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In the framework of SOð10Þ gauge unification and the seesaw mechanism, we show that the upper

bound on the mass of the heaviest right-handed neutrino MR3
< 3� 1011 GeV, given by the Pati-Salam

intermediate scale of B-L spontaneous symmetry breaking, constrains the observables related to the left-

handed light neutrino mass matrix. We assume such an upper limit on the masses of right-handed

neutrinos and, as a first approximation, a Cabibbo form for the matrix VL that diagonalizes the Dirac

neutrino matrix mD. Using the inverse seesaw formula, we show that our hypotheses imply a triangular

relation in the complex plane of the light neutrino masses with the Majorana phases. We obtain normal

hierarchy with an absolute scale for the light neutrino spectrum. Two regions are allowed for the lightest

neutrino mass m1 and for the Majorana phases, implying predictions for the neutrino mass measured in

Tritium decay and for the double beta decay effective mass jhmeeij.
DOI: 10.1103/PhysRevD.86.033006 PACS numbers: 12.10.Dm, 14.60.Pq

I. INTRODUCTION

The present status of neutrino oscillations, conceived
many years ago by Pontecorvo [1], provides the following
approximate values for the square mass differences and the
mixing angles of the PMNS matrix [2,3]:

�m2
s ¼ jm2j2 � jm1j2 ’ 8� 10�5 eV2; (1)

tan2�s ’ 0:4; (2)

�m2
a ¼ jm3j2 � cos2�sjm2j2 � sin2�sjm1j2
’ 2:5� 10�3 eV2;

(3)

tan 2�a ’ 1: (4)

The following experimental limits constrain the effective
mass matrix of the left-handed neutrinos:

2:6� 10�3 eV<m�e
< 2:2 eV; (5)

jhmeeij< 0:4 eV; (6)

0:06 eV<
X
i

mi < 0:6 eV: (7)

These upper limits are, respectively, obtained from the
high energy spectrum of the electron in nuclear beta decay,
from the upper limit on the rate in neutrinoless double beta
decay (for Majorana neutrinos) and from cosmology.

The lower limits on m�e
and

P
imi are, respectively,

obtained from the bounds

m�e
> �mssin

2�s; (8)

X
i

mi >�ms þ �ma: (9)

An upper limit has also been found for the component of
the �eL along the third mass eigenstate, supposedly the
heaviest, i.e. the one that is not involved in solar neutrino
oscillations:

sin 2�13 < 0:03: (10)

It is generally recognized that SOð10Þ unified gauge
theories [4] provide a very natural framework for the see-
saw model [5], accounting naturally for the fact that left-
handed neutrinos have masses several orders of magnitude
smaller than the charged fundamental fermions. Indeed,
the 16 representation of SOð10Þ contains, besides the 10
and �5 of SUð5Þ, a singlet that can get a large mass,
unrelated to the electroweak symmetry breaking scale.
Moreover, in the most appealing gauge unified SOð10Þ

model, the one with SUð4Þ � SUð2Þ � SUð2Þ Pati-Salam
[6] intermediate symmetry, B-L is broken around
3� 1011 GeV [7–9], providing the scale for right-handed
neutrino masses by the �L ¼ 2 vacuum expectation value
(VEV) of the 126 representation.
In SOð10Þ one expects a spectrum for the eigenvalues of

the Dirac neutrino mass matrix that is similar to the masses
of the quarks with charge 2

3 , apart from some scale factor

due to the different scale dependence of quark and lepton
masses.
It is also very reasonable to assume that the matrix VL

appearing in the biunitary transformation that diagonalizes
the Dirac neutrino mass matrix mD has the same structure
as the Cabibbo-Kobayashi-Maskawa matrix VCKM [10],
namely, a hierarchical structure, the mixing angle between
the first two generations being larger than the other angles.
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This statement is strictly correct within the simplifying
hypothesis of assuming that the Higgs bosons providing
the Dirac masses and mixing belong to 10 representations.

