MNTB
� ð1; 2Þ ¼

ffiffiffi
2

p
szcz

1� 3s2z
Bz þ czð1� 2

ffiffiffi
2

p
szÞ

2ð1� 3s2zÞ
Cz � czffiffiffi

2
p

sz
Cz;

MNTB
� ð1; 3Þ ¼

ffiffiffi
2

p
szcz

1� 3s2z
Bz þ czð1� 2

ffiffiffi
2

p
szÞ

2ð1� 3s2zÞ
Cz þ czffiffiffi

2
p

sz
Cz;

MNTB
� ð2; 3Þ ¼ c2z

1� 3s2z
Bz þ�2szc

2
z þ 2

ffiffiffi
2

p
c2z �

ffiffiffi
2

p
2szð1� 3s2zÞ

Cz:

(27)

The relations in Eqs. (26) and (27) define the generic
modified tripartite form for the symmetric neutrino mass
matrix.
This pattern of MNTB

� is characterized also by some
‘‘mass relations’’ relating its different entries
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MNTB
� ð1; 2Þ þMNTB

� ð1; 3Þ ¼ tan2�z
2

�
MNTB

� ð2; 3Þ �MNTB
� ð1; 1Þ þMNTB

� ð2; 2Þ þMNTB
� ð3; 3Þ

2

�
;

MNTB
� ð2; 2Þ �MNTB

� ð3; 3Þ ¼ ffiffiffi
2

p
tan�z½MNTB

� ð1; 3Þ �MNTB
� ð1; 2Þ�;

2MNTB
� ð1; 1Þ þ 6MNTB

� ð2; 2Þ ¼ ½MNTB
� ð3; 3Þ þMNTB

� ð2; 2Þ�ð1þ cos2�zÞ � 2½MNTB
� ð1; 1Þ �MNTB

� ð2; 3Þ� cos2�z
� 2½MNTB

� ð1; 2Þ þMNTB
� ð1; 3Þ� cos2�z � 2½MNTB

� ð1; 2Þ �MNTB
� ð1; 3Þ� cos�z

� 2½MNTB
� ð3; 3Þ �MNTB

� ð2; 2Þ� cos�z þ 2
ffiffiffi
2

p ½MNTB
� ð1; 2Þ þMNTB

� ð1; 3Þ� sin2�z
þ 1ffiffiffi

2
p ½MNTB

� ð2; 2Þ þMNTB
� ð3; 3Þ� sin2�z �

ffiffiffi
2

p ½MNTB
� ð1; 1Þ �MNTB

� ð2; 3Þ� sin2�z
� 2

ffiffiffi
2

p ½MNTB
� ð1; 3Þ �MNTB

� ð1; 2Þ� sin�z �
ffiffiffi
2

p ½MNTB
� ð3; 3Þ �MNTB

� ð2; 2Þ� sin�z: (28)

These relations are to be contrasted with the simple ones
characterizing the TB pattern (�z ¼ 0):

MTB
� ð1; 2Þ þMTB

� ð1; 3Þ ¼ 0;

MTB
� ð2; 2Þ �MTB

� ð3; 3Þ ¼ 0;

MTB
� ð1; 1Þ þMTB

� ð1; 2Þ �MTB
� ð2; 2Þ þMTB

� ð2; 3Þ ¼ 0:

(29)

Up till now, the obtained results hold independently of
an explicit value of �z. However, it is useful now, in order
to contrast our analysis with the experimental data, to

specify our results to the precise value (�z ’ 8:13o ’
arcsin 1ffiffiffiffi

50
p ). In this specific case, we have the ‘‘observed’’

mixing matrix

VNTB
0 ¼

7
15

ffiffiffi
3

p
7
30

ffiffiffi
6

p
1
10

ffiffiffi
2

p

� 1
5

ffiffiffi
6

p
3
10

ffiffiffi
3

p
7
10

2
15

ffiffiffi
6

p � 11
30

ffiffiffi
3

p
7
10

0
BBB@

1
CCCA: (30)

As to the ðZ2Þ3 generators for the S symmetry, they are
given now as follows.