II. THE INVERSE SEESAW

In this paper we intend to deduce the consequences of
two main hypothesis:

(i) We assume an upper limit for the right-handed neu-
trino masses.

(ii) Within the SOð10Þ gauge unification scheme, the
Dirac mass matrix (eigenvalues and mixing) has the
same structure as the up quark mass matrix (eigen-
values and mixing).

More quantitatively, we shall assume for the eigenvalues
of the Dirac neutrino mass matrix the same values as in
[11], namely,

mD1
¼ 10�3 GeV mD2

¼ 0:4 GeV

mD3
¼ 100 GeV:

(11)

Moreover we shall take for VL a matrix that, to begin
with, has the Cabibbo form with only �12 different from
zero,

VL ¼
cos�12 sin�12 0

� sin�12 cos�12 0

0 0 1

0
BB@

1
CCA (12)

which was a very instructive approximation [12]. The rest
of the angles are considered as perturbations relative to the
simple ansatz (12) and, as shown in [12], even the quanti-
tative features of the light left-handed neutrino spectrum
are correctly described.

Let us consider the inverse seesaw formula:

MR ¼ �mt
Dm

�1
L mD: (13)

Diagonalizing the neutrino Dirac mass matrix mD by

mD ¼ VLymdiag
D VR (14)

one gets the relation

MR ¼ �VRtm
diag
D VL�m�1

L VLymdiag
D VR

¼ �VRtm
diag
D ALm

diag
D VR

(15)

where the matrix AL is defined by [13]

AL ¼ VL�m�1
L VLy: (16)

Moreover, within SOð10Þ, with the electroweak Higgs
boson belonging to the 10 and 126 representations, and no
component along the 120 representation, the mass matrices
are symmetric. As a consequence, the unitary matrices VR

and VL that diagonalize Dirac neutrino matrix (14) are
related:

VR ¼ VL� (17)

and the matrix MR (15) becomes

MR ¼ �VLþmdiag
D ALmdiag

D VL�: (18)

The Cabibbo limit (12) taken by us would be a good
approximation of VL in the limit of quark-lepton symme-
try, with only components along the 10 representations for
the electroweak Higgs, where VL should be equal to VCKM.
The neutrino mass matrix mL is diagonalized by the

PMNS unitary neutrino mixing matrix, which reads

U ’
cs ss 0

� ssffiffi
2

p csffiffi
2

p 1ffiffi
2

p
ssffiffi
2

p � csffiffi
2

p 1ffiffi
2

p

0
BBB@

1
CCCA:diagð1; ei�; ei�Þ (19)

in the approximation that we will consider here for the
angle (10)

sin�13 ’ 0: (20)

In writing (19) we have taken the maximal mixing angle
for atmospheric neutrino oscillation and ss � sin�s (cs �
cos�s) and the angles� and� are the Majorana phases. We
use in (15) the notation of Davidson et al.[14] for the
Majorana phases, that have the ranges 0 � � � �; 0 �
� � �. In the PDG Tables [15] they are defined as
�21=2 and �31=2, with 0 � �21 � 2�; 0 � �31 � 2�.
Then, the left-handed neutrino light mass matrix reads

mL ¼ U�mdiag
L Uy m�1

L ¼ Uðmdiag
L Þ�1Ut (21)

where

m
diag
L ¼diagðm1;m2;m3Þ mi�0 ði¼1;2;3Þ (22)

are the light neutrino masses, real positive parameters,
since the Majorana phases have been factorized out, as it
should.
For the inverse m�1