S01 ¼
� 23

75
14

ffiffi
2

p
25 � 28

ffiffi
2

p
75

14
ffiffi
2

p
25

13
25

8
25

� 28
ffiffi
2

p
75

8
25

59
75

0
BBBB@

1
CCCCA; S02 ¼

26
75 � 21

ffiffi
2

p
50

77
ffiffi
2

p
150

� 21
ffiffi
2

p
50

23
50

33
50

77
ffiffi
2

p
150

33
50

29
150

0
BBBB@

1
CCCCA; S03 ¼

24
25 � 7

ffiffi
2

p
50 � 7

ffiffi
2

p
50

� 7
ffiffi
2

p
50

1
50 � 49

50

� 7
ffiffi
2

p
50 � 49

50
1
50

0
BBBB@

1
CCCCA: (31)

We also find the transition matrix between the TB and our special NTB patterns as equal to

W0 ¼
7
ffiffi
2

p
10

1
10

1
10

� 1
10

7
ffiffi
2

p þ10
20

7
ffiffi
2

p �10
20

� 1
10

7
ffiffi
2

p �10
20

7
ffiffi
2

p þ10
20

0
BBBB@

1
CCCCA; (32)

which corresponds to the NTB ‘special’ modified tripartite form

MNTB
�0 ¼

A0 � B0 þ C0
7
ffiffi
2

p
47 ðB0 � 22C0Þ 7

ffiffi
2

p
47 ðB0 þ 25C0Þ

7
ffiffi
2

p
47 ðB0 � 22C0Þ A0 þ C0

1
47 ð49B0 þ 191C0Þ

7
ffiffi
2

p
47 ðB0 þ 25C0Þ 1

47 ð49B0 þ 191C0Þ A0 � C0

0
BBBB@

1
CCCCA; (33)

where the neutrino eigen masses and the coefficients of this special modified tripartite form are related by

m1 ¼ A0 � 49

47
B0 þ 279

47
C0; A0 ¼ 49

100
m3 þ 101

300
m2 þ 13

75
m1; m2 ¼ A0 � 49

47
B0 � 426

47
C0;

B0 ¼ 47

100
m3 � 17

300
m2 � 31

75
m1; m3 ¼ A0 þ 51

47
B0 þ 194

47
C0; C0 ¼ � 1

15
m2 þ 1

15
m1:

(34)
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The resulting mass spectra can accommodate all types of
neutrino mass hierarchies as follows:

(i) Normal hierarchy: with

A0 ’ B0; C0 	 B0; (35)

we get a mass spectrum corresponding to normal
hierarchy:

½m1;m2;m3�’
�
A0�49

47
B0;A0�49

47
B0;A0þ51

47
B0

�
:

(36)

(ii) Inverted hierarchy: with

A0 ’ �B0; C0 	 B0; (37)

we get a mass spectrum corresponding to inverted
hierarchy:

½m1;m2;m3�’
�
A0�49

47
B0;A0�49

47
B0;

194

47
C0

�
: (38)

(iii) Degenerate case: with

A0 
 B0 
 C0; (39)

we get a quasi-degenerate mass spectrum

½m1; m2; m3� ’ ½A0; A0; A0�: (40)

In addition to what precedes, we could check that the
symmetry generated by the generic ðS1; S2; S3Þ (or by any
two of the three elements) is equivalent to the generic
modified tripartite form. In particular, and limiting our
attention to our special case (�z ¼ arcsin 1ffiffiffiffi

50
p ) we have the

following equivalences corresponding to the special modi-
fied tripartite form

½ðS0iÞT �M�0 �S0i¼M�0�,fk� l)½ðVNTB
0 ÞT �M�0 �VNTB

0 �kl¼0g

,

2
666649A0;B0;C0:M�0¼

A0�B0þC0
7
ffiffi
2

p
47 ðB0�22C0Þ 7

ffiffi
2

p
47 ðB0þ25C0Þ

7
ffiffi
2

p
47 ðB0�22C0Þ A0þC0

1
47ð49B0þ191C0Þ

7
ffiffi
2

p
47 ðB0þ25C0Þ 1

47ð49B0þ191C0Þ A0�C0

0
BBBB@

1
CCCCA

3
77775; (41)

where i spans the set f1; 2; 3g or any two different elements
in it.

III. CHARGED-LEPTON MASS MATRIX

Up to this point, we have found explicit realizations of
the ðZ2Þ3 S symmetry which would lead to the phenom-
enologically interesting form for M� corresponding to the
NTB pattern. However, we would now lift our findings to
an underlying symmetry level and construct a model for
the leptons where the Lagrangian is kept invariant under
the flavor S symmetry.

We see that the SM term

L 1 ¼ Yij
�Li�lcj (42)

has to be absent provided the SM singlet charged RH
leptons lcj and the SM Higgs are singlet under S ¼ ðZ2Þ3,
whereas the left doublets transform componentwise as

Li ! SijLj: (43)

To show this, it is sufficient to note that the invariance of
L1 under S implies the matrix equation

ST � Y ¼ Y; (44)

which can be only satisfied for a vanishing Y. Had we
restricted the symmetry to just two factors, for example,
hS1; S2i, this term would have been allowed. However, in
this case corresponding to the flavor S symmetry being an

ðZ2Þ2 symmetry, one can check that the charged lepton
squared mass matrix, proportional to Y � Yy when the SM
Higgs gets its vacuum expectation value (VEV), would be
singular with two zero eigen values, and the charged lepton
mass hierarchy cannot thus be produced. Another serious
drawback for the existence of such a term in ðZ2Þ2
symmetry is that the left-handed charged leptons need
here to be rotated nontrivially in order to achieve the
diagonalization of the charged lepton mass matrix, and
this in turn would destroy the prediction of the NTB pattern
in Eq. (30).
In order to remedy this, we add three SM singlet scalar

fields �k coupled to the lepton left-handed doublets
through the dimension-5 operator:

L 2 ¼ fikr
�

�Li��kl
c
r; (45)

and we assume �k to vary under S symmetry as

�i ! Sij�j: (46)

As in Ref. [7], this ad hoc assumption ofL2 with only one
Higgs field is suitable to reduce the effects of flavor-
changing neutral currents [17]. Invariance of L2 under S
symmetry leads to

STfrS ¼ fr; (47)

where ðfrÞij ¼ fijr. Thus, from Eq. (41), the matrix fr has

the NTB modified tripartite form
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fr ¼
Ar
0 � Br

0 þ Cr
0

7
ffiffi
2

p
47 ðBr

0 � 22Cr
0Þ 7

ffiffi
2

p
47 ðBr

0 þ 25Cr
0Þ

7
ffiffi
2

p
47 ðBr

0 � 22Cr
0Þ Ar

0 þ Cr
0

1
47 ð49Br

0 þ 191Cr
0Þ

7
ffiffi
2

p
47 ðBr

0 þ 25Cr
0Þ 1

47 ð49Br
0 þ 191Cr

0Þ Ar
0 � Cr

0

0
BBBB@

1
CCCCA: (48)

When �k and �� take the VEVs h�ki ¼ �k, v ¼ h��i,
then L2 would generate charged lepton mass matrix

ðMlÞir ¼ vfikr
�

�k: (49)

One can arrange the VEVs and the Yukawa couplings such
that Ml, after suitably rotating the flavor and SM singlets
lcj , is the charged lepton mass matrix in the flavor basis. For
example, if �1, �2 	 �3, we get

Ml ¼ v�3

�

A0
1 A0

2 A0
3

B0
1 B0

2 B0
3

C0
1 C0

2 C0
3

0
BB@

1
CCA; (50)

where

A0
i ¼

7
ffiffiffi
2

p
47

ðBi
0 þ 25Ci

0Þ;

B0
i ¼

1

47
ð49Bi

0 þ 191Ci
0Þ;