L of the matrix (21) we will have

m�1
L ¼

c2s
m1

þ s2s
e�2i�m2

� csssffiffi
2

p
�

1
m1

� 1
e�2i�m2

�
csssffiffi
2

p
�

1
m1

� 1
e�2i�m2

�

� csssffiffi
2

p
�

1
m1

� 1
e�2i�m2

�
1
2

�
s2s
m1

þ c2s
e�2i�m2

þ 1
e�2i�m3

�
� 1

2

�
s2s
m1

þ c2s
e�2i�m2

� 1
e�2i�m3

�

csssffiffi
2

p
�

1
m1

� 1
e�2i�m2

�
� 1

2

�
s2s
m1

þ c2s
e�2i�m2

� 1
e�2i�m3

�
1
2

�
s2s
m1

þ c2s
e�2i�m2

þ 1
e�2i�m3

�

0
BBBBBBBBB@

1
CCCCCCCCCA
: (23)

Therefore, m�1
L being symmetric and VL unitary, the matrix AL is also symmetric.
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Of interest for our discussion will be the consideration of

the matrix m
diag
D ALm

diag
D that enters in the r.h.s. of the

expression (11):

mdiag
D ALmdiag

D ¼
AL
11m

2
D1 AL

12mD1mD2 AL
13mD1mD3

AL
12mD1mD2 AL

22m
2
D2 AL

23mD2mD3

AL
13mD2mD3 AL

23mD2mD3 AL
33m

2
D3

0
BB@

1
CCA:

(24)

The coefficient AL
33 of the square of the highest Dirac

eigenvalue (11), m2
D3

¼ ð100 GeVÞ2, within the simplify-

ing hypotheses of a Cabibbo form for VL (19) and s13 ¼ 0
(16), is [12,16]

AL
33 ¼ ðm�1

L Þ33 ¼ 1

2

�
s2s
m1

þ c2s
e�2i�m2

þ 1

e�2i�m3

�
(25)

and in the limit mD1
, mD2

� mD3
(11) one has roughly

MR3
� j AL

33 j m2
D3

¼ 1

2

��������
s2s
m1

þ c2s
e�2i�m2

þ 1

e�2i�m3

��������m2
D3
:

(26)

The expression (25) found for AL
33 follows from the

assumption (12) for the matrix VL. Let us notice that in
all generality it will also depend on the square of the
mixing angle between the third generation and the other
two lighter ones, that is assumed to be small.

Let us first remark that a rather conservative upper limit
on the mass of the heaviest right-handed neutrino of the
order

MR3
� 1015 GeV (27)

implies a lower limit for the mass of the lightest left-
handed neutrino, since in the small m1 region, when the
first term in (25) dominates, one should have, with the
value (11) for mD3

,

1

2

s2s
m1

� 104 GeV2 � 1015 GeV (28)

which implies

m1 � 1:4� 10�3 eV: (29)

Since m2 and m3, according to (1) and (3), are monotoni-
cally increasing functions of m1, one has

j detðmLÞj � 1:4� 10�3�ms�ma ¼ 6:43� 10�7 eV3

(30)

and for the Majorana mass matrix of right-handed neutri-
nos one has

j detðMRÞj � 2:5� 1030 GeV3: (31)

III. IMPOSING AN UPPER BOUND ON THE
HEAVIEST M�R

EIGENVALUE

Let us stress that large cancellations are required in (26)
if we impose on the masses of the right-handed neutrinos
the more stringent limit

MR3
� 3� 1011 GeV (32)

i.e. the scale of B-L spontaneous symmetry breaking in the
SOð10Þ unified gauge theory with Pati-Salam intermediate
symmetry.
The trivial bound

jAL
33j �

1

2

�
s2s
m1

þ c2s
m2

þ 1

m3

�
(33)

would be effective to constrain MR to be smaller than
1011 GeV only in a region of unrealistically large neutri-
nos masses. In fact jAL

33j should be about 2 orders of

magnitude smaller than 1
2m3

, taking into account the upper

limit on �imi (7).
From (11) and (26) we see that (32) implies

jAL
33j< 3� 10�2 eV�1 � 2:5 eV�1 � 1

2m3

: (34)