C0
i ¼ Ai

0 � Ci
0:

(51)

The charged lepton squared mass matrix ðMlM
y
l Þ assumes

the form,

MlM
y
l �

�
v�3

�

�
2

A0 �A0 A0 �B0 A0 � C0

B0 �A0 B0 � B0 B0 � C0

C0 �A0 C0 � B0 C0 � C0

0
BB@

1
CCA; (52)

whereA0 is the complex vector of components A0
i (i ¼ 1, 2,

3, similarly for 8B0;C0) and the usual inner product of two
complex vectors (A0 and B0) is defined as A0 � B0 �P

3
i¼1 A

0
iB

0�
i . The charged lepton mass matrix, Ml, is non-

singular provided the three vectors ðA0;B0;C0Þ are linearly
independent (amounting to noncoplanar vectors in the real
Euclidian case).

In order to show that Ml can naturally represent the
lepton mass matrix in the flavor basis, let us just assume
the magnitudes of the three vectors coming in ratios com-
parable to the lepton mass ratios

jA0j
jC0j � 
e � me

m�

¼ 2:8� 10�4;

jB0j
jC0j � 
� �m�

m�

¼ 5:9� 10�2;

(53)

where jA0j represent the norm of the vector defined by

jA0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0 �A0p

; ðsimilarly for B0;C0Þ: (54)

This leads the squared mass matrix to be written as

Q
 �MlM
y
l �

�
v�3

�

�
2jC0j2

�

2
e 
e
� cosc ei� 
e cos�ei�


e
� cosc e�i� 
2
� 
� cos�ei



e cos�e�i� 
� cos�e�i
 1

0
BB@

1
CCA;

(55)

where c , �, and � are the ‘‘angles’’ between the pairs of
complex vectors ðA0;B0Þ, ðA0;C0Þ, and ðC0;B0Þ, respec-
tively, whereas �, �, and 
 are the phases of the corre-
sponding inner products.1 The diagonalization ofMlM

y
l by

means of an infinitesimal ‘‘rotation’’ amounts to seeking an
anti-Hermitian matrix

I� ¼
0 �1 �2

���1 0 �3

���2 ���3 0

0
BB@

1
CCA; (56)

with small parameters �’s, satisfying

ðQ
 þ ½Q
; I��Þij ¼ 0; i � j: (57)

If we solve this equation analytically to express the �’s
in terms of (
e;�, cosðc ; �; �Þ, �, �, 
), we find, apart
from ‘‘fine-tuned’’ situations corresponding to coplanar
vectors A0, B0, C0, that we get j�3j � 
�, j�2j � 
e and
j�1j � 
e=
�, which points to a consistent solution
diagonalizing Q
 close to the identity matrix given by
Ul

L ¼ eI� � I þ I�. The eigenvalues for MlM
y
l can be

approximated up to leading order in 
’s, and by identi-
fying them with the observed charged lepton squared
masses we get

m2
e ¼ �2
2

e

sin2�
ð1� 2cos2c þ 6 cosð
� �� �Þ cosc cos�

� cos�� cos2�� 2cos2�cos2�� 2cos2�Þ;

m2
� ¼ �2
2

�

sin2�
ð1� 3cos2�þ 2cos4�Þ ��2
2

e

sin2�
ð1� 2cos2c

þ 6 cosð
� �� �Þ cosc cos� cos�� cos2�

� 2cos2�cos2�� 2cos2�Þ;
m2

� ¼ �2ð1þ 2
2
�cos

2�þ 2
2
ecos

2�Þ; (58)

1The ‘‘angle’’ c and ‘‘phase’’ � between two complex vectors
A0 and B0 are defined, following Cauchy-Schwartz inequality, as
jA0 � B0j ¼ jA0jjB0j cosc , so we have A0:B0 ¼ jA0jjB0jcosc ei�,
where �¼ argðA0 �B0Þ.
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where � ¼ ðv�3

� ÞjC0j. By giving some fixed values to the
angles and phases, one can in general solve the above
mentioned equations for (
�, 
e, and �). For illustrative
purpose, we choose a common value 	=3 for angles
but for phases we have representative values as (�¼	

3 ,
� ¼ 	

4 , and 
 ¼ 	
5 ). The resulting solutions for (
�, 
e,

and �) are


e ¼ 7:99� 10�4;


� ¼ 8:4� 10�2;

� ¼ 1776:978 MeV;

(59)

while the ‘‘exact’’ unitary diagonalizing matrix is
given by

Ul
L �

1 5:46� 10�3 expð0:693i	Þ 5:41� 10�4 expð0:126i	Þ
�5:46� 10�3 expð�0:693i	Þ 1 4:23� 10�2 expð0:20i	Þ
�5:41� 10�4 expð�0:126i	Þ �4:23� 10�2 expð�0:20i	Þ 1

0
BB@

1
CCA: (60)

The deviations due to the rotations are generally small, and thus produce tiny but acceptable modifications to the mixing
and phase angles of the unitary mixing matrix in Eq. (30).

IV. NTB NEUTRINO MASS MATRIX AND TYPE-I SEESAW SCENARIO

Here, the type-I seesaw formula [Eq. (13)] applies. The Dirac neutrino mass matrix comes from

gij �Li
~��Rj; (61)

where ~� ¼ i�2�
�, and we assume the RH neutrinos transforming under S as

�Rj ! Sj
�R
: (62)

Then, the invariance of the Lagrangian under S symmetry leads to

ST:g:S ¼ g: (63)

Thus we have the NTB modified tripartite form for g, and when ~� takes a VEV we obtain the Dirac mass matrix as

MD
�0 ¼ v

AD
0 � BD

0 þ CD
0

7
ffiffi
2

p
47 ðBD

0 � 22CD
0 Þ 7

ffiffi
2

p
47 ðBD

0 þ 25CD
0 Þ

7
ffiffi
2

p
47 ðBD

0 � 22CD
0 Þ AD

0 þ CD
0

1
47 ð49BD

0 þ 191CD
0 Þ

7
ffiffi
2

p
47 ðBD

0 þ 25CD
0 Þ 1

47 ð49BD
0 þ 191CD

0 Þ AD
0 � CD

0

0
BBBB@

1
CCCCA: (64)

Again, the invariance under S symmetry of the term 1
2�

T
iRCðMRÞij�jR (C is the charge conjugation matrix) would impose

the NTB modified tripartite form for the Majorana RH neutrino mass matrix

MR0 ¼ �R

AR
0 � BR

0 þ CR
0

7
ffiffi
2

p
47 ðBR

0 � 22CR
0 Þ 7

ffiffi
2

p
47 ðBR

0 þ 25CR
0 Þ

7
ffiffi
2

p
47 ðBR

0 � 22CR
0 Þ AR

0 þ CR
0

1
47 ð49BR

0 þ 191CR
0 Þ

7
ffiffi
2

p
47 ðBR

0 þ 25CR
0 Þ 1

47 ð49BR
0 þ 191CR

0 Þ AR
0 � CR

0

0
BBBB@

1
CCCCA; (65)

where �R is a high scale characterizing the seesaw mechanism.
Thus we get also an NTB modified tripartite form for the effective neutrino mass matrix

M�0 ¼ v2

�R

A�0 � B�0 þ C�0
7
ffiffi
2

p
47 ðB�0 � 22C�0Þ 7

ffiffi
2

p
47 ðB�0 þ 25C�0Þ

7
ffiffi
2

p
47 ðB�0 � 22C�0Þ A�0 þ C�0

1
47 ð49B�0 þ 191C�0Þ

7
ffiffi
2

p
47 ðB�0 þ 25C�0Þ 1

47 ð49B�0 þ 191C�0Þ A�0 � C�0

0
BBBB@

1
CCCCA; (66)

where A�0, B�0 and C�0 are given by
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A�0 ¼ 13