More precisely, only the third term in the r.h.s. of (33)
would give rise at least, by assuming the largest value for
m3 consistent with the square mass differences fixed by the
oscillations (3) and the rather conservative cosmological
limit (7) on the sum of their masses, 0.6 eV, to a mass
around MR3

’ 2:5� 1013 GeV, 2 orders of magnitude

larger than the value expected in the ordinary SOð10Þ
unified model with Pati-Salam intermediate symmetry.
Therefore, we underline again that one needs a strong

cancellation between the three terms in (25), which have
moduli related by the square mass differences implied by
neutrino oscillations.
Notice the very important point that this is already a hint

for large relative Majorana phases. In this respect, it is
interesting to look for the implications for the neutrinoless
double beta decay effective mass (6):

hmeei ¼ c2sm1 þ s2se
�2i�m2: (35)

Owing to (25) hmeei can be exactly expressed in terms of
miði ¼ 1; 2; 3Þ and AL

33 by the formula

hmeei ¼ �e�2ið���Þ m1m2

m3

þ 2AL
33e

�2i�m1m2: (36)

Taking into account (34), one can neglect the second
term in the r.h.s. of (36) and we obtain, just from the
imposed upper limit on MR3

(32), the simple expression

for hmeei:

hmeei ¼ �e�2ið���Þm1m2

m3

: (37)
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In the following we shall take

AL
33 ¼

1

2

�
s2s
m1

þ c2s
e�2i�m2

þ 1

e�2i�m3

�
¼ 0 (38)

since the second term in the r.h.s. of (36) is at most 1% of
the first one. Notice that relation (38) follows from the fact
that AL

33, due to Eq. (24), is affected by the square of the

largest mass mD3
and has nothing to do with the values of

the other eigenvalues in (11).

IV. A TRIANGLE IN THE COMPLEX PLANE
OF LIGHT NEUTRINO MASSES AND

MAJORANA PHASES

Let us now examine carefully the consequences of the
condition (38). This cancellation condition defines a tri-
angle in the complex plane:

s2s
m1

þ c2s
e�2i�m2

þ 1

e�2i�m3

¼ 0 (39)

which we have drawn in Fig. 1.
Equations (1) and (3) givem2 andm3 in terms ofm1 and

(39) may be satisfied if one has the inequality

��������
s2s
m1

� c2s
m2

���������
1

m3

� s2s
m1

þ c2s
m2

(40)

which is violated for m1 < 2:9926� 10�3 eV or in the
range (6:2194� 10�3 eV, 1:9861� 10�2 eV).

We thus get two regions where the triangular relation
holds:

Region I r1 � m1 � r2

ðr1 ¼ 2:9926� 10�3 eV; r2 ¼ 6:2194� 10�3 eVÞ;
(41)

Region II m1 � r3 ðr3 ¼ 1:9861� 10�2 eVÞ: (42)

On the boundaries of both regions m1 ¼ r1, r2, r3 one has
sinð2�Þ ¼ sinð2�Þ ¼ 0, but these two quantities can be
reasonably large in their interior.

We plot in Figs. 2 and 3 the dependence of the Majorana
phases � and � for both regions I and II as functions of m1

(in 10�3 eV units).
As we see in Fig. 2, in region I the phase � decreases

from 90	 to 82:1	 atm1 ¼ 4:1� 10�3 eV and gets back to
90	 atm1 ¼ r2, while� increases from 90	 to 180	 [notice
that we take � in the range (0	, 90	) and � in the range
(90	, 180	), but of course (39) holds also with the opposite
choice]. As we will see below, the fact that � is rather close
to 90	 for region I will imply a strong cancellation in the
effective mass hmeei of neutrinoless double beta decay.
In region II both Majorana phases can get large values

for moderate values of m1, where the sides of the triangle
(39) are not very different.
Notice now the important remark that for both regions

one must have normal hierarchy. The reason is the follow-
ing. From Eq. (39) one gets the relation

tan2�s ¼ �m1ðe�2i�m2 þ e�2i�m3Þ
e�2i�m2ðm1 þ e�2i�m3Þ

(43)

which, for the inverted hierarchy (m3 � m1,m2), would be
about �1.
For the normal hierarchy (m1, m2 � m3), Eq. (43)

becomes tan2�s ¼ � m1

e�2i�m2
and to have tan2�s ’ 0:4

[Eq. (2)] one needs

m1

m2
’ 0:4 � ’ �

2
: (44)