75

ðAD
0 � 49

47B
D
0 þ 279

47 C
D
0 Þ2

AR
0 � 49

47B
R
0 þ 279

47 C
R
0

þ 101

300

ðAD
0 � 49

47B
D
0 � 426

47 C
D
0 Þ2

AR
0 � 49

47B
R
0 � 426

47 C
R
0

þ 49

100

ðAD
0 þ 51

47B
D
0 þ 194

47 C
D
0 Þ2

AR
0 þ 51

47B
R
0 þ 194

47 C
R
0

;

B�0 ¼ � 31

75

ðAD
0 � 49

47B
D
0 þ 279

47 C
D
0 Þ2

AR
0 � 49

47B
R
0 þ 279

47 C
R
0

� 17

300

ðAD
0 � 49

47B
D
0 � 426

47 C
D
0 Þ2

AR
0 � 49

47B
R
0 � 426

47 C
R
0

þ 47

100

ðAD
0 þ 51

47B
D
0 þ 194

47 C
D
0 Þ2

AR
0 þ 51

47B
R
0 þ 194

47 C
R
0

;

C�0 ¼ 1

15

ðAD
0 � 49

47B
D
0 þ 279

47 C
D
0 Þ2

AR
0 � 49

47B
R
0 þ 279

47 C
R
0

� 1

15

ðAD
0 � 49

47B
D
0 � 426

47 C
D
0 Þ2

AR
0 � 49

47B
R
0 � 426

47 C
R
0

:

(67)

The eigenvalues of the light neutrino mass matrix in
Eq. (66) are found to be

m1 ¼ v2

�R

ðAD
0 � 49

47B
D
0 þ 279

47 C
D
0 Þ2

AR
0 � 49

47B
R
0 þ 279

47 C
R
0

;

m2 ¼ v2

�R

ðAD
0 � 49

47B
D
0 � 426

47 C
D
0 Þ2

AR
0 � 49

47B
R
0 � 426

47 C
R
0

;

m3 ¼ v2

�R

ðAD
0 þ 51

47B
D
0 þ 194

47 C
D
0 Þ2

AR
0 þ 51

47B
R
0 þ 194

47 C
R
0

:

(68)

As mentioned before [see Eq. (34)], but now specifying to
the seesaw model, all types of neutrino mass hierarchies
can be accommodated as follows.

(i) Normal hierarchy: with

Ai
0 ’ Bi

0; Ci
0 	 Bi

0; i ¼ R;D (69)

we get a mass spectrum corresponding to normal
hierarchy

½m1; m2; m3� ’ v2

�R

�ðCD
0 Þ2
CR
0

;
ðCD

0 Þ2
CR
0

;
ðAD

0 Þ2
AR
0

�
: (70)

(ii) Inverted hierarchy: with

Ai
0 ’ �Bi

0; Ci
0 	 Bi

0; i ¼ R;D (71)

we get a mass spectrum corresponding to inverted
hierarchy

½m1; m2; m3� ’ v2

�R

�ðAD
0 Þ2
AR
0

;
ðAD

0 Þ2
AR
0

;
ðCD

0 Þ2
CR
0

�
: (72)

(iii) Degenerate case: with

Ai 
 Bi 
 Ci; i ¼ R;D (73)

we get a quasidegenerate mass spectrum

½m1; m2; m3� ’ v2

�R

�ðAD
0 Þ2
AR
0

;
ðAD

0 Þ2
AR
0

;
ðAD

0 Þ2
AR
0

�
: (74)

The RH neutrino mass term violates lepton number by
two units, and could be a source of lepton asymmetry.
The produced asymmetry due to the out of equilibrium

decay of the lightest RH neutrino to SM particles is
given by [18]

�’ 3

16	v2

1

ð ~MDy
�

~MD
� Þ11

X
j¼2;3

Imf½ð ~MDy
�

~MD
� Þ1j�2gMR1

MRj

; (75)

where MRi, i ¼ 1 � � � 3 are the masses for RH neutrinos,
and ~MD

� is the Dirac neutrino mass matrix in the basis
where the Majorana RH neutrino mass matrix MR0 is
diagonal. Since the RH neutrino mass matrix [Eq. (65)]
has the NTB modified tripartite form, then it is diago-
nalized by VNTB