As we have seen above, when AL
33 vanishes, one has,

from (37),

jhmeeij ¼ m1m2

m3

(45)

so that, oncem1 is fixed, the three quantities in (38) are also
fixed, with m2 and m3 given by (1) and (3).
In the present scheme we have therefore for jhmeeij the

appealing expression (45), which implies a negative inter-
ference between the two terms in (35) for small m1, and a
positive one when m1 approaches the cosmological bound.
On the other hand, the mass m�e can be obtained from

m�e
¼ c2sm1 þ s2sm2: (46)

A further discussion on the constraint
MR3

< 3� 1011 GeV

Besides the main constraint (39), some words of
caution are necessary to prevent the mass of the heavier
right-handed neutrino MR3

from being larger than

3� 1011 GeV. We also have to check that

jAL
23j � 7:5 eV�1 (47)

because AL
23 multiplies the product of the two highest

eigenvalues of the Dirac matrix, as we can see in (24),
mD2

mD3
� 40 GeV2. It depends on the �12 mixing angle

and is given by

FIG. 1. The triangle in the complex plane (39). The sides are
given in terms of the inverses of the light neutrino masses and the
angles as functions of the Majorana phases � and � of the light
neutrino mixing matrix (19).
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AL
23 ¼ � 1

2

�
s2s
m1

þ c2s
m2e

�2i�
� 1

m3e
�2i�

�
cos�12

� 1ffiffiffi
2

p cscs

�
1

m1

� 1

m2e
�2i�

�
sin�12

¼ 1

m3e
�2i�

cos�12 � 1ffiffiffi
2

p cscs

�
1

m1

� 1

m2e
�2i�

�
sin�12:

(48)

At the boundary m1 ¼ r1, r2, r3 of the allowed regions,
we can tune the value of �12 in order that A

L
23 ¼ 0 holds, as

follows:

tan�12 ¼
ffiffiffi
2

p 1

csss

m1m2e
�2i�

m3e
�2i�ðm2e

�2i� �m1Þ
(49)

implying tan�12 ¼ 0:14, 0.24, and 0.6, at m1 ¼ r1, r2, and
r3 respectively, where sinð2�Þ ¼ sinð2�Þ ¼ 0, as we have
seen above. In the first region, as soon as 1

m3e
�2i� forms a

large angle with 1
m1

� 1
m2e

�2i� in the complex plane, the

cancellation between the two terms in (48) is impossible
and, when they are just orthogonal, the coefficient of the
term proportional to mD2

mD3
is at least of order 1

m3e
�2i� ,

giving rise to two right-handed neutrinos around
8� 1011 GeV and a lowest state around 0:32� 106 GeV.
In order to avoid a too small value for the mass of the

lightest right-handed neutrino, a necessary condition is that
jAL

22A
L
33 � ðAL

23Þ2j is smaller than jðAL
23Þ2j. This can be

obtained by relaxing the condition AL
33 ¼ 0. However,

one gets a too small mass for the lightest right-handed
neutrino anyway because of the range allowed for

AL
22 ¼

cos2�12
2

�
s2s
m1

þ c2s
m2e

�2i�
þ 1

m3e
�2i�

�

þ ffiffiffi
2

p
sin�12 cos�12csss

�
1

m1

� 1

m2e
�2i�

�

þ sin2�12

�
c2s
m1

þ s2s
m2e

�2i�

�
: (50)

FIG. 2 (color online). The Majorana phases� (red, lower line) and � (blue, upper line) in region I as a function ofm1 in 10
�3 eV units.