0 [Eq. (41)]. Thus, under �R ! VNTB
0 �R,

we have MD
�0 ! MD

�0V
NTB
0 . We still have freedom in

multiplying the diagonalizing unitary matrix VNTB
0 by

diagonal phases F0 ¼ diagðe�i�1 ; e�i�2 ; e�i�3Þ adjusted
normally so as to cancel the phases of the spectrum of
MR0. Namely, these phases cancel out upon choosing

ð�1; �2; �3Þ ¼ 1

2
Arg

�
AR
0 � 49

47
BR
0 þ 279

47
CR
0 ; A

R
0 � 49

47
BR
0

� 426

47
CR
0 ; A

R
0 þ 51

47
BR
0 þ 194

47
CR
0

�
: (76)

Thus, we have ~MD
�0 ¼ MD

�0 � VNTB
0 � F0 so that we can

write

~MDy
�0

~MD
�0¼Fy

0V
NTBy
0 MDy

�0 V
NTB
0 VNTBy

0 MD
�0V

NTB
0 F0; (77)

which shows that ~MDy
�0

~MD
�0 is diagonal and real. Whence

� vanishes in this scenario if S symmetry is exact.

V. NTB NEUTRINO MASS MATRIX
AND TYPE-II SEESAW SCENARIO

We apply in this section the type-II seesaw scenario
aiming to show that it can solely accommodate enough
lepto/baryogenesis for the observed baryon/photon density
in the Universe. As in Ref. [7], we introduce in this
scenario two SM triplet fields �A, A ¼ 1, 2, which are
singlet under the flavor S symmetry. The Lagrangian part
relevant for the neutrino mass matrix is

L ¼ 
A
��L

T
�C�Ai�2L� þLðH;�AÞ þ H:c:; (78)

where A ¼ 1, 2 and
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LðH;�AÞ ¼ �2
HH

yH þ 
H

2
ðHyHÞ2 þMA Trð�y

A�AÞ

þ 
�A

2
½Trð�y

A�AÞ�2 þ 
H�A
ðHyHÞTrð�y

A�AÞ
þ�AH

T�y
Ai�2H þ H:c:; (79)

where H and �A are written as

H ¼ �þ
�0

� �
; �A ¼

�þffiffi
2

p �0

�þþ � �þffiffi
2

p

0
@

1
A: (80)

The neutrino mass matrix due to the exchange of the two
triplets, �1 and �2, is

ðM�Þ�� ’ v2

�

1
��

�1

M2
�1

þ 
2
��

�2

M2
�2

�
; (81)

where M�i
is the mass of the neutral component �0

i of the

triplet �i, i ¼ 1, 2.
Appropriately, we present some remarks here. First, the

flavor S symmetry would force the matrices 
1 and 
2 to
have the same NTB modified tripartite structure:


A
0 ¼

AA
0 � BA

0 þ CA
0

7
ffiffi
2

p
47 ðBA

0 � 22CA
0 Þ 7

ffiffi
2

p
47 ðBA

0 þ 25CA
0 Þ

7
ffiffi
2

p
47 ðBA

0 � 22CA
0 Þ AA

0 þ CA
0

1
47 ð49BA

0 þ 191CA
0 Þ

7
ffiffi
2

p
47 ðBA

0 þ 25CA
0 Þ 1

47 ð49BA
0 þ 191CA

0 Þ AA
0 � CA

0

0
BBBB@

1
CCCCA; A ¼ 1; 2: (82)

Thus, the neutrino mass matrix in Eq. (81) has the NTB
modified tripartite form, hence it can generate all types of
neutrino mass hierarchies [Eqs. (36), (38), and (40)].

Second, the�A-term inLðH;�AÞ, which does not allow
an ‘‘undesirable’’ spontaneous breaking of the lepton num-
ber, permits us to arrange the parameters so that minimiz-
ing the potential gives a nonzero VEV for the neutral
component �0 of the triplet. This would generate the
mass term for the neutrinos in Eq. (81) in an equivalent
way to integrating out the heavy triplets. Third, the flavor-
changing neutral current due to the triplet is highly sup-
pressed because of the large value of its mass scale (or
equivalently due to the smallness of the neutrino masses).

One can discuss now the baryon asymmetry generated
by leptogenesis. We show at present that, even though the
neutrino Yukawa couplings are real, it is possible to
generate a baryon-to-photon density consistent with the
observations. In fact, since the triplet �A can decay into
lepton pairs L�L� and HH, it implies that these processes

violate total lepton numbers (by two units) and may
establish a lepton asymmetry. As the Universe cools
further, the sphaleron interaction [19] converts this asym-
metry into baryon asymmetry. At temperature of the order
maxfM1;M2g, the heaviest triplet would decay via lepton
number-violating interactions. Nonetheless, no asymme-
try will be generated from this decay since the rapid
lepton number-violating interactions due to the lightest
Higgs triplet will erase any previously generated lepton
asymmetry. Therefore, only when the temperature be-
comes just below the mass of the lightest triplet Higgs
would the asymmetry be generated.

With just one triplet, the lepton asymmetry will be
generated at the two-loop level and it is highly suppressed.
We justify this in that one can always redefine the phase of
the Higgs field to make the � real, resulting in the absorp-
tive part of the self-energy diagram becoming equal to
zero. The choice of having more than one Higgs triplet is

necessary to generate the asymmetry [20]. In this case, the
CP asymmetry in the decay of the lightest Higgs triplet
(which we choose to be �1) is generated at one-loop level
due to the interference between the tree and the one-loop
self-energy diagram, and is given by

�CP � � 1

8	2

Im½�1�
�
2 Trð
1
2yÞ�
M2

2

M1

�1

; (83)

where �1 is the decay rate of the lightest Higgs triplet and it
is given by

�1 ¼ M1

8	

�
Trð
1y
1Þ þ �2

1

M2
1

�
: (84)

The baryon-to-photon density is approximately given by

�B � nB
s

¼ 1

3
�L ’ 1

3

1

g�K
�CP; (85)

where g� � 100 is the number of relativistic degrees of
freedom at the time when the Higgs triplet decouples
from the thermal bath and K is the efficiency factor which
takes into account the fraction of out-of equilibrium decays
and the washout effect. In the case of strong wash out, the
efficiency factor can be approximated by (H is the Hubble
parameter)

K ’ �1

H
ðT ¼ M1Þ: (86)

For j�1;2j � M�1;2
� 1012 GeV, and an efficiency factor of

order K � 104, and assuming real matrices 
A, and denot-
ing the phases of �A by �A we find

�B � 10�7 Trð
1
2yÞ
Trð
1y
1Þ þ 1

sinð�2 ��1Þ: (87)

Thus one can produce the correct baryon-to-photon ratio of
�B ’ 10�10 by choosing 
’s of order 0.1 and not too small
relative phase between the �’s.
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VI. SUMMARYAND CONCLUSION

We derived an explicit realization of the ðZ2Þ3 symmetry,
characterizing uniquely the non-TB pattern with �z � 0, in
line with the recent neutrino oscillations data. This would
constitute a natural explanation for the observed neutrino
mixing, rather than considering the TB as the zero approxi-
mation followed by some kind of perturbation in order to fit
the observed mixing. Actually, the recent oscillation data
make the perturbative treatment implausible, since large
deviations are needed in order to fit the mixing angle �z.
We have imposed the ðZ2Þ3 symmetry in a setup including
charged leptons, neutrinos, and extra scalar fields in order

to account for the charged lepton mass hierarchy. In type-I
seesaw scenario, we could account for the various neutrino
mass hierarchies. Finally, in type-II seesaw scenario, we
could by choosing appropriate Yukawa couplings interpret
the observed baryon-to-photon ratio observed in the
universe.
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