FIG. 3 (color online). The Majorana phases � (red, lower line) and � (blue, upper line) in region II as a function of m1 in 10�3 eV
units.
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AL
22 would be equal to A

L
33 in the limit of vanishing �12. So,

near the boundaries of region I one gets the choice made
recently [12] of a compact neutrino spectrum, as is also the
case with a large value of tan�12 near r3. The other values
of m1 consistent with Eq. (37) imply a value higher than
3� 1011 GeV for the two heaviest right-handed neutrinos,
and a small value for the lightest one.

V. PHENOMENOLOGICAL IMPLICATIONS
FOR LOW-ENERGY �L PHYSICS

In conclusion, the choice of a compact spectrum
seems the most natural, but it is useful to describe the
phenomenological consequences of the other scenarios.
We shall write the phenomenological consequences for
the quantities, for which there are the limits written in
(5)–(7) for the two regions (41) and (42) in the triangle

(39). For the sum of the moduli of the neutrino masses
we find in region I values slightly above the lower limit
j�maj þ j�msj � 0:06 eV, while in region II the sum of
the neutrino masses is at least 0:96� 10�1 eV, and it
grows almost linearly and saturates the bound at m1 ¼
0:198 eV.
We always get a small value for jhmeeij, in the range

ð5:6� 10�4 � 1:3� 10�3Þ eV in region I, while in
region II the relevant range is ð8:5� 10�3 � 0:2Þ eV. We
have limited the evaluation in region II to m1 � 0:2 eV,
according to the bound (7).
For m�e

, the neutrino mass intervening in the tritium

decay, it is confined to the ranges ð4:8� 7:5Þ � 10�3 eV
for region I and ð2� 10�2 � 0:2Þ eV for region II.
To summarize, we obtain the following numerical re-

sults:

Region I m�e
¼ ð4:8� 7:5Þ � 10�3 eV

X
i

mi ¼ 0:1 eV jhmeeij ¼ ð0:6� 1:3Þ � 10�3 eV; (51)

Region II m�e
¼ ð2� 10�2 � 0:2Þ eV X

i

mi ¼ ð0:1� 0:6Þ eV jhmeeij ¼ ð8:5� 10�3 � 0:2Þ eV: (52)

VI. CONCLUSIONS

With reasonable hypotheses in the framework of SOð10Þ
unified theories, and by imposing the simple assumption of
an upper bound on the mass of the heaviest right-handed
neutrino MR3

< 3� 1011 GeV, as suggested by a Pati-

Salam intermediate scale of B-L spontaneous symmetry
breaking, one gets interesting predictions for the physical
quantities related to the effective mass matrix of the light
left-handed neutrinos, namely, on the mass of the lightest
neutrino and on the Majorana phases.

Using the inverse seesaw formula, we have shown that
our hypothesis of an upper bound for the right-handed
neutrino masses implies a triangular relation in the com-
plex plane of the light neutrino masses with the Majorana
phases. In a straightforward way we thus have predicted,
on the one hand, normal hierarchy for the light neutrinos
and a lower limit and an exclusion region for the mass of

the lightest left-handed neutrino m1, implying an absolute
scale for the light neutrino spectrum.
The allowed regions for m1 are the range m1 ¼

ð3:0� 6:2Þ � 10�3 eV and the lower bound m1 �
2:0� 10�2 eV. For small m1, one of the Majorana phases
can be close to �

2 , and we get a strong cancellation in

the effective mass jhmeeij of neutrinoless double beta
decay; for light neutrino masses near the cosmolog-
ical bound, we obtain a positive interference for this
quantity. Within our scheme we also obtain an interesting
formula for jhmeeij just in terms of the three light
neutrino masses, which is valid in both domains allowed
for m1.
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